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1 Introduction

In this paper, we discuss the topic of graph canonization. We introduce the basic
concepts necessary to define what it means to canonically represent a graph, and
the difficulties we might face during it. We examine the most well-performing graph
canonization algorithms, as well as some of the algorithms that led up to them. We
also showcase some ideas as to the improvement of these algorithms, and how these
improvements perform in practice.

1.1 Motivation

Graph canonization is a tool which can help us solve many mathematical problems
related to graph-isomorphism, wherein we want to compare two graphs or subgraphs,
and decide the following course of action based on their similarity. In the most simple
case, we want to decide whether two given graphs, G1 and G2 are isomorphic, that
is, whether a permutation on the nodes of G1 exists such that permuting the vertices
of G1 yields G2 as a result. A slightly more complex version of the problem is the
subgraph-isomorphism problem, in which we want to decide whether a subgraph G3

of G1 exists which is isomorphic to G2. This version of the problem is often more
useful in practice and is NP-complete, as one can for example check for a hamiltonian
cycle with a polynomial-time subroutine which can decide the subgraph-isomorphism
problem.

Such problems often come up in biology [22] when analyzing the structure of
proteins or other chemicals, and is also regularly encountered in general graph-theory
related theoretical and practical problems. In particular, we will take a closer look at
how graph canonization can help us efficiently generate all non-isomorphic graphs,
or even just ones which satisfy certain specific properties, something for which no
conceptually different algorithm is known. While the canonization of very large
graphs is an interesting discussion of its own, we will mostly look at the problem in
the context of graph generation, which is mostly restricted to graphs with around 20
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vertices even in the best case, as the sheer number of different graphs quickly gets
out of hand even with respect to isomorphism, so unless otherwise stated, the graphs
discussed in the paper should be thought about as having around 10-15 vertices.

1.2 Our results

For the purposes of testing out new strategies for both graph canonization and non-
isomorphic generation, a C++ implementation of one of today’s most well-performing
canonization algorithms was coded, which while not reaching the sheer efficiency of
the best canonization tools available, performs canonization with a runtime of the
same magnitude as these programs, and is of a higher level construction, meaning
that modifications and utilization is much more convenient than with some of the
other available options. This implementation was successfully used both in the
development of a non-isomorphic graph generating tool with the collaboration of
Lóránt Matúz, as well as in the testing and analysis of various heuristic approaches
to improving graph canonization, namely a generalization of Mckay’s equitability
condition [17] and a new vertex invariant, both of which have been shown to be
capable of finding finer partitions than simple equitability refinement.

1.3 Basic definitions, notations

Here, we give a brief overview of terms and notations used throughout the paper.
Any notations that are specific just to a given chapter are elaborated on there only.

Sets Given a graph G, V (G) denotes the set of the vertices or nodes of G, and
E(G) the set of its edges. We often examine the sizes of sets, this is always denoted
as the absolute value symbol, that is, |X| is the number of elements of the set X.
When we say a graph is of size n, it means that |V (G)| = n. All graph examined
throughout the paper are simple unless stated otherwise, and their size is usually
denoted by n.

Another type of set we will often use is {1, . . . k}, that is, for some k ≥ 1, we
take the set of all integers between 1 and k. We will denote this set as [k]. For
all graphs discussed in the paper, their vertices are assumed to be labeled simply
from 1 to |V (G)|, that is, V (G) = [|V (G)|]. The set of all such graphs of order n is
denoted as Gn, and the set of all graphs as G∗ =

⋃∞
n=0 Gn. The set of all subsets of

X or its power set is denoted as 2X . For any graph G and v ∈ V (G), N(v) denotes
the neighborhood of v, that is, the set vertices adjacent to v in G.

Permutations In search for a canonical labeling, we will utilize lots of permu-
tations, particularly permutations of graph nodes. A permutation µ of the set [k]
is simply a bijection µ : [k] 7→ [k], that is, each number is “moved” to another,
unique number. A permutation µ will be denoted as (µ(1), . . . , µ(k)), and the set
of all permutations of [k] will be denoted as Sk. Given a graph G of size n, and a
permutation µ ∈ Sn, µ(G) is the resulting graph after µ is applied to the vertices of
G, or more precisely, V (µ(G)) = V (G) and E(µ(G)) = {µ(u)µ(v) : uv ∈ E(G)}.
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Generally, given a set of indices X ⊆ [n] and some permutation µ ∈ Sn, we define
µ(X) as {µ(x) : x ∈ X}.

