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Chapter 1

Introduction

Helly’s theorem states that if the intersection of any 𝑑+1 members of a finite family of convex sets

inR𝑑 have a non-empty intersection, then all members of the family have a non-empty intersection.

In other words, if the intersection of a finite family of convex sets is empty, then already

the intersection of a (𝑑 + 1)-tuple from the family is empty. A significant property of this

statement is that the size of the tuples does not depend on the size of the family.

Several similar theorems have been proven regarding a plethora of different objects rang-

ing from different kinds of geometric sets, to trees or hypergraphs [1] [2] [3]. The property

of the families of objects that are implied by these theorems can also vary greatly. Bárány,

Katchalski and Pach [4] showed, that if there is a lower bound on the volume of the intersection

of any 2𝑑-tuple from a family of convex sets of dimension 𝑑, then there is a lower bound on the

volume of the intersection of the whole family which does not depend on the size of the family. This

result is the so-called quantitative volume theorem.

Another interesting property of a family of sets is called pierceability by tuples of points.

A family of sets is 𝑛-pierceable, if there are 𝑛 points such that any member of the family

contains at least one of the points. Danzer and Grünbaum [5] explored whether there are

similar Helly-type theorems about the pierceability of axis-parallel boxes in R𝑑. Among

other things, they showed that

(1): 𝑛-pierceability of all (𝑛 + 1)-tuples from a finite family of intervals implies 𝑛-pierceability of

the whole family,

(2): 2-pierceability of all (3𝑑− 1)-tuples, respectively 3𝑑-tuples from a finite family of axis-parallel

boxes in R𝑑 implies the 2-pierceability of the whole family for odd, respectively even 𝑑 and 𝑑 ≥ 2.

Furthermore, they also proved, that for smaller tuple-sizes, the above statements are not

true. This is also the case for Helly’s theorem and the stated quantitative volume theorem.
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The smallest tuple-size for which a certain Helly-type statement holds will be called its

Helly-number.

The goal of this thesis is to obtain quantitative variants of Danzer and Grünbaum’s results

about pierceability of axis-parallel boxes and to find the Helly-numbers. Section 1.1 pro-

vides an overview of Helly-type theorems in general and Sections 1.1.1 and 1.1.2 present

some of the most notable and relevant ones to our results.

In Section 1.2, we introduce the notion of punching - a new framework for quantitative

variants of statements about piercing - and analyze some of its basic properties. A family

of sets is 𝑛-punchable, if there are 𝑛 sets of volume (at least) 1 such that any member of

the family contains at least one of the sets. In Section 1.3, we show that certain statements

about punching convex sets imply statements about piercing convex sets. Therefore,

Danzer and Grünbaum’s results preclude the existence of some Helly-type theorems

about punching. We also show that certain statements about punching by sets of trans-

lates are reducible to statements about piercing.

Our main results are presented in Chapter 2. In Section 2.1 we prove Theorem 2.1.1 and

Theorem 2.1.2, two Helly-type theorems about 𝑛-punching of families of intervals. The

former states that if every (𝑛 + 1)-tuple is 𝑛-punchable from a finite family of intervals, then the

whole family is 𝑛-punchable, while the latter is a so-called colorful version of this theorem.

It is also shown that 𝑛+1 is the Helly-number for these statements. Section 2.2 offers some

insights into the properties of 2-punching of axis-parallel boxes in R𝑑 and the possible

Helly-type theorems regarding 2-punching. While it remains to be seen whether there

are Helly-type theorems about 2-punching axis-parallel boxes, it can be shown that for

certain tuple-sizes, a given Helly-type statement is certainly not true, i.e. lower bounds

for the Helly-number can be shown. In Section 2.3 several lower bounds for ℎ are given

for the following statement: 2-punchability of all ℎ-tuples from a finite family of axis-parallel

boxes in R𝑑 implies 2-punchability of the whole family. In Theorem 2.3.1 we show a lower

bound of 4𝑑−1 for any dimension 𝑑, by a constructive proof. We examine some principles

for giving a stronger lower bound in Section 2.3.2, while the principles are implememted

to obtain a stronger lower bound for 3-dimensional boxes in Theorem 2.3.4.1, which is 18.

In Section 2.3.4, a rather different constructive proof of Theorem 2.3.8 shows that in the

plane, 10 is a lower bound for the Helly-number.

Finally, some open questions are adressed in Chapter 3.
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1.1 Helly-type theorems

Classical Helly-type theorems state that if a condition 𝐴 holds for any subfamily H of a

given finite size ℎ from a family of sets F , then some condition 𝐵 holds for the whole

family F which is of arbitrary finite size 𝑁 . An equivalent and often useful formulation

provided by negations is that if F does not satisfy condition 𝐵, then some subfamily H

of size ℎ does not satisfy condition 𝐴, i.e. showing a given H is sufficient to disprove

condition 𝐴 for F . The minimal number ℎ for which a given Helly-type statement holds

will be referred to as the Helly-number.

Helly’s original statement is about the emptyness of the intersection of a family of convex

sets in Euclidean space.

Theorem 1.1.1 (Helly). For a finite family F of convex sets in R𝑑, if any (𝑑 + 1)-tuple of sets in

F has a non-empty intersection, then all sets in F have a non-empty intersection.

The terms (𝑛-)tuple and (sub)family (of size 𝑛) will be used interchangibly, and will

usually refer to a proper subset of the family of objects F . Any family discussed in this

thesis will be assumed to be finite. Note that in Helly’s theorem, condition 𝐴 and 𝐵 are the

same. Not only is it true, but 𝑑+1 is the lowest tuple-size for which a statement of the same

form holds, so 𝑑+ 1 is the Helly-number in this case. Lovász and later Bárány introduced

a variant of the classic Helly-theorem where there is not only one, but a multitude of

families of objects and the chosen tuples are colorful selections, that is, they are systems

of distinct representatives of the different families. The resulting theorem, the so called

Colorful Helly Theorem, is a stronger result, as the original Helly theorem is the subcase

of this statement in which all families are the same.

Theorem 1.1.2 (Colorful Helly Theorem. Lovász, Bárány [6]). For finite families (color

classes) F1 , ...,F𝑑+1 of convex sets in R𝑑, if any colorful selection 𝐶1 ∈ F1 , ..., 𝐶𝑑+1 ∈ F𝑑+1

has a non-empty intersection, then there is a family F𝑖 such that all sets in F𝑖 have a non-empty

intersection.

Here, clearly 𝑑 + 1 is the Helly-number, as the tuple-size cannot be lower because the

orginal Helly theorem is a trivial consequence. Bárány, Katschalski and Pach showed

a Helly-type theorem about a stronger condition 𝐵 on the family of convex sets. Their

Quantitative Volume Theorem provides a condition not only for the emptyness of the

intersection, but also gives a lower bound for the volume of intersection of sets that only

depends on the dimension 𝑑.

6



Theorem 1.1.3 (Quantitative Volume Theorem. Bárány, Katschalski, Pach [4]). For a finite

family F of convex sets in R𝑑, if any 2𝑑-tuple has an intersection of volume at least 1, then all sets

in F have an intersection of volume at least 𝑐𝑑 = 𝑑−2𝑑2

Note that here in terms of the framework presented in the introduction, condition 𝐵 is

weaker than 𝐴, although both are lower bounds on the volume of the intersection. This

is often the case with quantitative volume theorems. Note also, that the Helly number is

larger than in the original Helly theorem. The constant 𝑐𝑑 was later reduced to 𝑑−2𝑑 by

Naszódi [7] and even 𝑑−3/2𝑑 by Brazitikos [8].

At this point, it is visible that when condition 𝐴 is stronger, more strict, the Helly-numbers

can increase (by moving from emptyness to volume of the intersection, the Helly-numbers

increased from 𝑑 + 1 to 2𝑑 in this case.)

1.1.1 Colorful Volume Theorems

The results of Damásdi, Földvári and Naszódi combine the conditions of the colorful

version and the quantitative version of Helly’s theorem giving a lower bound on the

volume of the intersection of a family of convex sets if there is a common lower bound on

the intersection of every colorful selection.

Theorem 1.1.4 (Damásdi, Földvári, Naszódi [9]). Let C1 , ..., C3𝑑 be finite families of convex

bodies in R𝑑. Assume that for any colorful selection of 2𝑑 sets, 𝐶𝑖𝑘 ∈ C𝑖𝑘 for each 1 ≤ 𝑘 ≤ 2𝑑 with

1 ≤ 𝑖1 < ... < 𝑖2𝑑 ≤ 3𝑑, the intersection
2𝑑⋂
𝑘=1

𝐶𝑖𝑘 contains an ellipsoid of volume at least 1. Then,

there exists an 1 ≤ 𝑖 ≤ 3𝑑 such that Vol
( ⋂
𝐶∈C𝑖

𝐶

)
≥ 𝑐𝑑

2
𝑑−7𝑑2/2 with an absolute constant 𝑐 ≥ 0.

This is a generalization of the original quantitative volume theorem in the same way

as the result of Lovász and Bárány generalized the original Helly theorem. A notable

difference is that here the size of the colorful selections is smaller than the number of

color classes (a statement with smaller tuple-size implies the same statement with larger

tuple-size, as the latter is a stronger condition.)

The same authors, concurring with Sarkar, Xue and Soberón [10], show an improved

lower bound on the volume with the same condition 𝐴, while the number of color classes

increases.

Theorem 1.1.5 (Quantitative volume theorem - many color classes [9]). Let C1 , ..., C𝑑(𝑑+3)/2

be finite families of convex bodies inR𝑑. Assume that for any colorful selection of 2𝑑 sets, 𝐶𝑖𝑘 ∈ C𝑖𝑘
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for each 1 ≤ 𝑘 ≤ 2𝑑 with 1 ≤ 𝑖1 < ... < 𝑖2𝑑 ≤ 𝑑(𝑑 + 3)/2, the intersection
2𝑑⋂
𝑘=1

𝐶𝑖𝑘 is of volume at

least 1. Then, there exists an 1 ≤ 𝑖 ≤ 𝑑(𝑑 + 3)/2 such that Vol
( ⋂
𝐶∈C𝑖

𝐶

)
≥ 𝑑−𝑂(𝑑).

Here, again, a stronger condition (more color classes) allows for an improved lower

bound.

Note that even though the number of color classes differed, all of the listed quantitative

volume theorems had tuple-sizes of 2𝑑. This is the Helly-number for these statements,

since 2𝑑 is indeed minimal, as will be shown here as well by examining boxes in R𝑑.

1.1.2 Piercing boxes

Another possible variant of Helly’s theorem generalizes the notion of intersection with

the notion of piercing.

Definition: A set 𝑃 pierces a family of sets F , if for any set 𝑆 ∈ F , there is an element

𝑝 ∈ 𝑃 such that 𝑝 ∈ 𝑆. If there exists a 𝑃 such that |𝑃 | = 𝑛, then F is 𝑛-pierceable.

Note that an intersection of sets is non-emty if and only if it is 1-pierceable. Note also that

in some other contexts this notion might be called covering by points.

All previously discussed Helly-type statements were about general families of convex

sets. However, for 𝑛 > 1 the folowing statement is not true: “If all subfamilies H of finite

size ℎ from a family of convex sets is 𝑛-pierceable, then F is 𝑛-pierceable.” Not all types of

convex sets allow statements of this form about 𝑛-piercing. For example Chakraborty,

Rameshwar, Sasanka and Shubhangi showed [11] that for any constant ℎ > 0 there exists a

family of circles in the plane such that any subfamily of size ℎ is 2-pierceable but the whole family

is not 2-pierceable.

On the other hand, some types of convex sets are viable objects for Helly-type statements

about 𝑛-piercing for 𝑛 > 1, at least in some cases.

Definition: An axis-parallel box 𝐵 in R𝑑 is a set of the form
𝑑∏
𝑖=1

[𝑎𝑖 , 𝑏𝑖], where 𝑎𝑖 < 𝑏𝑖 ∈ R

if 1 ≤ 𝑖 ≤ 𝑑 and [𝑎𝑖 , 𝑏𝑖] denotes the closed interval {𝑥 ∈ R : 𝑎𝑖 ≤ 𝑥 ≤ 𝑏𝑖}. Note that boxes

are closed sets.

Throughout this thesis, the term box will be used to refer to axis-parallel boxes and

“axis-parallel” will be usually omitted for brevity. Even though they are relatively simple

objects, axis-parallel boxes have some rather interesting properties when it comes to

piercing and Helly-type theorems, some of which are known.

Danzer and Grünbaum showed the Helly-number for all possible classical Helly-type
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theorems about 𝑛-piercing families of axis-parallel boxes in Euclidean space where both

condition 𝐴 and 𝐵 are 𝑛-piercing.

Theorem 1.1.6 (Danzer, Grünbaum [5]). If ℎ = ℎ(𝑑, 𝑛) is the smallest positive integer such

that for any finite family F of axis-parallel boxes inR𝑑 every ℎ-tuple from F is 𝑛-pierceable implies

that F is 𝑛-pierceable then following are the values of ℎ:

ℎ(𝑑, 1) = 2 ∀𝑑 ∈ N

ℎ(1, 𝑛) = 𝑛 + 1 ∀𝑛 ∈ N

ℎ(𝑑, 2) =


3𝑑 : 𝑑 ≡ 0 mod 2

3𝑑 − 1 : 𝑑 ≡ 1 mod 2

ℎ(2, 3) = 16

ℎ(𝑑, 𝑛) = ℵ0 𝑛 ≥ 3, (𝑑, 𝑛) ≠ (2, 3)

It is interesting to note that here there are some Helly-numbers that are independent

of the dimension of the boxes and also, 3𝑑 is the largest (finite) Helly-number, that was

discussed here thus far. In a way, this reflects the relative simplicity of boxes and also the

complexity of piercing.

