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Chapter 1

Introduction

In this thesis we prove new results about packings of arborescences. An r-arborescence is a directed

tree in which each node has an in-degree of 1 except the root note r, which has an in-degree of 0. A

packing of subgraphs in a graph means a collection of subgraphs, that are edge-disjoint. The most

fundamental result of the study of packings of arborescences is the following result of Edmonds ([6]):

Theorem 1.0.1. (Edmonds’ Theorem (Weak form))[6]) Let D = (V,A) a digraph and s ∈ V . There

exists a packing of k spanning s-arborescences in G if and only if

ϱ(X) ≥ k for all ∅ ≠ X ⊆ V − s, (1.1)

where ϱ(X) denotes the in-degree of X.

This result has been generalized in multiple ways. Durand de Gevigney, Nguyen and Szigeti char-

acterized the existence of matroid-based packings of arborescences in [5], Cs. Király, Szigeti, Tanigawa

characterized the existence of matroid-based and matroid-restricted packings of arborescences in [23]

and Bérczi and Frank characterized the existence of free-rooted packings of arborescences ([3]): pack-

ings, where the roots of the arborescences are not given (for further definitions see later sections).

This thesis generalizes results on free-rooted packings of arborescences. In Chapter 1 we give an

overview of the previous results about packing arborescences, present results that we use in later

chapters and describe some algorithms that we use in our algorithms as subroutines. In Chapter 2 we

characterize the existence of free-rooted matroid-based and matroid-restricted packings of arbores-

ences and prove some corollaries. In Chapter 3 we extend a result of Szigeti ([26]) about free-rooted

packings of arborescences in mixed graphs. In Chapter 4 we look at the algorithmic aspects of the

problems discussed in Chapter 2 and 3.

1.1 Definitions

1.1.1 Sets and set functions

Given a function f : S → R and a finite set Z ⊂ S, let f̃(Z) :=
∑

s∈Z f(s). Two subsets X,Y ⊆ S

are intersecting, if X ∩ Y ̸= ∅. A set function b on the ground set S is subcardinal if b(X) ≤ |X|
for all X ⊆ S; submodular if

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) for all X, Y ⊆ S; (1.2)
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and supermodular if

b(X) + b(Y ) ≤ b(X ∩ Y ) + b(X ∪ Y ) for all X, Y ⊆ S. (1.3)

A set function is positively intersecting submodular (positively intersecting supermod-

ular) if (1.2) (respectively (1.3)) holds for intersecting subsets of S, for which p(X) > 0, p(Y ) > 0.

An arc st with s ∈ S and t ∈ T , where S and T are two non-empty subsets of a ground set V ,

is called an st-arc. A set function p on V is called positively T -intersecting supermodular if

it satisfies (1.3) for subsets X,Y ⊆ S ∪ T for which X ∩ Y ∩ T ̸= ∅ and p0(X) > 0 and p0(Y ) > 0.

The set function p is called positively ST -crossing supermodular, if (1.3) holds if p(X) > 0 and

p(Y ) > 0 and X ⊆ V and Y ⊆ V are ST -crossing, that is, X ∩ Y ∩ T ̸= ∅ and S − (X ∪ Y ) ̸= ∅. S
and T are ST -independent if X ∩ Y ∩ T = ∅ and S − (X ∪ Y ) = ∅, that is, no ST -arc enters both

sets.

1.1.2 Matroids

A matroid is a pair M = (S, r) where S is called the ground set of M and r : 2S → N is called the

rank function of M and satisfies the so called rank axioms.

(R1) r(∅) = 0.

(R2) If X ⊆ Y ⊆ S then r(X) ≤ r(Y ) (monotonity).

(R3) r(X) ≤ |X| for every X ⊆ S (subcardinality).

(R4) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ) for every X,Y ⊆ S (submodularity).

A subset X ⊆ S is said to be independent if r(X) = |X|. Matroids can also be defined with

their independent sets. The pair M = (S, I), where I is the set of independent sets, is a matroid if

it satisfies the so called independence axioms.

(I1) ∅ ∈ I.

(I2) If Y ∈ I and X ⊆ Y then X ∈ I.

(I3) The inclusion-wise maximal independent subsets of every X ⊆ S have the same size.

If we define a matroid with its independent sets then the rank of a subset X ⊆ S is defined as the

size of the inclusion-wise maximal independent subsets of X. A base is an inclusion-wise maximal

independent set. An element s ∈ S is a loop if r({s}) = 1. Two elements x, y ∈ S are parallel if

r({x, y}) = 1.

The direct sum of two matroids M1 = (S1, I1) and M2 = (S2, I2) on disjoint ground sets is the

matroid M1

⊕
M2 on the ground set S1 ∪ S2 where a set X ⊆ S1 ∪ S2 is independent if and only if

X ∩ S1 ∈ I1 and X ∩ S2 ∈ I2. The sum/union of two matroids M1 = (S, I1) and M2 = (S, I2) on
the same ground set S is the matroid M1 +M2 on the ground set S where X ⊆ S is independent if

and only if there exists a set Y ⊆ X such that Y ∈ I1 and X − Y ∈ I2.
The k-uniform matroid on the ground set S is a matroid whose independent sets are exactly

the subsets of S with a size of at most k. Let P = {P1, . . . , Pk} be a partition of S and b1, . . . , bk

positive integers. Let I := {X ⊆ S : |X ∩ Pi| ≤ bi for all i = 1, . . . , k}. The matroid (S, I) is called
a partition matroid. The graphic matroid of a graph G = (V,E) is the matroid on E where an

edge-set F ⊆ E is independent if and only if F contains no cycles.

For a more thorough introduction to matroids, see [10, Chapters 5].
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1.1.3 Directed graphs and packings of arborescences

Let G = (S, T,E) be a bipartite graph and p : T → Z a positively intersecting supermodular set

function for which p(∅) = 0 holds. Let mS ∈ NS be a degree prescription on S. We say that G fits

mS if the degree of every s ∈ S is mS(s), that is, dG(s) = mS(s). Let Γ(Y ) be the set of neighbours

of Y in G. We say that G covers p, if ∀Y ⊆ T : p(Y ) ≤ |Γ(Y )|. Given a matroid M = (S, r), we say

that G M-covers p, if ∀Y ⊆ T : p(Y ) ≤ r(Γ(Y )).

Let D = (V + s,A) be a rooted digraph, where s is called the root. The in-degree of s is 0

and the outgoing arcs are called root-edges. We call an s-rooted arborescence an s-arborescence.

For X,Z ⊆ V + s, B ⊆ A let ∂Z(X) denote the set of edges that go from Z − X to X and let

ϱZ(X)= |∂Z(X)|. For B ⊆ A, let ∂B(X) be the set of edges in B enteringX. Let ϱB(X)= |∂B(X)|.
If X = V or B = A then ∂(X) and ϱ(X) may be used to denote the set and number of in-going arcs

of X, respectively.

Let M1 = (∂s(V ), r1) be a matroid on the root-edges of D. We call a packing of s-arborescences

T1, . . . , Tk M1-based, if every Ti contains exactly one root-edge (ei) and, for all vertices v ∈ V ,

{ei : v ∈ V (Ti)} is a basis of M1. Let M2 = (A, r2) be a matroid on the edges of D. We call a packing

of s-arborescences M2-restricted if the union of the edge sets of the arborescences in the packing is

independent in M2.

1.1.4 Mixed graphs and packings of arborescences

Let F = (V,E ∪ A) be a mixed graph where E is the set of undirected edges and A is the set of

arcs. Orienting an edge uv ∈ E means we replace it with either the arc uv or vu.A mixed r-

arborescence is a mixed graph that can be oriented to be an r-arborescence. An arc st ∈ A enters

a set X ⊆ V if s ̸∈ X and t ∈ X. An edge uv ∈ E enters x ⊆ V if |X ∩ {u, v}| = 1. For B ⊆ E ∪ A,

let ∂B(X) be the set of arcs and edges in B entering X. Let ϱB(X)= |∂B(X)|.
For

−→
Z ⊆ A, Z denotes the underlying undirected edges of

−→
Z . For Z ⊆ E and X ⊆ V , the set of

vertices covered by Z is denoted by V (Z) and the set of edges in Z that are induced by X is denoted

by Z(X). For a family of sets P on V and B ⊆ A ∪E let ∂B(P) be the set of edges and arcs in B,

that enter a member of P and ϱB(P):= |∂B(P)|.
For f, g : V → Z+ we call a packing of arborescences (f, g)-bounded if, for each v ∈ V , the

number of v-arborescences in the packing is between f(v) and g(v). For k, l, l′ ∈ Z+ − {0} a packing

of arborescences is (l, l′)-limited if the number of arborescences in the packing is between l and l′,

and k-regular, if each vertex is in exactly k arborescences in the packing. We call a packing of mixed

arborescences (f, g)-bounded/(l, l′)-limited/k-regular, if we can orient the undirected edges such that

we get an (f, g)-bounded/(l, l′)-limited/k-regular packing of arborescences.

For a graph G = (V,E), let MG be the graphic matroid of G, and let Mk
G be the k-graphic

matroid of G, that is the k-sum of MG, which is a matroid on V , where a set is independent if and

only if it can be partitioned into k independent sets of MG. Let F = (V,E ∪ A) be a mixed graph.

For a subpartition P of V , let A(P) and E(P) be the set of arcs and edges entering a class of P
and V (P) be the nodes covered by the subpartition P. Let GF = (V,E ∪ EA) be the underlying

undirected graph of F , and DF = (V,AE ∪A) the directed extension of F , where AE =
⋃

e∈E Ae, and

if e = uv ∈ E, Ae = {−→uv,−→vu} (−→uv is an arc from u to v). The extended k-graphic matroid Mk
F of F is

a matroid on A∪AE , which we get from Mk
GF

by replacing each edge e ∈ E with two parallel copies

of itself, associating these edges to the corresponding edges in AE , and associating the edges of EA

with the corresponding arcs of A. It is shown in [16], that the rank function of Mk
F is the following

(Z ⊆ A ∪AE):
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rMk
F
(Z) = min{|Z ∩A(P)|+ |{e ∈ E(P) : Z ∩Ae ̸= ∅}|+ k(|V | − |P|) : P is a partition of V } (1.4)

1.1.5 Hypergraphs

Let H = (V, E) be a hypergraph. We assume that all the hyperedges in E are of size at least 2.

A directed hypergraph or dypergraph for short is a pair
−→
H = (V,A) where V denotes the set of

vertices and A denotes the set of dyperedges. By dyperedge, we mean a pair (Z, z) where z ∈ Z

is the head of the dyperedge and the elements of Z − z are the tails of the dyperdge. We say that

the dyperedge (Z, z) enters a set X ⊆ V if the head of Z is in X and at least one of the tails is not.

The in-degree ϱA(X) is defined as the number of dyperedges entering X in A.

By trimming a dypergraph
−→
H we mean replacing each dyperedge (Z, z) with an arc tz where t

is one of the tails of the dyperedge (Z, z). We say that the node v can be reached from the node

u if there exists a sequence of dyperedges that can be trimmed to a directed uv path. If s ∈ V then

an s-hyperarborescence is a subgraph
−→
T of

−→
H which can be trimmed to an s-arborescence. An

s-hyperarborescence is spanning if every node can be reached from s.

