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Chapter 1

Introduction

Electronic communication and thus cryptography is part of our daily life.
But quantum computers using Shor’s algorithm can break any currently de-
ployed cryptosystem. Isogeny-based cryptography has become one of the
major candidates to develop protocols that are resistant against attacks from
quantum computers. Supersingular Isogeny Diffie-Hellman(SIDH) by Luca
De Feo, David Jao, and Jérôme Plût[1] is one of the most well-known isogeny-
based protocols. It is a variant of the Diffie-Hellman protocol using isogenies
between supersingular elliptic curves. Diffie-Hellman requires commutativ-
ity to work but isogenies between supersingular elliptic curves usually don’t
commute. To overcome this SIDH also provides the images of some tor-
sion points. But these torsion points were the key together with a theorem
from Kani [2] to breaking SIDH. The first successful attack was by Wouter
Castryck and Thomas Decru[3] shortly followed by a similar attack by Lu-
ciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope and Benjamin
Wesolowski[4]. These attacks only broke SIDH in polynomial time if the en-
domorphism ring of the starting curve was known. But the attack by Damien
Robert[5] broke SIDH in polynomial time without any assumptions.

In chapter 2 and 3 I introduce some statments, theorems and concepts
that are necessary to understand the SIDH protocol and the attacks. Chap-
ter 2 is about elliptic curves I show the basic properties of isogenies between
elliptic curves, the existance of a dual isogeny, the Weil pairing and an algo-
rithm by Vélu[6] that shows that we can efficiently calculate an isogeny given
its kernel if the degree of the isogeny is smooth. Chapter 3 is about abelian
varieties and their polarisations, which are crucial for Kani’s theorem.

Chapter 4 is about the SIDH protocol. The first part of the chapter is

4



5

about Ramanujan graphs, the isogeny graph of supersingular elliptic curves is
a Ramanujan graph and that means that random walks along the edges mix
rapidly. Then comes the introduction of the key exchange and encryption
protocols.

Chapter 5 is about an adaptive attack by Steven Galbraith, Christophe
Petit, Barak Shani and Yan Bo Ti [7]. This attack works if one party uses
a static private key. An adversary can recover one bit of information in
every key exchange attempt unless validation methods are used in the key
exchange.

Chapter 6 is about torsion point attacks, the first such attack was by
Christophe Petit[8] however it was efficient in only some special cases namely
when the parameters of SIDH were unbalanced, one being much larger than
the other. The Castryck-Decru attack uses information about the torsion
points to build (2a, 2a) subgroups and then Kani’s lemma to show that the
isogeny belonging to this subgroup is an isogeny between products of elliptic
curves. This information is then used as a decision tool to build the hid-
den isogeny by guessing parts of its composition as smaller degree isogenies.
Similarly the Maino-Martindale-Panny-Pope-Wesolowsky attack uses Kani’s
theorem to break SIDH but instead of guessing smaller degree isogenies it
directly recovers the isogeny by building an isogeny between products of el-
liptic curves which is then projected to one dimension. But thesse attacks
are only in polinomial time if we know the endomorphism ring of the starting
curve as otherwise it’s hard to find an isogeny of degree A− B that we can
easily evaluate on the torsion points. Roberts attack overcomes this by going
into higher dimensions as any integer can be written as a sum of four squares
it is possible to write an isogeny of any degree as linear combination between
components in dimension 8. Thus breaking SIDH in polynomial time for any
starting curve.

While these attacks proved fatal for SIDH they also opened up a new
chapter in isogeny based cryptography. I give two new cryptosystems based
on them as examples of applications in chapter 7.



Chapter 2

Elliptic Curves

This chapter was made using [9](besides the section about Vélu’s formula)
all proofs can be found there.

Definition 2.0.1. The divisor group of a curve C, denoted by Div(C), is the
free abelian group generated by the points of C. Thus a divisor D ∈ Div(C)
is a formal sum

D =
∑
P∈C

nP (P ),

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C. The degree of D
is defined by

degD =
∑
P∈C

nP .

The divisors of degree 0 form a subgroup of Div(C), which we denote by

Div0(C) = {D ∈ Div(C) : degD = 0}.

Definition 2.0.2. Let C be defined over K and smooth, and let f ∈ K̄(C)∗.
Then the divisor of f is

div(f) =
∑
P∈C

ordP (f)(P ),

where ordP (f) is the order of vanishing or order of poles of f at P .

Definition 2.0.3. A divisor D ∈ Div(C) is principal if it has the form
D = div(f) for some f ∈ K̄(C)∗. Two divisors are linearly equivalent,
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written D1 ∼ D2, if D1 − D2 is principal. The Picard group of C, denoted
by Pic(C), is the quotient of Div(C) by its subgroup of principal divisors.
We let PicK(C) be the subgroup of Pic(C) fixed by GK̄/K .

Definition 2.0.4. The principal divisors form a subgroup of Div0(C). We
define the degree-0 part of the divisor class group of C to be the quotient
of Div0(C) by the subgroup of principal divisors. We denote this group by
Pic0(C). Similarly, we write Pic0K(C) for the subgroup of Pic0(C) fixed by
GK̄/K .

We define these maps of divisor groups:

ϕ∗Div(C2)→ Div(C1), (Q) 7→
∑

P∈ϕ−1(Q)

eϕ(P )(P ),

ϕ∗ : Div(C1)→ Div(C2), (P ) 7→ (ϕP )

where eϕ(P ) is the ramification index.

Proposition 2.0.5. ϕ∗ and ϕ∗ take divisors of degree 0 to divisors of degree
0, and principal divisors to principal divisors. They thus induce maps ϕ∗ :
Pic0(C2) → Pic0(C1) and ϕ∗ : Pic0(C1) → Pic0(C2). In particular, if f ∈
K̄(C) gives the map f : C → P1, then deg div(f) = degf ∗((0) − (∞)) =
degf − degf = 0.

Proposition 2.0.6. Let (E, O) be an elliptic curve.

1. For every degree 0 divisor D ∈ Div0(E) there exists a unique point
P ∈ E satisfying

D ∼ (P )− (O).

Define
σ : Div0(E) −→ E

to be the map that sends D to its associated P .

2. The map σ is surjective.

3. Let D1, D2 ∈ Div0(E). Then

σ(D1) = σ(D2)if and only ifD1 ∼ D2

Thus σ induces a bijection of sets (which we also denote by σ),

σ : Pic0(E)
∼−→ E.
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4. The inverse to σ is the map

κ : E
∼−→ Pic0(E), P 7→ (divisorclassof(P )− (O).

Corollary 2.0.7. Let E be an elliptic curve and let D =
∑
nP (P ) ∈ Div(E).

Then D is a principal divisor if and only if∑
P∈E

nP = 0 and
∑
P∈E

[nP ]P = 0.

2.1 Isogenies
Definition 2.1.1. Let E1 and E2 be elliptic curves. An isogeny from E1 to
E2 is a morphism

ϕ : E1 → E2 satisfying ϕ(O) = O.

Two elliptic curves E1 and E2 are isogenous if there is an isogeny from E1 to
E2 with ϕ(E1) ̸= O.

The degree of ϕ, which is denoted by deg(ϕ), is the degree of the finite
extension K̄(E1/ϕ

(∗)K̄(E2). And the isogeny is separable if the extension is
separable.

Proposition 2.1.2. 1. Let E/K be an elliptic curve and let m ∈ Z with
m ̸= 0. Then the multiplication-by-m map

[m] : E → E

is nonconstant.

2. Let E1 and E2 be elliptic curves. Then the group of isogenies

Hom(E1, E2)

is a torsion-free Z-module

3. Let E be an elliptic curve. Then the endomorphism ring End(E) is a
ring of characteristic 0 with no zero divisors.

Theorem 2.1.3. Let ϕ : E1 → E2 be an isogeny. Then

ϕ(P +Q) = ϕ(P ) + ϕ(Q) for all P,Q ∈ E1.
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Corollary 2.1.4. Let ϕ : E1 → E2 be a nonzero isogeny. Then kerϕ is a
finite group.

Theorem 2.1.5. Let ϕ : E1 → E2 be a separable isogeny. Then ϕ is unram-
ified,

#kerϕ = degϕ

and K̄(E1) is a Galois extension of ϕ∗(K̄)(E2).

Corollary 2.1.6. Let ϕ : E1 → E2 and ψ : E1 → E3 be nonconstant isoge-
nies, and assume that ϕ is separable. If kerϕ ⊂ kerψ, then there is a unique
isogeny λ : E2 → E3 satisfying ϕ = λ ◦ ϕ.

Proposition 2.1.7. Let E be an elliptic curve and let Φ be a finite subgroup
of E. There are a unique elliptic curve E ′ and a separable isogeny ϕ : E → E ′

satisfying kerϕ = Φ.

2.2 Dual Isogeny
Theorem 2.2.1. Let E1 → E2 be a nonconstant isogeny of degree m.

1. There exists a unique isogeny

ϕ̂ : E2 → E1 satisfying ϕ̂ ◦ ϕ = [m]

2. As a group homomorphism, ϕ̂ equals the composition

E2 → Div0(E2)
ϕ∗−−−−−→ Div0(E1)

sum−−→ E1,

Q 7→ (Q)− (O)
∑

nP (P ) 7→
∑

[nP ]P.

Theorem 2.2.2. Let ϕ : E1 → E2 be an isogeny.

1. Let m = degϕ.Then

ϕ̂ ◦ ϕ = [m] on E1 and ϕ ◦ ϕ̂ = [m] on E2

2. Let λ : E2 → E3 be another isogeny. Then λ̂ ◦ ϕ = ϕ̂ ◦ λ̂.

3. Let ψ : E1 → E2 be another isogeny. Then ϕ̂+ ψ = ϕ̂+ ψ̂.
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4. For all m ∈ Z,

ˆ[m] = [m] and deg[m] = m2.