Chakraborty, Ghosh and Nandi generalized previous statements and showed a colorful

Helly-type theorem for 𝑛-piercing intervals and 2-piercing axis-parallel boxes.

Theorem 1.1.7 (Chakraborty, Ghosh, Nandi [12]). If ℎ = ℎ(𝑑, 𝑛) is the smallest positive

integer such that for any finite families F1 , ...,Fℎ of axis-parallel boxes in R𝑑 every colorful ℎ-

tuple from F is 𝑛-pierceable implies that for some 1 ≤ 𝑖 ≤ ℎ the family F𝑖 is 𝑛-pierceable then

following are the values of ℎ:

ℎ(1, 𝑛) = 𝑛 + 1 ∀𝑛 ∈ N

ℎ(𝑑, 2) = 3𝑑 ∀𝑑 ∈ N

Note that for odd 𝑑, the colorful Helly-number is larger than in the classic case. While

the colorful Helly-number is an upper limit for any respective classical Helly-number, it

is not necessarily the same. A colorful version implies a classical Helly-type statement,

but the tuple-size is not necessarily minimal for the classical version.

Note that the cases 𝑛 = 3, 𝑑 = 2 are unadressed. Whether there is a finite colorful Helly-

number for these parameters is an open question as of yet.
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In addition to the conclusions of both Theorem 1.1.2 and Theorem 1.1.7, it can be added

that the color class for which condition 𝐵 holds can be extended with a colorful tuple so

that the condition 𝐴 still holds. [12] [13]

1.2 Punching holes into boxes

This section presents an overview of the possible quantitative variants of the box-piercing

theorems. Thus, it introduces a framework which allows for statements about volume

that generalize box-piercing. This is achieved by the notion of punching holes into boxes.

One of the most obvious ways to generalize piercing by points is punching by sets (of

points).

Definition: A family of sets H punches another family of sets F if

∀𝑆 ∈ F ∃𝐻 ∈ H 𝐻 ⊂ 𝑆 (1.1)

One can also say that H is punching. Note that if every element of H has only one

element, then punching is essentially the same as piercing (there is a natural bĳection

between piercing tuples and such punching tuples.) Furthermore, if F is punchable by

an 𝑛-tuple, then naturally it is also 𝑛-pierceable. The elements of H can be referred to

as holes. By slight abuse of terminology, if H = {𝐻} is a 1-tuple that punches F , then

one can also say that 𝐻 punches F . F𝐻 ⊂ F denotes the subfamily of boxes that contain

a hole 𝐻 ∈ H. One can say that the elements of F𝐻 are punched together. Note that

{F𝐻 : 𝐻 ∈ H} is not necessarily a partition of F and that H punches F if and only if⋃
𝐻∈H

F𝐻 = F .

As the goal is to obtain quantitative volume theorems, the sets in question have to have

a meaningful definition of volume, thus they should be measurable. It might be an

interesting question to examine how the choice of measure can affect such statements,

but as this thesis deals with boxes, this question is of limited relevance here and beyond

scope. The Lebesgue-measure can be used, for example, but a direct definition of volume

for boxes will also be given later, which is sufficient for all purposes.

Now follows a framework, which gives meaning to punching in terms of volume. The

first notion prescribes which volumes the holes in a punching 𝑛-tuple should have with

what multiplicity.

Definition: For a set of possible volumes V ⊂ R>0 (volume set) and numeration 𝜈 : V →

Z>0 a family of (measurable) sets F is (V , 𝜈)-punchable if there is a family (tuple) of
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(measurable) sets H such that it punches F , i.e. (1.1) holds and∑
𝑣∈V

𝜈(𝑣) = |H| (1.2)

∀𝑣 ∈ V 𝜈(𝑣) = |{𝐻 ∈ H : Vol(𝐻) = 𝑣}| (1.3)

are also satisfied. For such a tuple H one can say that it (V , 𝜈)-punches F .

This rather complicated condition will not be discussed in this thesis, only a much

simpler subcase where the elements of the 𝑛-tuple share the same prescribed volume.

This condition is equivalent to prescribing only the volume of the smallest hole, or having

a common lower bound on the volume of all the holes.

Definition: If the volume set has 1 element V = {𝑣} and 𝜈(𝑣) = 𝑛 and there is a family H

for which (1.1), (1.2), (1.3) hold, then F is (𝑣, 𝑛)-punchable. In the case 𝑣 = 1 F is simply

𝑛-punchable.

So, if a family is (V , 𝜈)-punchable, then it is also (minV ,
∑

𝑣∈V 𝜈(𝑣))-punchable as any set

of larger volume contains a set of any smaller volume. Also note that 1-punchability is

equivalent to having an intersection of volume at least 1.

It is also useful to introduce a total order on the punching tuples to facilitate their

description.

In the ordering, for any two tuples the sets with smaller volume have higher priority and

the smallest 𝑗 for which the 𝑗th smallest boxes have different size determines the direction

of the relation among the tuples. (This ordering is not necessarily restricted to boxes but

is meaningful for any measurable sets with proper defintion of volume.) In other words,

let the elements of all tuples be ordered by volume and then, the tuples themselves are

ordered by lexicographic order. Here follows a rigourous definition.

Definition: Let N ⊂ P(R𝑑)𝑛 be the set of 𝑛-tuples of (measurable) sets in R𝑑 for

a given 𝑑 ∈ N and 𝑛 ∈ N. For any H1 ,H2 ∈ N the sets 𝑀𝑖 𝑗 and M𝑖 𝑗 are the fol-

lowing. For 𝑖 ∈ {1, 2} and M𝑖0 = H𝑖 the set 𝑀𝑖0 = arg min
𝑆∈M𝑖0

Vol(𝑆) and recursively

𝑀𝑖 𝑗 = arg min
𝑆∈M𝑖 𝑗

Vol(𝑆) where M𝑖 𝑗 = M𝑖(𝑗−1) \ {𝑀𝑖(𝑗−1)} for 1 ≤ 𝑗 ≤ 𝑛 − 1. By the

ordering (N , ≤) for any two tuples H1 ,H2 ∈ N , the relation H1 ≤ H2 holds if and only

if 𝑉𝑜𝑙(𝑀1𝑗) ≤ 𝑉𝑜𝑙(𝑀2𝑗) for every 0 ≤ 𝑗 ≤ 𝑛 − 1. If 𝑗 is the smallest index for which

Vol(𝑀1𝑗) ≠ Vol(𝑀2𝑗) then H1 < H2 if and only if Vol(𝑀1𝑗) < Vol(𝑀2𝑗).

Tuples will be referred to as smaller or larger according to the above ordering. The

volume of a tuple H will be the volume of the smallest set, i.e. Vol(𝑀0) = min
𝑆∈H

Vol(𝑆).

Note that by these definitions, a tuple can be smaller or larger than another with the same
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volume and also that if a tuple has smaller volume, then it is also smaller (according to

the ordering). Of course in general, for sets in R𝑑 the terms larger and smaller will refer

to ordering by volume.

The unique containment-wise maximal hole that punches a family F is the intersection⋂
𝑆∈F

and is also a largest such hole. For subfamilies F𝐻1 , ...,F𝐻𝑛 defined by a punching

𝑛-tuple H = {𝐻𝑖 : 1 ≤ 𝑖 ≤ 𝑛}, the containment-wise maximal 𝑛-tuple that punches the

elements of F𝐻𝑖
together for any 1 ≤ 𝑖 ≤ 𝑛 is composed of the intersections of all members

within these subfamilies. So, for any F that is punchable by an 𝑛-tuple there is a largest

𝑛-tuple that is the intersections from an 𝑛-partition of F and is also containment-wise

maximal.

1.3 Preliminary results

We make some preliminary observations about the introduced notions of punching and

their relation to boxes.

First, some useful definitions to describe boxes.

Definition: The 𝑖th (canonical) unit vector in R𝑑 is 𝑒𝑖 =
©­­«


1 : 𝑗 = 𝑖

0 : 𝑗 ≠ 𝑖

ª®®¬1≤ 𝑗≤𝑑

.

Also, the notation 1 = (1)1≤𝑖≤𝑑 ∈ R𝑑 will be used throughout.

Definition: For 1 ≤ 𝑖 ≤ 𝑑 the 𝑖th axis in R𝑑 is {𝜆𝑒𝑖 : 𝜆 ∈ R}.

Definition: The projections to the 𝑖th axis 𝜋𝑖 : R𝑑 → R for 1 ≤ 𝑖 ≤ 𝑑 map (𝑥1 , ..., 𝑥𝑑) ↦→ 𝑥𝑖 .

For a set 𝑆 ⊂ R𝑑, by extension of notation, let 𝜋𝑖(𝑆) = {𝜋𝑖(𝑥) : 𝑥 ∈ 𝑆}.

For a box 𝐵, the numbers 𝑎𝑖 ,𝐵 = min𝜋𝑖(𝐵) and 𝑏𝑖 ,𝐵 = max𝜋𝑖(𝐵) are the left and right

endpoints of the projection to the 𝑖th axis.

The notion of punching was defined for general sets in R𝑑, however it will be shown here,

that without loss of generality one can assume that any 𝑛-tuple H that punches a family

of boxes F is an 𝑛-tuple of boxes.

For any hole 𝐻 ∈ H of a given tuple let 𝐵𝐻 be a containment-wise minimal box that

contains 𝐻.

Observation: 𝐵𝐻 is unique and is equal to the box
𝑑∏
𝑖=1

[min𝜋𝑖(𝐻),max𝜋𝑖(𝐻)].

Observation: 𝐻 punches a box 𝐵 if and only if 𝐵𝐻 punches 𝐵.

These observations are true because a box 𝐵 contains a point 𝑃 if and only if 𝜋𝑖(𝑃) ∈ 𝜋𝑖(𝐵)
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for every axis 𝑖.

Therefore, a tuple H punches a family of boxes F if and only if H□ = {𝐵𝐻 : 𝐻 ∈ H}

punches F .

From now on, any punching 𝑛-tuple in the context of boxes will be assumed to be a tuple

of boxes and the ordering of tuples will be restricted to such tuples as well.

Observation: The intersection of a family of boxes F in R𝑑 is also a (possibly empty) box

𝐵 =
𝑑∏
𝑖=1

[max𝐵∈F 𝑎𝑖 ,𝐵 ,min
𝐵∈F

𝑏𝑖 ,𝐵].

Therefore, the largest punching hole for a family is unique and is the box defined by the

intersection.

The next part presents some basic considerations regarding Helly-type theorems about

punching boxes and their relation to piercing. Since punching was introduced as a sort of

generalization of piercing, it is evident to examine in what way it is different to piercing

and whether there are some similarities and pertinent properties.

A first notable difference is that 𝑛-pierceability is only determined by the structure of the

intersections, while 𝑛-punchability is not.

Statement 1. Given a bĳection between two families 𝑓 : F → F ′ such that for any subfamily

H ⊂ F , having non-empty intersection implies 𝑓 (H) has non-empty intersection, then if F ′ is

𝑛-pierceable, F is 𝑛-pierceable as well.

Proof. A family F is 𝑛-pierceable if and only if there are subfamilies F1 , ...,F𝑛 with

non-empty intersection such that
𝑛⋃
𝑖=1

F𝑖 = F . □

In other words, for any family F ⊂ P(𝑆), any injective map of 𝑆 preserves any

pierceability of F .

Before we state our main theorem regarding the connection of statements about punching

and piercing, we recall some definitions to help describe closed and convex sets in R𝑑.

Definition: In R𝑑 a hyperplane is a set 𝑃 for which there is an isometry 𝑓 : R𝑑 → R𝑑 such

that 𝑓 maps 𝑃 to {(𝑥1 , ..., 𝑥𝑑) : 𝑥1 = 0}.

Definition: For 𝑐 ∈ R and a set 𝑆 ⊂ R𝑑 for 𝑑 ∈ N let 𝑐𝑆 = {𝑐 · 𝑣 : 𝑣 ∈ 𝑆}. Note

that the notation adheres to the vector space structure of R𝑑 and scalar multiplication

is the homothety of scale 𝑐 with center 0 ∈ R𝑑. A homothety in general is the map

𝑥 ↦→ 𝑐(𝑥 − 𝑐) for some center 𝑐 ∈ R𝑑. In addition for a family of sets F , by further
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extension 𝑐F = {𝑐𝑆 : 𝑆 ∈ F }.

Definition: The open ball of center 𝑥 and radius 𝜀 > 0 is 𝐵𝜀(𝑥) = {𝑦 ∈ R𝑑 : |𝑥 − 𝑦 | < 𝜀}.

Definition: The boundary of a set 𝑆 ⊂ R𝑑 is 𝜕𝑆 = {𝑥 ∈ R𝑑 : ∀𝜀 > 0 𝐵𝜀(𝑥) ∩ 𝑆 ≠

∅, 𝐵𝜀(𝑥) ∩
(
R𝑑 \ 𝑆

)
≠ ∅}.

For two points 𝑎, 𝑏 ∈ R𝑑 let 𝑑(𝑎, 𝑏) denote their Eucledian distance.

Defintion: For sets 𝐴, 𝐵 ⊂ R𝑑 their distance is dist(𝐴, 𝐵) = inf
𝑎∈𝐴,𝑏∈𝐵

𝑑(𝑎, 𝑏).

Theorem 1.3.1 (Punching implies piercing). Let C be a set of closed convex sets in R𝑑 closed

under homothety. Given some volumes 𝑣1 ≥ 𝑣2 and tuple-sizes 𝑛1 ≤ 𝑛2, statement (1) implies

(2).

(1) For a finite family F ⊂ C of closed convex sets in R𝑑 if any ℎ-tuple of sets H in F is

(𝑣1 , 𝑛1)-punchable, then F is (𝑣2 , 𝑛2)-punchable.

(2) For a finite family F ⊂ C of closed convex sets in R𝑑 if any ℎ-tuple of sets H in F is

𝑛1-pierceable, then F is 𝑛2-pierceable.