1.1.6 Polymatroids

Let p and b be two set functions on S. For a vector x ∈ RS and Z ⊆ S, let x̃(Z) :=
∑

s∈S xs. The

polyhedron Q(p, b)= {x ∈ RS : p(Z) ≤ x̃(Z) ≤ b(Z) ∀Z ⊆ S} is called a generalized-polymatroid

or g-polymatroid if p and b have the following properties: p(∅) = b(∅), p is supermodular, b is

submodular and b(X) − p(Y ) ≥ b(X − Y ) − p(Y − X) for all X,Y ⊆ S. The Minkowski sum

of the n g-polymatroids Q(pi, bi) is denoted by
∑n

i=1 Q(pi, bi). For α, β ∈ R, the polyhedron

K(α, β)= {x ∈ RS : α ≤ x̃(S) ≤ β} is called a plank. For more details on g-polymatroids see [10,

Chapter 14]. We will use the following results on g-polymatroids:

Theorem 1.1.1 (Frank [10]). 1. Let Q(p, b) be a g-polymatroid, K(α, β) a plank and M = Q(p, b)∩
K(α, β).

(i) M ̸= ∅ if and only if p ≤ b, α ≤ β, β ≥ p(S) and α ≤ b(S).

(ii) M is a g-polimatroid.

(iii) If M ̸= ∅, then M = Q(pαβ , q
α
β ) with

pαβ(Z) = max{p(Z), α− b(S − Z)}

bαβ(Z) = min{b(Z), β − p(S − Z)}

2. Let Q(p1, b1) and Q(p2, b2) be two non-empty g-polymatroids and M = Q(p1, b1) ∩Q(p2, b2).

(i) M ̸= ∅ if and only if p1 ≤ b2 and p2 ≤ b1.

(ii) If p1, b1, p2, b2 are integral then M is an integral polyhedron.

3. Let Q(pi, bi) be n nonempty g-polimatroids. Then
∑n

1 Q(pi, bi) = Q(
∑n

1 pi,
∑n

1 bi).
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1.2 Background results

1.2.1 Matroid-based and matroid-restricted packings

The following theorem is a stronger version of Theorem 1.0.1.

Theorem 1.2.1 (Edmonds Theorem (Strong form) [6]). Let D = (V + s,A) be a rooted digraph, and

let {B1, . . . , Bk} be a partition of its root-edges. There exists a packing of spanning s-arborescences

T1, . . . , Tk, where the root-edges of Ti are in Bi for every i = 1, . . . , k if and only if ϱV (X) ≥ |{i ∈
{1, . . . , k} : Bi ∩ ∂s(X) = ∅}| for all ∅ ≠ X ⊆ V .

The following is the outline of Lovász’s proof ([24]) of Theorem 1.2.1:

Proof (sketch). Let Ri ⊆ V be the set of the endpoints of the edges in Bi. Let p(X) := |{i ∈
{1, . . . , k} : Bi ∩ ∂s(X) = ∅}|. A subset X ⊆ V . We call X tight, if p(X) = ϱV (X) and dangerous, if

it intersects both V −R1 and R1 (we assume, that R1 ̸= V , otherwise the solution is trivial).

Step 0. Prove the necessity of the condition.

Step 1. Prove that p is supermodular.

Step 2. Prove that the intersection and union of intersecting tight sets are also tight. This

implies, that the inclusion-wise maximal tight sets are pairwise disjoint.

Step 3. Show that, if R1 ̸= V , then there exists an uv edge that leaves R1.

Step 4. Show that, if uv does not enter any dangerous sets, then the graph D − uv and the

following partition B1 + sv,B2, . . . , Bk of the root-edges satisfy the conditions of the

theorem, where sv is a new root-edge.

Step 5. Let M ⊆ V be an inclusion-wise minimal dangerous set. Show that there exists an edge

uv in D such that u ∈ M ∩R1 and v ∈ M −R1.

Step 6. Show that this edge does not enter any dangerous sets.

Let M be a partition matroid on the root-edges with partition {B1, . . . , Bk} and bounds 1 for all

the partition classes. Then an M -based packing of s-arborescences corresponds to a packing satisfying

the requirements of Theorem 1.2.1. Indeed, if we take the union of all the arborescences from the

packing that have their root-edges in the same partition class then, by the definition of an M -based

packing, we get an s-arborescence. Since there are k partition classes and the rank of M is k we get

k spanning s-arborescences. Conversely, a spanning s-arborescence with all of its edges in the same

class of the partition can be divided into sub-arborescences containing exactly 1 root-edge. In [5],

Durand de Gevigney, Nguyen and Szigeti characterized the existence of matroid-based packings of

arborescences. The theorem can be proved in a way that is similar to the outlined proof of Edmonds

theorem (1.2.1).

Theorem 1.2.2. (Durand de Gevigney, Nguyen, Szigeti [5]) We are given a graph D = (V + s,A)

and a matroid M = (∂s(V ), r). There is an M -based packing of s-arborescences in D if and only if

ϱV (X) ≥ r(M)− r(∂s(X)) := p(X) (1.5)
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Furthermore, if we want the S to be the root set of arborescences, then the following must also hold

∂s(v) is independent in M for every v ∈ V. (1.6)

The following is the outline of the proof.

Proof (sketch). Let X ⊆ V . We say that X is tight if ϱV (X) = p(X). We say that X spans Y ⊆ V , if

ϱs(Y ) ⊆ spanM (∂s(X)). An edge uv is called bad, if v spans u, otherwise it is called good. If X ⊆ V

is tight and there exists a good uv edge that enters X and X spans u, than X is called dangerous.

Step 0. Prove the necessity of the condition.

Step 1. Prove that p is supermodular.

Step 2. Prove that the intersection and union of tight sets are also tight.

Step 3. Let X,Y ⊆ be tight sets. Prove that, if a node v is spanned by both X and Y , then

X ∩ Y also spans v. Note that this statement follows from Statement 1.2.1.

Step 4. Prove that, if X ⊆ V does not span any good edges, then every v ∈ X spans X.

Step 5. Prove that, if there are no good edges, then we can construct an appropriate packing of

arborescences using only the root-edges.

Step 6. Let uv be a good edge that does not enter any dangerous sets. Prove that we can choose

a root-edge e entering u such that it is not spanned by the root-edges entering v and if

we modify D and M the following way, 1.5 still holds: we delete uv form D and create a

new root-edge entering v. Let the corresponding new matroid element be parallel with

e.

Step 7. Let X be an inclusion-wise minimal dangerous set. Prove that X induces a good edge.

Step 8. Prove that this edge does not enter any dangerous sets.

The previous proof uses the following statement about matroids:

Statement 1.2.1. Let M = (S, r) be a matroid and X,Y ⊆ S two subsets such that r(X) + r(Y ) =

r(X ∪ Y ) + r(X ∩ Y ). Then if s ∈ span(X) ∩ span(Y ) then s ∈ span(X ∩ Y ).

Proof. The span of a set X is defined as span(X) := {s ∈ S : r(X ∪ {s}) = r(X)}. By the

submodularity and subcardinality of r and the assumptions of the statement:

r(X ∩ Y ) + r(X ∪ Y ) = r(X) + r(Y ) = r(X + s) + r(Y + s)

≥ r((X ∩ Y ) ∪ {s}) + r(X ∪ Y ∪ {s}) ≥ r(X ∩ Y ) + r(X ∪ Y ).

From this we have r(X ∩ Y ) = r((X ∩ Y ) ∪ {s}), which means that s ∈ span(X ∩ Y ).

The packings characterized in the theorems above can also be characterized as common bases of

two matroids. Edmonds gave a minmax theorem in [8] for the size of the largest common independent

set of two matroids on the same ground set and a polynomial time algorithm to find it.
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Theorem 1.2.3. (Edmonds, [8]) Let M1 = (S, I1) and M2 = (S, I2) be two matroids with rank

functions r1 and r2. Then

max{|I| : I ∈ I1 ∩ I2} = min{r1(A) + r2(S −A) : A ⊆ S} (1.7)

For example in the case of Theorem 1.0.1, let M1 = (A, I1) be the k-graphic matroid of the

underlying undirected graph G = (V,E) of D and M2 = (A, I2) be the direct sum of uniform

matroids on ∂(v) with rank k for v ∈ V − s (we can assume that ϱ(s) = 0). Note that r(M1) =

r(M2) = k(|V | − 1). The following statement is common folklore.

Statement 1.2.2. The subset B ⊆ A is a common basis of M1 and M2 if and only if it is the edge-set

of a packing of spanning s-arborescences.

Proof. If B is the edge-set of a packing of spanning s-arborescences, then it is obviously a common

basis of M1 and M2.

If there exists a common basis B then by Theorem 1.2.3, r1(F ) + r2(A− F ) ≥ k(|V | − 1) for all

F ⊆ A. Our goal is to show that this implies condition (1.1). Since, by restricting M1 and M2 to B,

we do not change the ranks of the matroids, this implies by Theorem 1.0.1 that B is the edge set of

a packing of k s-arborescences.

Assume that a counter example to (1.1) exists, that is, there exists an X ⊆ V − s such that

ϱ(X) < k. Let F be the set of edges induced by X. Let Y be the set of nodes that have in-going

edges in A− F . Then r2(E − F ) =
∑

v∈Y min{ϱ(v), k}. Since ϱ(X) < k,
∑

v∈Y ∩X min{ϱ(v), k} < k.

Since s ̸∈ Y ,
∑

v∈Y−X min{ϱ(v), k} ≤ k|Y −X| ≤ k(|V | − |X| − 1). Therefore, r1(F ) + r2(A− F ) <

k(|X| − 1) + k(|V | − |X| − 1) = k(|V | − 1), contradicting (1.7).

In the case of Theorem 1.2.1 let M1 be the union of the graphic matroids of Gi (i = 1, . . . , k)

where we get Gi by contracting the endpoints of the edges in Bi (the edges induced by the endpoints

of the edges in Bi become loops) and let M2 be the direct sum of uniform matroids on ∂(v) with rank

k− ∂s(v) for v ∈ V . Then the common bases of M1 and M2 will exactly be the edge-sets of packings

of arborescences satisfying the conditions of Theorem 1.2.1 as proved by Edmonds in [7].

The following theorem characterizes the existence of matroid-based and matroid-restricted pack-

ings of s-arborescences, which is a generalization of Theorem 1.2.2 and therefore, all previously men-

tioned theorems about packings. The proof of this theorem also relies on characterizing the edge-sets

of the packings as the common bases of two matroids.

Theorem 1.2.4. (Cs. Király, Szigeti, Tanigawa [23]) We are given a graph D = (V + s,A), a

matroid M1 = (∂s(V ), r1) with a rank function r1, a matroid M2 on A, which is the direct sum of the

matroids Mv = (∂(v), rv). There exist in D an M1-based M2-restricted packing of s-arborescences if

and only if

r1(F ) + r2(∂(X)− F ) ≥ r1(∂s(V )) (1.8)

holds for all ∅ ≠ X ⊆ V and F ⊆ ∂s(X). If on the neighbouring edges of s M2 = M2|∂s(V )⊕M2|E(V )

and M2|∂s(V ) is the free matroid, then the condition is the following:

r1(∂s(X)) + r2(∂(X)− ∂s(X)) ≥ r1(∂s(V )) (1.9)

for all ∅ ≠ X ⊆ V .