5. degϕ̂ = degϕ.

6. ˆ̂
ϕ = ϕ

Corollary 2.2.3. Let E be an elliptic curve and let m ∈ Z with m ̸= 0.

1. If m ̸= 0 in K, i.e. if either char(K) = 0 or p = char(K) > 0 and
p ∤ m, then

E[m] =
Z
mZ
× Z
mZ

.

2. If char(K) = p > 0, then one of the following is true:

(a) E[pr] = {O} for all r = 1, 2, 3, . . .

(b) E[pr] = Z
prZ for all r = 1, 2, 3, . . .

Theorem 2.2.4. Let K be a field of characteristic p, and let E/K be an
elliptic curve. For each integer r ≥ 1, then the following are equivalent:

1. E[pr] = 0 for all r ≥ 1.

2. End(E) is an order in a quaternion algebra.

Definition 2.2.5. If E has properties given in 2.2.4, then we say that E is
supersingular.

2.3 Weil Pairing
Let T ∈ E[m]. Then there is a function f ∈ K̄(E) satisfying

div(f) = m(T )−m(O).

Next take T ′ ∈ E to be a point with [m]T ′ = T . Then there is similarly a
function g ∈ K̄(E) satisfying

div(g) = [m]∗(T )− [m]∗(O) =
∑

R∈E[m]

(T ′ +R)− (R).
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It is easy to verify that the functions f ◦ [m] and gm have the same divisor,
so multiplying f by an appropriate constant from K̄∗, we may assume that
f ◦ [m] = gm. Now let S ∈ E[m] be another m-torsion point, where we allow
S = T . Then for any point X ∈ E, we have

g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m.

Thus considered as a function of X, the function g(X + S)/g(X) takes on
only finitely many values, i.e., for every X, it is an mth root of unity. In
particular, the morphism

E → P1, S 7→ g(X + S)/g(X)

is not surjective, so it is constant.

Definition 2.3.1. Let g be as above, then we call the pairing

em : E[m]× E[m]→ µm em(S, T ) =
g(X + S)

g(X)

the Weil pairing.

Proposition 2.3.2. The Weil pairing has the following properties:

1. It is bilinear.

2. It is alternating.

3. It is nondegenerate:

If em(S, T ) = 1 for all S ∈ E[m], then T = O.

4. It is Galois invariant.

5. It is compatible:

emm′(S, T ) = em([m
′]S, T ) for all S ∈ E[mm′] and T ∈ E[m]

6. If ϕ : E1 → E2 is an isogeny, then

em(S, ϕ̂(T )) = em(ϕ(S), T ).

and
em(ϕ(S), ϕ(T )) = em(S, T )

deg(ϕ)



12 CHAPTER 2. ELLIPTIC CURVES

2.4 Vélu’s formula
The algorithm takes as inputs a curve E1 over a field K, which has the form

y2 = x3 + ax+ b,

and a list of points of a finite subgroup of E1 which we will call G. It outputs
the Weierstrass model fot the codomain curve E2 of a separable isogeny, ϕ,
withe kernel G, and ϕ as rational maps on E1.

The strategy of the algorithm is to represent ϕ as follows for all P /∈ G

ϕ(P ) =

xP +
∑

Q∈G{O}

(xP+Q − xq), yP +
∑

Q∈G{O}

(yP+Q − yQ)


and for any P ∈ G, ϕ(P ) = O. This representation makes explicit the in-
variance of ϕ under translation by elements of G and it is also clear that
G = kerϕ.

To generate the rational founctions for ϕ, let G+ = (G
{O})/⟨−1⟩ be the equivalence classes of the points in G without the identity
where each point is identified with its inverse. Then for each P ∈ G+, we
define the values

gxP = 3x2P + a, gyP = −2yP , vP = 2gxP , uP = (gyP )
2.

We also define
v =

∑
P∈G+

vP , w =
∑
P∈G+

uP + xPvP .

Then ϕ : E1 → E2 is given by

ϕ(x, y)−

(
x+

∑
P∈G+

(
vP

x− xP
− uP

(x− xP )2

)
, y +

∑
P∈G+

(
2yuP

(x− xP )3
+ vP

y − yP − gxPg
y
P

(x− xP )2

))
.

The equation for E2 is given by

y2 = x3 + (a− 5v)x+ (b− 7w).



Chapter 3

Abelian Varieties

The sections about isogenies, polarisations and jacobians were mostly made
using [10], part of polarisations and the section about Kani’s theorem were
made using [5], the subsection about Richelot isogenies was made using
[11][3].

A group variety is a variety whose points form a group, and where the
group operations are morphisms of varieties. An abelian variety is a projec-
tive group variety. The group structure of an abelian variety is necessarily
commutative, so we write the group law additively.

A homomorphism of abelian varieties is a morphism that is also a homo-
morphism of abelian groups. The image of a homomorphism X → Y is an
abelian subvariety of Y , and the kernel is a group subscheme of X. In fact,
the kernel of a homomorphism of abelian varieties is the extension of a finite
group scheme by an abelian subvariety of X, which may be zero (see Milne
[45, §8]).

3.1 Isogenies
Definition 3.1.1. Let X and Y be abelian varieties, then a homomorphism
ϕ : X → Y is called an isogeny if it is surjective and has a finite kernel. The
surjectivity of the isogeny induces a finite algebraic extension ϕ∗(K(Y )) ≤
K(X). We define the (in)separable degree of ϕ to be the (in)separable degree
of the field extensions [K(X) : ϕ∗(K(Y ))].

Proposition 3.1.2. Let ϕ : X → Y be an isogeny. Then we have that
#kerϕ = separable degree(ϕ) .

13
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Theorem 3.1.3. Let X be an abelian variety. Then there is a 1–1 corre-
spondence between the two sets of objects:

1. finite subgroups K ⊂ X

2. separable isogenies ϕ : X → Y , where two isogesnies ϕ1 : X → Y1, ϕ2 :
X → Y2, are considered equal if there is an isomorphism ψ : Y1 → Y2
such that ϕ2 = ψ ◦ ϕ1, which is set up by K = kerϕ and Y = X/K.

Theorem 3.1.4. Let X be an abelian variety, then Pic0(X) exists uniquely
up to isomorphism and is an abelian variety.

Definition 3.1.5. We call Pic0(X) the dual of X and denote it as X∨.

Theorem 3.1.6. If ϕ : X → Y is an isogeny, then so is ϕ∨ : Y ∨ → X∨.
Furthermore, if ϕ is separable, then kerϕ and kerϕ∨ are isomorphic as finite
abelian groups.

Theorem 3.1.7. Let G be a finite group scheme acting on a scheme X such
that the orbit of any point is contained in an affine open subset of X. Then
there is a pair (Y, π), where Y is a scheme and π : X → Y a morphism
satisfying the following.

1. As a topological space, (Y, π) is the quotient of X for the action of the
underlying finite group.

2. The morphism π : X → Y is G-invariant, and if π∗(O)G denotes the
subsheaf of π∗(O) of G-invariant functions, the natural homomorphism
OY → π∗(OX)G is an isomorphism.

The pair (Y, π) is uniquely determined up to isomorphism by these conditions.
The morphism π is finite and surjective. Y will be denoted X/G, and it has
the functorial property: every G-invariant morphisms f : X → Z, exists a
unique morphism g : Y → Z such that f = g ◦ π.

Definition 3.1.8. Let A be an abelian variety we say that A is superspecial
if A is isomorphic over K̄ to a product of supersingular elliptic curves

This next theorem is due to Deligne, Ogus and Shioda[12].

Theorem 3.1.9. All superspecial abelian varieties are isomorphic (without
polarisation).
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3.2 Polarisation

Definition 3.2.1. Given an abelian variety X, recall that the dual variety
X∨ exists and is unique up to isomorphism. An isogeny λ : X → X∨ is
known as a polarisation of X. If the polarisation is an isomorphism, then we
say that it is principal.

There is a non-degenerate skew-symmetric bilinear pairing on a princi-
pally polarised abelian variety X over K given by

em : X[m](K)×X∨[m](K)→ K̄∗,

e where m is co-prime to p. This is the Weil pairing.
For principally polarised abelian varieties we can identify X and X∨ to

obtain a pairing on X.

Definition 3.2.2. Let X be a principally polarised abelian variety over Fq ,
and let N be a positive integer co-prime to q. We say a subgroup S of X[N ]
is maximal N -isotropic if

1. the l-Weil pairing on X[N ] restricts trivially to S, and

2. S is not properly contained in any other subgroup of X[N ] satisfying
(1)

Definition 3.2.3. Let X be a principally polarised abelian variety over Fq
, and let l be a prime co-prime to q. Then an (l, l)-isogeny is an isogeny on
X such that its kernel is maximal l-isotropic.

Definition 3.2.4. Let N be a positive integer, an N -isogeny ϕ : (X,λX)→
(Y, λY ) of principally polarised abelian varieties is an isogeny such that
ϕ∗λY := ϕ∨ ◦ λY ◦ ϕ = [N ]λX , where ϕ∨ : X∨ → Y ∨ is the dual isogeny.
Letting ϕ̂ = λ−1

X ϕ∨λY be the dual isogeny ϕ̂ : Y → X of ϕ with respect to
the principal polarisations, this condition is equivalent to ϕ̂ϕ = [N ].

Lemma 3.2.5. If Φ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
: (X,λX × (Y, λY ) → (Z, λZ) × (V, λV ),

then for the product polarisation on X × Y and Z × V , Φ̂ =

(
ϕ̂11 ϕ̂21

ϕ̂12 ϕ̂22

)
.
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Proof. We have a cannonical isomorphism X∨ ∼= Pic0(X), and that under
this isomorphism the dual of ϕ is given by ϕ∨ = ϕ∗. This shows that Φ∨ : Z∨×

V ∨ → X∨×Y ∨ is given by Φ∨ =

(
ϕ∨
11 ϕ∨

21

ϕ∨
12 ϕ∨

22

)
. Since the product polarisations

act component by component, we then get that Φ̂ =

(
ϕ̂11 ϕ̂21

ϕ̂12 ϕ̂22

)
.