If µ(G) = H, then we say that G and H are isomorphic, denoted as G ∼ H with
µ being an isomorphism between the two graphs, and when µ(G) = G, we call µ an
automorphism of G.

If for vertices u, v there is some automorphism µ for which µ(u) = v, then we
say that u and v are in one orbit. The naturally resulting equivalency classes on the
vertices of the graph are likewise referred to as its orbits.

Partitions Finally, some notations related to partitions need to be mentioned, as
partitioning of vertices is a crucial element of more advanced graph canonization
algorithms. We say that a set of vertex-sets π is a partition of the set X if the
elements of π are disjoint sets made up of the elements of X, and together make up
the entirety of X, that is, c1∩c2 = ∅ for any two distinct c1, c2 ∈ π, and

⋃
c∈π c = X.

The elements of π are referred to as the cells of the partition, and the elements
inside the cells as atoms. The set of all partitions of [n] is denoted as Πn.

The concept of isomorphisms and automorphisms for partitions of the vertices of
a graph can be defined analogously to the case of graphs. Given graphs G,H with
partitions πG, πH respectively, we say that the pair (G, πG) is isomorphic to (H, πH)
if there is a µ permutation for which µ(G) = H and µ(πG) = πH , where µ(πG) is the
partition resulting from applying µ to each atom of πG. When G = H, we simply
say that the two partitions are isomorphic.

An ordered partition is just like a regular partition, except that the cells are also
given a specific order. Note that the order of the atoms themselves is still arbitrary
within the cells. An ordered partition with cells X1, . . . , Xk in that order is denoted
as (X1, . . . , Xk). The set of all ordered partitions of [n] is denoted as Π∗

n.
We say that a partition π1 is finer than π2 if every cell of π2 is a union of cells

within π1. Conversely, π2 is coarser than π1. When π1 is finer than π2, we denote it
as π1 ≤ π2, and if they are not equal, we write π1 < π2.

2 Graph canonization

In this section, we introduce the concepts related to canonical graph representation,
and discuss some of the most basic ideas and approaches that are necessary to
properly construct an algorithm which consistently gives us the same representative
for any given isomorphism class.

2.1 Canonical representation of a graph

To put it simply, graph canonization is the process of taking a graph, and computing
from it some completely isomorphism-invariant output.

Definition. For any target set U , A function f : Gn 7→ U , is called a canonization
algorithm if, for any two graphs G,H ∈ Gn, we have f(G) = f(H) exactly when
G ∼ H.
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This function is also sometimes called a complete isomorphism-invariant, as the
same f -value is sufficient and necessary for the isomorphism of two graphs. Here,
f(G) is called the canonical representation or form of G according to f .

Different canonizations can give the same graph completely different canonical
forms. For two canonizations f1, f2, even if R(f1) = R(f2), it is perfectly plausible to
have f1(G) ̸= f2(G) for some G ∈ Gn. In this case, G simply has different canonical
forms for the different canonizations.

It is not difficult to see that given access to an oracle for such a function, one can
easily give a method for deciding the graph isomorphism problem: with an oracle to
an f canonization, to check whether G ∼ H holds, we simply need to see whether
f(G) = f(H) holds.

One simple example of such a function would be the following: for a graph G,
let CG be the set of all graphs isomorphic to G. Then, defining our function as
f : G 7→ CG, we can confirm that f is indeed a canonization, as CG = CH will
clearly hold exactly if G and H are in the same isomorphism class. This approach
works only in theory of course, since a graph of size n can have as many as n! graphs
isomorphic to it, a sharp estimate in the case of graphs without any automorphisms,
so generating CG every time a graph needs to be canonized is not feasible.

The reach of the canonization is usually chosen to contain fairly simplistic and
compact elements, as easy comparisons of canonical forms is commonly performed
during isomorphism-testing. Some canonizations merely assign a string of characters
to the graph, others build up a proper data structure to represent the graph. We
will be taking a particular look at a specific method of canonically representing a
graph which provides great convenience and usefulness in various ways for certain
methods that utilize canonical representations, that being canonization by vertex
re-labeling.