We can use any polynomial algorithm for finding a maximum size common independent set of two

matroids (see [10, Chapter 1]) to find an M1-based M2-restricted packing.
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1.2.2 Reachability packings

If, in Theorem 1.2.1, not every node is reachable from s through the root-edges in Bi for some

i ∈ {1, . . . , k}, then there obviously does not exists a packing of spanning-arborescences satisfying

the conditions of the Theorem. If we only require the arborescences to span the set of nodes that

can be reached from the endpoints of their root-edges, we talk about reachability packings. The

following theorem characterizes the existence of reachability packings in directed graphs.

Theorem 1.2.5. (Kamiyama, Katoh es Takizawa [20]) Let D = (V + s,A) be a rooted digraph, and

let {B1, . . . , Bk} be a partition of its root-edges. There exists a packing of arborescences T1, . . . , Tk,

where the root-edges of Ti are in Bi for all i = 1, . . . , k and Ti spans exactly the vertices reachable

from s using root-edges only from Bi if and only if

ϱV (X) ≥ |{i ∈ {1, . . . , k} : Bi ∩ ∂s(P (X)) ̸= ∅}| − |{i ∈ {1, . . . , k} : Bi ∩ ∂s(X) ̸= ∅}|

for all ∅ ≠ X ⊆ V , where P (X) is the set of nodes in V from which X is reachable

We present the outline of the proof of Theorem 1.2.5. The main idea of the proof is to use

induction on the number of strong components of the graph, where the strong components of a

digraph are the maximal subgraphs that are strongly connected, that is, every node can be reached

from every node on a directed path in the subgraph. The idea of the proof comes from Hörsch and

Szigeti [17].

Proof (sketch). Let Ri ⊆ V be the set of the endpoints of the edges in Bi.

Step 0. Prove the necessity of the condition.

Step 1. Let C be a strong component of D. Prove that in a packing required by the theorem,

if Ti spans a node of C, then it spans C.

Step 2. Let C be a strong component of D such that no edge enters C. Let F be the set of

edges in D that enter C. Let T := {tuv : uv ∈ F} and let D′ := (C ∪T,A(C)∪{tuvv :

uv ∈ F} ∪ k{vtuv : uv ∈ F}) a graph where A(C) is the set of edges of D induced by

C and for a set S, kS is the multiset we get by taking k copies of every element. Let

R′
i := (Ri ∩ C) ∪ {tuv ∈ T : u is reachable from Ri on a directed path}.

Prove that the intersection with C of a packing satisfying the conditions of the theorem

corresponds to a packing of spanning arborescences in D′.

Step 3. Show that ifD satisfies the conditions of Theorem 1.2.5, thenD′ satisfies the conditions

of the Strong Edmonds Theorem (1.2.1).

Step 4. Prove the theorem by induction on the number of strong components.

We call a packing of arborescences T1, . . . , Tk an M-reachability-based packing if every Ti

contains exactly one ei root-edge and for all nodes v ∈ V , the set {ei : v ∈ V (Ti)} spans ϱs(P (v)) in

M .
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Theorem 1.2.6. (Cs. Király [22]) The graph D contains an M -reachability-based packing of s-

arborescences if and only if

ϱV (X) ≥ r(∂s(P (X)))− r(∂s(X)) := p(X)

for all X ⊆ V , where P (X) is the set of nodes in V , from which X is reachable.

This theorem can also be proved with the idea of Hörsch and Szigeti, that is, by induction on the

number of strong components.

Proof (sketch). For an edge e and an integer k, k · e means we take k parallel copies of e.

Step 0. Prove the necessity of the condition.

Step 1. Let C be a strong component of D. Prove that, in a packing required by the theorem,

every node is in exactly r(∂s(P (C))) arborescences.

Step 2. Let D1 := D − C and M1 := M |∂s(V−C). Show that D1 contains an M1-reachability-

based packing T 1
1 , . . . , T

1
q with root-edges e11, . . . , e

1
q.

Step 3. Let T := {tuv : uv ∈ A, u ∈ V − C, v ∈ C}. Let D′ := (C ∪ T + s,A′), where

A′ = E(D[C+s])∪{tuvv, (r(∂s(P (C)))−r(∂s(P (u))))·vtuv, r(∂s(P (u)))·stuv : tuv ∈ T}.

Let M ′ be the following matroid on the root-edges of D′: M ′|∂s(C) := M |∂s(C) and

map the root-edges of the arborescences from the packing T 1
1 , . . . , T

1
q that contain u to

the new root-edges between s and tuv. If we have two nodes tuv and tuv′ , than let the

root-edges that have the same element of M mapped to them be parallel in M ′.

Prove that we can combine the packing T 1
1 , . . . , T

1
q with an M ′-based packing of ar-

borescences in D′ such that we get an M -reachability-based arborescence packing in

D.

Step 4. Show that, if D satisfies the conditions of Theorem 1.2.6, then D′ satisfies the conditions

of Theorem 1.2.2.

Step 5. Prove the theorem by induction on the number of strong components.

This method can be used to derive the reachability versions of the theorems in the following

sections.

1.2.3 Free-rooted packings

In [2], Bérczi and Frank characterized the existence of packings of spanning arborescences without

specified root-sets, which we call free-rooted packings.

Theorem 1.2.7. (Bérczi, Frank [2]) Let D = (V,A) be a digraph with n nodes and let µ1, . . . , µk

positive integers. The following statements are equivalent:

(A) There exists in D a packing of k edge-disjoint spanning arborescences B1, . . . , Bk, for which

|Bi| = µi for all i = 1, . . . , k.
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(B1) For every subpartition {V1, . . . , Vq} of V :

k∑
j=1

max{0, q − (n− µj)} ≤
q∑

i=1

ϱ(Vi) (1.10)

(B2) Let [k] = {1, 2, . . . , k}. For every subpartition {V1, . . . , Vq} of V and for all X ⊆ [k]:

q(k − |X|)−
∑

j∈[k]−X

(n− µj) ≤
q∑

i=1

ϱ(Vi) (1.11)

Their proof relies on the following theorem.

Theorem 1.2.8. (Bérczi, Frank [2]) Let mS be a degree-specification on S for which m̃S(S) = γ.

Let pT be a positively intersecting supermodular function on T with pT (∅) = 0. Suppose that

mS(s) ≤ |T | ∀s ∈ S. (1.12)

The following statements are equivalent:

(A) There exists a simple bipartite graph G = (S, T,E) which covers pT and fits the degree-specification

mS.

(B1) For every subpartition {T1, . . . , Tq} of T and X ⊆ S,

m̃S(X) +

q∑
i=1

pT (Ti)− q|X| ≤ γ. (1.13)

(B2) For every subpartition {T1, . . . , Tq} of T ,

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), q}. (1.14)

In [3], a generalization of Theorem 1.2.8 is provided.

Theorem 1.2.9. (Bérczi, Frank [3]) We are given a simple bigraph H0 = (S, T, F0), a matroid

M = (S, r), a positively intersecting supermodular function pT on T with pT (∅) = 0 and a degree-

specification mS on S for which m̃S(S) = γ. There is a simple bigraph G = (S, T,E) fitting mS for

which G+ = G+H0 is simple and M -covers pT if and only if

mS(s) + dH0
(s) ≤ |T | for every s ∈ S, (1.15)

and, for every subpartition {T1, . . . , Tq} of T and X ⊆ S:

m̃S(X) +

q∑
i=1

[pT (Ti)− r(X ∪ ΓH0(Ti))] ≤ γ. (1.16)

For completeness, we shall present the outline of the proof given in [3]. The proof uses the following

theorem.
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Theorem 1.2.10. (Supermodular arc-covering, set function version, Frank, Jordán [11]) We are

given a ground set V , two subsets S, T ⊆ V and a positively ST -crossing supermodular function p

for which p(V ′) ≤ 0 if S ⊆ V ′ or V ′ ∩ T = ∅. The function p can be covered by γ ST -arcs (that

is, ϱ(V ′) ≥ p(V ′) for every V ′ ⊆ V in the resulting graph) if and only if p̃(I) ≤ γ holds for every

ST -independent family I of subsets of V .

We now give the outline of the proof of Theorem 1.2.9.

Proof (sketch). The proof of necessity is straightforward hence we only prove sufficiency.

Let V := S ∪ T , and for a bigraph H = (S, T, F ) let
−→
H be the directed graph we get by directing

every edge of F from S to T . Let H0 := {V ′ ⊆ V : no arc of
−→
H 0 enters V ′}. Let us define the

following set function on ground set V :

p0(X ∪ Y ) =

pT (Y )− r(X) if X ∪ Y ∈ H0, X ⊆ S, Y ⊆ T.,

0 otherwise.

Claim 1.2.1. p0 is positively T -intersecting supermodular.

For s ∈ S let Vs := {v ∈ V − s : sv ̸∈ F0}. Note that Vs ∈ H0 for s ∈ S. Let the set function p1

on V be defined as follows:

p1(U) =

mS(s) U = Vs for some s,

p0(U) otherwise.

Claim 1.2.2. p1(Vs) ≥ p0(Vs) ∀s ∈ S.

By Claim 1.2.2, we can prove the following statement.

Claim 1.2.3. The set function p1 is positively ST -crossing supermodular.

Let ν denote the maximum total p1-value of ST -independent sets, that is, ν := max{p̃1(I) :

I is a family of ST -independent sets }.

Proposition 1.2.1. ν = γ.

Proof. Since L := {Vs : s ∈ S} is ST -independent, ν ≥ p̃1(L) = m̃S(S) = γ. For the sake of a

contradiction, assume that there exists an ST -independent family I for which p̃1(I) = ν > γ. We

can assume that |I| is minimal, which means that p1(V
′) > 0 for all V ′ ∈ I.

Claim 1.2.4. There are no two T -intersecting members V1 and V2 of I such that p1(Vi) = p0(Vi)

for i = 1, 2.

Let I1 := {V ′ ∈ I : p1(V
′) = p0(V

′)} := {V1, . . . , Vq}, and let T := {T1, . . . , Tq}, where Ti = Vi∩T
for i = 1, . . . , q. Since p1(V

′) > 0 for all V ′ ∈ I, all members of T are non empty, and by Claim 1.2.4,

T is a subpartition of T .

Let I2 := I − I1. Every member I of I2 is of the form I = Vs for some s ∈ S such that

mS(s) = p1(I) > p0(I). Let X := {s ∈ S : Vs ∈ I2}. It follows from the definitions that I1 and I2
form a partition of I.

Claim 1.2.5. X ∪ ΓH0
(Ti) ⊆ Vi ∩ S for i = 1, . . . , q.
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By the previous claim and the fact that T is a partition of T we have

γ < ν = p̃1(I) = p̃1(I1) + p̃1(I2) =∑q
i=1(pT (Ti)− r(Vi ∩ S)) +

∑
s∈X mS(s) ≤

∑q
i=1(pT (Ti)− r(X ∪ ΓH0(Ti))) + m̃s(X),

which contradicts (1.16), completing the proof of the lemma. □ □

Claim 1.2.6. If S ⊆ U or U ∩ T = ∅ for some U ⊆ V then p1(U) ≤ 0.

Therefore, the conditions of Theorem 1.2.10 hold for p1 and we can apply Theorem 1.2.10 to get

a bipartite digraph D = (S, T,A) which contains γ = ν ST -arcs and covers p1. Let the underlying

bipartite graph of D be G = (S, T,E).

Claim 1.2.7. dG(s) = mS(s) for every s ∈ S.