Remark. It is left as an exercise to the reader to show that statements of the form of (1)

are not possible if 𝑣2 > 𝑣1 and neither type is possible for 𝑛2 < 𝑛1. Also, by a homothety

of ratio 1
𝑣1

or 1
𝑣2

, statements of type (1) are equivalent to statements were the ℎ-tuples

are 𝑛1-punchable and F is ( 𝑣2
𝑣1
, 𝑛2)-punchable or ℎ-tuples are ( 𝑣1

𝑣2
, 𝑛1)-punchable and F is

𝑛2-punchable respectively.

Proof. Assume F is a finite family of closed convex sets in R𝑑 such that any subfamily H

of size ℎ is 𝑛1-pierceable.

Suppose every ℎ-tuple is also (𝑣, 𝑛1)-punchable, for some 𝑣 > 0, then for 𝑐 >
( 𝑣1
𝑣

)1/𝑑

by a homothety of ratio 𝑐 the resulting family F ′ = 𝑐F is isomorphic with respect to

intersections. In addition, every ℎ-tuple of F ′ is (𝑣1 , 𝑛)-punchable due to the homothety.

Then, by (1) the whole family is (𝑣2 , 𝑛2)-punchable. This immediately yields that F is

𝑛2-pierceable. Since F ′ is isomorphic, F is also 𝑛2-pierceable.

If the previous condition does not hold, then it is possible that some of the sets in F have

volume zero. First, we will assume that they do not.

If there are ℎ-tuples which are not (𝑣, 𝑛)-punchable for any positive 𝑣, then there will be

a separate homothety with ratios sufficiently small for every set in F instead of one for

the whole family that creates a proper F ′.
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In this case, for some subfamily H ⊂ F the non-empty intersection 𝐼 is of volume zero.

Since the sets are closed, 𝐼 must be the intersection of boundaries. For every set 𝑆 ∈ H,

there will be a homothety 𝐻𝑆 such that 𝐼 is in the inside of 𝐻𝑆(𝑆), while the modified

family of sets where every 𝑆 ∈ H is replaced with 𝐻𝑆(𝑆) is isomorphic to F with respect

to intersections.

For every 𝑆 ∈ F let 𝑃𝑆 be an inner point of 𝑆 (this exists because 𝑆 has positive volume.)

For some 𝑆′ ∈ F ′ that does not intersect 𝑆 for any point 𝑃′ ∈ 𝑆′ the half-line with endpoint

𝑃𝑆 that contains 𝑃′ is denoted by 𝑃𝑆𝑃′+, while the point 𝑃𝑃′ = 𝑃𝑆𝑃′+ ∩ 𝜕𝑆 is the point

where this half-line crosses the boundary of 𝑆. As 𝑆 is closed and convex, 𝑃𝑃′ is unique

and is the furthest point of 𝑃𝑆𝑃′+ ∩ 𝑆 from 𝑃𝑆. For any 𝑃′ ∈ 𝑆′ the ratio 𝑑(𝑃𝑆 ,𝑃
′)

𝑑(𝑃𝑆 ,𝑃𝑃′) is the

ratio of the homothety with center 𝑃𝑆 that maps 𝑃𝑃′ to 𝑃′. Since 𝑆 and 𝑆′ are closed and

convex, 𝑐𝑆′ = min
𝑃′∈𝑆′

𝑑(𝑃𝑆 ,𝑃
′)

𝑑(𝑃𝑆 ,𝑃𝑃′) exists and is greater than 1 if 𝑆 and 𝑆′ are disjoint. This means

that by definition, for any homothety 𝐻 of center 𝑃𝑆 and ratio 𝑐 ∈ (1, 𝑐𝑆′) the image 𝐻(𝑆)

is disjoint from 𝑆′. At the same time 𝜕𝑆 ⊂ 𝐻(𝑆) as 𝑆 is convex and the center is in 𝑆. Let

𝑐𝑆 = min
𝑆′∈F :𝑆∩𝑆′=∅

𝑐𝑆′ and then let 𝐻𝑆 be the homothety with ratio 𝑐 ∈ (1, 𝑐𝑆) and center 𝑃𝑆.

Let H1 , ...,H𝑁′ be the subfamilies with non-empty intersection of volumes zero and let

H =
𝑁′⋃
𝑖=1

= {𝑆𝑖 : 1 ≤ 𝑖 ≤ 𝑁}. Let F0 = F and for 1 ≤ 𝑖 ≤ 𝑁 let 𝐻𝑆𝑖 be the homothety for

𝑆𝑖 ∈ F𝑖−1 constructed based on the elements of F𝑖−1 according to the above considerations

and F𝑖 = F𝑖−1 \ {𝑆𝑖} ∪ {𝐻𝑆𝑖 (𝑆𝑖)}. Finally, F𝑁 is isomorphic to F and every non-empty

intersection is in the inside or outside of any set in F𝑁 , so the intersections of F of positive

volume remain positive in F𝑁 , while the previously zero-sized non-empty intersections

become positive.

Therefore, F𝑁 satisfies the previous case, thus it is possible to construct an isomorphic

F ′ that proves that F is 𝑛2-pierceable.

If some sets in F have volume zero, then they will be replaced by thin cylinders, in a

similar procedure as in the previous cases.

If a convex set 𝑆 ∈ F has volume zero, then it is contained in a hyperplane. Let 𝑛

be the unit normal of this hyperplane and 𝑑 = min
𝑆′∈S :𝑆∩𝑆′=∅

dist(𝑆, 𝑆′). Then, the cylinder

𝐶𝑆 = {𝜆𝑛 + 𝑥 : 𝑥 ∈ 𝑆,𝜆 ∈ [−𝑐, 𝑐]} for some 0 < 𝑐 < 𝑑 does not intersect any 𝑆′ disjoint

from 𝑆 and keeps all previous intersections.

Therefore, by the same type of iterative process, one can obtain an intersection-isomorphic

family with no elements of volume zero.

□
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Remark. Proving this statement solely for boxes is somewhat simpler and can be achieved

by using projections to the coordinate axes and using a similar sort of cylindrical expansion

as in the last part of this proof.

This statement is significant as Theorem 1.1.6 is a collection of statements of type (2).

Since Danzer and Grünbaum showed that there are no Helly-type statements for certain

types of piercing of boxes, there cannot be any Helly-type statements for certain types of

punching of boxes.

Corollary 1.3.1.1 (Negative Helly-type theorems for punching). If 𝑛 ≥ 4 and 𝑑 ≥ 2 or 𝑛 = 3

and 𝑑 ≥ 3 and 𝑣1 , 𝑣2 are any volumes, then there is no finite ℎ for which assuming every ℎ-tuple

from a family of boxes F in R𝑑 is (𝑣1 , 𝑛)-punchable implies F is (𝑣2 , 𝑛)-punchable.

By Theorem 1.1.6, the possible cases are therefore any punching on the line (in dimension

one), 2-punching in any dimension, and 3-punching on the plane. The main results of

this thesis are about the characterization of these cases, presented in the next chapter.

Of course, 1-punching Helly-theorems are also possible and are about the volume of in-

tersection, just as Theorem 1.1.3, the original quantitative volume theorem about convex

sets. The special case of boxes will be discussed here briefly.

First, we present some definitions regarding boxes.

Definition: The volume of a box 𝐵 =
𝑑∏
𝑖=1

[𝑎𝑖 , 𝑏𝑖] is Vol(𝐵) =
𝑑∏
𝑖=1

(𝑏𝑖− 𝑎𝑖). If Vol(𝐵1) < Vol(𝐵2),

then 𝐵1 is the smaller, 𝐵2 is the larger box. The terms volume, and size will be used in-

terchangeably for boxes. In contrast, the tuple-size of an 𝑛-tuple is 𝑛, i.e. the number of

elements.

Definition: A facet of an axis-parallel box 𝐵 is 𝐹𝐵,𝑖,sgn(𝑏 𝑗−𝑏 𝑗+1 mod 2) = 𝜕𝐵∩{(𝑥1 , ..., 𝑥𝑑) : 𝑥𝑖 =

𝑏 𝑗} for some 1 ≤ 𝑖 ≤ 𝑑 and 𝑏 𝑗 ∈ 𝜕𝜋𝑖(𝐵) = {𝑏0 , 𝑏1}. This means that 𝐹𝐵,𝑖,+ and 𝐹𝐵,𝑖,− denote

the “upper” and “lower” facets a with normal 𝑒𝑖 , perpendicular to the 𝑖th axis.

Definition: A box 𝐵 borders another box 𝐴 if a facet 𝐹𝐵 of 𝐵 contains a facet 𝐹𝐴 of 𝐴

and their relative interiors are not disjoint. Similarly, a hyperplane borders a box 𝐴 if it

contains a facet of 𝐴.

Definition: A vertex of a box is a point 𝑣 ∈ 𝐵 that is contained in 𝑑 facets of 𝐵. These

facets are the (neighboring) facets of 𝑣. Two vertices with no facets in common are called

diagonally opposite.

Observation: A pair of points 𝑣 = (𝑣𝑖)1≤𝑖≤𝑑, 𝑤 = (𝑤 𝑗)1≤ 𝑗≤𝑑 defines a unique box 𝐵 =

𝑑∏
𝑖=1

[min{𝑣𝑖 , 𝑤𝑖},max{𝑣𝑖 , 𝑤𝑖}]. The points 𝑣 and 𝑤 are diagonally opposite vertices of 𝐵.
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The box defined by a pair of diagonally opposite vertices 𝑣, 𝑤 will be denoted 𝑣□𝑤. Note

that 𝑣□𝑤 = 𝑤□𝑣.

Proposition 1 (Quantitative volume theorem for boxes - 1-punching). For a finite family F

of boxes in R𝑑 if any 2𝑑-tuple has an intersection of volume at least 1, i.e. is 1-punchable, then all

sets in F have an intersection of volume at least 1, i.e. are 1-punchable.

Proof. As mentioned previously, this statement is equivalent to showing that if F is not

1-punchable, then there is a 2𝑑-tuple that is not 1-punchable either. The largest box 𝐵

that punches F is the intersection. Assuming 𝐵 has positive volume, it has 2𝑑 faces, each

of which are bordered by some box of F . Therefore, there are at most 2𝑑 boxes of F

that border 𝐵 and since they are bordering, there is no larger box that punches them.

Therefore, if F is not 1-punchable, then a 2𝑑-tuple containing a bordering box for each

facet of the intersection is not 1-punchable either.

If the intersection 𝐵 has volume zero, then there are two boxes in F with disjoint relative

interiors. Since 𝑑 ≤ 1, any 2𝑑-tuple containing them will have intersection of volume zero

as well. □

This is again a case where the condition of this statement (being restricted to boxes) is

stronger, and the lower bound on the volume is greater than in the case of Theorem 1.1.3.

It also demostrates a case where boxes behave in a simpler way than general convex sets.

In addition, 2𝑑 is also the Helly-number, so as mentioned before it is also the Helly-

number for convex sets as boxes are convex.

Proposition 2 (Lower bound on Helly-number for 1-punching). For every dimension 𝑑 ∈

Z≥0 and any volumes 𝑣1 > 𝑣2 there is a family of boxes F in R𝑑 that is not (𝑣2 , 1)-punchable, but

every subfamily of size 2𝑑 − 1 is (𝑣1 , 1)-punchable.

Proof. For 1 ≤ 𝑖 ≤ 𝑑 and 0 < 𝜀1 < 𝑣
1/𝑑
1 let 𝜀2 >

𝜀𝑑−1
1
𝑣2

so (𝜀1/2 + 𝜀2)𝜀𝑑−1
1 > 𝑣2. Then 𝐵𝑖+ =

𝑖−1∏
𝑗=1

[−𝜀2 , 𝜀2]× [−𝜀1/2, 𝜀2]×
𝑑∏

𝑗=𝑖+1
[−𝜀2 , 𝜀2] and 𝐵𝑖− =

𝑖−1∏
𝑗=1

[−𝜀2 , 𝜀2]× [−𝜀2 , 𝜀1/2]×
𝑑∏

𝑗=𝑖+1
[−𝜀2 , 𝜀2].

The family F = {𝐵𝑖+ : 1 ≤ 𝑖 ≤ 𝑑} ∪ {𝐵𝑖− : 1 ≤ 𝑖 ≤ 𝑑} is maximally punched by its

intersection 𝐵 = − 𝜀1
2 1□ 𝜀1

2 1. Clearly, Vol(𝐵) = 𝜀𝑑 < 1. By removing 𝐵𝑖+ from F , the box

𝐵′
𝑖+ =

𝑖−1∏
𝑗=1

[−𝜀/2, 𝜀/2] × [−𝜀/2, 𝜀2] ×
𝑑∏

𝑗=𝑖+1
[−𝜀/2, 𝜀/2] of volume (𝜀2 + 𝜀/2)𝜀𝑑 > 𝑣2. □

Corollary 1.3.1.2 (Helly-number for quantitative volume theorems on convex sets). The
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smallest ℎ for which assuming every ℎ-tuple from a family of convex sets in F inR𝑑 is 1-punchable

implies F is (𝑐𝑑 , 1)-punchable for some constant 𝑐𝑑 > 0 is at least 2𝑑.

To recapitulate, it was shown that for the introduced definition of 𝑛-punching, there

are no Helly-type statements in a lot of cases. It begs the question then, whether for

some other definition of punching, or by introducing some additional restriction on the

punching tuples, it is possible to obtain viable Helly-type theorems. Other definitions

will be adressed in chapter 3, while a simple restriction on the punching tuples will be

examined here, as it is also relevant to the punching theorems in dimension 1.