The next lemma shows that it’s easy to evaluate any N-torsion point once
a basis of the N-torsion has been evaluated.

Lemma 3.2.6. Let ϕ : X → Y be an isogeny between abelian varieties.
Assume that the N-torsion of X is rational and that we are given a basis
(P1, . . . , P2g) of it. Then given the evaluation ϕ(Pi of all Pi, it is possible to
evaluate ϕ on a point P ∈ X[N ] in time Õ(logNl1/2N ) arithmetic operations.

Furthermore, if ϕ is an N-isogeny and we are given a rational basis of
Y [N ], it is possible to recover generators for its kernel kerϕ in Õ(logNl

1/2
N )

arithmetic operations

3.3 Jacobians

Definition 3.3.1. The Jacobian JX of a curve X is a principally polarised
abelian variety, satisfying the following universal property: any map from X
into another abelian variety A factors through JX , as in the diagram below.

X JX

A

The Jacobian of X is unique up to isomorphism: consider the universal
property with JX in place of A. A curve of genus greater than zero may
always be embedded in its own Jacobian (if X is a curve of genus zero, then
JX is trivial, and soX cannot embed in JX ). For the embedding to be defined
over K, it suffices for X to have a K-rational divisor of degree one; suppose
that D is such a divisor. There is a canonical embedding αD : X ↪→ JX ,
defined by P 7→ [P −D], which sends D to the zero element of JX
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Theorem 3.3.2. Let X be a curve, with gX > 0. Let JX be the Jacobian of
X, and α : X ↪→ JX an embedding. For each integer r ≥ 0, let

Wr := α(X) + · · ·+ α(X)︸ ︷︷ ︸
rtimes

⊂ JX

and define Θ := WgX−1. The following properties hold:

1. Extending α linearly to a map on divisors, we have an isomorphism of
groups between Pic0(X) and JX

2. Wr is a subvariety of JX of dimension dimWr = min(r, gX).

3. dimJX = gX

4. Θ is an irreducible ample divisor on JX

Corollary 3.3.3. Let ψ : C → X be a morphism of curves. The pullback ψ∗

and the pushforward ψ∗ induce well-defined homomorphisms of Jacobians

ψ∗ : JX → JC and ψ∗ : JC → JX .

3.3.1 Richelot isogenies

Richelot isogenies are isogenies between genus 2 curves. Starting from a
hyperelliptic curve H : y2 = h(x) and a (2, 2)-subgroup. For a contemporary
exposition, including explicit formulae, we refer to Smith’s thesis[11].

⟩[g1(x), 0], [g2(x), 0]⟨, g1(x) = x2 + g11x+ g10, g2(x) = x2 + g21x+ g20

of its Jacobian, one lets g3(x) = h(x)/(g1(x)g2(x)) = g32x
2 + g31x+ g30. One

then computes

δ = det

g10 g11 1
g20 g21 1
g30 g31 g32


and h′(x) = g′1(x)g

′
2(x)g

′
3(x) where

g′i(x) = δ−1

(
dgj
dx

gk − gj
dgk
dx

)
for(i, j, k) = (1, 2, 3), (2, 3, 1), (3, 2, 1).



18 CHAPTER 3. ABELIAN VARIETIES

Then the codomain of our Richelot isogeny is the Jacogian of H ′ : y2 =
h′(x). The Richelot correspondance is the curve X ⊂ H ×H ′ defined by

X : g1(x)g
′
1(x) + g2(x)g

′
2(x) = yy − g1(x)g′1(x)(x− x) = 0.

It naturally comes equipped with two projection maps π : X → H, π′ : X →
H ′. The isogeny is then

JH → JH′ : [D] 7→ [π′
∗π

∗D] .

This means that in order to compute the image of a point [x2+u1x+u0, v1x+
v0] ∈ JH , one should eliminate the variables x, y from the system

x2 + u1x+ u0 = 0,

y = v1x+ v0,

y2 = h(x),

g1(x)g
′
1(x) + g2(x)g

′
2(x) = 0,

yy = g1(x)g
′
1(x)(x− x).

We expect the last two equations of its reduced Gröbner basis (with respect
to the lexicographic order with x ≺ y ≺ y ≺ x) to be of the form

y = v′3x
3 + v′2x

2 + v′1x+ v′0, x4 + u′3x
3 + u′2x

2 + u′1x+ u′0 = 0

and then [x4+u′3x
3+u′2x

2+u′1x+u
′
0, v

′
3x

3+v′2x
2+v′1x+v

′
0] are non-reduced

Mumford coordinates for the image on JH′ .

3.4 Kani’s theorem
Definition 3.4.1. A (d1, d2)-isogeny diamond is the decomposition of a d1d2-
isogeny ϕ : X → Y between principally polarised abelian varieties of dimen-
sion g into two different decompositions ϕ = ϕ′

1 ◦ ϕ1 = ϕ′
2 ◦ ϕ2 where ϕ1 is

a d1-isogeny and ϕ2 is a d2-isogeny. Then ϕ′
1 will be a d2-isogeny and ϕ′

2 a
d1-isogeny:

X X1

X2 Y

ϕ2

ϕ1

ϕ′1

ϕ′2
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Theorem 3.4.2 (Kani). Let ϕ = ϕ′
1 ◦ ϕ1 = ϕ′

2 ◦ ϕ2 be a (d1, d2)-isogeny

diamond as above. Then Φ =

(
ϕ1 ϕ̂′

1

−ϕ2 ϕ̂′
2

)
is a d-isogeny Φ : X×Y → X1×X2

where d = d1 + d2.
Its kernel is given by the image of Φ̂ on (X1 × X2)[d]. If d1 is prime to

d2, we also have kerΦ = {(ϕ̂1(P ), ϕ
′
1(P ))|P ∈ X1[d]}, the kernels is thus of

rank 2g.

Proof. We check using 3.2.5 that Φ̂Φ = [d]. Furthermore if d1 is prime to d2,
then the restriction of Φ̂ to X1 × (0) is injective, hence its image spans the
full kernel since #X1[d] = d2g.



Chapter 4

SIDH

4.1 Ramanujan graphs
Let G = (V,E) be a finite graph on h vertices V = {v1, . . . , vh} with undi-
rected edges E. Suppose G is a regular graph of degree k. Let A be its
adjacency matrix. It is convenient to identify functions on V with vectors
in Rh, and therefore also think of A as a self-adjoint operator on L2(V ).
All of the eigenvalues of A satisfy the bound |λ| ≤ k. Constant vectors are
eigenfunctions of A with eigenvalue k, which for obvious reasons is called
the trivial eigenvalue λtriv. A faimily of such graphs with h → ∞ is said to
be a sequence of expander graphs if all other eigenvalues of their adjacency
matrices are bound away from λtriv = k by a fixed amount. In particular, no
other eigenvalue is equal to k; this implies the graph is connected.

Definition 4.1.1. A Ramanujan graph is a special type of expander which
has |λ| ≤

√
k − 1 for any nontrivial eigenvalue which is not equal to −k.

Proposition 4.1.2 ([13]). Let G be a regular graph of degree k oh h vertices.
Suppose that the eigenvalue λ of any nonconstant eigenvector satisfies the
bound |λ| ≤ c for some c < k. Let S be any subset of the vertices of G, and x
be any vertex in G. Then a random walk of length at least log2h/|S|1/2

logk/c
starting

from x will land in S with probability at least |S|
2h

= |S|
2|G| .

An isogeny graph is a graph whose nodes consist of all elliptic curves in
Fq belonging to a fixed isogeny class, up to F̄q-isomorphism. In practice, the
nodes are represented using j-invariants, which are invariant up to isomor-
phism. Isogeny graphs for supersingular elliptic curves were first considered

20
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by Mestre [14], and were shown by Pizer [15][16] to have the Ramanujan
property

Every supersingular elliptic curve in characteristic p is defined over either
Fp or Fp2 [9], so it suffices to fix Fq = Fp2 as the field of definition for this
discussion. Thus, in contrast to ordinary curves, there are a finite number of
isomorphism classes of supersingular curves in any given isogeny class; this
number is in fact g+1, where g is the genus of the modular curveX0(p), which
is roughly p/12. All supersingular curves defined over Fp2 belong to the same
isogeny class. For a fixed prime value of l ̸= p , we define the vertices of the
supersingular isogeny graph G to consist of these g isomorphism classes of
curves, with edges given by isomorphism classes of degree-l isogenies, defined
as follows: two isogenies ϕ1, ϕ2 : Ei → Ej are isomorphic if there exists
an automorphism α ∈ Aut(Ej) (i.e., an invertible endomorphism) such that
ϕ2 = αϕ1. Pizer has shown that G is a connected k = l+1-regular multigraph
satisfying the Ramanujan bound of |λ| ≤ 2

√
l = 2

√
k − 1 for the nontrivial

eigenvalues of its adjacency matrix[15][16].

4.2 Key-exchange protocol

The protocol requires supersingular curves of smooth order. Such curves are
normally unsuitable for cryptography since discrete logarithms on them are
easy. However, since the discrete logarithm problem is unimportant in our
setting, this issue does not affect us. In the supersingular setting, it is easy
to construct curves of smooth order, and using a smooth order curve will
give a large number of isogenies that are fast to compute. Specifically, we fix
Fq = Fp2 as the field of definition, where p is a prime of the form leAA l

eB
B f ± 1.