2.2 Canonical labeling

The idea of computing the CG isomorphism class is not a very efficient solution to the
canonization problem, but one may think to compute just one specific element of CG.
Suppose we have two graphs, G and H, and we also had their respective isomorphism
classes, CG and CH . Then if we wanted to know whether CG = CH holds, it would
be sufficient to decide whether there is any common element c ∈ CG ∩ CH between
the two sets, as according the nature of isomorphism, if they have one element in
common, then they must be exactly the same set. If there was a way to calculate
to compute the c graph, given only G, or any other graph in CG without actually
having to examine the entire isomorphism class, then this c graph would be a more
practical canonical form for G.

Thus, we can introduce the concept of canonical labeling, the most widely-used
method of practical graph canonization.

Definition. Let a canonization f : Gn 7→ Gn be such that for any G ∈ Gn, G ∼ f(G)
holds. In this case, f(G) is called the canonical labeling of G according to f .

One can imagine the application of f as simply permuting the vertices of G,
re-labeling them to gain the new form, hence the name. In fact, sifting through
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various permutations on the vertices of G is exactly what the main canonization
algorithms do. Once again, the canonical labeling of a graph is only “canonical” as
far as the canonization goes, different appropriate canonization functions can assign
different canonical labelings to the same graph.

This particular type of graph canonization is remarkably interesting because in
many cases, we do not only want to identify the isomorphism class of a graph, but we
might want to perform operations on it in ways that are consistent across different
runs that are started with isomorphic input graphs, which the ability to canonically
label a graph provides a solution for straight away. For instance, in Section 4,
we discuss a non-isomorphic graph generating algorithm whose main ideas include
examining what properties certain vertices would hold according to some canonical
labeling.

No algorithm for computing a canonical labeling in polynomial time is currently
known. A big hurdle in the calculation of a canonical labeling, or canonical rep-
resentations in general, is that the output simply cannot, in any way rely on the
“order” in which the vertices of the graph are labeled. For example, a simple ap-
proach such as running a depth-first search on the graph, then labeling the vertices
in order of when the search was done examining them is entirely wrong, as this
order is dependent completely on the initial labeling of the nodes, so any element
of CG can yield a completely different result, despite the graphs themselves being
isomorphic. Throughout our search for a canonical labeling, it is important to pro-
ceed in an isomorphism-invariant manner, thus, whenever a decision must be made
in relation to choosing between multiple vertices with no given order other than
their labels, we will have to consider each possibility individually, which can lead
to widely branching recursions, so efforts should be made to keep these decisions as
few and as far in-between as possible.

2.3 Historical overview

The graph isomorphism problem and its related problems have been subject to
exhaustive research, with a wide array of different approaches and heuristics having
been used or attempted to tackle the problem. To this day, no polynomial-time
algorithm is known that can decide whether two arbitrary graphs are isomorphic,
but many approaches have been found that provide perfectly satisfactory results in
the vast majority of cases. One such approach was through graph canonization.

The idea of using canonical forms and labelings to decide isomorphism and sim-
ilarity between graphs can be traced back to the 1960’s, when people such as Mor-
gan [21] or Duijvestijn [11] used the ideas of canonical coding to identify chemical
compounds, and to aid in the computation of squared rectangles, respectively.

Since then, many minds have dwelled on the canonical representation of a graph.
For example, Read [25] and Babai [5, 6, 4] have studied algebraic, string-focused
canonical representations, the former having introduced a linear-time algorithm for
trees, and the latter having introduced, among other things, an algorithm of ex-
pected linear time on a majority of graphs, and, in 2019, a quasi-polynomial algo-
rithm for the general case.

However, the essence of most practical canonization lies in the search-tree based
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canonical labeling algorithms, first introduced and studied by Parris and Read [26],
Corneil and Gotlieb [9] or Arlazalov [2], then later, independently fleshed out and
popularized by McKay [20], who greatly improved the performance of the algorithm
on graphs of high automorphism count. The algorithm of McKay has since been
extensively chiseled and perfected, and still to this day remains one of the leading
tools in canonization in the form of McKay’s and Piperno’s nauty and Traces [17,
19] project. Other tools have since been developed that utilize the same general
paradigm provided by this algorithm, Such as Junttila’s bliss [13] project, or
Darga’s saucy[10] and many more, each of which aim to improve upon the general
algorithm with certain divergences that improve performance in a select group of
cases.