Claim 1.2.8. G+ = (S, T, F0 + E) is simple.

Claim 1.2.9. r(ΓG+(Y )) ≥ pT (Y ) for every Y ⊆ T .

Proof. Let X := ΓG+(Y ) and V ′ := X ∪ Y . Then 0 = ϱ(V ′) ≥ p1(V
′) ≥ pT (Y ) − r(X), from which

the claim follows.

These mean that G satisfies the requirements of the theorem which concludes the proof.

□ □ □

1.2.4 Mixed graphs

Szigeti characterized the existence of free-rooted packings in mixed graphs in the following theorem.

Theorem 1.2.11. (Szigeti [26]) Let F = (V,E ∪ A) be a mixed graph, f, g : V → Z+ functions and

k, l, l′ ∈ Z+ − {0}. There exists an (f, g)-bounded k-regular (l, l′)-limited packing of arborescences in

F if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and

ϱA∪E(P) ≥ k|P| −min{l′ − f(V − ∪P), g̃k(∪P)} for every subpartition P of V. (1.17)

The proof relies on the following theorem, which give a polyhedral characterization for free-rooted

packings in mixed graphs.

Theorem 1.2.12. (Szigeti [26]) Let F = (V,E ∪ A) be a mixed graph, f, g : V → Z+ functions

and k, l, l′ ∈ Z+ − {0}. Let Mv := (∂A∪AE (v), rv) be the free matroid for every v ∈ V . Let Mk
F be

the extended k-graphic matroid of F on A ∪ AE. Let T := Q(0, rMk
F
) ∩ (

∑
v∈V ((Q(0, rv)) ∩ K(k −

gk(v), k − f(v))) ∩K(k|V | − l′, k|V | − l).

(A) The characteristic vectors of the edge sets of (f, g)-bounded k-regular (l, l′)-limited packings of

arborescences in orientations of F are exactly the integer points of T .
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(B) T ̸= ∅ if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and for every Z ⊆ A∪AE,

∑
v∈V

max{0, k − gk(v)− ∂Z(v)} ≤ rMk
F
(A ∪AE − Z) (1.18)

k|V | − l′ −
∑
v∈V

min{∂Z(v), k − f(v)} ≤ rMk
F
(A ∪AE − Z) (1.19)

(C) (3.2) and (3.3) are equivalent to (3.1).

1.2.5 Hypergraphs

We can state the results shown in the previous sections for dypergraphs. The theorems are very

similar to the corresponding digraph versions and most of the time follow from them by constructing

a directed graph based on the hypergraph (see [9]). To illustrate the method, we prove here the

theorem about packing hyperarborescences corresponding to the Weak Edmonds Theorem.

Theorem 1.2.13. (Frank, T. Király, Z. Király [12]) Let
−→
H = (V,A) be a dypergraph and s ∈ V a

node. There exists a packing of k spanning s-hyperarborescences if and only if

ϱA(X) ≥ k for all ∅ ≠ X ⊆ V − s. (1.20)

Proof. The proof of necessity is straightforward. To prove sufficency, we contruct a directed graph

D = (V ∪ A, A). Let A1 := {(Z, z)z : (Z, z) ∈ A}, A1 := {t(Z, z) : (Z, z) ∈ A, t ∈ Z − z} and let

A := A1 ∪ (k ·A2) where k ·A2 is the multiset consisting of k copies of every element in A2.

First we show that if (1.20) holds for
−→
H then (1.1) holds for D. Let X ⊆ V ∪A−s. If there exists

a dyperedge (Z, z) ∈ A and a tail node t ∈ Z − z such that t ̸∈ X and (Z, z) ∈ X then the k copies

of the arc t(Z, z) enter X. Otherwise, ϱA(X) = ϱA(X ∩ V ) ≥ k.

Therefore, by Theorem 1.0.1, D contains a packing of k spanning s-arborescences
−→
T 1, . . . ,

−→
T k.

Let
−→
Ti (i = 1, . . . , k) be the subdypergraph of

−→
H induced by the dyperedges (Z, z) that have an

out-degree of exactly 1 in the packing. It is easy to see that each
−→
Ti (i = 1, . . . , k) is a spanning

s-hyperarborescence and
−→
T1, . . . ,

−→
Tk are pairwise dyperedge-disjoint.

1.3 Truncation

The lower truncation of a set function b on the ground set S is defined as b∨(X) = min{b̃(P) :

P is a partition of X }. Let b be finite and intersecting submodular. As proved in [13], the lower

truncation of an intersecting submodular function is fully submodular. We describe the algorithm

of Frank and Tardos [13] to compute the lower truncation of a finite-valued intersecting submodular

function.

The input of the algorithm is a subset X ⊆ S and the function b and the output is b∨(X). Let X =

{u1, . . . , uk}. For i = 1, . . . , k, compute z(ui) = min{b(B)−z̃(B−ui) : B ⊆ {u1, . . . , ui}, ui ∈ B} and
save the set Bi that minimizes the right side. The output of the algorithm is z̃(X) and the partition

P of X that we get by taking the connected components of the hypergraph (X, {Bi, i = 1, . . . , k}).
To compute min{b(B)−z(B−ui) : B ⊆ {u1, . . . , ui}, ui ∈ B}, we can use a submodular minimiza-

tion algorithm (see Section 1.4), since b(B)− z̃(B− ui) is submodular on the subsets of {u1, . . . , ui}.
Indeed, z̃ is modular, b is intersecting modular and we minimize over a pairwise intersecting family

of sets (every set contains ui).
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1.4 Submodular optimization

In this section we present the algorithm of Iwata [18] for minimizing a submodular function. The first

polynomial algorithm for submodular function minimization was developed by Grötschel et al. in [14]

and subsequently, a strongly polynomial version was also developed by Grötschel et al. in [15, Chap-

ter 10]. These algorithms employ the ellipsoid method. The first strongly polynomial combinatorial

algorithms were developed by Iwata et al. [19] and Schrijver [25]. All of these algorithms use multi-

plications and divisions, although the problem of submodular function minimization does not involve

these operations. Schrijver [25] has asked if there exists a strongly polynomial fully combinatorial

algorithm for submodular function minimization, that is, it uses only additions, subtractions, com-

parisons and function evaluations and does not use divisions. The algorithm of Iwata [18] presented

in this section is the first such algorithm.

1.4.1 Definitions

Let D = (V, F ) be an acyclic digraph. A subset Y ⊆ V is called an ideal, if no arc leaves Y in D.

Let D denote the set of ideals of D.

Let g : D → R be a submodular function with g(∅) = 0. The base polyhedron of g is

B(g) = {y| y ∈ RV , ỹ(V ) = g(V ), ỹ(X) ≤ g(X) ∀X ∈ D}

A vector y ∈ B(g) is called a base, and an extreme point of B(g) is called an extreme base. An

extreme base can be computed by the greedy algorithm [10, Section 14.5].

Let L = (v1, . . . , vn) be a linear ordering of V . Let L(vi) := Li := {v1, . . . , vi}. L is a reverse

topological ordering of V , if Li ∈ D for i = 1, . . . , n. The greedy algorithm generates an extreme

base y with respect to a reverse topological ordering L the following way:

y(vi) = g(Li)− g(Li−1)

where i goes from 1 to n. Moreover, every extreme base y ∈ B(g) can be generated by the greedy

algorithm with respect to a reverse topological ordering (see [10, Section 14.5]).

Let L be a reverse topological ordering, in which the node u immediately succeeds the node v. If

(u, v) /∈ F , then the linear ordering we get by swapping u and v is also a reverse topological ordering.

We get the extreme base y′ ∈ B(g) by y′ = y + β(χu − χv), where

β = g(L(u)− v)− y(L(u)− v) ≥ 0

and for a node w ∈ V , χw is the characteristic vector of the subset {w} ⊆ V .

1.4.2 The algorithm

We are given a submodular set function f : 2S → R on the ground set S. Our goal is to find a subset

Y ⊆ S such that f(Y ) is minimal.

In an iteration of the algorithm, we have a subset Z ⊆ S which is included in every minimizer of

f , a partition on S − Z and an acyclic digraph D = (V, F ). The nodes of the graph correspond to

the classes of the partition, if v ∈ V then let T (v) denote the corresponding class and for X ⊆ V let

T (X) :=
⋃

v∈X T (v). The following property holds for the edges of D: if uv ∈ F then every minimizer

of f that contains T (u) also contains T (v). At the start of the algorithm Z := ∅, V := S and F := ∅.
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Let f̂ : D → R such that f̂(Y ) := f(T (Y ) ∪ Z) − min{f(Z), f(S)} if Y ̸= ∅ or V and f̂(∅) =

f̂(V ) := 0. It is easy to check that f̂ is submodular. Note that, if W minimizes f , than it can be

written as W = T (Y ) ∪ Z where Y is an ideal of D. Furthermore:

Lemma 1.4.1 ([18]). If W ⊆ S is a minimizer of f , then it can be represented as W = T (Y ) ∪ Z

where Y is a minimizer of f̂ .

For a node v ∈ V let R(v) be the set of nodes that are reachable from v in D. Then obviously

R(v) is an ideal of D. In an iteration, the algorithm first computes the following quantity:

α := max
v∈V

{f̂(R(v))− f̂(R(v)− v)} (1.21)

Let σ := |V |α.

Lemma 1.4.2 ([18]). If α ≤ 0, then either S or Z is a minimizer of f .

By Lemma 1.4.2 if α ≤ 0, the algorithm returns argmin{f(Z), f(S)}. If α > 0, let u ∈ V be a

node such that α = f̂(R(u))− f̂(R(u)− u). Then, either 2f̂(R(u)) ≥ α or 2f̂(R(u)− u) < −α.

Case 1. 2f̂(R(u)− u) < −α < 0

In this case, the algorithm calls the subroutine Fix(f̂ , α, σ) (the subroutine is explained in 1.4.3),

and finds a node w ∈ V that is contained by every minimizer of f̂ . By Lemma 1.4.1, T (w) is

contained by every minimizer of f . The algorithm then adds T (W ) to Z and removes w from V (that

is, Z := Z ∪ T (W ) and V := V − w). Z and D continue to satisfy the required properties.

Case 2. 2f̂(R(u)) ≥ α

The algorithm calls Fix(f̂u, α, σ) and finds a node w ∈ V − R(u), that is contained in every

minimizer of f̂u where f̂u(X) := f̂(X ∪ R(u)) − f̂(R(u)) when X ⊆ V − R(u) and X ∪ R(u) is an

ideal of D. It is easy to see that f̂u is submodular, and 2f̂u(V − R(u)) = 2(f̂(V ) − f̂(R(u))) ≤ −α.

A set X ⊆ V − R(u) minimizes f̂u if and only if X ∪ R(u) minimizes f̂ on {D ∈ D|u ∈ D}. This

implies that if u ∈ D ∈ D minimizes f̂ , than w ∈ D too. Which in turn, by Lemma 1.4.1, implies

that if Y ⊆ S minimizes f and T (u) ⊆ Y , then T (w) ⊆ Y .

The algorithm adds (uw) to F . If this creates a directed cycle, we contract the nodes of the cycle

into a new node, because a minimizer of f must include all or non of the elements of S represented

by the nodes of the cycle. The resulting Z and D continue to satisfy the required properties.

In every iteration with α > 0 either |V | decreases or |F | increase, which means that the algorithm

stops after O(n2) iterations. The following lemma also holds, ensuring, that the procedure Fix can

be called.