An arguably natural type of restriction on the punching tuples is to introduce some sort

of similarity between the holes. For boxes it has been shown that it can be assumed that

when punching boxes, the tuples also contain boxes. Since this is not strict enough for

some cases, the tuples will now be restricted to contain only holes that are translates

of each other. Note that this idea is also adressed and used by Damásdi, Fölvári and

Naszódi in the proof of Theorem 1.1.4 [9].

For this question the following concepts will be useful.

Definition: The Minkowski sum of sets 𝐴 ⊂ R𝑑 and 𝐵 ⊂ R𝑑 is 𝐴+ 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈

𝐵}.

Note that {𝑣} + 𝐴 is a translate of 𝐴.

Definition: The Minkowski difference of two sets 𝐴, 𝐵 ⊂ R𝑑 is 𝐴 ∼ 𝐵 =
⋂
𝑏∈𝐵

𝐴 + {−𝑏}.

Note that 𝐴 ∼ 𝐵 = {𝑣 ∈ R𝑑 : {𝑣} + 𝐵 ⊂ 𝐴}, i.e. the Minkowski-difference defines

the translations of the subtrahend which move it into the minuend. (Note also, that

sometimes the term Minkowski difference is defined differently to mean a sort of inverse

of Minkowski sum.)

Observation: If 𝐵 is a box, then 𝐵 ∼ 𝐴 is a (possibly empty) box for any 𝐴.

This is due to the fact that the intersection of boxes is a box and Minkowski difference

was defined as the intersection of some translates of 𝐵. Therefore, Minkowski difference

preserves convexity as well in general.

Observation: A hole 𝐻 punches a family F of boxes if and only if the intersection of boxes⋂
𝐵∈F

𝐵 ∼ 𝐻 is not empty.

Therefore, if the holes are translates of each other, there is a direct correspondence

between punching and piercing.
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Proposition 3 (Punching by translates equals piercing). Given some tuple-sizes 𝑛1 ≥ 𝑛2 and

a hole 𝐻 ⊂ R𝑑, statements (1) and (2) are equivalent.

(1) For a finite family of boxes F in R𝑑 if any ℎ-tuple H in F is punchable by an 𝑛1-tuple of

translates of 𝐻, then F is punchable by an 𝑛2-tuple of translates of 𝐻.

(2) For a finite family of boxes F in R𝑑 if any ℎ-tuple H in F is 𝑛1-pierceable, then F is

𝑛2-pierceable.

Proof. Given a family of boxes F let 𝐹∼𝐻 = {𝐵 ∼ 𝐻 : 𝐵 ∈ F } also be a family of boxes and

let the bĳection that maps 𝐵 ↦→ 𝐵 ∼ 𝐻 be 𝑓 . Then, any subfamily H ⊂ F is punchable

by an 𝑛-tuple of translates {𝐻 + {𝑣𝑖} : 1 ≤ 𝑖 ≤ 𝑛} of 𝐻 if and only if the 𝑛-tuple (𝑣𝑖)1≤𝑖≤𝑛
pierces 𝑓 (H). □

This means that these types of statements are equivalent to the Helly-type statements

about piercing such as Theorem 1.1.6 and Theorem 1.1.7.

Corollary 1.3.1.3. For a finite family F of boxes in R𝑑, if assuming any ℎ-tuple of sets H in F

is (𝑣1 , 𝑛1)-punchable implies F is (𝑣2 , 𝑛2)-punchable, then ℎ ≥ 3𝑑 − 1 for odd 𝑑 and ℎ ≥ 3𝑑 for

even 𝑑.

The results presented in the next chapter will make it clear that if only the volume of

the punching tuples is restricted, then for dimension 1, punching theorems do not become

more complicated. However, in case of multiple dimensions, the problem becomes much

more complicated indeed.
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Chapter 2

Main results

This chapter presents the main results of this thesis, Helly-type theorems about the

introduced notion of 𝑛-punching of boxes in dimension 𝑑 for cases 𝑑 = 1 and 𝑛 ∈ N, and

for 𝑑 ≥ 2 and 𝑛 = 2.

2.1 Helly-type theorems about punching intervals

As mentioned previously, even when the punching tuples are less restricted, and the

notion of 𝑛-punching is concerned, the Helly-type theorems for 𝑛-punching intervals in

dimension 1 are equivalent to the Helly-type theorems about punching with tuples of

translates, which were discussed in the previous chapter.

This is due to the following simple but crucial observation.

Observation 2.1: All intervals of the same volume are translates of each other.

Therefore, a family of intervals is 𝑛-punchable if and only if it is punchable by an 𝑛-tuple

of translates of the unit interval [0, 1]. This yields the following theorems.

Theorem 2.1.1 (Classical Helly theorem about 𝑛-punching intervals). For a finite family of

intervals F = {𝐼𝑖 = [𝑎𝑖 , 𝑏𝑖] ⊂ R : 𝑖 ∈ I}, if any subfamily of ℎ = 𝑛 + 1 elements is 𝑛-punchable,

then F is 𝑛-punchable. Furthermore, this is the smallest ℎ for which this holds, so 𝑛 + 1 is the

Helly-number for every 𝑛.

Remark. Even though this theorem is a direct consequence of Theorem 1.1.6 and Proposi-

tion 3 by the above observation, a direct proof will also be given. This proof has essentially

the same structure as the part of Danzer and Grünbaum’s proof about piercing of inter-

vals.
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Proof. This proof explicitly shows 𝑛 holes that punch F assuming the condition holds.

Note that if every (𝑛 + 1)-tuple is 𝑛-punchable, then every interval has to have length at

least 1.

For 𝑛 = 1, the interval 𝐿 = arg max
𝐼∈F

min 𝐼 has the rightmost left endpoint in F and

𝑅 = arg min
𝐼∈F

max 𝐼 has the leftmost right endpoint (calling −∞ “to the left“ and ∞ “to the

right“). Then 𝐿 ∩ 𝑅 ⊂ 𝐼 for every interval in F . Therefore 𝐿 ∩ 𝑅 =
⋂
𝐼∈F

𝐼. Since {𝐿, 𝑅} is

1-punchable therefore 𝐿 ∩ 𝑅 is at least 1, so F is also 1-punchable.

The proof will proceed by induction on 𝑛. Assume the statement holds for 𝑛 − 1. Let

the set of 𝑛-tuples that are not (𝑛 − 1)-punchable be D ⊂ P(F ). If D = ∅ then by the

induction hypothesis, F is (𝑛 − 1)-punchable, so it is also 𝑛-punchable. If there is an

𝑛-tuple G that is not (𝑛 − 1)-punchable, then for any G ∈ D let 𝐼𝑖 ,G be the interval with

the 𝑖th left end from the right in G. Then let 𝐿1 = arg max
G∈D

min 𝐼1,G and recursively for

1 < 𝑖 ≤ 𝑛 let 𝐿𝑖 = arg max
G∈D: 𝐿𝑗∈G , 1≤ 𝑗<𝑖

min 𝐼𝑖 ,G , i.e. 𝐿1 maximizes the first left endpoint

and for larger indices among those tuples with maximal previous endpoints the 𝑖th left

endpoint is maximized. Then let 𝑅𝑖 = arg min
𝐼∈F : min 𝐿𝑖+1≤max 𝐼

max 𝐼, i.e the intervals with

the next right endpoint at least at distance 1 after the left endpoint of 𝐿𝑖 .

Observation: The intervals 𝐻𝑖 = 𝐿𝑖 ∩ 𝑅𝑖 have length at least 1.

Claim: The intervals H = {𝐻𝑖 : 1 ≤ 𝑖 ≤ 𝑛} punch F .

Proof: Let L = {𝐿𝑖 : 1 ≤ 𝑖 ≤ 𝑛}. For any 𝐼 ∈ F by the Helly-condition, L ∪ {𝐼} is

𝑛-punchable.

If the right endpoint of 𝐼 is an inner point of some𝐻𝑖 ∈ H then 𝐼 has to be punched together

with 𝐿𝑖−1, since 𝐼 ∩ 𝐿𝑖 has to be smaller than 1 by the definition of 𝑅𝑖 . Furthermore, in

this case the left endpoint of 𝐼 cannot be an inner point of 𝐿𝑖−1 either, since then L \ {𝐿𝑖−1}

would not be (𝑛−1)-punchable, but this contradicts the definition of 𝐿𝑖−1 because it could

be replaced with 𝐼. Therefore 𝐿𝑖−1 ∩ 𝑅𝑖−1 ⊂ 𝐼. Note that the right endpoint of 𝐼 cannot be

an inner point of 𝐻1, because then either 𝑅1 could be replaced with 𝐼 or {𝐼} ∪ L would

not be 𝑛-punchable.

Assume then, that the right endpoint of 𝐼 is not an inner point of any 𝐻𝑖 and 𝐼 and 𝐿𝑖

are punched together in an 𝑛-punching of {𝐼} ∪ L (there is such an 𝑖 because L is not

(𝑛 − 1)-punchable). If the left endpoint of 𝐼 is not an inner point of 𝐿𝑖 , then 𝐻𝑖 ⊂ 𝐼,

while if the left endpoint is an inner point, yet 𝐻𝑖+1 ⊄ 𝐼, then L \ {𝐿𝑖} ∪ {𝐼} would not be

(𝑛 − 1)-punchable, which contradicts the definition of 𝐿𝑖 as 𝐿𝑖 could be replaced by 𝐼.

So in each case, 𝐼 is punched by one of the holes in H. □
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Remark. The only essential difference of this proof and the proof about 𝑛-piercing is the

addition of the parts involving 𝑅𝑖 .

Similarly, the following colorful version of the previous result is a direct consequence

of Theorem 1.1.7 and Proposition 3.

Theorem 2.1.2 (Colorful Helly theorem about 𝑛-punching intervals). For any families of

intervals C1 , ..., Cℎ (color classses), if any colorful selection 𝐼1 ∈ C1 , ..., 𝐼ℎ ∈ Cℎ of ℎ = 𝑛 + 1

elements is 𝑛-punchable, then there is a color class C𝑖 that is 𝑛-punchable with 1 ≤ 𝑖 ≤ ℎ.

Furthermore, this is the smallest ℎ for which this holds, so 𝑛 + 1 is the Helly-number for every 𝑛.

2.2 Helly-type theorems about 2-punching boxes in dimension

𝑑 > 1

This section provides some insight into the possible Helly-type theorems about 2-

punching boxes. However, whether there is such a statement (a finite Helly-number)

remains an open question.

Since contrary to intervals, not all boxes of the same volume are translates of each other

for higher dimensions, 2-punching is not directly reducible to 2-piercing in this case.

Indeed, it will be shown in the next section, that for the tuple-sizes (3𝑑 and 3𝑑 − 1) given

in Theorem 1.1.6, similar statements about 2-punching do not hold.

As previously observed, by homothety, statements about (𝑣, 𝑛)-punching are equivalent

to statements about 𝑛-punching. Also, a classic Helly-type theorem states that if

condition 𝐵 does not hold for the whole family F , then condition 𝐴 does not hold for

some ℎ-tuple from F . Therefore, to prove a classic Helly-theorem about 𝑛-punching

boxes in the form of statement (1) in Theorem 1.3.1, it has to be shown that if the largest

pair of boxes that punches F has smaller volume than 𝑣2, then some ℎ-tuple can only be

punched by a pair of volume smaller than 𝑣1. First, the case 𝑣1 = 𝑣2 shall be examined. In

this case, the goal is to show that the largest punching pair for F is also the largest pair

for some ℎ-tuple (the largest holes for F have to punch any subfamily as well obviously.)

This tuple will be referred to as the proving tuple.

It was shown previously that for higher dimensions, the case of 1-punching is fairly

simple. The largest hole is bordered by at most 2𝑑 boxes, which cannot be punched by

any larger box.

For 2-punching, the situation becomes more complicated and this consideration fails due
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to an inherent complication that arises with 𝑛-punching for 𝑛 ≥ 2.

Let {𝐻1 , 𝐻2} be the largest pair of holes that punch a family of boxes F . While it is

true that 𝐻1 and 𝐻2 are the largest holes in F𝐻1 and F𝐻2 respectively, and that both are

bordered by at most 2𝑑 boxes each, which cannot be punched by any larger hole when

punched together, these bordering boxes might be punched by a pair of larger volume if

they are regrouped. So, in the subfamily of bordering boxes of the holes 𝐻1 and 𝐻2 of size

at most 4𝑑, the largest punching pair does not necessarily punch all elements of F𝐻1 and

F𝐻2 together respectively. Examples for this will be shown in Section 2.3.4.

A pertient question then is, whether the bordering boxes of the largest hole need

to be in the proving tuple. Let B𝐻1 and B𝐻2 be all the boxes that border 𝐻1 and

𝐻2 respectively while P is the proving tuple. If some facet 𝐹1 = 𝐹𝐻1 ,𝑖 ,+ of 𝐻1

and 𝐹2 = 𝐹𝐻2 , 𝑗 ,+ of 𝐻2 are not bordered by a box in P , then for some sufficiently

small 𝜀 > 0, the holes 𝐻1 and 𝐻2 can be extended along the axes 𝑖 and 𝑗. This

means, that the extended boxes 𝐻′
1 =

𝑖−1∏
𝑘=1

𝜋𝑘(𝐻1) × [𝑎𝑖 ,𝐻1 , 𝑏𝑖 ,𝐻1 + 𝜀] ×
𝑑∏

𝑘=𝑖+1
𝜋𝑘(𝐻1) and

𝐻′
2 =

𝑗−1∏
𝑙=1

𝜋𝑙(𝐻2) × [𝑎𝑙 ,𝐻2 , 𝑏 𝑗 ,𝐻2 + 𝜀] ×
𝑑∏

𝑙=𝑗+1
𝜋𝑙(𝐻2) will also punch P and have obviously

larger volume than the original pair as 𝐻1 ⊊ 𝐻′
1 and 𝐻2 ⊊ 𝐻′

2. 𝜀 has to be chosen such

that 𝜀 < min{ min
𝐵∈P∩F𝐻1

𝑏𝑖 ,𝐵 − 𝑏𝑖 ,𝐻1 , min
𝐵∈P∩F𝐻2

𝑏𝑖 ,𝐵 − 𝑏𝑖 ,𝐻2}. Similarly, if a lower facet 𝐹𝐻1 ,𝑖 ,− is

unbordered, then the hole can be extended across the lower limit 𝑎𝑖 ,𝐻1 .