Even after years of study, there are still open questions regarding graph can-
onization. One of the main undecided questions regarding the complexity of graph
canonization is whether deciding the graph-isomorphism problem is polynomial-time
equivalent [3] to the computation of a canonical form. Clearly, given a canonization
oracle, solving the isomorphism problem is trivial, but it is not yet known whether
an isomorphism oracle could allow us to compute a canonical form for any graph in
polynomial time.

3 Canonization Algorithms

In this section, we will go over and examine various notable algorithms which employ
various methods and strategies to compute a canonical representation for a graph,
and potentially a canonical labeling. Among others, we also introduce the basics of
search-tree based canonization, which is especially important for the ideas listed in
Sections 4 and 5.

3.1 Read’s algorithm for trees

While no polynomial-time canonization algorithm is yet known for general graphs,
one can often “simplify” the problem by only examining specific families of graphs.
Trees (connected graphs without any cycles in them) are much more easily handled
in many problems due to their specific properties. Isomorphism can be checked
between trees in polynomial time and similarly, canonization is also feasible. The
following method of tree-canonization by Ronald C. Read [25] computes a binary
string (a string of zeroes and ones) for each vertex by iteratively concatenating the
strings of various vertices. The original algorithm involves the conversion of the
original tree into a rooted binary tree, which allows the algorithm to run in linear
time and memory. Here we will discuss a simpler version of the algorithm, which
still runs in polynomial time.

Initially, all vertices are given the string “01”. Then, in what we call the con-
catenation cycle, for every non-leaf vertex v, the Concatenate subroutine removes
the leading 0 and trailing 1 from s(v), effectively “opening up” the string for the
current concatenation. Then it takes all the leaf neighbors L ⊆ V (T ) of v, and then
all s(v), as well as all s(l) : l ∈ L are concatenated together in lexicographic order.
It then adds the leading 0 and trailing 1 to the new, concatenated string, effectively
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Algorithm 1 Read’s tree-canonization

procedure CanonTree(T )
for all v ∈ V (T ) do

s(v)← “01”
end for
while |V (T )| > 2 do

for all v ∈ V (T ) : d(v) > 1 do
Concatenate(T, v)

end for
for all v ∈ V (T ) : d(v) = 1 do

T ← T − v
end for

end while
if |V (T )| = 2 then

Merge(T )
end if
z ∈ V (T )
return s(z)

end procedure

“closing down” the collected neighboring strings. Clearly, the string of a vertex only
changes if it has at least one neighboring leaf. Once we have done this for all non-
leaf vertices, the current concatenation cycle ends, and we delete all leaves from the
graph, finalizing their respective binary strings, and the concatenation cycle begins
once again. We do this until we have only one vertex left. In the case where there
are two vertices left at the start of an iteration step, we simply call the Merge
subroutine, in which we treat one with a lexicographically maximal string as the
“non-leaf”, and finish in one similar concatenation step.

Since we are dealing with trees, at least two vertices are guaranteed to be re-
moved in each iteration. It can be shown that this method gives us a canonical
representation of the tree in the form of the binary string belonging to the final
remaining vertex z.

Theorem 3.1. Within the family of tree graphs, CanonTree(T ) given by Algo-
rithm 1 is a canonization.

The most simple way to think about how this final string is a representation of
the tree is to consider the it as a representation of a laminar system of branches,
with the final vertex being the “root” set. Zeroes open up a collection of subtrees,
and ones close it off. Thus, the input tree itself can be easily reconstructed from
s(z), and is therefore only obtained by trees isomorphic to the original input.

In Figure 4, we show how the algorithm runs on a simple tree. First, the only
non-leaf vertices with leaf neighbors are v3 and v6, the former receives the new string
0 + 01 + 01 + 1, the latter 0 + 01 + 1. Afterwards, the vertices v1, v2 and v4 each
with the label 01. Then v3 and v6 both become leaves, meaning that v5 now has
leaf neighbors. In the next cycle, Now v5 receives the new string 0 + 001011 + 0011
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v1 01 v2 01

v3 01

v401

v5 01

v6 01

Figure 1: Initial labels.

v1 01 v2 01

v3 001011

v401

v5 01

v6 0011

Figure 2: v1, v2, v4 finalized.

v1 01 v2 01

v3 001011

v4 01

v5 000101100111

v6 0011

Figure 3: Rest of vertices finalized.

Figure 4: An example of resulting binary strings, first the bottom three vertices are
removed, then the one in the middle, v5 is the final vertex.