Lemma 1.4.3. ([18])

• In Case 1., every exchange capacity in B(f̂) is at most σ.

• In Case 2., every exchange capacity in B(f̂u) is at most σ.

The following theorem gives the running time of the algorithm.

Theorem 1.4.1. The algorithm finds a minimizer of f by O(n9 log2 n) oracle calls and fundamental

operations.
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1.4.3 The Fixing Procedure

In this section, we describe the subroutine Fix(g, α, σ). The procedure finds a node w ∈ V that is

contained in every minimizer of g. We assume, that every exchange capacity in B(g) is less than σ,

there exists an ideal Y ∈ D such that 2g(Y ) ≤ −α and σ ≤ nα. The subroutine also uses the graph

D = (V, F ) used in the main algorithm.

The subroutine consists of scaling phases with a scale parameter p ∈ Z which we double at the

end of a phase until it is sufficiently large. Initially p := 1. We have a set of linear orderings

{Li|i ∈ I} of V , the corresponding extreme bases {yi|i ∈ I} which we get from the orderings by

the greedy algorithm and non-negative integral coefficients {λi|i ∈ I} such that
∑

i∈I λi = p. Let

x :=
∑

i∈I λiyi. Initially I = {0}, L0 is an arbitrary linear ordering and λ0 = 1.

Furthermore, we also have a flow on the complete directed graph on the vertex set V , represented

by a function φ : V × V → R. The function satisfies φ(u, v) + φ(v, u) = 0 for all u, v ∈ V . The

capacities of every arc in E/F are σ, that is φ(u, v) ≤ σ, where E is the arc set of the complete

directed graph. The boundary of φ is defined as ∂φ(u) =
∑

v∈V φ(u, v), that is, ∂φ(u) the size of the

flow leaving the node u ∈ V .

Let z := ∂φ + x. The goal of a scaling phase is to increase z−(V ). Let G(φ) := (V,A(φ)) with

A(φ) := F ∪ {(u, v)|u ̸= v, φ(u, v) ≤ 0}. Let S := {v|z(v) ≤ −σ} and Let T := {v|z(v) ≥ σ}. A

directed path from S to T in G(φ) is called an augmenting path (increasing the flow among this path

increases Z−(V )).

Let W be the set of nodes reachable from S in G(φ). W is an ideal of D, since D is a subgraph

of G(φ). Let i ∈ I, u ∈ W and v ∈ V − W . The triple (i, u, v) is called an active triple, if u

immediately succeeds v in Li. The operation Double-Exchange works on an active triple (i, u, v), and

modifies φ and x without changing z. The goal is to modify Li by exchanging u and v and modify φ

such that v becomes reachable from S in G(φ). The procedure first computes the exchange capacity:

β = g(Li(u)− v)− y(Li(u)− v) ≥ 0

Note, that β ≤ σ by our assumption. There are two cases based on the size of β:

Case 1. φ(u, v) ≥ λiβ (Saturating case)

In this case we replace yi by exchanging u and v: yi := yi + β(χu − χv). We need to modify φ

such that z does not change: φ(u, v) := φ(u, v)−λiβ and φ(v, u) := φ(v, u)+λiβ. The resulting flow

continues to satisfy the capacities (note, that the original φ(u, v) > 0, otherwise v be part of W ) and

z remains unchanged.

Case 2. φ(u, v) ≤ λiβ (Non-saturating case)

In this case we have to be careful to keep φ feasible. First, we calculate q := ⌈φ(u,v)
β ⌉. This can be

done without dividing (we want a fully combinatorial algorithm) by repeatedly subtracting β from

φ(u, v). Since φ(u, v) ≤ λiβ, the number of required subtractions is ≤ λi ≤ p. We add a new index

k to I, and make yk := yi, Lk := Li and λk := q. Note, that φ(u, v) ≤ λiβ = qβ ≤ λiβ + β.

Let λi := q (this way,
∑

λj = p remains true), and now replace yi and modify φ the same way as

in the saturating case: yi := yi+β(χu−χv), φ(u, v) := φ(u, v)−λiβ and φ(v, u) := φ(v, u)+λiβ. The

resulting φ satisfies −σ ≤ −β ≤ φ(u, v) ≤ 0, thus it satisfies the capacities and v becomes reachable

in G(φ) from S.

We now describe the procedure Fix(g, α, σ):

Step 0 Let p := 1, I := {0}, λ0 := 1, L0 an arbitrary ordering, y0 the extreme base computed from

L0 with the greedy algorithm and φ(u, v) := 0 for all u, v ∈ V .
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Step 1 If there exists an augmenting path P in G(φ):

φ(u, v) := φ(u, v) + σ and φ(v, u) := φ(v, u)− σ. In this case z−(V ) increases by σ.

Otherwise, apply Double-Exchange(i, u, v) to an active triple.

Step 2 If ∃w ∈ V such that x(w) < −n2σ, return w.

Step 3 p := 2p, λi := 2λi for all i ∈ I. Go to Step 1.

The following lemmas ensure, that the algorithm returns a node, that is contained in every mini-

mizer of g:

Lemma 1.4.4. ([18]) At the end of a scaling phase, z−(V ) ≥ pg(W )− nσ holds.

Lemma 1.4.5. ([18]) If x(w) < −n2σ holds at the end of a scaling phase, then w is contained in

every minimizer of g.

This last lemma ensures that the procedure is finite.

Lemma 1.4.6. ([18]) The procedure consists of O(log n) scaling phases.
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Chapter 2

Free-rooted packings of

arborescences with matroid

constraints

In this chapter we characterize the existence of free-rooted matroid-based and matroid-restricted

packings of arborescences, give two characterizations of the existence of free-rooted matroid-based

packings of arborescences with an in-degree prescription and provide a new characterization for the

existence of a free-rooted arborescence packing with an in-degree prescription.

2.1 Free-rooted matroid-based matroid-restricted packings

Using Theorem 1.2.4 and Theorem 1.2.9, we can characterize the existence of a free-rooted matroid-

based and matroid restricted packing of arborescences.

Theorem 2.1.1. Let D = (V,A) be a digraph, let M1 = (S, r1) be a matroid with rank function r1

and rank k and let M2 be a matroid on A which is the direct sum of the matroids Mv = (∂(v), rv).

Let s be a node not in V . The following statements are equivalent:

(A) We can add new possibly parallel arcs from s to some of the nodes of V and map the elements of

S to the new edges such that there exists an M1-based M ′
2-restricted packing of s-arborescences,

where M ′
2 is defined to be the direct sum of the free matroid on the new root-edges and M2.

(B) For every subpartition {V1, . . . , Vq} of V and X ⊆ S:

(k − r1(X))q − |S −X| ≤
q∑

i=1

r2(∂(Vi)) (2.1)

Proof. Necessity. Suppose that such a packing exists. Then at most r2(∂(Y )) and at least k− ∂s(Y )

edges of the packing enter a set Y ⊂ V , thus

q∑
i=1

(k − r1(∂s(Vi))) ≤
q∑

i=1

r2(∂(Vi))

Using the properties of the rank function we can show that, for every X ⊆ S
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q∑
i=1

r1(∂s(Vi)) ≤
q∑

i=1

r1(∂s(Vi) ∩X) + r1(∂s(Vi)−X)) ≤ qr1(X) + |S −X|.

Hence

q∑
i=1

r2(∂(Vi)) ≥
q∑

i=1

(k − r1(∂s(Vi))) ≥ qk − qr1(X)− |S −X|.

Sufficiency. Let mS : S → Z+ be 1 for every element of S. Let T := V and let us define the

following set function on T ,

pT (Y ) =

k − r2(∂(Y )) ∅ ⊊ Y ⊆ T,

0 Y = ∅.

Since r2 is submodular, pT is intersecting supermodular. From the conditions of the theorem,

(k − r1(X))q −
q∑

i=1

r2(∂(Vi)) ≤ |S −X| = m̃S(S −X) = m̃S(S)− m̃S(X).

Thus,

−r1(X)q +

q∑
i=1

(k − r2(∂(Vi))) ≤ m̃S(S)− m̃S(X).

Hence,

q∑
i=1

pT (Vi) + m̃S(X)− r1(X)q ≤ m̃S(S).

This is the condition of Theorem 1.2.9 with F0 = ∅, therefore there exists a simple bipartite graph

G = (S, V,E), which fits mS and M1-covers pT , that is, r1(Γ(Y )) ≥ k − ϱ(Y ) ∀Y ⊂ V . Orient the

edges of G from S to T , add the edges of D in T and contract the nodes of S into a new node s.

Γ(Y ) = ∂s(Y ) holds therefore, since G M1-covers pT , r1(∂s(Y )) ≥ k − r2(∂(Y )) holds, which is the

condition of Theorem 1.2.4 with matroids M1 and M ′
2. Therefore, Theorem 1.2.4 implies that there

exists an M1-based M2-restricted packing of s-arborescences.

2.2 Free-rooted matroid-based packings with in-degree pre-

scriptions

Using the previous theorem, we can characterize the existence of a free-rooted matroid-based packing

of arborescences with an in-degree prescription.

Corollary 2.2.1. Let M = (S, r) be a matroid with rank function r, let D = (V,A) be a digraph

with n nodes and let min : V → Z+ be an in-degree prescription for which 0 ≤ min(v) ≤ ϱ(v),

min(v) ≤ r(M) for all v ∈ V and m̃in(V ) = |V |r(M) − |S| holds. Let s be a node not in V . The

following statements are equivalent:

(A) We can add new arcs from s to some of the nodes of V and map the elements of S to the new

edges such that there exists an M -based packing of s-arborescences and if the edge set of the

packing is F , then ϱFV (v) = min(v) holds for every v ∈ V .
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(B) For all X ⊆ S and subpartition {V1, . . . , Vq} of V :

(r(M)− r(X))q − |S −X| ≤
q∑

i=1

∑
v∈Vi

min{min(v), |∂(v) ∩ ∂(Vi)|} (2.2)

Proof. Let M1 := M and ∀v ∈ V let Mv be the uniform matroid on ∂(v) with rank min(v). Let M2

be the direct sum of the matroids Mv. Then

r2(∂(Vi)) =
∑
v∈Vi

min{min(v), |∂(v) ∩ ∂(Vi)|},

therefore

q∑
i=1

r2(∂(Vi)) =
∑

v∈
⋃

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|}.

Hence (2.2) is the same as the condition of Theorem 2.1.1, thus there exists an M1-based M2-

restricted packing of arborescences. This means that at most min(v) arborescence enters every node

v. Since m̃in(V ) = |V |r(M)−|S| and the right side is the number of edges in an M -based restriction,

exactly min(v) edge enters every node.

Let R be a set of nodes. A graph is called an R-branching if all of its connected components are

arborescences and the set of the roots of the components is R. The size of branching is the number of

its edges. Using Corollary 2.2.1 we can prove a new characterization for the existence of a free-rooted

packing of branchings with prescribed sizes and an in-degree prescription.

Corollary 2.2.2. let D = (V,A) be a digraph with n nodes and let min : V → Z+ be an in-degree

prescription for which 0 ≤ min(v) ≤ ϱ(v) and min(V ) ≤ k for all v ∈ V . Let µ1, . . . , µk be k positive

integers, for which
∑k

i=1 µi = m̃in(V ). The following statements are equivalent:

(A) There exist in D a packing of spanning branchings B1, . . . , Bk, for which |Bi| = µi and if⋃k
i=1 Bi = F , then v ∈ V : ϱF (v) = min(v).