This implies that all of the facets of the smaller hole in the largest punching pair have to

be bordered in P .

The above argument shows that at least some of the bordering boxes of the largest

punching pair have to be in the proving tuple. It is therefore relevant to examine how to

describe them in terms of the other boxes of F . It turns out, that some of them are simple

to describe while others, not so apparently. This means that some of them can be defined

for F without any reference to punching.

Clearly, the largest pair of boxes that 2-punch F are {𝐻1 , 𝐻2} =

arg max
F1⊔F2=F

( ⋂
𝐵′

1∈F1

𝐵′
1 ,

⋂
𝐵′

2∈F2

𝐵′
2

)
i.e. the largest pair of intersections from the possi-

ble partitions of F . Note that here max was taken with respect to the introduced ordering

on the tuples. It will now be shown that some of the borders of 𝐻1 and 𝐻2 are in some

way extremal in the projections to the axes. This extremality will be described first.

For a family of boxes F , for all axes 1 ≤ 𝑖 ≤ 𝑑 the numbers 𝑎𝑖 ,F = max
𝐵∈F

𝑎𝑖 ,𝐵 and 𝑏𝑖 ,F will be

referred to as the outward limit values and the hyperplanes 𝛼𝑖 ,F = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥1 = 𝑎𝑖 ,F }
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and 𝛽𝑖 ,F = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥1 = 𝑏𝑖 ,F } as outward limits. This means, that along every axis

the “leftmost right endpoint” and “rightmost left endpoint” of the projection of F is

the corresponding outer limit. The outward limits 𝛼𝑖 ,F and 𝛽𝑖 ,F are the borders of the

half-spaces 𝛼+
𝑖 ,F = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 ≥ 𝑎𝑖 ,F } and 𝛽+

𝑖 ,F = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 ≤ 𝑏𝑖 ,F } respectively for

1 ≤ 𝑖 ≤ 𝑑, which will be called outward limit halves.

The boxes contained in an outward limit half are called outward limit boxes. Outward

limit boxes are bordered by an outward limit 𝛾𝑖 ,F ∈ {𝛼𝑖 ,F , 𝛽𝑖 ,F } and the relative

interior of the box 𝐵 is in the corresponding outward limit half 𝛾+
𝑖 ,F . For 𝛼𝑖 ,F , the

set of corresponding outward limit boxes is L𝑖 = {𝐵 ∈ F : 𝐵 ⊂ 𝛼+
𝑖 ,F }, while it is

R𝑖 = {𝐵 ∈ F : 𝐵 ⊂ 𝛽+
𝑖 ,F } for 𝛽𝑖 ,F .

𝑑⋃
𝑖=1

L𝑖 ∪R𝑖 = O are all the outward limit boxes.

The term outward limit refers to the following property.

Observation: For any outward limit 𝛾𝑖 ,F ∈ {𝛼𝑖 ,F , 𝛽𝑖 ,F }, no box 𝐵 ∈ F is contained in the

inside of the outward limit half 𝛾+
𝑖 ,F for any 1 ≤ 𝑖 ≤ 𝑑.

So, in a sense, outward limit boxes are most the most “outward facing” or “outward

starting” boxes along each axis.

We defined outward limit boxes without any reference to punching, yet they all border

the largest punching pair of F .

Proposition 4 (Outward limits border largest punching pair). If {𝐻1 , 𝐻2} are the largest

pair of boxes that 2-punch F , then all of the outward limit boxes border some element of {𝐻1 , 𝐻2}

Proof. Without loss of generality, for any 1 ≤ 𝑖 ≤ 𝑑, assume that the outward limit

box 𝑂 ∈ L𝑖 is punched by 𝐻1. Since 𝐻1 punches 𝑂, we know 𝑎𝑖 ,𝑂 ≤ 𝑎𝑖 ,𝐻1 . As 𝐻1 is

member of a largest punching pair, it is the intersection of the members of H∞. This

means that 𝑎𝑖 ,F𝐻1
= 𝑎𝑖 ,𝐻1 , where 𝑎𝑖 ,F𝐻1

= max
𝐵∈F𝐻1

𝑎𝑖 ,𝐵. By definition, 𝑎𝑖 ,F𝐻1
≤ 𝑎𝑖 ,F as

F𝐻1 ⊂ F . However, by definition of outward limits, 𝑎𝑖 ,𝑂 = 𝑎𝑖 ,F . Therefore, we have

𝑎𝑖 ,𝑂 ≤ 𝑎𝑖 ,𝐻1 = 𝑎𝑖 ,F𝐻1
≤ 𝑎𝑖 ,F ≤ 𝑎𝑖 ,𝑂 , which implies equality between all of the numbers.

This means that since 𝐻1 ⊂ 𝑂, 𝑂 has to border 𝐻1.

The same argument applies for R𝑖 by considering the other extrema, e.g. 𝑏𝑖 ,F . □

The outward limits are not only related to the largest punching pair, but provide

a structure for all punching pairs. This is due to the fact that an outward limit box

is punched only if its bordering outward limit halves are punched. Therefore, every

outward limit half has to be punched by a pair that punches F . Thus, the punching pairs

can be characterized according to which outward limit halves are punched together.
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The structure of punching varies according to which outward limit halves are punchable

together. If 𝛼+
𝑖 ,F and 𝛽+

𝑖 ,F (the outward limit halves for the 𝑖th axis ) intersect, then they can

be punched together by a hole 𝐻1, while 𝐻2 has to punch neither, while if the intersection

is empty, then each of the holes punches exactly one of the outward limit halves, and each

is punched by exactly one hole.

If the outward limit halves have disjoint relative interiors, then the punching pairs have a

structure which is fairly simple to describe.

Observation:
𝑑⋂
𝑖=1

𝛾+
𝑖

is an orthant where 𝛾+
𝑖
∈ {𝛼+

𝑖
, 𝛽+

𝑖
} for 1 ≤ 𝑖 ≤ 𝑑.

These orthants defined by the outer limits halves shall be called corners. The point
𝑑⋂
𝑖=1

𝛾𝑖 ,F

is the vertex of the corner.

If 𝐶 =
𝑑⋂
𝑖=1

𝛾+
𝑖

and 𝐶′ =
𝑑⋂
𝑖=1

𝛾+′
𝑖

are two corners such that 𝛾+
𝑖
∈ {𝛼+

𝑖
, 𝛽+

𝑖
} \ {𝛾+′

𝑖
} for 1 ≤ 𝑖 ≤ 𝑑

then they are called diagonally opposite corners. This means that if a box has exactly

one vertex in each corner, then diagonally opposite vertices are in diagonally opposite

corners.

Statement 2. If for every 1 ≤ 𝑖 ≤ 𝑑, the outward limit halves 𝛼+
𝑖 ,F and 𝛽+

𝑖 ,F have disjoint relative

interiors, then any pair of boxes punching F punches a pair of diagonally opposite corners.

Proof. Let 𝐻1 and 𝐻2 be a pair of boxes punching F . As mentioned earlier, for each axis

1 ≤ 𝑖 ≤ 𝑑, there is a bĳection 𝑝𝑖 : {𝐻1 , 𝐻2} → {𝛼+
𝑖 ,F , 𝛽

+
𝑖 ,F } between the holes and the

outward limit halves such that 𝐻𝑗 uniquely punches 𝑝𝑖(𝐻𝑗) for 𝑗 ∈ {1, 2}. This means, that

for the 𝑖th axis 𝑝𝑖(𝐻1) ∈ {𝛼+
𝑖 ,F , 𝛽

+
𝑖 ,F } \ {𝑝𝑖(𝐻(𝑗+1 mod 2)+1)} for any 𝑗 ∈ {1, 2}. Therefore,

clearly
𝑑⋂
𝑖=1

𝑝𝑖(𝐻1) and
𝑑⋂
𝑖=1

𝑝𝑖(𝐻2) are diagonally opposite corners. □

Therefore, the holes of the largest punching pair share a vertex each with opposite

members of the punched diagonally opposite pair of corners in this axis-wise disjoint

case. The neighboring facets of this vertex are thus bordered by outward limits boxes.

Suppose that in this axis-wise disjoint case, punching were restricted to a pair of diagonally

opposite corners, i.e. only considering punching pairs that punch both corners. If it were

possible to construct a restricted proving tuple of fixed size (not depending on the size

of F ) for a pair of diagonally disjoint corners, then taking the union of these restricted

proving tuples for all pairs of diagonally opposite corners would give a proving tuple

for the whole of F as the largest punching pair cannot increase by adding boxes to a

(sub)family. If apart from the outward limit boxes a restricted proving tuple were to

contain ℎ𝑟 boxes, then there would be a Helly-type theorem for the axis-disjoint case with
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tuple-size ℎ = 2𝑑 + ℎ𝑟 · 2𝑑−1 as there are 2𝑑−1 pairs of diagonally opposite corners and 2d

outward limits.

Unfortunately, it is not known whether there is a proving tuple even for this restricted

case. For example, as mentioned previously, 2𝑑 boxes that border the the largest punching

pair for a given pair of diagonally opposite corners have to be in the proving tuple for the

smaller hole, so it is an immediate idea to check whether these form a proving tuple in

the restricted case. However, these bordering boxes can also be regrouped even within

the restricted area resulting in larger holes than for the whole family. An example of this

is shown in section 2.3.4.

If the outward limit halves can be intersecting, then the situation might be even more

complicated, as then, not all punching pairs have to punch diagonally opposite corners,

and this is true even for the largest punching pair. For example, if the 1-punching

construction from Proposition 2 is sufficiently extended in some direction along a given

axis, then the largest punching pair will not be contained in corners.

Similarly as before, for some 0 < 𝜀 let 𝐵1− = [−1, 𝜀/2] ×
𝑑∏
𝑗=2

[−1, 1]. Now, for some

sufficiently large 𝑐 ≥ 2𝑑−1(1+𝜀/2)
𝜀𝑑−1 , let 𝐵1+ = [−𝜀/2, 𝑐] ×

𝑑∏
𝑗=2

[−1, 1] and for 2 ≤ 𝑖 ≤ 𝑑 let

𝐵𝑖+ = [−1, 𝑐]×
𝑖−1∏
𝑗=2

[−1, 1]× [−𝜀/2, 1]×
𝑑∏

𝑗=𝑖+1
[−1, 1] and 𝐵𝑖− = [−1, 𝑐]×

𝑖−1∏
𝑗=2

[−1, 1]× [−1, 𝜀/2]×

𝑑∏
𝑗=𝑖+1

[−1, 1]. This means, that in the direction 𝑒1, each box has been sufficiently extended,

except, the lower box 𝐵1−. The largest pair that punches family F = {𝐵𝑖+ : 1 ≤ 𝑖 ≤

𝑑}∪ {𝐵𝑖− : 1 ≤ 𝑖 ≤ 𝑑} is {𝐵1− ,
⋂

𝐵∈F\{𝐵1−}
𝐵} since no punching tuple can have larger volume

than the smallest box in F . Clearly, the smallest box is the unextended 𝐵1− of volume

2𝑑−1(1 + 𝜀/2) which is punched alone by the first hole. By the choice of 𝑐, the intersection⋂
𝐵∈F\{𝐵1−}

𝐵} has volume 𝜀𝑑−1(𝑐 + 𝜀/2) > 2𝑑−1(1 + 𝜀/2) = Vol(𝐵𝑖−), so there is no punching

tuple with larger volume. Yet 𝐵1− is not contained in any corner.

2.3 Lower bounds on the Helly-numbers for 2-punching boxes

Even though it is unclear whether Helly-type statements about 2-punching are possible for

a finite tuple-size ℎ, lower bounds for the required tuple-size can be given. In other words,

lower bounds can be given on the Helly-number (which may turn out to be infinite.) This

is achieved by showing constructions of families F violating the possible Helly-statement,
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that is, even though F cannot be punched by a pair of large enough volume, every ℎ-tuple

can be punched by a sufficiently large pair of holes.

First, a lower bound will be shown for the general statement of type (1) in Theorem 1.3.1

for boxes, i.e. applying to any volumes 𝑣1 and 𝑣2.

Of course, a statement about 2-punching implies the corresponding statement about 1-

punching with the same tuple-size, so this means, that 2𝑑 is an immediate lower bound

for 2-punching Helly-numbers.

Proposition 2 about 1-punching boxes contained a construction with 2𝑑 elements, where

removing any box created a large hole for the subfamily. It might be an immediate idea

to consider adding a disjoint translated copy of the 1-punching construction to create a

2-punching construction.

For 1 ≥ 𝑐𝑑 > 0, 𝜀 ∈ (0, 𝑑
√
𝑐𝑑) and 𝐼 = [−1, 1], consider the family F1 = {𝐵𝑖+ : 1 ≤ 𝑖 ≤

𝑑}∪{𝐵𝑖− : 1 ≤ 𝑖 ≤ 𝑑} where 𝐵𝑖+ =
𝑖−1∏
𝑗=1

𝐼×[−𝜀/2, 1]×
𝑑∏

𝑗=𝑖+1
𝐼 and 𝐵𝑖− =

𝑖−1∏
𝑗=1

𝐼×[−1, 𝜀/2]×
𝑑∏

𝑗=𝑖+1
𝐼.

Then, add a translated copy F2 such that all members are disjoint from all members of

F1. Thus, for some 𝑐 > 2 let F2 = {𝐵 + 𝑐1 : 𝐵 ∈ F1} and the whole family is F = F1 ∪F2.