Here lA and lB are small primes, and f is a cofactor such that p is prime.
Then we construct a supersingular curve E defined over Fq of cardinality
(leAA l

eB
B )2. By construction, E[leAA ] is FQ-rational and contains leA−1

A (lA + 1)
cyclic subgroups of order leAA , each defining a different isogeny; the analogous
statement holds for E[leBB ].

The protocol revolves around the following commutative diagram
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E E/⟨P ⟩

E/⟨Q⟩ E/⟨P,Q⟩

ψ

ϕ

where ϕ and ψ are random walks in the graphs of isogenies of degrees lA and
lB respectively. Their security is based on the difficulty of finding a path
connecting two given vertices in a graph of supersingular isogenies.

The key exchange protocol is a variation of Diffie-Hellman over the di-
agram. The idea is to let Alice choose ϕ, whie Bob chooses ψ. We fix
as public parameters a supersingular curve E0 defined over Fq , and bases
{PA, QA} and {PB, QB} which generate E0[l

eA
A ] and E0[l

eB
B ] respectively, so

that ⟨PA, QA⟩ = E0[l
eA
A ] and ⟨PB, QB⟩ = E0[l

eB
B ]. Alice chooses two random

elements a1, a2 ∈ Z/leAA Z, not both divisible by lA, and computes an isogeny
ϕA : E0 → EA with kernel KA := ⟨[a1]PA, [a2]QA⟩. Alice also computes the
image {ϕA(PB), ϕA(QB)} ⊂ EA of the basis {PB, QB} for E0[l

eB
B ] under her

secret isogeny ϕA, and sends these points to Bob together with EA.
Similarly, Bob selects random elements b1, b2 ∈ Z/leBB Z and computes an

isogeny ϕB : E0 → EB having kernel KB := ⟨[b1]PB, [b2]QB⟩, along with the
points {ϕB(PA), ϕB(QA)} . Upon receipt of EB and ϕB(PA), ϕB(QA) ∈ EB
from Bob, Alice computes an isogeny ϕ′

A : EB → EAB having kernel equal to
⟨[a1]ϕB(PA) + [a2]ϕB(QA)⟩ ; Bob proceeds likewise. Alice and Bob can then
use the common j-invariant of

EAB = ϕ′
B(ϕA(E0)) = ϕ′

A(ϕB(E0)) = E0/⟨[a1]PA + [a2]QA, [b1]PB + [b2]QB⟩

to form a secret shared key.
The degree of the isogenies is large but smooth so they can compute them

using Vélu’s formula as a composition of small degree isogenies. But Vélu’s
formula only determines codomain curves up to isomorphism, hence it’s not
necessary that both parties have the same curve EAB. Therefore in the key
derivation, the parties take the j-invariant j(EAB) to be their shared key.

4.3 Encryption protocol
The public-key encryption scheme is constructed from the key exchange
scheme with a few adaptations. Namely, the shared secret would be used
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as a key for a symmetric encryption scheme to encrypt the message. We will
use the same notation as above and assume that Bob wants to send a mes-
sage to Alice. There are four steps to the encryption protocol: The set-up,
key generation, encryption and decryption.

Setup: Choose p = leAA l
eB
B f ± 1, E0, {PA, PB}, {PB, QB} as above. Let H =

{Hk : k ∈ I} be a hash function family indexed by a finite set I, where
each Hk is a function from Fp2 to the message space {0, 1}w.

Key generation: Choose two random elements a1, a2 ∈ Z/leAA Z, not both
divisible by lA. Compute EA, ϕA(PB), ϕA(QB) as above, and choose a
random element k ∈ I. The public key is the tuple (EA, ϕA(PB), ϕA(QB), k)
and the private key is (a1, a2, k).

Encryption: Given a public key (EA, ϕA(PB), ϕA(QB), k) and a message
m ∈ {0, 1}w, choose two random elements b1, b2 ∈ Z/leBB Z, not both
divisible by lB, and compute

h = Hk(j(EAB)),
c = h⊕ c.

The ciphertext is (EB, ϕB(PA), ϕB(QA), c).

Decryption: Given a ciphertext (EB, ϕB(PA), ϕB(QA), c) and a private key
(a1, a2, k), compute the j-invariant j(EAB) and set

h = Hk(j(EAB)),
m = h⊕ c.

The plaintext is m.

The security of the key exchange and encryption protocol relies on the
supersingular isogeny with torsion problem.

Problem 4.3.1 (Supersingular Isogeny with Torsion(SSI-T)). Given co-
prime integers A and B, two supersingular elliptic curves E0/Fp2 and EA/Fp2
connected by an unknown degree-A isogeny ϕA : E0 → EA, and given the re-
striction of ϕA to the B-torsion of E0, recover an isogeny ϕ matching these
contraints.



Chapter 5

Adaptive attack

In this chapter, we will assume that Alice is using a static key (a1, a2), and
that a dishonest user is playing the role of Bob and trying to learn her key.
Our discussion is entirely about Alice’s key and points in E[2n], but it should
be clear that the same methods would work for points in E[lm] for any small
prime l.

There are two attack models that can be defined in therms of access to
an oracle O :

1. O(E,R, S) = E/⟨[a1]R + [a2]S⟩. If the scheme under attack is the
key exchange scheme, this corresponds to Alice taking Bob’s protocol
message, completing her side of the protocol, and outputting the shared
key. In the encryption protocol, this would correspond to an encryption
c = m⊕ j(EAB) without the hash function and Alice decrypting Bob’s
ciphertext and returning the plaintext m.

2. O(E,R, S,E ′) which returns 1 if j(E ′) = j(E/⟨[a1]R + [a2]S⟩) and 0
otherwise.

In the key exchange setting, this corresponds to Alice taking Bob’s pro-
tocol message, completing her side of the protocol, and then performing
some operations using the shared key that return an error message if
the shared key is not the same as the j-invariant provided (e.g., the
protocol involves verifying a MAC corresponding to a key derived from
the session key). In the encryption scenario, this would correspond to
Bob having access to a decryption oracle for Alice. By choosing a ran-
dom ciphertext c Bob could ask for a decryption of (EB, R, S, c) and

24
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get m such that c = m ⊕Hk(j(EAB). Bob can then check whether or
not c ⊕m = Hk(j(E

′)). Hence a decryption oracle for the encryption
scheme gives an oracle O of this type.

The attack can be mounted in both models. To emphasise their power we
explain them in the context of the second weaker model.

5.1 First Step of the Attack
We define an equivalence relation on the private keys, by saying (a1, a2) ∼
(a′1, a

′
2 if the two keys lead to the same subgroup for all possible input points.

The relation is satisfied by (a′1, a
′
2) = (θa1, θa2) for any θ ∈ Z∗

2n , and so the
equivalence class is a point in projective space over a ring. We may define a
unique equivalence class representative by “normalising” as explained in the
following lemma

Lemma 5.1.1. Let P,Q ∈ E[2n] be linearly independent generators of E[2n].
Then for some (a1, a2) ∈ Z2 (not simultaneously even), we have that (a1, a2) ∼
(1, α) or (a1, a2) ∼ (α, 1) for some α ∈ Z (using the equivalence relation de-
fined above).

Proof. If a1 is odd, then it is invertible modulo the order of the group, so let
θ ≡ a−1

1 (mod 2n), then θ must be odd, hence

⟨[a1]PA + [a2]QA⟩ = ⟨[θa1]PA + [θa2]QA⟩ = ⟨PA + [α]QA⟩,

where the first equality stems from the fact that θ is co-prime to the order
of the generator, and the last equality is obtained by setting α = θa2. If a1
is even, then a2 must be odd, and repeating the procedure gives (α, 1).

We may assume that the private key is normalised without loss of gen-
erality. In the following exposition, we will assume that the normalisation
is (1, α). The case where we have (α′, 1) where α′ is even is performed in
exactly the same way with some tweaks. Note that if α′ is odd then it can
be converted to the (1, α) case, so we may assume α′ is even in the second
case.

To differentiate between (1, α) and (α′, 1) an attacker honestly gener-
ates Bob’s ephemeral values (EB, R = ϕB(PA), S = ϕB(QA)) and follows
the protocol to compute the resulting key EAB . Then the attacker sends
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(EB, R, S + [2n−1]R) to Alice and tests the resulting j-invariant. Expressing
this in terms of the oracle access: The attacker queries an oracle of the sec-
ond type on (EB, R, S+[2n−1]R,EAB). If the oracle returns 1 then the curve
EB/⟨[a1]R+[a2](S+[2n−1]R)⟩ is isomorphic to EAB and so ⟨[a1]R+[a2](S+
[2n−1]R)⟩ = ⟨[a1]R + [a2]S⟩. Hence, by the following Lemma, a2 is even and
we are in the first case. If the oracle returns 0 then a2 is odd.

Lemma 5.1.2. Let R, S ∈ E[2n] be linearly independent points of order 2n

and let a1, a2 ∈ Z. Then

⟨[a1]R + [a2](S + [2n−1]R)⟩ = ⟨[a1]R + [a2]S⟩

if and only if a2 is even.

Proof. If a2 is even then [a2][2
n−1]R = 0 and so the result follows. Conversely,

if the two groups are equal then there is some λ ∈ Z∗
2n such that

λ([a1]R + [a2](S + [2n−1]R)) = [a1]R + [a2]S.

Since the points are independent we have λa2 = a2 and so λ = 1. Hence,
since S has order 2n, we have a2n−1

2 ≡ 0 (mod 2n) and a2 is even.

Note that the Weil pairing

e2n(R, S + [2n−1]R) = e2n(R, S) = e2n(PA, QA)
3m

and so the attack is not detectable using pairings. Similarly one can call
the oracle on (EB, R + [2n−1]S, S,EAB). The oracle returns 1 if and only if
a1 is even. Hence, we can determine which of the two cases we are in and
determine if α is even or odd. Having recovered asingle bit of α, we will now
explain how to use similar ideas to recover the rest of the bits of α.