+ 1, and both of the contributing leaves are subsequently deleted. v5 is the last
remaining vertex, so the algorithm terminates, and the canonical representative of
our tree is “000101100111”.

Note how in this version of the algorithm, certain vertices may need to have
their corresponding binary strings altered multiple times throughout the run of the
algorithm, whenever they receive a new neighboring leaf at the start of a concatena-
tion cycle. Read details a version of the algorithm in which each vertex only needs
to be examined once and which still leads to a canonical form, however, it is a lot
more difficult to see the isomorphism-invariance of the process, and the final binary
strings may differ greatly between the corresponding vertices of isomorphic graphs.
In the above version, any two isomorphic trees will have the same binary strings on
vertices that correspond to one another for some isomorphism between the graphs,
which is beneficial for establishing a canonical labeling.

The canonical labeling While the string of each vertex is clearly a canonical
representation of the given subtree branching from the vertex, it is also clear that
certain vertices will have the same final string at the end of the algorithm. All leaves,
for instance, will have the initial “01” string as their final one set in the very first
concatenation cycle. This means that if we want an actual canonical labeling on
the vertices, we cannot simply label them from 1 to n based on lexicographic order
of the strings alone, as there is no straightforward way to handle ties. However, it
is not particularly difficult to acquire a proper labeling from the strings given by
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the above algorithm in polynomial time. One such method would be the following:
First, order the different resulting string in lexicographic order, then give each family
of vertices with identical strings an interval of labels based on their positions in the
established order. More precisely, if the resulting different binary strings in order
are b1, b2, . . . , bk, and there are p1, p2, . . . , pk vertices with these strings respectively,
then the vertices possessing b1 will receive the labels 1, 2, . . . , p1, the ones possessing
b2 will receive p1 + 1, p1 + 2, . . . , p1 + p2, and so on.

Now for the actual distribution of labels: find a central node z in the tree T ,
one for which max{dist(v, z) : v ∈ V (T )} is minimal (the final vertex of the above
algorithm is appropriate for this), and then run a depth-first search on the tree
starting from there. Every time a new vertex is encountered throughout the search,
we give it the smallest label within established interval of its binary string that we
have not yet given out. It is not difficult to show that given the total isomorphism-
invariance of the strings, the resulting labeling will indeed be canonical. Once again
we have to be careful of the special case where there are two central nodes in the
graph, but as long as we make sure to step into this other node last when examining
the neighbors of z, the algorithm will give us consistent labelings.

3.2 Generalized vertex-hashing

The efficiency of the algorithm detailed in the previous section relies heavily on
the restriction of tree-graphs. Both the low number of concatenation-cycles and
the simple acquisition of a canonical labeling are made simple due to the simplistic
structure of the graph, however, the general idea of iteratively modifying binary
strings based on those of neighboring nodes can be applied to general graphs to a
certain extent.

Jüttner and Madarasi [14] proposed an isomorphism-testing algorithm that in
implementation operates in a similar vein to Read’s algorithm in the sense that labels
are computed on the vertices of graphs by concatenating certain strings. It attempts
to categorize vertices based on the different number of unique walks between each
other by means of dynamic programming, collecting information from neighbors in
a similar way to Read’s algorithm. Here we present it in a manner that shows us
how the algorithms are similar. The process consists of the repetition of a similar
concatenation cycle as the one performed by Algorithm 1, except that no consistent
way of “finalizing” labels can be relied on as with leaves in the case of trees, so
instead of working back from leaves, every vertex simply aggregates the labels of
its neighbors in every concatenation cycle. As a result of this, in order to stay
isomorphism-invariant, vertex-labels need to be modified simultaneously: if we were
to continually change labels as they are computed like in the previous algorithm,
it would immediately begin to affect other labels, which would make the end result
highly reliant in the order of the examination of the vertices. Instead, all new labels
are applied only once the entire concatenation cycle is finished.

Another luxury utilized by Read’s algorithm is the convenience of the laminar
method of labeling provided by the subtrees encoded within the canonical form. By
containing each concatenated group of strings within zeroes and ones, an efficient
way of recreating the input tree from the output string can be defined, which also
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proves the correctness of the algorithm. In the general case however, connections
between vertices can be much more complex, and thus such a structure would not be
attained from this method of concatenating labels. Instead, the strings themselves
can simply be concatenated without the closing-opening steps, however, in order to
make the strings of vertices in different orbits stand out more from one another,
labels are calculated individually for each group of vertices, with unique starting
labels to help the specific “environment” of each vertex shape its eventual label on
a case-by-case basis.