The two copies of the original define two obvious classes F1 = F𝐻1 and F2 = F𝐻2 and

no other partition has classes whose boxes can be punched together as the two copies are

disjoint. However, each box only borders exactly one of the holes 𝐻1 and 𝐻2 of equal

volume smaller than 𝑐𝑑, so any subfamily that contains all of the boxes from one of the

copies of the 1-punching construction is not punchable by a pair of larger volume than the

whole family. Therefore, up to 2𝑑−1 boxes can be removed without increasing the volume

of the pair of holes of the 4𝑑 boxes in total. If, however, 2𝑑 boxes are removed, either there

are boxes missing from both copies, which increases the intersection in both classes, or,

exactly one of the classes remains. However, if a family has non-empty intersection, then

the intersection is not a member of the largest punching pair. So any subfamily of size 2𝑑

is punched by a larger pair than F .

Although this simple idea proved not so effective, it does increase the lower bound by

one, so the Helly-number for 2-punching theorems is at least 2𝑑 + 1.

The bounds 2𝑑 and 2𝑑+1 are of course immaterial due to Corollary 1.3.1.3, which implies

a lower bound of 3𝑑 − 1 and 3𝑑 for odd and even 𝑑 respectively.

Howewer, these lower bounds can be improved significantly, by modifying the previous

simple construction.
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2.3.1 Lower bound 4𝑑 − 1 of Helly-number for 2-punching boxes in any di-

mension 𝑑

Theorem 2.3.1. For any dimension 𝑑 and 1 ≥ 𝜀 > 0, there is a family of boxes F in R𝑑 such that

any (4𝑑 − 2)-tuple is 2-punchable, and F is (𝜀, 2)-punchable, but is not (𝜀′, 2)-punchable for any

𝜀′ > 𝜀.

Proof. For dimension 𝑑 let 𝐵′
𝑖 𝑗
=

𝑑∏
𝑘=1

𝐼𝑘 for 1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 4, where 𝐼𝑘 = [−2, 2] = 𝐼 for

𝑘 ≠ 𝑖 and 𝐼𝑖 =



[−2 + 𝜀/2,−1 + 𝜀/2] : 𝑗 = 1

[−1 − 𝜀/2,−𝜀/2] : 𝑗 = 2

[𝜀/2, 1 + 𝜀/2] : 𝑗 = 3

[1 − 𝜀/2, 2 − 𝜀/2] : 𝑗 = 4

Then for all 𝑖 and 𝑗 let 𝐵𝑖 𝑗 = 𝑐𝐵′
𝑖 𝑗

where 𝑐 = 𝜀−
𝑑−1
𝑑 . Finally, let the family of boxes be

F = {𝐵𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 4}.

We will refer to the index 𝑖 for box 𝐵𝑖 𝑗 as the box’s narrow dimension and call boxes

𝐵𝑖 𝑗 , 𝑗 ∈ {1, 2, 3, 4} the 𝑖-narrow boxes.

Observation: or every dimension 𝑖 there are 4 𝑖-narrow boxes in F : two pairs, 𝐵𝑖1,𝐵𝑖2 and

𝐵𝑖3 , 𝐵𝑖4, which are intersecting respectively. However, no member of the first pair intersects any

member of the second pair.

Lemma 2.3.2. F is (𝜀, 2)-punchable, but not (𝜀′, 2)-punchable for any 𝜀′ > 𝜀.

Proof. Consider the box 𝐴 = [−𝑐, 𝑐]𝑑 with vertices 𝑉(𝐴) = {𝑣 ∈ {−𝑐, 𝑐}𝑑}. The family of

axis-parallel hypercubes A = {𝐵𝑣 : 𝑣 ∈ 𝑉(𝐴)} is defined as 𝐵𝑣 =
𝑑∏
𝑖=1

[𝑣1 − 𝑐𝜀/2, 𝑣𝑖 + 𝑐𝜀/2]

with edge-lenghts 𝑐𝜀 having 𝑣 ∈ 𝑉(𝐴) at their center. These boxes are bordered by the

boxes in F .

For any axis 1 ≤ 𝑖 ≤ 𝑑, the disjoint 𝑖-narrow boxes 𝐵𝑖1 and 𝐵𝑖4 are outward limit boxes.

Therefore, F is only punchable by a pair punching a pair of diagonally opposite corners.

However, for any pair of diagonally opposite corners, each box in F only intersects exactly

one of the corners. So, for any diagonally opposite pair of vertices 𝑣,−𝑣 the pair of boxes

𝐵𝑣 , 𝐵−𝑣 are a largest punching pair in the family F . Clearly, Vol(𝐵𝑣) = (𝑐𝜀)𝑑 = 𝜀 for any

𝑣 ∈ 𝑉(𝐴). □

Lemma 2.3.3. Any subfamily H ⊂ F of size 4𝑑 − 2 is 2-punchable.
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Proof. Since |F | = 4𝑑 and |H| = 4𝑑 − 2 there is either A): an index 1 ≥ 𝑖 ≥ 𝑑 for which

there are only two 𝑖-narrow boxes in H or B): there are two indices 1 ≥ 𝑖1 , 𝑖2 ≥ 𝑑, 𝑖1 ≠ 𝑖2,

for which there is an 𝑖1-narrow and 𝑖2-narrow box missing from H.

In case A) there is a pair of hypercubes from A that punches H and is bordered by boxes

of H for all facets. Let 𝐵𝑣 and 𝐵𝑤 be such a punching pair and let 𝑖 be the dimension

missing boxes belonging to it in H, while 𝐵𝑖 𝑗1 ⊃ 𝐵𝑣 and 𝐵𝑖 𝑗2 ⊃ 𝐵𝑤 are the boxes in H with

narrow dimension 𝑖. If 𝐵𝑣 =
𝑑∏

𝑘=1
[𝑣𝑘 − 𝑐𝜀/2, 𝑣𝑘 + 𝑐𝜀/2] and 𝐵𝑤 =

𝑑∏
𝑘=1

[𝑤𝑘 − 𝑐𝜀/2, 𝑤𝑘 + 𝑐𝜀/2],

then Boxes 𝐵1 =

(
𝑖−1∏
𝑘=1

[𝑣𝑘 − 𝑐𝜀/2, 𝑣𝑘 + 𝑐𝜀/2]
)
× 𝜋𝑖

(
𝐵𝑖 𝑗1

)
×

(
𝑑∏

𝑘=𝑖+1
[𝑣𝑘 − 𝑐𝜀/2, 𝑣𝑘 + 𝑐𝜀/2]

)
and

𝐵2 =

(
𝑖−1∏
𝑘=1

[𝑤𝑘 − 𝑐𝜀/2, 𝑤𝑘 + 𝑐𝜀/2]
)
× 𝜋𝑖

(
𝐵𝑖 𝑗2

)
×

(
𝑑∏

𝑘=𝑖+1
[𝑤𝑘 − 𝑐𝜀/2, 𝑤𝑘 + 𝑐𝜀/2]

)
is a punching

pair in H. Note that 𝐵𝑣 ⊂ 𝐵1 and 𝐵𝑤 ⊂ 𝐵2 and one can think of 𝐵1 and 𝐵2 as a sort of

extension of 𝐵𝑣 and 𝐵𝑤 along the dimension 𝑖 such that they fill 𝐵𝑖 𝑗1 and 𝐵𝑖 𝑗2 along the

narrow dimension. Since 𝜋𝑖 (𝐵1) ,𝜋𝑖 (𝐵2) ⊂ 𝜋1 (𝐵𝑘𝑙) for any 𝐵𝑘𝑙 ∈ H \ {𝐵𝑖 𝑗1 , 𝐵𝑖 𝑗2} we have

that 𝐵𝑣 ⊂ 𝐵𝑘𝑙 implies 𝐵1 ⊂ 𝐵𝑘𝑙 and 𝐵𝑤 ⊂ 𝐵𝑘𝑙 implies 𝐵2 ⊂ 𝐵𝑘𝑙 , so 𝐵1 and 𝐵2 truly punches

H.

In case (B) let 𝑖1 and 𝑖2 be the dimensions with missing boxes in H. Since 3 nar-

row boxes belong to both dimensions 𝑖1 and 𝑖2 in H respectively, there is a pair

𝐵𝑣 , 𝐵−𝑣 which is contained in two 𝑖1-narrow and 𝑖2-narrow boxes respectively. Let 𝑗1

and 𝑗2 be the indices of the 𝑖1-narrow and 𝑖2-narrow boxes in H which do not inter-

sect any other narrow boxes of their respective dimensions. We can extend 𝐵𝑣 and

𝐵−𝑣 similarly as in case A) so that we get a punching pair of boxes with bigger vol-

ume: 𝐵1 =

(
𝑖1−1∏
𝑘=1

[𝑣𝑘 − 𝑐𝜀/2, 𝑣𝑘 + 𝑐𝜀/2]
)
× 𝜋𝑖1

(
𝐵𝑖1 𝑗1

)
×

(
𝑑∏

𝑘=𝑖1+1
[𝑣𝑘 − 𝑐𝜀/2, 𝑣𝑘 + 𝑐𝜀/2]

)
and

𝐵2 =

(
𝑖2−1∏
𝑘=1

[−𝑣𝑘 − 𝑐𝜀/2,−𝑣𝑘 + 𝑐𝜀/2]
)
×𝜋𝑖2

(
𝐵𝑖2 𝑗2

)
×

(
𝑑∏

𝑘=𝑖2+1
[−𝑣𝑘 − 𝑐𝜀/2,−𝑣𝑘 + 𝑐𝜀/2]

)
. By the

same argument as in case A), 𝜋𝑖𝑖

(
𝐵𝑖1 𝑗1

)
⊂ 𝜋𝑖1 (𝐵𝑘𝑙) and 𝜋𝑖2

(
𝐵𝑖2 𝑗2

)
⊂ 𝜋𝑖2 (𝐵𝑘𝑙) for any

𝐵𝑘𝑙 ∈ H \ {𝐵𝑖1 𝑗1 , 𝐵𝑖2 𝑗2}, so (𝐵1 , 𝐵2) punches H indeed.

In both cases, we can see that the volume of 𝐵1 and 𝐵2 is (𝑐𝜀)𝑑−1 · 𝑐 = 𝑐𝑑𝜀𝑑−1 =(
𝜀−

𝑑−1
𝑑

)𝑑
𝜀𝑑−1 = 𝜀−(𝑑−1)𝜀𝑑−1 = 1. □

Thus, we have shown a punching pair of volume 1 for any subfamily H ⊂ F of size

|H| = 4𝑑 − 2, while the whole family F is only (𝜀, 2)-punchable. □

Corollary 2.3.3.1. For a finite family F of boxes in R𝑑, if assuming any ℎ-tuple of sets H in F

is 2-punchable implies F is (𝑐𝑑 , 2)-punchable for some 𝑐𝑑 > 0, then ℎ ≥ 4𝑑 − 1.
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Figure 2.1: Construction for dimension 2 which is only (𝜀, 2)-punchable, but any (4𝑑 − 2)-

tuple is 2-punchable. For visual purposes, the boxes are slightly moved in the picture

related to the written construction in the proof.

So, it is demonstrated that even for this broader class of quantitative volume theorem

about 2-punching, the Helly-number has to be at least 4𝑑 − 1. This result also shows that

even 2-punching is in a sense more complicated than the previously discussed conditions

in Helly-type theorems, e.g. piercing.

2.3.2 Framework of construction for stronger lower bound

For the restricted case 𝑣1 = 𝑣2 of the general 2-punching theorem, there are some other

interesting approaches to constructions. In this case, the largest punching pairs for the

given subfamilies do not have to be arbitrarily large as in the previous case, just larger

than the largest pair that punches the whole family F . Several considerations will be

taken into account to find an appropriate construction. This will be achieved by impos-

ing constructing principles so that correctness of the construction depends on a discrete

structure as simple as possible.

In the previous construction, the holes in the largest punching pair were of equal size.

This means that a bordering box from both holes has to be removed to increase the volume

of the largest punching pair. If every largest punching pair has a larger and smaller hole,
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then only a border from the smaller hole has to be removed. Since considering tuples

with only 1 box missing might be simpler, the goal will be to ensure this property, which

will be called the unequal punching condition.

If the goal is for the largest punching pair to increase in volume by the removal of any box,

then any box has to border the smaller hole from a largest punching pair of F such that no

other box boundary contains the same facet of this hole. This condition will be called the

unique border condition. So, it is clear for example, that adding any box to the previous

construction violates this condition, so it cannot be extended in a way that increases the

lower bound. Also, an obvious consequence is that every box has to be unique in F , so

if 𝐵1 = 𝐵2 ⊂ R𝑑, then they cannot be both in F , as every facet in the boundary of 𝐵1 is in

the boundary of 𝐵2 as well.

For simplicity, it is reasonable to first consider the case where the outer limit halves have

disjoint insides, as then, diagonally opposite corners are punched in any case. Satisfying

the unique border condition can be achieved by making the other bordering boxes (apart

from the outward limits) only slightly larger in the direction of the non-bordering axes

and making them sufficiently small in the diagonally opposite corner. Here, the general

properties of such a construction approach will be described, and a concrete example

constructed.

Given an integer 𝑑 > 2 let 𝑉 ⊂ R𝑑 be the vertices of the 𝑑-dimensional box 𝐵0 = [−1; 1]𝑑

and for a vertex 𝑣 ∈ 𝑉 the diagonally opposite vertex pair is −𝑣. Let 𝜀 > 0 be sufficiently

small. The dilated box 𝑇 = (1+ 𝜀)𝐵0, called the total box, will contain the whole family F .