5.2 Continuing the Attack
We now assume that Alice’s static key is of the form (1, α) and we write

α = α0 + 21α1 + · · ·+ 2n−1αn−1.

The attacker will learn one bit of α for each query of the oracle. Algorithm 1
gives pseudo-code for the attack. We now give some explanation and present
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the derivation of the algorithm. Suppose an attacker has recovered the first
i bits of α, so that

α = Ki + 2iαi + 2i+1α′,

where Ki is known but αi ∈ {0, 1} and α′ ∈ Z are not known. The attacker
generates EB, R = ϕB(PA), S = ϕB(QA) and EAB as in the protocol. To
recover αi, the attacker will choose suitable integers a, b, c, d and query the
oracle on

(EB, [a]R + [b]S, [c]R + [d]S,EAB).

The integers a, b, c, and d will be chosen to satisfy the following conditions:

1. Ifαi = 0, then ⟨[a+ αc]R + [b+ αd]S⟩ = ⟨R + [α]S⟩.

2. If αi = 1, then ⟨[a+ αc]R + [b+ αd]S⟩ ≠ ⟨R + [α]S⟩.

3. [a]R + [b]S and [c]R + [d]S both have order 2n.

4. The Weil pairing e2n([a]R + [b]S, [c]R + [d]S) must be equal to

e2n(ϕB(PA), ϕB(QA)) = e2n(PA, QA)
degϕB = e2n(PA, QA)

3m.

The first two conditions help us distinguish the bit αi and the latter two
prevent the attack from being detected via order checking and Weil pairing
validation checks respectively. Consider the following integers:

ai = 1, bi = −2n−i−1Ki,
ci = 0, di = 1 + 2n−i−1 .

One can verify that they satisfy the third condition. To satisfy the fourth
condition we need to use a scaling by θ that we will discuss later.

To show that the first two conditions are satisfied, note that ⟨[a]R+[b]S+
[α]([c]R + [d]S)⟩ is equal to

⟨R− [2n−i−1Ki]S + [α][1 + 2n−i−1]S⟩
= ⟨R + [α]S + [−2n−i−1Ki + 2n−i−1(Ki + 2iαi + 2i+1α′)]S⟩
= ⟨R + [α]S + [αi2

n−1]S⟩

=

{
⟨R + [α]S⟩ if αi = 0,

⟨R + [α]S + [2n−1]S⟩ if αi = 1.

By the following Lemma, these two subgroups are different. Hence the re-
sponse of the oracle tells us αi
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Lemma 5.2.1. Let R and S be linearly independent elements of the group
E[2n] with full order, then the subgroups

⟨R + [α]S + [2n−1]S⟩ and ⟨R + [α]S⟩

are different.

Proof. The subgroups have order 2n, since R has order 2n, and R and S are
linearly independent. Then if the subgroups are the same, we must have
some λ such that

[λ]R + [λα]S = R + [α]S + [2n−1]S.

By the linear independence of R and S, we can compare coefficients and
conclude that λ = 1, and that [2n−1]S = O, which implies that S has order
a factor of 2n−1, which is a contradiction.

Finally, we address the fourth condition. We need that

e2n([a]R + [b]S, [c]R + [d]S) = e2n(R, S)
ad−bc = e2n(PA, QA)

3m .

The idea is that we can mask the points chosen from the attack above to
satisfy the fourth condition. Recall that the points we wish to send to Alice
are

(R′, S ′) = (R− [2n−i−1Ki]S, [1 + 2n−i−1]S).

Computing the Weil pairing of the two points, we have

e2n(R
′, S ′)

= e2n(R− [Ki2
n−i−1]S, [1 + 2n−i−1]S)

= e2n(R, [1 + 2n−i−1]S) · e2n(−[Ki2
n−i−1]S, [1 + 2n−i−1]S)

= e2n(R, S)
1+2n−i−1

,

which is not the correct value. So we choose θ such that

e2n(θR
′, θS ′) = e2n(R, S)

θ2(1+2n−i−1) = e2n(PA, QA)
3m = e2n(R, S).

Note that ⟨[θ]R′ + [α][θ]S ′⟩ = ⟨[θ](R′ + [α]S ′)⟩ = ⟨R′ + [α]S ′⟩ as long as θ is
coprime to the order 2n. Hence we need θ to be the square root of 1+2n−i−1

modulo 2n. The following lemma shows that such a square root exists as
long as n− i− 1/geq3. Note that θ will be odd, as required.
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Lemma 5.2.2. If a is an odd number and m = 8, 16, or some higher power
of 2, then a is a quadratic residue modulo m if and only if a ≡ 1 (mod 8).

The condition n − i − 1 ≥ 3 means we may not be able to launch the
attack in an undetected way for the last two bits. This is why we use a brute
force method to determine these bits. The attack in the case (α′, 1) follows
by swapping the roles of R and S.

Algorithm 1: Adaptive attack using oracle O(E,R, S,E ′)

Data: n,E, PA, QA, PB, QB, EA, ϕA(PB), ϕA(QB)
Result: α

1 Set K0 ← 0;
2 for i← 0 to n− 3 do
3 Set αi ← 0;
4 Choose random (b1, b2);
5 Set GB ← ⟨[b1]PB + [b2]QB⟩;
6 Set EB ← E/GB and let ϕB : E → EB be the isogeny with kernel

GB;
7 Set (R, S)← (ϕB(PA), ϕB(QA));
8 Set EAB ← EA/⟨[b1]ϕA(PB) + [b2]ϕA(QB)⟩;
9 Set θ ←

√
(1 + 2n−i−1)−1 (mod 2n);

10 Query the oracle on
(EB, [θ](R− [2n−i−1Ki]S), [θ][1 + 2n−i−1]S,EAB);

11 if Response is false then
12 αi = 1
13 end
14 Set Ki+1 ← Ki + 2iαi;
15 end
16 Brute force αn−2, αn−1 using E and EA and Kn−2 = α (mod 2n−2) to

find α(this requires no oracle calls);
17 Return α;

5.3 Complexity of the Attack
The attack requires fewer than n ≈ 1/2log2(p) interactions with Alice. This
seems close to optimal for the second attack model, where the attacker only
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gets one bit of information at each query. One can reduce the number of
queries by doing more computation (increasing the range of the brute-force
search).

5.4 Countermeasures

Kirkwood et al. introduced a method to secure the key exchange protocol
of isogeny cryptosystems. This is based on the Fujisaki–Okamoto transform
[FO13] which is also explained by Peikert [Pei14, §5.2] and Galbraith et al.
[GPST16, §2.3]. The method allows for one party to validate the other, but
for the ease of exposition, let us suppose that Alice is using a static secret
and Bob needs to prove to her that he is performing the protocol correctly.

Bob would prove to Alice that he performed the protocol correctly by
executing the key exchange, encrypting the random seed used to generate
his private key and sending this ciphertext to Alice for her to verify that the
random seed leads to the correct keys.

Applied to the Jao–De Feo protocol, we will briefly explain how Bob can
prove to Alice that he has executed the protocol correctly. This is especially
applicable if Alice is using a static key and Bob is potentially a malicious
party.

1. Alice computes and sends the public key (EA, ϕA(PB), ϕA(QB)).

2. Bob receives Alice’s public key.

3. Bob obtains his random seed rB from a random source and derives his
private key using a key derivation function, KDF1,

(b1, b2) = KDF1(rB).

He uses the secret key to compute GB = ⟨[b1]PB + [b2]QB⟩, and uses
the Vélu formula to compute ϕB and EB = E/GB.

4. Bob derives the shared secret SSB = j(EAB) using his private key
and Alice’s public key. He then computes a session key (SK) and a
validation key (V K) using a key derivation function, KDF2,

SK|V K = KDF2(j(EAB)).
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5. Bob sends his public key (EB, ϕB(PA), ϕB(QA)) and cB = EncV K(rB⊕
SK) to Alice.

6. Using her private key and Bob’s public key, Alice computes the shared
secret SSA = j(E ′

AB) and derives the session and validation keys SK ′

and V K ′. She uses these to compute

r′B = DecV K′(cB ⊕ SK ′.

She then computes Bob’s secret keys from r′B and recomputes all of
Bob’s operations and compares (E ′

B, ϕ
′
B(PA), ϕ

′
B(QA)) with (EB, ϕB(PA), ϕB(QA)).If

they are equal, then Alice verifies that Bob has computed the protocol
correctly and proceeds to use SK ′ = SK for future communication
with Bob. Else, the protocol terminates in a non-accepting state.

This validation method can be used for both the key exchange and the
encryption protocols. It also compels one party to reveal the secret used and
so requires a change in secret keys after each verification



Chapter 6

Torsion-point Attacks

6.1 Christophe Petit’s Attack

The idea of Petit’s attack is to reduce the SSI-T problem to the following
problem:

Problem 6.1.1. Let p be a prime and let E be a supersingular elliptic curve
defined over Fp2. Let ϕ be a non scalar endomorphism of E with smooth
degree A. Let B be a smooth integer with gcd(A,B) = 1, and let P,Q be a
basis of E[B]. Let R be a subring of End(E) that is either easy to compute,
or given. Given E,P,Q, ϕ(P ), ϕ(Q), degϕ,R, compute ϕ.

Then for the reduced problem use the following algorithm.
From what is given in the problem we can compute the image of ϕ on

any point in E[B]. Let θ1, θ2 ∈ R be known endomorphisms of E, to which
we associate another endomorphism

ψ := θ1ϕ+ θ2.

We can evaluate ψ on any point of E[B] since we konw θ1, θ2 and the action
of ϕ on EB.

Let us assume that the maps θ1, θ2 are chosen such that degψ = A′B for
some A′ ∈ Z. An algorithm to achieve this depends on R. Now ψ can be
written as:

ψ = ψA′ψB

with ψA′ and ψB respectively of degrees A′ and B.