(B) For every subpartition {V1, . . . , Vq} of V :

k∑
i=1

max{0, q − (n− µi)} ≤
∑

v∈
⋃q

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|} (2.3)

Proof. Let n− µj := mj . This is the number of roots for a spanning branching with µj edges.

Let M be a partition matroid with k classes, where the size of the ith class is mi and the bound

is 1 for every class. If there exists a packing satisfying the requirements of (A) then add a new node

s and a root-edge from s to each of the roots of the branchings in the packing (if a node is the root

of more than one branchings then we add a root-edge for each of the branchings). Then, in the

resulting digraph, each of the branchings can be divided into s-arborescences containing exactly one

root-edge and the packing of s-arborescences we get by dividing all of the branchings is an M -based

packing. Conversely, a free-rooted M -based packing corresponds to a packing of branchings satisfying

the requirements of (A).

Therefore, by Corollary 2.2.1, (r(M)−r(X))q−|S−X| ≤
∑

v∈
⋃q

i=1 Vi
min{min(v), |∂(v) ∩ ∂(Vi)|}

is equivalent to (A). We can assume that the set X contains either the entire partition class or it is

disjoint from it. This is because if it intersects a class, then if we add the elements from the class
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that are not contained in X, then the left side increase and the right side stays the same. So if

I = {1, . . . , k}, then

(A) ⇔ (k − |X|)q − m̃(S −X) ≤
∑

v∈
⋃q

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|}∀X ⊆ I

The left side is maximized by X = {i ∈ I : m(i) > q} and for this set (k − |X|)q − m̃(S −X) =∑k
i=1 max{0, q − (n− µi)} holds.

In [2], Bérczi and Frank provide a different characterization for the same problem with the following

condition:

For all Y ⊆ V and subpartition {V1, . . . , Vq} of V − Y :

k∑
i=1

max{0, q + |Y | − (n− µi)} ≤ m̃in(Y ) +

q∑
i=1

ϱ(Vi) (2.4)

This result follows from the following theorem, which gives a different characterization for the

existence of a free-rooted matroid-based packing of arborescences with an in-degree prescription with

a seemingly weaker condition. The proof is based on Theorems 1.2.2 and 1.2.9.

Theorem 2.2.1. Let M = (S, r) be a matroid with rank function r, let D = (V,A) be a digraph

with n nodes and let min : V → Z+ be an in-degree prescription for which 0 ≤ min(v) ≤ ϱ(v),

min(v) ≤ r(M) for all v ∈ V and m̃in(V ) = |V |r(M) − |S| holds. Let s be a node not in V . The

following statements are equivalent:

(A) We can add new arcs from s to some of the nodes of V and map the elements of S to the new

edges such that there exists an M -based s-arborescence packing and if the edge set of the packing

is F , then ϱFV (v) = min(v) holds for every v ∈ V .

(B) For all Y ⊆ V , subpartition {V1, . . . , Vq} of V − Y , and X ⊆ S,

(|Y |+ q)(r(M)− r(X))− |S −X| ≤ m̃in(Y ) +

q∑
i=1

ϱ(Vi) (2.5)

Furthermore, (2.2) implies (2.5).

Proof. First we will prove that (2.2) implies (2.5). By Theorem 2.2.1, this implies the necessity of

(2.5).

Let us suppose that (2.2) holds and we are given a set Y ∈ V and a subpartition P = {V1, . . . , Vq}
of V −Y . Let us define the following partition of V : P ′ = P∪

⋃
v∈Y {v}. Then |P ′| = q+|Y |, min(Y ) =∑

v∈Y min{min(v), |∂(v) ∩ ∂(Vi)|} and
∑

v∈
⋃q

i=1 Vi
min{min(v), |∂(v) ∩ ∂(Vi)|} ≤

∑q
i=1 ϱ(Vi), so (2.5)

holds.

To prove sufficiency let mS : S → Z+ be 1 for every element of S. Let T := V and let us define

the following set function on T :

pT (Y ) =


r(M)− ϱ(Y ) Y ⊆ T, |Y | ≥ 2,

r(M)−min(v) Y = {v}, v ∈ V

0 Y = ∅.

Since min(v) ≤ ϱ(v), k −min(v) ≥ k − ϱ(v) so pT is intersecting supermodular.
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Let T = {V1, . . . , Vq, . . . , Vq′} be a subpartition of T , where the last q′ − q classes are singletons.

Let P = {V1, . . . , Vq} and Y = Vq+1 ∪ · · · ∪ Vq′ .

From the definition of pT ,

q′∑
i=1

pT (Vi) =

q∑
i=1

[r(M)− ϱ(Vi)] +

q′∑
i=q+1

[r(M)− m̃in(Vi)] = (|Y |+ q)r(M)−
q∑

i=1

ϱ(Vi)− m̃in(Y ).

If we apply the condition of Theorem 1.2.9 to T , a set X ⊂ S and F0 = ∅ and we use the previous

equation for
∑q′

i=1 pT (Vi), we get the following.

m̃S(X) + (|Y |+ q)r(M)−
q∑

i=1

ϱ(Vi)− m̃in(Y )− q′r(X) ≤ m̃S(S).

If we reorder the terms and use that q′ = |Y |+q and m̃S(S)−m̃S(X) = |S−X| we get the condition
in (2.5). Hence there exists a simple bipartite graph G = (S, V,E) which covers pT -t and satisfies the

degree prescription. From this we get that for every v ∈ V -re r(M) − min(v) ≤ r(ΓG(v)) ≤ dG(v)

(where ΓG(v) is the set of neighbours of v in G), thus

∑
v∈V

[r(M)−min(v)] ≤
∑
v∈V

dG(v) =
∑
s∈S

dG(s) = |S|.

Since m̃in(V ) = |V |r(M) − |S|, the left hand side of the previous equation is |S|, hence we have

equality everywhere, thus we get dG(v) = r(ΓG(v)) = r(M)−min(v) ∀v ∈ V .

Since ∀Y ⊂ V r(M)− ϱ(Y ) ≤ r(ΓG(Y )) also holds, if we contract S, orient its outgoing edges to-

wards T = V and add the edges of D on V , then the condition of Theorem 1.2.2 holds for the resulting

digraph, thus there exists an M -based packing of s-arborescences. Since r(ΓG(v)) = r(M)−min(v),

at least min(v) arborescence enters v with a non-root-edge. We can assume that exactly r(ΓG(v))

root-edge is in the packing (since otherwise we can exchange certain edges of the arborescences), so

there exists a packing which enters v with exactly min(v) edges.
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Chapter 3

Free-rooted packings of

arborescences in mixed graphs

In this Chapter, we characterize the existence of (f, g)-bounded k-regular (l, l′)-limited M -restricted

packing of arborescences in mixed graphs, which is a generalization of a result of Szigeti [26] (see

section 1.2.4). As a corollary, we also characterize the existence of (f, g)-bounded k-regular (l, l′)-

limited packing of arborescences in mixed graphs with degree-constraints.

3.1 Matroid-restricted free-rooted packings of arborescences

in mixed graphs

The main result of this chapter is the following theorem.

Theorem 3.1.1. Let F = (V,E∪A) be a mixed graph, f, g : V → Z+ functions and k, l, l′ ∈ Z+−{0}.
Let Mv := (∂A∪AE (v), rv) be a matroid for every v ∈ V , and let M :=

⊕
v∈V Mv with a rank function

r. There exists an (f, g)-bounded k-regular (l, l′)-limited M -restricted packing of arborescences in F

if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and

R(P) ≥ k|P| −min{l′ − f(V − ∪P), g̃k(∪P)} for every subpartition P of V (3.1)

where R(P) = max{r(
−−−−−−→
∂A∪E(P)}, where

−−−−−−→
∂A∪E(P) is an orientation of ∂A∪E(P).

The proof of this theorem relies on the following theorem.

Theorem 3.1.2. Let F = (V,E∪A) be a mixed graph, f, g : V → Z+ functions and k, l, l′ ∈ Z+−{0}.
Let Mv := (∂A∪AE (v), rv) be a matroid for every v ∈ V , and let M :=

⊕
v∈V Mv with a rank function

r. Let Mk
F be the extended k-graphic matroid of F on A ∪ AE. Let T := Q(0, rMk

F
) ∩ K(k|V | −

l′, k|V | − l) ∩
∑

v∈V [(Q(0, rv)) ∩K(k − gk(v), k − f(v))].

(A) The characteristic vectors of the edge sets of (f, g)-bounded k-regular (l, l′)-limited M -restricted

packings of arborescences in orientations of F are exactly the integer points of T .

(B) T ̸= ∅ if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and for every Z ⊆ A∪AE,

∑
v∈V

max{0, k − gk(v)− rv(∂
Z(v))} ≤ rMk

F
(A ∪AE − Z) (3.2)
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k|V | − l′ −
∑
v∈V

min{rv(∂Z(v)), k − f(v)} ≤ rMk
F
(A ∪AE − Z) (3.3)

(C) (3.1) implies (3.2) and (3.3).

Proof. (A)

By Theorem 1.2.12/(A), the integer points of T are characteristic vectors of the edge sets of (f, g)-

bounded k-regular (l, l′)-limited packings of arborescences in orientations of F . Since an integer point

of T is also in
∑

v∈V Q(0, rv), the corresponding packing is also M -restricted.

By the other direction of Theorem 1.2.12/(A) and since the characteristic vector of anM -restricted

packing must be in
∑

v∈V Q(0, rv), the integer points of T are exactly the characteristic vectors of

the edge sets of the required packings.

(B)

By Theorem 1.1.1.1, Q(0, rv))∩K(k−gk(v), k−f(v)) is non empty if and only if k−gk(v) ≤ k−f(v)

(which is equivalent to gk(v) ≥ f(v)), k − f(v) ≥ 0 (which is true because 0 ≤ k − gk(v) ≤ k − f(v))

and k − gk(v) ≤ rv(∂
A∪AE (v)) (which we will see later).

If Q(0, rv))∩K(k−gk(v), k−f(v)) ̸= ∅ then it is equal to Q(pv, bv), where by Theorem 1.1.1.1/(iii),

for Z ⊆ A ∪AE and Zv = Z ∩ ∂A∪AE (v),

pv(Zv) = max{0, k − gk(v)− r(∂A∪AE−Zv (v))}

bv(Zv) = min{r(∂Zv (v), k − f(v)}

By Theorem 1.1.1.3,
∑

v∈V Q(pv, bv) = Q(pΣ, bΣ), where pΣ =
∑

v∈V pv, bΣ =
∑

v∈V bv.

By Theorem 1.1.1.1, Q(0, rMk
F
) ∩ K(k|V | − l′, k|V | − l) ̸= ∅ if and only if k|V | − l′ ≤ k|V | −

l (which is equivalent to l′ ≥ l), k|V | − l ≥ 0 (which follows from k|V | − l ≥ g̃k(V ) − l ≥ 0)

and k|V | − l′ ≤ rMk
F
(A ∪ Ae), which is (3.3) for Z = A ∪ AE . Thus, by Theorem 1.1.1.1/(iii),

Q(0, rMk
F
)∩K(k|V | − l′, k|V | − l) = Q(p, b) where p(Z) = max{0, k|V | − l′ − rMk

F
(A∪AE −Z)} and

b(Z) = min{rMk
F
(Z), k|V | − l}.