Let F be composed of two disjoint parts O, the outward limit boxes and I , the bordering

boxes of the largest punching pairs apart from O, which will be called inward bordering

boxes. The outward limit halves are simply the different (positive and negative) halves of

𝑇 along each dimension, that is 𝑇 ∩ {(𝑥𝑖)1≤𝑖≤𝑑 : (−1)𝑘 𝑗𝑥 𝑗 ≥ 0} for 1 ≤ 𝑗 ≤ 𝑑 and 𝑘 𝑗 ∈ {0, 1}.

If 𝑘 𝑗 = 0, the outward limit box will be denoted 𝑂 𝑗+ and 𝑂 𝑗− otherwise. By the above

definition, note that |O | = 2𝑑. Since these will be outward limit boxes the outward limit

values will be 𝑎𝑖 = 𝑏𝑖 = 0.

The corners in this construction will be therefore the orthants of the canonical coordinate

system. Since the insides of the outward limit halves are disjoint for every axis, diagonally

opposite corners have to be punched in any case. Since there are 2𝑑−1 pairs of diagonally

opposite corners, ensuring that there is a punching pair of largest volume for as many

such pairs as possible is promising in finding a construction with more than 4𝑑 boxes.
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For further simplicity, the goal will be to ensure that the smaller holes in the pairs of

largest volume will be the boxes 0□𝑣 or 0□− 𝑣 for 𝑣 ∈ 𝑉 of volume 1, which will be called

unit boxes. The hole in the opposite corner has to be larger by the unequal punching

condition.

Since little is understood about the regrouping of tuples, it can be fruitful to look at

constructions, where the boxes bordering the largest punching pair cannot be regrouped

when punching is restricted to the punched pair of diagonally opposite of corners. There-

fore, any inward bordering box should have a small intersection with the corner opposite

from where it is bordering. This property will be called unique grouping condition.

The hyperplanes 𝜎𝑖+ = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 = 1} and 𝜎𝑖− = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 = −1} for 1 ≤ 𝑖 ≤ 𝑑

will be called small borders and shall thus contain the facets of the smaller holes of

the largest punching pairs and define the half-spaces 𝜎+
𝑖+ = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 ≤ 1} and

𝜎+
𝑖− = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 ≥ −1} that intersect with the total box 𝑇 on a large box of volume

(2+ 2𝜀)𝑑−1(2+ 𝜀) and 𝑇 \ 𝜎+
𝑖+ has very small volume (2+ 2𝜀)𝑑−1𝜀. Additionally, the hyper-

planes 𝜏𝑖+ = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 = 𝜀} and 𝜏𝑖− = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 = −𝜀} will be called tiny borders

and define half-spaces 𝜏+
𝑖+ = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 ≤ 𝜀} and 𝜏+

𝑖− = {(𝑥 𝑗)1≤ 𝑗≤𝑑 : 𝑥𝑖 ≥ −𝜀} such that

𝑇 \ 𝜏+
𝑖+ has much larger volume (2 + 2𝜀)𝑑−1(1 + 2𝜀). In other words, the 𝜎+ half-spaces cut

off a small box (or a “slice” of width 𝜀) from 𝑇, while the 𝜏+ half-spaces cut off a large box

(or a “slice” of width 1) from 𝑇.

The boxes of I will be the intersection of the total box 𝑇 and some of the half-spaces 𝜎+

and 𝜏+. The intersection(s) with 𝜎+(s) will ensure that an inward bordering box indeed

borders a unit hole 0□𝑣 for 𝑣 ∈ 𝑉 while the intersection(s) with 𝜏+(s) ensure that the

boxes have a small intersection with the opposite corners (a small intersection of posi-

tive in stead of 0 volume ensures the unique bordering of outward limit boxes). This is

achieved by a sufficiently small 𝜀 > 0 such that 𝜀(1 + 𝜀)𝑑−1 < 1. Such an 𝜀 exists, because

lim
𝑥→0

𝑥(1 + 𝑥)𝑑−1 = 0 and 𝑓 (𝑥) = 𝑥(1 + 𝑥)𝑑−1 > 0 for 𝑥 > 0 and 𝑓 is continuous.

A construction composed of such boxes is required to satisfy the conditions that were

introduced at the beginning of this part while ensuring a number of boxes as large as

possible.

Observation: If an inward bordering box 𝐵 ∈ I is bordered by 𝜏𝑖+ or 𝜏𝑖−, then 𝐵 cannot be

punched by a hole of size at least 1 in the corners which intersect with 𝜏𝑖+ or 𝜏𝑖−. Also, 𝐵 cannot

border a unit box in a corner which intersects 𝜏𝑖+, or 𝜏𝑖−.

Therefore, if 𝜏𝑖+ borders a box in I , then 𝜏𝑖− cannot border it. This also means, that if an
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inward bordering box has 1 ≤ 𝑡 ≤ 𝑑 tiny borders, then then it is 1-punchable in 2𝑑−𝑡of

the possible 2𝑑 corners. Furthermore, since any tiny border intersects with exactly one

element of every pair of diagonally opposite corners, if each box is bordered by a tiny

border, then the unique grouping condition is satisfied for F .

Because of the unique border condition, every bordering box has to have at least one small

border.

Observation: If an inward bordering box 𝐵 ∈ I has a small border 𝜎𝑖+ or 𝜎𝑖− and for 0 ≤ 𝑘 ≤ 𝑑

is also bordered by tiny borders 𝜏𝑖1 , ..., 𝜏𝑖𝑘 where 1 ≤ 𝑖1 < ... < 𝑖𝑘 ≤ 𝑑 and 𝑖 𝑗 ≠ 𝑖 for 𝑗 ∈ [𝑘] and

𝜏𝑖 𝑗 ∈ {𝜏𝑖 𝑗+ , 𝜏𝑖 𝑗−} then 𝐵 borders the unit boxes of 2𝑑−1−𝑘 corners that are also bordered by 𝜎𝑖+ or

𝜎𝑖−.

Thus, if an inward bordering box 𝐵 has 1 ≤ 𝑡 ≤ 𝑑 tiny borders and 1 ≤ 𝑠 ≤ 𝑑 − 𝑡 small

borders, max{0, 𝑠+ 𝑡−𝑑} ≤ 𝑜 ≤ min{𝑠, 𝑑−1} of which are opposite a tiny border, then the

boundary of 𝐵 contains (𝑠−𝑜)2𝑑−1−𝑡+𝑜2𝑑−1−𝑡−1 facets of unit boxes in different corners. So,

the more tiny borders a box has, the less pairs of diagonally opposite corners are available

as a location for punching, thus also restricting the number of possible boxes in I . On the

other hand, the less tiny borders an inward bordering box has, the less available unit box

facets there are for other inward bordering boxes to border uniquely. Furthermore, the

number of small borders of a box also limits the unit box facets for other boxes to border

uniquely.

Since there can be only one tiny border for a box along each axis, the number of boxes

with 𝑘 ≤ 𝑑 tiny borders and 𝑙 ≤ 𝑑 − 𝑘 small borders cannot be more than
(𝑑
𝑘

) (2𝑑−𝑘
𝑙

)
as for

each box, only one tiny border can be chosen for each of the 𝑘 chosen axes.

Therefore, it is not trivial what types of borders should be chosen to obtain a proper

construction of maximal size, since the number of small borders restricts the other boxes

because of the unique border condition, while it is directly related to the possible number

of unique boxes with the same number of small borders (up to 𝑑, but the allowed number

of small boxes is directly related in any range of course.) Simultaneously, the allowed

number of tiny borders is also directly related to number of possible unique boxes, while

the number of tiny borders limits the number of boxes due to 2-punchability but also

loosens the restriction imposed by small borders because of the unique border condition.

However, it is worth noting that creating a proper construction with the above properties

is now only dependent on a purely discrete structure of the small and tiny borders of the

inward bordering boxes and the corners. Furthermore, it is indeed possible to give such

33



a construction that is larger than 4𝑑.

2.3.3 Improved lower bound of Helly-number for 2-punching boxes in dimen-

sion 3

For 𝑑 = 3, we will show an explicit construction along the previously layed out consider-

ations which yields the following results.

Theorem 2.3.4 (Proper construction for lower bound, 𝑑 = 3). There is a family of boxes F in

R3 that is 2-punchable, but not (𝑣, 2)-punchable for any 𝑣 > 1. Furthermore, any proper subfamily

is (1 + 𝜀, 2)-punchable for 𝜀 > 0 and 𝜀(1 + 𝜀)2 < 1.

Corollary 2.3.4.1 (Lower bound on Helly-number for 2-punching boxes inR3). For a family

of boxes F in R3 and tuple-size ℎ, if assuming any subfamily H ⊂ F of size ℎ is 2-punchable

implies F is 2-punchable, then ℎ ≥ 18.

Proof of Theorem 2.3.4. Let 𝑉 be the vertices of the previously defined box 𝐵0 = [−1, 1]𝑑 in

R3 and the total box is 𝑇 = (1 + 𝜀)𝐵0 for sufficiently small 𝜀 > 0.

The outward limit boxes O are defined as previously and the inward bordering boxes

I will all be congruent. Each will have exactly one tiny border and one small border

not opposite to the tiny border. So, each member of I will each be 1-punchable in half

of the corners and will each border 2 unit boxes. Figure 2.2 shows the construction by

highlighting the facets of the unit boxes that are bordered (which uniquely identifies each

inward bordering box).

In each pair of diagonally opposite corners where F can be 2-punched, one the holes

will be the unit box and in the opposite corner, one of the facets of the unit box has to be

unbordered by all inward bordering boxes by the unequal punching condition. Since there

are 4 pairs of diagonally opposite corners, there are 4 possible largest punching pairs, each

of which contains the unit box from one of the corners of a diagonally opposite pair. These

4 boxes have 12 facets that are not bordered by outward limit boxes (these shall be the

inward facets). Therefore, since each inward bordering box has to uniquely border a facet

of the smaller hole of a largest punching pairs, there can be at most 12 inward bordering

boxes. Together with O this amounts to at most 18 boxes in total in F . It will be shown

here, that this limit is sharp and it is possible to give a construction of size 18 > 12 = 4𝑑

for 𝑑 = 3, which therefore yields a stronger result than the previous construction.

Consider the graph of 𝐺(𝑉, 𝐸) where (𝑣1 , 𝑣2) ∈ 𝐸 if and only if they are connected by an
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edge of 𝐵0 for any 𝑣1 , 𝑣2 ∈ 𝑉 . 𝐺 is bipartite (for any 𝑑) and each color class covers all

pairs of diagonally opposite vertex pairs (for any odd 𝑑). Let 𝐶 be one of the color classes

(these vertices are the vertices of a tetrahedron in the box 𝐵0).

The smaller holes of each largest punching pair will be unit boxes 0□𝑐 for 𝑐 ∈ 𝐶. For

𝑗 ≠ 𝑖 and 𝜖1 , 𝜖2 ∈ {+,−}, if 𝜎𝑖𝜖1 and 𝜏𝑗𝜖2 borders an inward bordering box, then it will be

denoted 𝐵𝑖𝜖1 , 𝑗𝜖2 (so the first index reflects the small, the second the tiny border). This also

uniquely identifies each box.

Let

I1 = {𝐵1+,2− , 𝐵2+,3− , 𝐵3+,1−}

I2 = {𝐵1+,3+ , 𝐵2−,1− , 𝐵3−,1−}

I3 = {𝐵2+,1+ , 𝐵3−,2− , 𝐵1−,2−}

I4 = {𝐵3+,2+ , 𝐵1−,3− , 𝐵2−,3−}

Be the inward bordering boxes.

Let F = O ∪
𝑑⋃
𝑖=1

I𝑖 . A box 𝐵𝑖±, 𝑗± is 1-punchable in the same corners as outward limit

box 𝑂 𝑗∓.

Lemma 2.3.5. F is 2-punchable.

Proof. The pair of holes 𝐻1 = 0□1, 𝐻2 = 0□− (1+ 𝜀)1 punches F . Clearly, Vol(𝐻1) = 1 and

Vol(𝐻2) = (1 + 𝜀)3, so the pair has volume 1. The two classes F𝐻1 and F𝐻2 will be shown

to cover F . F𝐻1 = {𝑂1+ , 𝑂2+ , 𝑂3+} ∪ I1 ∪ {𝐵2−,1− , 𝐵3−,2− , 𝐵1−,3− , 𝐵3−,1− , 𝐵1−,2− , 𝐵2−,3−}

because the listed outward limit boxes and the boxes of I1 border 𝐻1 and the other six

boxes have only tiny borders 𝜏1−, 𝜏2− and 𝜏3−, so they can be punched in all corners

of 𝑂1+,𝑂2+ and 𝑂3+ respectively, so 𝐻1 also punches them. F𝐻2 = {𝑂1− , 𝑂2− , 𝑂3−} ∪

{𝐵1+,3+ , 𝐵2+,1+ , 𝐵3+,2+} because all of the listed boxes border 𝐻2 and the tiny borders 𝜏1+,

𝜏2+ and 𝜏3+ and small borders 𝜎1+, 𝜎2+ and 𝜎3+ do not intersect 𝐻2. □

The punching pair in the previous proof however, is not the only punching pair of

volume 1. The unit boxes 0□(1,−1,−1), 0□(−1, 1,−1) and 0□(−1,−1, 1) are bordered by

the boxes of I2, I3 and I4 respectively. Note that 𝑐2 = (1,−1,−1), 𝑐3 = (−1, 1,−1) and

𝑐4 = (−1,−1, 1) are vertices of the tetrahedron 𝐶 (while 𝑐1 = 1).

Note, that F has rotational symmetry of 120 degrees around axis 𝑐1 passing through the
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Figure 2.2: The inward bordering boxes of the construction F . The edges of 𝐵0 are in

black, while each blue rectangle represents the facets of each inward bordering box, which

contain the facets of a unit box, uniquely identifying each inward bordering box. The blue

rectangles are not the actual facets, but are smaller and only highlight which halves of

each facet of 𝐵0 is bordered bo a box. The points 𝐶𝑖 mark the corners where a unit box

is the smaller hole of a largest punching pair of F . These unit boxes are bordered along

every inward facet. The unit box in every other corner has a facet that is not bordered by

any box.

origin. Therefore, by examining the case I2 is sufficient.