32
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Algorithm 2: Computing an Endomorphism from Additional In-
formation
Data: As in 6.1.1, plus parameter C
Result: A description of ϕ as a composition of low degree maps.

1 Find A′ ∈ N and θ1, θ2 ∈ R such that deg(θ1ϕ+ θ2=A’B and
gcd(degθ1, A) = 1, and such that A′ is C-smooth and as small as
possible.

2 Compute kerψB using the additional information, where
θ1ϕ+ θ2 = ψA′ψB and ψA′ , ψB are respectively of degrees A′ and B.

3 Compute ψA′ using a meet-in-the-middle approach.
4 Compute kerϕ = ker(ϕ−1

1 (ψA′ψB − θ2)) by evaluating al maps on the
A torsion.

5 Compute ϕ from kerϕ

By computing ψ on a basis of E[B] and solving some discrete logarithm
problems in E[B] we deduce the kernel of ψB and then deduce ψB itself.

At this point, the map ψA′ is an isogeny of degree A′ between two
known j-invariants, namely the curve image of ψB and the original curve
E. We recover this isogeny using the meet-in-the-middle approach. Thus we
have computed ψ = ψA′ψB we express ϕ as θ−1

1 (ψA′ψB − θ2), and assuming
gcd(degθ1, A) = 1 we evaluate this map on the A′ torsion to identify kerϕ.

The reduction from SSI-T to Problem6.1.1 is the following. For any
known endomorphism θ ∈ End(E0 and d ∈ Z we can consider the endo-
morphism τ = ϕθϕ̂ + [d] ∈ End(E). Moreover if θ is non scalar then τ is
also non scalar. Using our knowledge of how ϕ acts on the B torsion we
can also evaluate τ on the B torsion, and hence apply the aforementioned
techniques. Once we have an expression for τ we can use it to evaluate ϕθϕ̂
on the A torsion. Since A is smooth an easy discrete logarithm computation
gives generators for G := ker(ϕθϕ̂) ∩ E[A]. This group contains kerϕ̂ as a
cyclic subgroup of order A. When it is cyclic we directly recover kerϕ̂ and
deduce ϕ.

When G is not cyclic, let M |A be the largest integer such that E[M ] ⊂ G.
The isogeny ϕ : E0 → E can be decomposed as an isogeny of ϕM : E0 → EM
of degree M , and a second isogeny of degree A/M from EM to E. We denote
by ϕA/M the dual of this second isogeny.

Lemma 6.1.2. We have ker(ϕA/M =M(ker
(
ϕθϕ̂ ∩ E[A]

)
.
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Proof. Clearly kerϕA/M =Mkerϕ̂. The later is a cyclic subgroup ofM(ker
(
ϕθϕ̂ ∩ E[A]

)
of order A/M . By our definition of M, the group M(ker

(
ϕθϕ̂ ∩ E[A]

)
is

cyclic, hence equal to Mkerϕ̂ as well.

Lemma 6.1.3. We have θ(kerϕM) = kerϕM .

Proof. Equivalently, we want to prove θ−1(kerϕM) = ker(ϕM). We have
kerϕM = kerϕ∩E0[M ] = ϕ̂(E[M ]) and similarly θ−1(kerϕM) = θ−1(kerϕ)∩
E0[M ] = ker(ϕθ) ∩ E0[M ], so we can rephrase the lemma as ϕ̂(E[M ]) =
ker(ϕθ) ∩ E0[M ].

Since ϕ̂(E[A]) is cyclic, so is θ̂(E[M ]). Therefore E[M ] ⊂ ker(ϕθϕ̂)∩E[M ]
if and only if ϕ̂(E[M ]) ⊂ kerϕθ.

By defintion ofM we have E[M ] ⊂ ker(ϕθϕ̂)∩E[M ] so ϕ̂(E[M ]) ⊂ kerϕθ.
Moreover M is the largest such integer and ϕ̂(E[M ]) is cyclic, so the equality
holds.

Lemma 6.1.4. Let k be the number of distinct prime factors of M . Then
there are at most 2k cyclic subgroups H of order M in E0[M ] such that
θ(H) = H.

Proof. Let {P,Q} be a basis forE0[M ], and let α, β be integers such thatkerϕM =
⟨αP + βQ⟩. We have gcd(α, β,M) = 1. The action of θ on E0[M ] can be

described by a matrix m =

(
a b
c d

)
∈ GL(2,ZM) such that θ(P ) = aP + bQ

and θ(Q) = cP +dQ. Moreover we have det(m) = ad− bc = degθmodM and
Tr(m) = a+ d = Tr(ϕ)modM .

The condition θ(kerϕM) = kerϕM now becomes

⟨αP + βQ⟩ = ⟨(aα + cβ)P + (bα + dβ)Q⟩

or equivalently
(aα + cβ)β = (bα + dβ)α modM,

or
cβ2 + (a− d)αβ − bα2 = 0 modM.

Which has solutions if and only if the discriminant

(a− d)2 − 4bc = (Tr(θ)2 − 4degθ modM
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is a quadratic residue, and this is the case by assumption. Clearly there are
at most two solutions modulo any prime l|M , and by Hensel’s lifting lemma
a solution modulo a prime l|M determines a unique solution modulo any
power of l dividing M .

When A is smooth, the proof implicitly provides an efficient algorithm to
identify all the candidate kernels. When A is a prime power then k is at most
one, and we are done. For powersmooth numbers the expected value of k is
small enough to allow a polynomial time exhaustive search of all candidate
kernels.

Remark 6.1.5. The problem with this attack is that we simply can’t expect
there to be suitable pairs (θ, d) when A and B are of comparable size.

6.2 Castryck-Decru Attack

The attack by Wouter Castryck and Thomas Decru takes as input the pa-
rameters of a version of SIDH submitted to NIST:

1. a prime p = 2a3bf − 1 for integers a ≥ 2, b, f ≥ 1 with 2a ≈ 3b,

2. an elliptic curve E0/Fp2 with #E0(Fp2) = (p+ 1)2,

3. generators P0, Q0 of E0[2
a],

4. a 3β-isogeny τ : E0 → Estart for some β ≥ 0, where Estart is one of the
two curves that have served as starting curves in SIKE,

5. the codomain EB/Fp2 of a secret cyclic 3b-isogeny ϕ : E0 → EB,

6. the generators P = ϕ(P0) and Q = ϕ(Q0) of E[2a]

and returns the isogeny ϕ.
Suppose that 2a > 3b and let c = 2a−3b. Assume that we can compute the

images Pc = γ(P0) and Qc = γ(Q0) under an arbitrary c-isogeny γ : E0 → C
to some codomain curve C.

Let x ∈ Z denote a multiplicative inverse of 3b modulo 2a. Note that −x
is then a multiplicative inverse of c modulo 2a.
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6.2.1 Subgroups built from torsion point information

If there is a 3b isogeny ϕ : E0 → EB such that ϕ(P0) = P and ϕ(Q0) = Q
then we consider the isogeny

ψ = [−1] ◦ ϕ ◦ γ̂ : C → EB,

where we not that ψ(Pc) = −cP and ψ(Qc) = −cQ. For all R, S ∈ C[2a] we
have that

e2a(xψ(R), xψ(S)) = e2a(R, S)
x2c3b = e2a(R, S)

−1.

This implies that the group

⟨(Pc, xψ(Pc)), (Qc, xψ(Qc))⟩ = ⟨(Pc, P ), (Qc, Q)⟩ (6.1)

is maximally isotropic with respect to the 2a-Weil pairing on the product
C × E. Indeed,

e2a((Pc, xψ(Pc)), (Qc, xψ(Qc))) = e2a(Pc, Qc)e2a(xψ(Pc), xψ(Qc)) = 1

because the Weil pairing on C×E is just the product of the Weil pairings of
the corresponding components. Therefore it concerns the kernel of a (2a, 2a)-
isogeny of principally polarised abelian surfaces. By writing this isogeny as
a composition of (2, 2)-isogenies, it can be viewed as a walk of length a in
the (2, 2)-isogeny graph of superspecial principally polarised abelian surfaces
over F̄p, all of whose vertices are defined over Fp2 .

These vertices come in two types: about p2/288 products of supersingular
elliptic curves and about p3/2880 Jacobians of superspecial genus 2 curves
[17]. Therefore it is to be expected that most isogenies in the chain are
between Jacobians of genus 2 curves, and such isogenies can be computed
efficiently using “classical” formulae due to Richelot . But the first step is
clearly an exception to this: with overwhelming probability, this is a “gluing”
step, mapping the product C×E to a Jacobian. And by Kani’s theorem the
codomain of our (2a, 2a)-isogeny is a product of elliptic curves. The attack
uses this as a decision tool to build ϕ as the composition of small degree
isogenies.

6.2.2 Iteration

For simplicity we assume that the base curve E0 coincides with Estart(this
is the case in SIKE). In the general case, one should just replace the maps
K̂i : Ei → E0 below with their compositions with τ .
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Choose βi ≥ 1 minimal such that there exists some αi ≥ 0 for which

ci = 2a−αi − 3b−βi

is of the form u2i + 4v2i . Write ϕ = ϕi ◦ κi ◦ · · · ◦ κ2 ◦ κ1 with κi a 3βi−βi−1-
isogeny with β0 = 0. To an attacker, there are a priori 3βi−βi−1 options for
κi. For each of these options, we can run our decision algorithm.

For simplicity writeKi = κi◦· · ·◦κ2◦κ1 Let Ei be the codomain ofKi(E0).
Let Pi = Ki(2

αiP0) and Qi = Ki(2
αiQ0) be the generators of Ei[2a−αi ]. If the

guess is correct then E is the codomain of an unknown isogeny ϕi : Ei → E
of degree 3b−βi .