By Theorem 1.1.1.2, Q(p, b) ∩Q(pΣ, bΣ) ̸= ∅ if and only if pΣ ≤ b and p ≤ bΣ, that is

∑
v∈V

max{0, k − gk(v)− rv(∂
A∪AE−Zv (v))} ≤ min{rMk

F
(Z), k|V | − l}

and

max{0, k|V | − l′ − rMk
F
(A ∪AE − Z)} ≤

∑
v∈V

min{rv(∂Zv (v)), k − f(v)}

The first inequality is equivalent to (3.2) by the fact that max{0, k|V | − l′ − rMk
F
(A ∪ AE −

Z)} ≤
∑

v∈V k − gk(v) ≤ k|V | − l (here we use that min{g̃k(V ), l′} ≥ l). Since k − f(v) ≥ k −
gk(v) ≥ 0 and rv ≥ 0, 0 ≤

∑
v∈V min{rv(∂Zv (v)), k − f(v)}, and k|V | − l′ − rMk

F
(A ∪ AE − Z) ≤∑

v∈V min{rv(∂Zv (v)), k − f(v)} is equivalent to (3.3).

Finally, k − gk(v) ≤ rv(∂
A∪AE (v)) follows from pΣ(∅) ≤ b(∅) and the proof is complete.

(C)

Note, that (3.2) is equivalent to

k|V | − gk(V )−
∑
v∈V

min{rv(∂Z(v)), k − gk(v)} ≤ rMk
F
(A ∪AE − Z). (3.4)

26



Let Z ⊆ A ∪ AE . By (1.4), there exists a partition P of V such that for K = {e ∈ E(P) :

(A ∪AE − Z) ∩Ae ̸= ∅}:

rMk
F
(A ∪AE − Z) = |(A ∪AE − Z) ∩A(P)|+ |K|+ k(|V | − |P |). (3.5)

Let Ph := {X ∈ P : rv(∂
Z(v)) ≤ k−h(v) (∀v ∈ X)}, where h ∈ {f, gk}. Then Ph is a subpartition

of V and for every X ∈ P − Ph there exists a vX ∈ X such that rv(∂
Z(v)) > k − h(v).

By the definition of K, we have

AE(Ph)−K ⊆ Z ∩AE(Ph). (3.6)

Thus, by (3.5), the definition of Ph and vX , rv(∂
Z(v)) ≥ 0, k − h ≥ 0, h ≥ 0 and r(X) ≤ |X|

(that is, the subcardinality of the rank function of a matroid), we have

rMk
F
(A ∪AE − Z) +

∑
v∈V

min{rv(∂Z(v)), k − h(V )}

=|(A ∪AE − Z) ∩A(P)|+ |K|+ k(|V | − |P|) +
∑
v∈∪P

min{rv(∂Z(v)), k − h(V )}

+
∑

v∈V−∪P
min{rv(∂Z(v)), k − h(V )}

≥|(A ∪AE − Z) ∩A(Ph)|+
∑
v∈∪P

rv(∂
Z(v)) +

∑
X∈P−Ph

∑
v∈X

min{rv(∂Z(v)), k − h(V )}

+ |K|+ k(|V | − |P|)

≥|(A ∪AE − Z) ∩A(Ph)|+ r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph))) +
∑

X∈P−Ph

(k − h(vX))

+ |K|+ k(|V | − |P|)

≥r((A ∪AE − Z) ∩A(Ph)) + r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph))) +
∑

X∈P−Ph

(k − h(X))

+ |K|+ k(|V | − |P|)

≥r((A ∪AE − Z) ∩A(Ph)) + r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph))) + k(|P| − |Ph|)− h(V − ∪Ph)

+ |K|+ k(|V | − |P|)

=r((A ∪AE − Z) ∩A(Ph)) + r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph)))− k|Ph| − h(V − ∪Ph) + |K|+ k|V |.

By (3.6) and the submodularity of r, we get

r((A ∪AE − Z) ∩A(Ph)) + r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph)))

≥r(A(Ph) ∪ (Z ∩AE(Ph))) + r(((A ∪AE − Z) ∩A(Ph)) ∩ (Z ∩AE(Ph))))

≥r(A(Ph) ∪AE(Ph)−K) + r(∅)

≥R(Ph)− |K|.

In the last inequality we use r(X −K) ≥ r(X)− |K|. By the previous two inequalities, we get

rMk
F
(A ∪AE − Z) +

∑
v∈V

min{rv(∂Z(v)), k − h(V )} ≥ R(Ph)− k|Ph| − h(V − ∪Ph) + k|V |.
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Using this inequality for h = f and (3.1) we get (3.3), and if we apply it for h = gk, we get (3.4).

Next, we prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Necessity. The necessity of gk ≥ f and min{g̃k(V ), l′} ≥ l is trivial. Let P be

a subpartition of V and let B be the arc set of an (f, g)-bounded k-regular (l, l′)-limited M -restricted

packing of arborescences in an orientation
−→
F of F . For a node v, let the number of v-arborescences

in the packing be q(v). Let C be a class of P. By k-regularity, there is at least k arborescences in

the packing, which have arcs induced by C. If the root of an arborescence is not in C, then it enters

it. Thus, the number of edges in B that enter C is at least k −
∑

v∈C q(v). The number of edges in

B entering a class of P is therefore at least k|P| −
∑

C∈P q̃(C) = k|P| − q̃(∪P). Since the packing is

(f, g)-bounded and (l, l′)-limited, we have q̃(∪P) ≤ min{l′ − f(V −∪P), g̃k(∪P)}, therefore the right

side of (3.1) is a lower bound on the number of edges in B, that enter a member of P. Since B is

independent in M , we get (3.1).

Sufficiency. Let (F = (V,E ∪ A), f, g, k, l, l′) be an instance of Theorem 3.1.1, that satisfies the

necessary conditions. Since (3.1) holds, by Theorem 3.1.2/(C), (3.2) and (3.3) hold. Since gk ≥ f and

min{g̃k(V ), l′} ≥ l also hold, by Theorem 3.1.2/(B), T (as defined in Theorem 3.1.2) is nonempty,

thus, by Theorem 1.1.1/2./(ii), it contains an integral element x. By Theorem 3.1.2/(A), x is the

characteristic vector of the edge sets of an (f, g)-bounded k-regular (l, l′)-limited M -restricted packing

of arborescences in an orientation
−→
F = (V,

−→
E ∪ A) of F . Replacing the arcs in

−→
E with the edges in

E, we get the required packing.

3.2 Free-rooted packings of arborescences in mixed graphs

with degree-constraints

If we choose the matroid in Theorem 3.1.1 to be a partition matroid, we can prescribe bounds on the

in-going arcs and edges in the packing, as follows.

Corollary 3.2.1. Let F = (V,E ∪ A) be a mixed graph, f, g, p, q : V → Z+ functions and k, l, l′ ∈
Z+ − {0}. There exists an (f, g)-bounded k-regular (l, l′)-limited packing of arborescences in F with

ϱA∩T (v) ≤ q(v) and ϱAE∩
−→
T (v) ≤ p(v) for every v ∈ V (where T is the edge set of the packing

and
−→
T is an orientation of T where we orient each mixed-arborescence in the packing so that they

become arborescences), if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and for every

subpartition P of V

min
B⊆∂E(P)

{|B|+
∑

v∈V (P)

min{p(v), |∂E(v) ∩ (∂E(P)−B)|}}+
∑

v∈V (P)

min{q(v), |∂A(v) ∩ ∂A(P)|}

≥ k|P| −min{l′ − f(V − ∪P), g̃k(∪P)}
(3.7)

Proof. For every v ∈ V , let Mv a partition matroid with partition classes ∂A(v) and ∂E(v), and

bounds q(v) and p(v) and let M :=
⊕

v∈V Mv with a rank function r. Then, an M -restricted packing

with edge set T satisfies ϱA∩T (v) ≤ q(v) and ϱAE∩T (v) ≤ p(v).

LetR be as defined in Theorem 3.1.1. SinceM = M |∂A(P)⊕M |∂A(P), R(P) = RE(P)+r(∂A(P))

where RE(P) = max{r(
−−−−→
∂E(P)) :

−−−−→
∂E(P) is an orientation of ∂E(P)}.

It is easy to see, that r(∂A(P)) =
∑

v∈V (P) min{q(v), |∂A(v) ∩ ∂A(P)|}. To compute RE(P), we

have to find an orientation
−−−−→
∂E(P) that maximizes
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∑
v∈V (P)

min{p(v), d(v)} (3.8)

where d(v) := ϱ−−−−→
∂E(P)

(v). We can assume, that in the orientation, every edge enters a class of the

subpartition P.

Let F be the set of arcs we get by orienting every edge in uv ∈ ∂E(P) that has both of its

endpoints in V (P) and oriented towards V (P) if only one endpoint is in V (P), that is F = {−→uv :

uv ∈ ∂E(P), v ∈ V (P)}. Let M1 be a partition matroid on F with rank function r1 where the classes

are {−→vu,−→uv} if u, v ∈ V (P) and {−→uv} if only v ∈ V (P), and the bounds are one for every class of the

partition. Let M2 also be a partition matroid on F with rank function r2, where the classes of the

partition are ϱF (v) for every v ∈ V (P) a with bounds p(v).

Let
−−−−→
∂E(P) be an orientation of ∂E(P). Delete edges until every in-degree is at most p(v). The set

of arcs we get is a common independent set of M1 and M2. The size of the constructed independent

set will be 3.8.

Let I be a common independent set ofM1 andM2. Since I is independent inM1 it does not contain

any parallel edges from F , so it defines an orientation of a subset of ∂E(P). Since I is independent in

M2, every in-degree in the orientation is at most p(v). If I is a maximum size common independent

set and we direct the rest of the edges arbitrarily, then we get an orientation, that maximizes 3.8.

By Theorem 1.2.3, we have

max{|I| : I ∈ M1 ∩M2} = min{r1(B) + r2(F −B) : B ⊆ F} (3.9)

Let B ⊆ F and assume that both −→uv ∈ F and −→vu ∈ F . Then, r1(B−−→uv) = r1(B) and r2(F −B+
−→uv) ≥ r1(F − B) so we can assume that the minimizer of (3.9) contains either both or zero edges of

a parallel pair. From this we get

RE(P) = min{|B|+
∑

v∈V (P)

min{p(v), |∂E(v) ∩ (∂E(P)−B)|} : B ⊆ ∂E(P)}

Thus, we get that for a subpartition P of V :

R(P) = minB⊆∂E(P){|B|+
∑

v∈V (P)

min{p(v), |∂E(v) ∩ (∂E(P)−B)|}}

+
∑

v∈V (P)

min{q(v), |∂A(v) ∩ ∂A(P)|}
(3.10)

Therefore (3.7) is equivalent to (3.1) with f, g, k, l, l′ and the matroid M which proves the state-

ment.