Let 𝐻1 = 0□𝑐2 and 𝐻2 = 0□(−1, 1, 1 + 𝜀) be holes. F𝐻1 = {𝑂1+ , 𝑂2− , 𝑂3−} ∪ I2 ∪

{𝐵3+,1− , 𝐵3+,2+} since 𝐵3+,1− and 𝐵3+,2+ have tiny borders 𝜏1− and 𝜏2+ which do not

intersect 𝐻1. F𝐻2 = {𝑂1− , 𝑂2+ , 𝑂3+} ∪ I3 ∪ {𝐵1+,2− , 𝐵2+,3− , 𝐵1−,3− , 𝐵2−,3−} because none

of the listed inward bordering boxes have tiny borders 𝜏1−, 𝜏2+ or 𝜏3+ and small border

𝜎3+ which would intersect 𝐻2. Since Vol(𝐻1) = 1 and Vol(𝐻2) = 1 + 𝜀 the punching pair

has volume 1.

At the same time, there are no larger punching pairs in F . This is due to the unique

grouping property of F .

Lemma 2.3.6. F is not (𝑣, 2)-punchable for any 𝑣 > 1.

Proof. Assume for some 𝑐 ∈ 𝐶, the punching pair 𝐻1 and 𝐻2 punches diagonally opposite

corners containing 𝑐 and −𝑐. Then, as seen previously, the boxes from exactly one of the
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subfamilies I𝑖 from 𝑖 ∈ {1, 2, 3, 4} borders 0□𝑐. Since the boundaries of all three inward

bordering boxes contain an inward facet of 0□𝑐 each, if I𝑖 is punched in this corner, then

0□𝑐 is the largest hole. Therefore, in the corner containing 𝑐 a larger hole can only punchF

if at least one of the boxes of I𝑖 is punched in the opposite corner containing −𝑐. However,

an inward bordering box has a tiny border in the opposite corner, so their intersection is

of volume 𝜀(1 + 𝜀)2 < 1 by choice of 𝜀. Therefore, any such regrouped punching pair has

volume smaller than 1. □

Lemma 2.3.7. Any proper subfamily is (1 + 𝜀, 2)-punchable.

Proof. Since each outward limit box contains two vertices of the tetrahedron 𝐶, the smaller

holes of two largest punching pairs punch it. Therefore, if any outward limit box is

removed, then the two smaller holes lose their borders, since outward limit boxes uniquely

border some facets of the holes of largest punching pairs. Therefore, in any subfamily

H ⊆ F \ {𝑂𝑖±} either the outward limit value 𝑎𝑖 ,F or 𝑏𝑖 ,F changes to 𝑎𝑖 ,H ≥ −𝜀 or 𝑏𝑖 ,H ≤ 𝜀.

Therefore, if 𝐻1 is a smaller hole in 𝑂𝑖+ or 𝑂𝑖− from a largest punching pair {𝐻1 , 𝐻2}, then

for the hole 𝐻′
1 =

𝑖−1∏
𝑗=1

𝜋 𝑗(𝐻1) × 𝐼 ×
𝑑∏

𝑗=𝑖+1
𝜋 𝑗(𝐻1) the pair {𝐻′

1 , 𝐻2} punches H for 𝐼 = [−𝜀, 1]

or 𝐼 = [−1, 𝜀] respectively. Clearly, Vol(𝐻′
1) = 1 + 𝜀, while Vol(𝐻2) ≥ 1 + 𝜀 so the pair is of

volume 1 + 𝜀.

Since the inward limit boxes all uniquely border a given facet of the smaller box from the

largest punching pairs, removing any of them clearly also increases the largest punching

pair. So, if 𝐵𝑖±, 𝑗+ or 𝐵𝑖±, 𝑗− is removed, which uniquely bordered smaller hole 𝐻1 from

largest punching pair 𝐻1 , 𝐻2, then for 𝐼 = [0, 1 + 𝜀] or 𝐼 = [−𝜀, 0] respectively 𝐻1 can be

replaced by 𝐻′
1 =

𝑖−1∏
𝑗=1

𝜋 𝑗(𝐻1)×𝐼×
𝑑∏

𝑗=𝑖+1
𝜋 𝑗(𝐻1) such that 𝐻′

1 , 𝐻2 punches anyH ⊆ F \{𝐵𝑖±, 𝑗+}

or H ⊆ F \ {𝐵𝑖±, 𝑗−}. Again, the pair {𝐻′
1 , 𝐻2} is clearly of volume 1 + 𝜀. □

This completes the proof of Theorem 2.3.4. □

2.3.4 Improved lower bound of Helly-number for 2-punching boxes in the

plane

Another approach for a construction of a lower bound also assumes that outer limit

halves are disjoint along each axis, but while the previous approach had punching pairs

for different (all) diagonally opposite corners this approach only focuses on one pair. Such

37



a construction of size 10 > 4𝑑 − 1 will be presented for 𝑑 = 2, which yields the following

results.

Theorem 2.3.8. The family of boxes F = S ∪ OS ∪ B ∪ OB ∪ R in R2 is 2-punchable, is not

(𝑣, 2)-punchable for any 𝑣 > 1. Furthermore, any proper subfamily of F is (𝑣, 2)-punchable for

some 𝑣 > 1.

Corollary 2.3.8.1. For a family of boxesF in the plane and tuple-size ℎ, if assuming all subfamilies

H ⊂ F of size ℎ are 2-punchable implies F is 2-punchable, then ℎ ≥ 10.

Proof of Theorem 2.3.8. Consider the family F = S ∪ OS ∪ B ∪ OB ∪ R consisting of five

types of boxes. The boxes in S will be referred to as the small boxes, B contains the big

boxes, OS and OB are the outer limits boxes for the small and big boxes and R are the

restricting boxes.

All boxes of F will be contained in the total box 𝑇 = [−4, 4]2. Let OS and OB be the

positive and negative halves of 𝑇. For sufficiently small 1 > 𝜀 > 0 and 𝑎 > 0 such that

2.1 · 𝑎 < 1 and 𝑎2 + 1.9 · 𝑎 > 1 (for example, 𝑎 = 0.45 is an appropriate choice) the other

boxes will be the following.

S = {(3, 1)□(−0.5,−4), (1, 3)□(−4,−0.5)}

B = {(−1 − 𝜀,−3)□(0.5, 4), (−3,−1 − 𝜀)□(4, 0.5)}

R = {(−𝑎,−𝑎)□(2.1, 1.9), (−𝑎,−𝑎)□(1.9, 2.1)}

Note that the members of a given pair are axial reflections of each other for axis

{(𝑥, 𝑦) : 𝑥 = 𝑦}.

Lemma 2.3.9. F is 2-punchable.

Proof. Clearly, the family is punched by𝐻1 = 0□1 and𝐻2 = 0□−(1+𝜀)1 asF𝐻1 = OS∪S∪R

and F𝐻2 = OB ∪ B. Clearly, Vol(𝐻1) = 1 and Vol(𝐻2) = (1 + 𝜀)2, so the punching pair has

volume 1. □

Lemma 2.3.10. F is not (𝑣, 𝑛)-punchable for any 𝑣 > 1.

Proof. For any intersection point outside the For any point 𝑃 in the set 𝑆 = {(𝑥, 𝑦) : 𝑥𝑦 <

1} ∩ {(𝑥, 𝑦) : 𝑥𝑦 < −1} the box 0□𝑃 has volume smaller than 1, while if 𝑃 ∈ R2 \ 𝑆, then

Vol(0□𝑃) ≥ 1. Figure 2.3 shows the relationship of F to the set 𝑆.

38



Figure 2.3: A construction which is 2-punchable, not (𝑣, 2)-punchable for any 𝑣 > 1, but

for which any subfamily is (𝑣, 2)-punchable for some 𝑣 > 1. The pair of boxes {0□𝑆, 0□𝐵}

is the largest punching pair. The hyperboles are {(𝑥, 𝑦) : 𝑥𝑦 = 1} and {(𝑥, 𝑦) : 𝑥𝑦 = −1},

so a box 0□𝑃 is larger than 1 if and only if 𝑃 is “outside” of the hyperboles.

First, punching will be considered in the diagonally opposite corners 𝐶+ = 𝑂1+ ∩ 𝑂2+

and 𝐶− = 𝑂1− ∩ 𝑂2− (by slight extension of the term, since they are not orthants). If a

restricting box is not punched in 𝐶+, then 0□ − 𝑎1 of volume 𝑎2 < 1 is the largest hole for

it in 𝐶−. Both restricting boxes and a big box cannot be punched together in 𝐶+, because

their intersections are 0□(1.9, 0.5) or 0□(0.5, 1.9) of volume 0.55. If R and only one small

box is punched together, then the big boxes and the other small box are punched in 𝐶−,

where 0□(−0.5,−1 − 𝜀) or 0□(−1 − 𝜀,−0.5) are the intersections of volume 1+𝜀
2 < 1.

If a restricting box is punched in the other pair of corners, then the intersections are of

volume 2.1 · 𝑎 < 1. □

Lemma 2.3.11. Any proper subfamily of F is (𝑣, 2)-punchable for some 𝑣 > 1.

Proof. By removing a small box, a unique border for the smaller box of the largest punch-

ing pair for F is removed, so a subfamily missing a small box has a punching pair of

volume larger than 1. The holes {0□(1, 1.9), 0□− (1+ 𝜀)1} or {0□(1.9, 1), 0□− (1+ 𝜀)1} are

punching if a small box is missing.
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By removing a big box, the restricting boxes and only one small box can be punched to-

gether, while only one small and big box are punched together in 𝐶− by a hole larger than

1. 0□(1.9, 1) or 0□(1, 1.9) punch R ∪ {𝑆1} or R ∪ {𝑆2} while 0□(−0.5,−4) or 0□(−4,−0.5)

punch {𝑆2 , 𝐵2} or {𝑆1 , 𝐵1}. Clearly, both punching pairs are of volume 1.9.

If a restricting box is removed, then for 𝑖 ∈ {1, 2} the subfamilies {𝑆𝑖 , 𝐵𝑖 , 𝑅𝑖} and

{𝑆(𝑖+1 mod 2)+1 , 𝐵(𝑖+1 mod 2)+1} are punched together respectively by punching pairs

{0□(0.5, 2.1), 0□(−0.5,−4)} or {0□(2.1, 0.5), 0□(−4,−0.5)} of volume 1.05.

By removing an outward limit for a small box, the unique border for the smaller box from

the largest punching pair of F is removed so the largest punching pair is of larger volume

in the subfamily. The pairs {(−𝑎, 0)□1, 0□(−1− 𝜀)1} or {(0,−𝑎)□1, 0□(−1− 𝜀)1} of volume

(1 + 𝜀)2 punches F \ {𝑂𝑖+} for 𝑖 ∈ {1, 2}.

By removing an outward limit for a big box, one of the restricting boxes becomes punchable

in the other outward limit box for a big box with the largest hole crossing corners. The pairs

{−𝑎1□(1.9, 0), 0□(0.5, 2.1)} or {−𝑎1□(0, 1.9), 0□(2.1, 0.5)} of volume 𝑎2 + 1.9 · 𝑎 > 1 punch

{𝑂𝑖− , 𝑆𝑖 , 𝐵𝑖 , 𝑅(𝑖+1 mod 2)+1} and {𝑂1+ , 𝑂2+ , 𝑆(𝑖+1 mod 2)+1 , 𝐵(𝑖+1 mod 2)+1 , 𝑅𝑖} together re-

spectively for 𝑖 = 1 or 𝑖 = 2. □

This completes the proof of Theorem 2.3.8. □
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Chapter 3

Open problems

It remains to be seen whether there is a Helly-type theorem about 2-punching of the

following form: There is a finite tuple-size ℎ𝑑 for which 2-punchability of all ℎ𝑑-tuples from

a finite family of boxes in R𝑑 implies 2-punchability of the whole family. An open question is

whether the construction in Section 2.3.4 can be generalized to any dimension 𝑑, which

would yield a lower bound of 5𝑑 for ℎ𝑑. It is also unkown whether it is possible to construct

to an improved lower bound using the principles set in Section 2.3.2 for dimensions other

than 3.

It is also unanwsered for which cases 𝑛1 < 𝑛2 a not 𝑛1-punchable tuple of fixed size can

disprove the 𝑛2-punchability of a family from which the tuple is taken, i.e. for which

cases 𝑛1-punchability of all ℎ-tuples from a family of boxes implies 𝑛2-punchability. In this case,

condition 𝐵 of the whole family is weakened. This also an open question for the same type

of statement about piercing, as Danzer and Grünbaum only examined the cases 𝑛1 = 𝑛2.

A further possible line of inquiry is to examine the more general notion of (V , 𝜈)-punching,

which was introduced in Section 1.2. It is unknown whether prescribing different sizes

for the holes in the punching tuples yields different Helly-type statements than for 𝑛-

punching. A similar approach is to prescribe not a lower bound on the volume of holes,

but a lower bound on the sum of the volume of the holes. This might yield the following

definition.

Definition: A family of 𝑑-dimensional boxes is 𝑛-sum-𝑠-punchable if there is a family of
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𝑑-dimensional boxes H that punches F such that∑
𝐻∈H

Vol(𝐻) = 𝑠 (3.1)

|H| = 𝑛 (3.2)

It can be immediately seen for example, that 2-sum-1-punchability of any 3-tuple from a

family of intervals does not imply the 2-sum-1-punchability of the whole family. This is shown

for example, by the family of intervals {[0, 1], [1, 2], [2, 3], [3, 4]}. It is also interesting to

explore whether there is a Helly-type statement of this sort and what the consequences

of further restrictions on the family or the punching tuples might be.
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