γstarti = [ui]+[vi]◦2i is an easy-to-evaluate degree-c endomorphism of E0.
Then in order to find γi : Ei → Ci degree ci isogeny to arbitrary Ci curve,
we use K̂i. Let K̃i : E0 → Ci be the isogeny with kernel γstarti (K̂i(Ei[3

βi ])) =

γstarti (kerKi). Then ˜̂
iK ◦ γstarti ◦ K̂i : Ei → Ci is a 32βici-isogeny vanishing on

Ei[3
βi ], so it factors over [3βi ] and we can let

γi =
˜̂
Ki ◦ γstarti ◦ K̂i

3βi
.

It is easy to evaluate γi on our 2a−αi-torsion points Pi and Qi. We have
that kerKi ⊂ E0[3

b] ⊂ E0(Fp2). So we can explicitly write down a generator
T ∈ E0(Fp2) of kerKi and compute the isogeny ˜̂

Ki with kernel ⟨γstarti (T )⟩.
Evaluating γi in our 2a−αi-torsion points Pi and Qi is then simply done by

Pci = 2αi ˜̂Kiγ
start
i (P0), Qci = 2αi ˜̂Kiγ

start
i (Q0).

Then we have that the following diagram.
E0 EB

E1 . . . Ei

Ci

γstarti

˜̂
Ki

κ1 Ki

ϕ

κ1 κi

ϕi

γi

And we have
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Ci Ei

Fi EB

γ̂i

ϕi◦γ̂i
ϕi

By Kani’s theorem there is a degγ̂i+degϕi = 2a−αi-isogeny Φ : Ci×EB →
Ei × Fi. As we have shown earlier this isogeny has kernel

⟨([ci]Pci , ϕi ◦ γ̂i(Pci)), ([ci]Qci , ϕi ◦ γ̂i(Qci))⟩
= ⟨(Pci , xiψi(Pci)), (Qci , xiψi(Qci))⟩
= ⟨(Pci , 2αiP ), (Qci , 2

αiQ)⟩

We calculate Φ and check if it realy is an isogeny between products of elliptic
curves. This is done by computing the corresponding chain of (2, 2)-isogenies.
With overwhelming probability, the first a−αi−1 steps in this chain amount
to one gluing step followed by a−αi−2 Richelot isogenies between Jacobians
of genus 2 curves. An easy “δ = 0 test” then checks whether or not the last
step splits.

If the test fails, then we try again with a different guess for κi. We remark
that, even in the case of a wrong guess, the subgroup is always maximally
isotropic with respect to the Weil pairing, so this is not the way in which one
can detect having taken the wrong direction: one really has to perform the
gluing and its successive Richelot walk.

6.2.3 Polynomial runtime

As x → ∞, the number of integers c in the interval [0, x] that admit a
decomposition of the form c = u2 + 4v2 is asymptotic to

0.5731 . . .√
lnx

x

by (a variation on) a theorem of Landau, see [18]. We can use this to estimate
the probability that our strategy in constructing an isogeny γ : E0 → C of
degree c = 2a − 3b: it is about 0.5731/

√
aln2 ≈ 0.6884/

√
a.

Let us now revisit the first iteration of our key recovery, where we choose
β1 ≥ 1 such that there exists an α1 ≥ 0 for which c1 = 2a−α1 − 3b−β1 is of
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the form u21 + 4v21. In view of Landau’s theorem, we expect that we should
try in the order of

√
a pairs (α1, β1) before we succeed. So the smallest β1 is

expected to be of magnitude 4
√
a. While this is good enough for breaking the

concrete parameter sets of SIKE, the asymptotic runtime is Lp(1/4) rather
than polynomial: indeed, there are 3β1 options for κ1 to guess from.

Remark 6.2.1. The first iteration dominates the overall runtime. Indeed,
once suitable α1, β1 are found, the expression 2a−α1−3b−β1 can be recycled in
the remaining iterations by extending Bob’s secret isogeny. We can prolong
Bob’s secret isogeny with an arbitrary 3-isogeny ϕ′ and let P ′ = ϕ′(P ) and
Q′ = ϕ′(Q). Treating ϕ′◦ϕB as the new secret isogeny, the relevant expression
now becomes 2a−α1−3b+1−β1. We can now use our attack to determine Bob’s
secret key modulo 3β1.

To achieve a polynomial time complexity, we extend the attack from sums
of squares to more general quadratic forms and hope that there is a prime
number n ≤ a such that c1 can be written as u21 + nv21. Heuristically, this
happens with overwhelming probability. We can loosely argue this as follows.
Based on a generalization of Landau’s theorem, see again [18], for every n
the success probability remains inversely proportional to

√
a. If the events

of being of the form u21 + nv21 are “sufficiently independent” as n varies, and
if the implicit constants do not decay too quickly, then the probability of
failure overall is in the order of(

1− 1√
a

)π(a)
≈
(
1− 1√

a

)a/lna
which decreases as e−

√
a/lna (here π is the prime-counting function). In par-

ticular, we expect that we can simply take β1 = 1 in this case.
Once such a decomposition u21 + nv21 is found, we proceed as follows.

The techniques from Love and Boneh [19] allow for the polynomial-time
construction of an isogeny ν : Estart → Nstart, where Nstart is an elliptic
curve possessing an endomorphism

√
ni satisfying

√
ni ◦
√
ni = [−n]. Thus

we can consider the degree-c endomorphism γstart = [u1] +
√
ni ◦ [v1] on

Nstart. This endomorphism can be transformed into the desired degree-c
isogeny γ : E0 → C along ν ◦ τ : E0 → Nstart, as we have done before with
γi and γstarti
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6.3 Maino-Martindale-Panny-Pope-Wesolowski
Attack

6.3.1 Core of the attack

Suppose that A > B, and that we have access to some isogeny ϕc : E → E0

of degree c = A − B, given in any form that allows to evaluate it on the
A-torsion. We postpone the discussion on finding such a ϕc as the method
may depend on the context. Assuming ϕc is provided, we give an algorithm
that recovers a generator of ker(ϕB), at a cost dominated by one evaluation
of a (A,A)-isogeny with known kernel (with a B−torsionpointasinput), and
two evaluations of ϕ̂c (with two A-torsion points as input).

Let ψB : E → F be the isogeny with kernel ϕ̂c(ker(ϕB)), and ψc : F →
EB be the isogeny with kernel ψB(ker(ϕc)), so that the following diagram
commutes:

E0 EB

E F

ϕB

ϕc

ψB

ϕ
ψc

Then by Kani’s theorem Φ =

(
ϕc ϕ̂B
−ψB ψ̂c

)
is an (A,A)-isogeny Φ : E×EB →

E0 × F with kernel ker(Φ) = {[B]P, ϕ(P )|P ∈ E[2a]}.
Observe that −ϕ̂B is equal to the composition

EB
0×idEB−−−−→ E × EB

Φ−→ E0 × F
pr1−−→ E0

where the first map is the inclusion map with image {0} × EB, the middle
map is Φ, and the last is the natural projection map. Assuming that each
map in this composition is efficiently computable, then we can evaluate ϕ̂B
on any input. That directly leads to a recovery of ker(ϕB). The difficulty is
in proving that each step is indeed efficiently computable. The computation
of the first inclusion is trivial. The step Φ requires a delicate analysis of this
2-dimensional isogeny, to prove that its kernel can be computed, and that
this kernel permits an efficient evaluation of Φ. The last step, the projection,
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may seem clear, but in fact hides a subtlety. The decomposition E0 × F is
only available if Φ is of a certain kind: it must behave well with respect to
the implicit product polarisations of the domain and codomain.

6.3.2 Case of known endomorphism ring

In the case of known endomorphism ring we can find ϕc efficiently.The idea
is the following: first, find an ideal I in End(E0) of norm c . Then, assuming
the generalised Riemann hypothesis, one can find the codomain of ϕ = ϕI :
E0 → EB and evaluate ϕ on any input using [20] lemma 3.3.

Algorithm 3: Finding an ideal of prescribed norm.
Data: A basis (αi)

4
i=1 of End(E0 in efficient representation, and an

integer c coprime to 2 and p.
Result: A left ideal I of norm c in End(E0)

1 Find a solution of deg(α0) = z20c with α0 ∈ End(E0) and z0 ∈ Z. It
is a homogeneous quadratic equptions of dimension 5, so can be
solved in polynomial time.

2 Deduce another solution (α, z) for which z is coprime with c, using
the thechnique... Return I = End(E0)α + End(E0)c.

Finding the ideal I requires more explanation. First observe that the
problem reduces to the case where c is coprime to 2p: write c = 2ipic′ with
(c′, 2p) = 1, solve the problem for c′, and then compose the resulting isogeny
with i isogenies of degree 2 and j Frobenius isogenies. The steps to find I
are then given in Algorithm 3. Let us explain Step (2). Finding the desired
solution heuristically is simple, so the motivation of the following discussion
is mostly to get a provable method. Write the solutions (α, z) in the form
(x, z) ∈ Z4 × Z, where x represents the coefficients of α in the provided
basis of End(E0). The equation can then be written as xTGx = z2c , or
xTQx = 0, where G is the Gram matrix of the basis, and Q = G⊕⟨−c⟩ (the
5×5 matrix with G in the upper-left corner, −c in the lower-right corner, and
zeros elsewhere). Note that we can assume that x0 (the vector of coordinates
of α0) is primitive (i.e., the greatest common divisor of its coefficients is 1)
and z0 ∈ Z > 0. We are looking for another solution where x is coprime with
c . The rest of the proof reproduces mutatis mutandi the technique of ([21],
Algorithm 7, Step 3). From ([22], Proposition 6.3.2), the general solution
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X = (x, z) is given by

X = d((RTQR)X0 − 2(RTQX0)R),

for arbitrary R ∈ Q5 and d ∈ Q∗, where X0 = (x0, z0) is our initial solution.
Fix d = 1. Write R = (rx, rz) with rx ∈ Z4 and rz ∈ Z. The last coordinate
of X is given by the integral quadratic form

rTxGrxz0 − 2rTxGx0rz + fz0r
2
z =

(rxz0 − x0rz)TG(rxz0 − x0rz)
z0

.