If f(v) = g(v) for all v ∈ V , then we may reformulate Corollary 3.2.1 so that we have both lower

and upper bounds on the in-going arcs in the packing:

Corollary 3.2.2. Let F = (V,E ∪ A) be a mixed graph, f, p, q : V → Z+ functions and k, l, l′ ∈
Z+ − {0}. There exists an (f, f)-bounded k-regular (l, l′)-limited packing of arborescences in F with

p(v) ≤ ϱA∩T (v) ≤ q(v) for every v ∈ V (where T is the edge set of the packing), if and only if

min{f̃k(V ), l′} ≥ l and for every subpartition P of V
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minB⊆∂E(P){|B|+
∑

v∈V (P)

min{k − f(v)− p(v), |∂E(v) ∩ (∂E(P)−B)|}}

+
∑

v∈V (P)

min{q(v), |∂A(v) ∩ ∂A(P)|} ≥ k|P| −min{l′ − f(V − ∪P), f̃k(∪P)}
(3.11)

Proof. Apply Corollary 3.2.1 to F, f, f, k, l, l′, k − f − p and q.
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Chapter 4

Algorithms

In this chapter we will present algorithms to find arborescence packings which satisfy the properties

of the theorems proved in Chapter 2 and 3.

4.1 Algorithm for finding a free-rooted matroid-based and

matroid-restricted packing of arborescences

In this section we give an algorithm to find a free-rooted packing of arborescences satisfying the

conditions of Theorem 2.1.1. That is, we are given a digraph D = (V,A), a matroid M1 = (S, r1)

with rank function r1 and rank k, and a matroid M2 on A which is given as the direct sum of matroids

Mv(∂A(v), rv). Let s be a node not in V (all matroids are given by its rank oracles). Our aim is to

add new possibly parallel arcs from s to some of the nodes of V and map the elements of S to the

new edges such that there exists an M1-based M ′
2-restricted packing of s-arborescences, where M ′

2

the direct sum of the free matroid on the new edges and M2.

The algorithm is based on the proof of Theorem 2.1.1. Let mS be a degree-prescription on S for

which mS(s) = 1 for every s ∈ S. Let the set function pT on T be defined as in the proof of Theorem

2.1.1, that is,

pT (Y ) =

k − r2(∂(Y )) ∅ ⊊ Y ⊆ T,

0 Y = ∅.

Now we find a bipartite graph G = (S, V,E) fitting mS that M1-covers pT using the algorithm

described in Section 4.1.1. If the condition does not hold then the algorithm gives a set X ⊆ S

and a subpartition T of T that does not satisfy condition (1.16) and equivalently, condition (2.1).

Otherwise, let D′ = (V + s,A′) be the digraph we get by directing the edges of E from S to T ,

contracting S to get the node s and adding the arcs A on V . As can be seen in the proof of Theorem

2.1.1, the graph D′ and matroids M1 and M ′
2 satisfy the conditions of Theorem 1.2.4, that is, we can

find a M1-based M ′
2-restricted packing of s-arborescences in D′ using the algorithm in [23], ending

our algorithm.

Since the algorithm described in Section 4.1.1 is polynomial and the matroid intersection problem

is also polynomially solvable, our algorithm is polynomial.
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4.1.1 Degree-specified matroidal augmentation

In this section we will present an algorithm from an unpublished manuscript of Bérczi and Frank

([1]) to find a bipartite graph which satisfies the properties in Theorem 1.2.9. They actually give an

algorithm for a slightly different version of Theorem 1.2.9 in which we have a degree-prescription not

only on S, but also on T . We only use the version of the theorem presented in the thesis, therefore

the algorithm is slightly modified.

Let mS be a vector on S. Bérczi and Frank gave a polyhedral description to the vectors that

satisfy the conditions of Theorem 1.2.9 in [1]. The vector mS has to satisfy mS(s) ≤ |T | − dH0
(s) for

all s ∈ S and condition (1.16):

m̃S(X) +

q∑
i=1

[pT (Ti)− r(X ∪ ΓH0
(Ti))] ≤ γ,

Where X ⊆ S and T = {T1, . . . , Tq} is a subpartition of T . We define the following set function

b0 on S.

b0(X) = min{
q∑

U∈T
[r(X ∪ ΓH0(U))− pT (U)] : T is a subpartition of T}. (4.1)

Then Condition (1.16) is equivalent to the following.

m̃S(X) ≤ b0(X)− γ. (4.2)

Bérczi and Frank proved the following theorem.

Theorem 4.1.1. (Bérczi, Frank [1]) b0 is fully submodular.

The idea of the proof is to use the uncrossing procedure (replacing certain pairs of T -intersecting

sets with their union and intersection) on a family of sets we construct from the subpartitions mini-

mizing the right side of (4.1) for two subsets of S so that we can use the supermodular inequality on

the resulting family which does not contain any properly T -intersecting pairs of sets.

The following corollary to Theorem 4.1.1 gives a polyhedral characterization to degree-vectors

satisfying the conditions of Theorem 1.2.9.

Corollary 4.1.1. (Bérczi, Frank [1]) Given a matroid M = (S, r) and a positively intersecting

supermodular set function pT on T , an integral vector mS ∈ ZS is the degree-vector restricted to S

of a simple bigraph G+ (S, T,E) which M -covers pT if and only if it is in the polyhedron {x ∈ RS :

x̃ ≤ b0 − γ, x̃(S) = γ, 0 ≤ x(s) ≤ |T | ∀s ∈ S}

Now we describe the algorithm to find a bigraph satisfying the conditions of Theorem 1.2.9 when pT

is intersecting supermodular. We are given a simple bigraph H0 = (S, T, F0), a matroid M = (S, r),

an intersecting supermodular set function pT on T and a degree-specification mS on S for which

m̃S(S) = γ and mS(s) + dH0
(s) ≤ |T | for every s ∈ S.

It suffices to show that we can check the validity of (1.16) in polynomial time. Indeed, there is

a solution to the original problem if and only if there is an edge st ̸∈ F0 (s ∈ S, t ∈ T ) for which

the modified problem with H ′
0 := H0 + e, m′

S(s) := mS(s) − 1 has a solution. Therefore, we can

find a solution by trying to add edges to H0 on-by-one and checking the validity of (1.16) until the

degree-prescription becomes 0 at each node.

By Corollary 4.1.1, (1.16) holds if and only if the vector m is in the polyhedron {x ∈ RS : x̃ ≤
b0 − γ, x̃(S) = γ, 0 ≤ x(s) ≤ |T | ∀s ∈ S}. By Theorem 4.1.1, b0 is submodular and since the set
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function X 7→
∑

s∈X mS(s) (X ⊆ S) is modular, the set function b0 − γ − x̃ is submodular. Hence,

checking x̃ ≤ b0 − γ for x = mS can be done by checking if the minimum value of b0 − γ − x̃ is non-

negative using a submodular minimization algorithm (see Section 1.4) if a subroutine for evaluating

b0 is at hand. That is, our aim is to show that

b0(X) = min{
q∑

U∈T
[r(X ∪ ΓH0

(U))− pT (U)] : T is a subpartition of T}

can be determined for a fixed set X ⊆ S. Let us define a set function on T as follows:

bX(U) := r(X ∪ ΓH0(U))− pT (U)

.

Claim 4.1.1. (Bérczi, Frank [1]) The function bX is intersecting submodular.

By definition,

b0(X) = min{
∑
U∈T

bX(U) : T is a subpartition of T}.

Let the set function b̂X be defined as

b̂X(U) =

bX(U) ∅ ⊊ U ⊆ T,

0 U = ∅.

The lower truncation of b̂X is defined as

b̂∨X(W ) := min{
∑
U∈P

bX(U) : P is a partition of W}. (4.3)

Since by Claim 4.1.1 bX is intersecting submodular, b̂X is also intersecting submodular, therefore

the minimum value of the right side of (4.3), together with a partition attaining the minimum, can

be calculated by using the algorithm of Frank and Tardos ([13], described in Section 1.3).

By definition,

b0(X) = min{b̂∨X(W ) : W ⊆ T}, (4.4)

and since the lower truncation of an intersecting submodular function is fully submodular [13],

b0(X) can be computed using a submodular minimization algorithm.

If (1.16) does not hold then the subset X ⊆ S for which m̃(X) ̸≤ b0(X)− γ we get by minimizing

the submodular function b0(X) − m̃(X) − γ with the algorithm described in Section 1.4 and the

subpartition of T that minimizes the right side of (4.1) for X provides a counterexample to (1.16).

Since the algorithm calls the submodular minimization algorithm at most |E| times and evaluating

b0 can be done in polynomial time, the resulting algorithm is also polynomial.

4.2 Mixed graphs

In this section we show that finding a mixed-arborescence packing satisfying the conditions of Theorem

3.1.1 can be done in polynomial time. That is, we are given a mixed graph F = (V,E ∪A), functions

f, g : V → Z+, positive integers k, l, l′, and a matroid Mv := (∂A∪AE (v), rv) for every v ∈ V (we
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assume Mv is given by its rank oracle). Let M :=
⊕

v∈V Mv with a rank function r. Our aim is to

find an (f, g)-bounded k-regular (l, l′)-limited M -restricted packing of arborescences.

In Theorem 3.1.2 we showed that the characteristic vectors of the edge sets of (f, g)-bounded

k-regular (l, l′)-limited M -restricted packings of arborescences in orientations of F are exactly the

integer points of T = Q(0, rMk
F
) ∩K(k|V | − l′, k|V | − l) ∩

∑
v∈V [(Q(0, rv)) ∩K(k − gk(v), k − f(v))].

Therefore, our goal is to find an integer point in T . Finding an integer point in a polyhedron is

NP-hard in general ([21]).

Claim 4.2.1. T = Q(0, rMk
F
) ∩K(k|V | − l′, k|V | − l) ∩

∑
v∈V [(Q(0, rv)) ∩K(k − gk(v), k − f(v))] is

an integral polyhedron.

Proof. By Theorem 1.1.1.1/(ii), both Q(0, rMk
F
)∩K(k|V |−l′, k|V |−l) and (Q(0, rv))∩K(k−gk(v), k−

f(v)) are g-polymatroids. By Theorem 1.1.1.3,
∑

v∈V [(Q(0, rv)) ∩ K(k − gk(v), k − f(v))] is also a

g-polymatroid. Therefore, T is the intersection of two g-polymatroids and since f, q, k, l, l′, rMk
F
and

rv are all integral, by Theorem 1.1.1.2/(ii), T is an integral polyhedron.

If we can decide for a vector x ∈ RA∪AE if x ∈ T then we can use any polynomial algorithm

for optimizing over polyhedrons (see [4, Chapters 8 and 9]) to find an integer point in T . Deciding

x ∈ K(k|V |−l′, k|V |−l)∩
∑

v∈V [(Q(0, rv))∩K(k−gk(v), k−f(v))] is trivial. To decide if x ∈ Q(0, rMk
F
)

for a vector x ≥ 0, we need to be able to compute its rank function (1.4) which can be done in

polynomial time as shown in [16]. Then we can minimize the submodular function rMk
F
− x̃ and if

the minimum is negative then x ̸∈ Q(0, rMk
F
), otherwise x ∈ Q(0, rMk

F
).
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[2] Kristóf Bérczi and András Frank. Supermodularity in unweighted graph optimization I: Branch-

ings and matchings. Mathematics of Operations Research, 43(3):726–753, 2018.
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[16] Florian Hörsch and Zoltán Szigeti. Packing of mixed hyperarborescences with flexible roots via

matroid intersection. Electronic Journal of Combinatorics, 2020.
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[23] Csaba Király, Zoltán Szigeti, and Shin-ichi Tanigawa. Packing of arborescences with matroid

constraints via matroid intersection. Mathematical Programming, 181:85–117, 2020.
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