It is of rank 4, so let M ∈ M4×4(Z) be a matrix whose columns generate
Λ = z0Z4 + x0Z, and

g(v) =
vT (MTGM)v

z0

It is positive definite, since G is and z0 > 0. Let us show that g is (almost)
primitive. If s is a prime that does not divide z0, both M and z0 are invertible
modulo s, so g is primitive at s becauseG is. Now suppose s|z0. Then, writing
Mv = rxz0 − x0rz , we have

g(v) ≡ −2rTxGx0rz (mod s).

Therefore, if s ̸= 2 and Gx0 ̸≡ 0 (mod s), then g is primitive at s. If Gx0 ≡ 0
(mod s), since x0 is primitive, s must divide disc(G), so s is 2 or p. This
proves that the only primes where g might not be primitive are 2 and p. We
can then write g = g′/a where g′ is primitive and a may only be divisible
by the primes 2 and p. Applying ([21], Proposition 3.6), we can find in
polynomial time a v such that z′ = g′(v) is a prime larger than c . With
z = az′, we obtain a solution of xTGx = cz2. Since c is coprime to 2p, it is
also coprime to z.

6.4 Damien Robert’s Attack

6.4.1 Dimension 8 attack

Suppose that A > B, let c = A − B. Every integer can be written as the
sum of four squares so write c = c21 + c22 + c23 + c24 and let M ∈ M4×4(Z) a
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4× 4 matrix such that MTM = cId. Explicitly:

M =


c1 −c2 −c3 −c4
c2 c1 c4 −c3
c3 −c4 c1 c2
c4 c3 −c2 c1


the matrix of the multiplication of c1+c2i+c3j+c4k in the standard quater-
nion algebra Z[i, j, k]. Let γ0 be the endomorphism on E4

0 given matricially
by M . The dual with respect to the product principal polarisation) γ̃0 of γ0
is given matricially by MT (since integer multiplications are their own dual),
so γ̃0γ0 = cId, hence γ0 is a c-isogeny, which can be evaluated in O(logc)
arithmetic operations. We let γB be the endomorphism of E4

B given by the
same matrix M , and by abuse of notation we denote by ϕBId : E4

0 → E4)B
the diagonal embedding of ϕB : E0 → EB. We remark that since γ0 is given
by an integral matrix, it commutes with ϕB in the sense that we have the
equation: ϕBγ0 = γBϕB:

E4
0 E4

B

E4
0 E4

B

ϕBId

γ0 γB

ϕBId

Then we have by Kani’s theorem that Φ =

(
γ0 ϕ̂BId

−ΦBId γ̂B

)
is a degree A

endomorphism on the 8-dimensional abelian variety X = E4
0 × E4

B.

Remark 6.4.1. We can reach this conclusion without Kani, just by calcu-
lating ΦΦ̂.

Since c is prime to A, the kernel of Φ is exactly the image of Φ̂ on E4
0 [A]×

{0}, so we immediately get the 8 generators of the kernel of Φ. This step
costs O(logc) arithmetic operations in E0(Fq).

We can then compute Φ (on any point P ∈ X(Fq)) using an isogeny
algorithm in dimension 8, decomposing the A-endomorphism Φ as a chain of
l-isogeny for l the prime factors of A. Thus we can evaluate Φ on any point
of X, so we can evaluate Φ or Φ̂ on any point of E0 (resp. EB). We can now
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recover the kernel of ϕB on E0 as the image of ϕ̂B on EB[B]. If (PB, QB) is a
basis of EB[B], we compute P ′

B = ϕ̂B(PB) and Q′
B = ϕ̂B(QB) by evaluating

Φ on the points (0, 0, 0, 0, PB, 0, 0, 0) and (0, 0, 0, 0, QB, 0, 0, 0), and the kernel
of ϕB is generated by whichever has order B. This step costs O(ω(B)logB)
operations in E0(Fq), where ω(B) is the number of distinct prime divisors of
B.

Remark 6.4.2. The downside of this attack is that E4
0 ×E4

B is not a conve-
nient object to work with. While algorithms for isogenies of abelian varieties
are known whose complexity is polynomial in (log(q), log(A), lA), the com-
plexity remains exponential in the dimension, contributing a massive constant
fact ot the cost. This leads as to the dimension 4 attack.

6.4.2 Dimension 4 attack

In dimension 2, we can always write an a-endomorphism on E2
0 whenever

a = a21 + a22. We can do a dimension 4 attack whenever we can find a, b > 0
such that A = bB + a and both a and b are a sum of two squares.

Write a = a21+a
2
2, b = b21+b

2
2. Note that unlike the decomposition as a sum

of four squares, these decompositions into a sum of two squares requires the

factorisation of a, b. Write α =

(
a1 −a2
a2 a1

)
, β =

(
b1 −b2
b2 b1

)
. These matrices

can be interpreted as endomorphisms of E2
0 or E2

B and commute with ϕBId :
βBϕBId = ϕBIdβ0, αBϕBId = ϕBIdα0. Furthermore,αα̂ = (a21 + a22)Id, so
α is an a-endomorphism, and similarly β is a b-endomorphism:

E2
0 E2

B

E2
0 E2

B

α0

ϕBβ

αB

ϕBβ

Kani’s theorem shows that Φ =

(
α0 ϕ̂BIdβ̂B

−βBϕBId α̂B

)
is a A = bB + a-

endomorphism of E2
0 × E2

B

We can thus evaluate Φ, hence evaluate βBϕBId = ϕBIdβ0 on any point
in E2

0(Fq) in O(log2A+ logAl4A) arithmetic operations over Fq, where lA is the
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largest prime divisor of A. In this situation we can recover more than just
bϕB. Indeed from the matrix βBϕBId we can directly recover b1ϕB and b2ϕB;
so if b′ = gcd(b1, b2), we can recover b′ϕB in O(logb) arithmetic operations
on EB. This means that we can recover the kernel of a B/gcd(B, b′)-isogeny
E0 → E ′

B through which ϕB factors. If gcd(B, b′) = 1 we have directly
recovered ϕB, otherwise we iterate the process, which is possible as long as
gcd(B, b′) < B.

Remark 6.4.3. Under the heuristic that we can tweak the paramaters so that
a = A− bB is a sum of two squares with a large probablity the dimension 4
attack has complexity Õ(logAl4A. For more detail on parameter tweaking see
[5].



Chapter 7

Constructive Applications

7.1 SQIsignHD

SQIsignHD[23] is a digital signature sheme derived from SGIsign[24] QIsign
uses the Deuring correspondence between supersingular elliptic curves and
quaternion orders. This Deuring correspondence is a powerful tool to con-
struct cryptosystems because it is one way: it is easy to turn an order into
the corresponding elliptic curve, but the converse direction is the presum-
ably hard supersingular endomorphism ring problem[25]. The new scheme
SQIsignHD follows a similar outline as SQIsign, but resolves its main draw-
backs by fundamentally reforging the computational approach. Robert’s
attack[5] allows one to represent an isogeny with its action on a large enough
torsion group; from this description, one can efficiently evaluate the isogeny
on any other point, regardless of the factorisation pattern of the underlying
isogeny.

Below we can find a short description of the protocol:

Public set-up: We choose a prime p and a supersingular elliptic curve
E0/Fp2 of known endomorphism ring End(E0) such that E0 has smooth
torsion defined over a small extension of Fp2 (of degree 1 or 2). In prac-
tice, one may use the curve E0 : y

2 = x3 + x (and p ≡ 3mod4).

Key generation: The prover generates a random secret isogeny τ : E0 →
EA of fixed smooth degree Dτ . Then, the prover publishes EA. Know-
ing τ , only the prover can compute the endomorphism ring End(EA).

46
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Commitment: The prover generates a random isogeny ψ : E0 → E1 of
smooth degree Dψ and returns E1 to the verifier (ψ being secret). The
resulting distribution for E1 is as close as possible to the uniform dis-
tribution in the supersingular isogeny graph.

Challenge: The verifier generates a random isogeny ϕ : EA → E2 of smooth
degree Dϕ sufficiently large for ϕ to have high entropy. Then, ϕ is sent
to the prover.

Response: The prover generates an efficient representation of an isogeny
σ : E1 → E2 of small degree q ≈ √p and returns it to the verifier.

7.2 FESTA
Fast Encryption from Supersingular Torsion Attacks(FESTA)[26] is a public
key exchange protocol based on a trapdoor function.

In the trapdoor formulation, the trapdoor key is an isogeny ϕA : E0 → EA
and a random special matrix A; the public parameters are the codomain EA,
together with the image of a large torsion basis (Pb, Qb) under ϕA. The image
points, before being revealed, are scaled by the matrix A, which protects the
isogeny ϕA from the SIDH attacks. The one-way function receives as input
two isogenies ϕ1 : E0 → E1, ϕ2 : EA → E2, and a random special matrix B.

Evaluating the function then consists in computing the images of the tor-
sion basis on E0 and EA under ϕ1 and ϕ2, respectively, and scaling them
both with the matrix B. The matrices A and B are special in the sense that
they commute; this is the case, for instance, for diagonal matrices. Commu-
tativity of the matrices is what enables the trapdoor inversion: applying the
inverse matrix A−1 to scale the points on E2 yields the correct images of the
torsion points on E1 under the isogeny ϕ := ϕ2 ◦ ϕA ◦ ϕ̂1. Hence, the SIDH
attacks allow the trapdoor holder to recover the function input ϕ1, ϕ2, and
the matrix B, while the attacks are infeasible to anyone who does not know
the secret matrix A.
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