This is achieved by computing characterizations of G based on the individualiza-
tion of certain sets of distinct vertices V ′ = {v1, v2, . . . vk} ⊆ V (G). From now on, k
represents the number of individualized vertices. Certain multisets, here represented
as strings, are initially computed which aim to describe the walks of length at most
l which begin in V ′ with the following method:

Algorithm 2 Hash-labeling

procedure HashLabel(G, V ′, l)
for all u ∈ V (G) do

sk0(u)← “(∅,Neighbors(u, V ′))”
end for
for all i ∈ [l] do

for all u ∈ V (G) do
ski (u)← (ski−1, Aggregate(N(u), i− 1))

end for
end for
return Aggregate(V (G), l)

end procedure

Here, Neighbors(u, V ′) is string comprised of k − d(u, V ′) zeroes followed by
d(u, V ′) ones, essentially concatenating the indicators of the edge-relations between
u and the elements of V ′. Aggregate(X, i) on the other hand takes the ski (.)
strings of all vertices within X and concatenates them in lexicographic order. The
strings computed in the final cycle are all taken together, and used to give the “final”
walk-characterization of V ′ on G, hereby referred to as skG(V ′).

Clearly, for any vertex-subsets of size k, if skG(V1) ̸= skG(V2), there can be no
automorphism µ of G for which µ(V1) = V2. In [14], it is shown that no “useful”
information is gained after n+1 concatenation cycles, that is, if skG(V1) = skG(V2) for
l = n + 1, then the same follows for any l > n + 1 too. From here on, l is assumed
to be n + 1.

A drawback to this approach may become apparent at this point, regarding
the length of the individual strings. Initially, each string describes only describes
the relation the vertex holds to the individualized vertices, so |sk0(v)| = O(k) for
all v ∈ V (G). However, each vertex can have up to n − 1 neighbors, so with
each concatenation cycle, the length of each string can increase at most n-fold.
|skG(V )| = O(k ∗ nl). If we want to make multiple iterations, then this is clearly
going to become too long to reasonably compute.

One method of circumventing this issue is by replacing the strings with shorter
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representatives after each concatenation cycle to keep things on a smaller, more
manageable level while still preserving the unique information contained within the
aggregated strings. In Jüttner’s and Madarasi’s implementation, this is achieved
by simply passing the strings through a hash function (namely SHA512), which
replaced each label with an “arbitrary” string of consistent length, for which any
two non-identical strings are highly unlikely to receive identical hash-values, this way,
strings can still provide useful differentiating information throughout aggregations,
while staying at a manageable length.

So far we have shown how a label can be computed for each vertex, now as for the
representation of the graph: We wish to derive a representation of the entire graph,
not just in relation to a given vertex-set of size k. This can be achieved by a recursive
formula (which in practice is of course computed via dynamic programming):

Definition. For some q ∈ [k − 1] and vertex-set V ′ = {v1, . . . , v2} ⊆ V (G), let
skG(V ′) := Concatenate{skG(V ′ ∪ {v}) : v /∈ V ′}.

Here, Concatenate(X) simply concatenates together all the strings within X
in lexicographic order. This way, for q = 0, we get an absolute representation of the
entire graph, Which is simply denoted as skG. It can be shown that following the
previously described methods, skG can eb computed in polynomial time, assuming
that k is a bounded constant.

Identifying graphs It is not difficult to see that for isomorphic graphs, this
representation will indeed be the same, however it is not a complete isomorphism-
invariant. It is proven in [14] that connected strongly regular graphs with the same
parameters all have the same s1. value, and that a violating pair must exist for
k = 2 as well. as well. This is why sk. is referred to as a fingerprint of the input
graph, rather than a canonical form. This way of representing the graph however is
still very much an identifier for many intents and purposes. In the same paper, it
is shown that this fingerprint uniquely identifies and differentiates graphs in many
scenarios. For instance, it was determined through exhaustive examination that s2.
is a complete isomorphism-invariant on G12, that is, for any two graph G,H of size
at most 12, s2G = s2H exactly if the two graphs are isomorphic. The following are a
few more of the most notable results regarding the efficacy of this graph fingerprint.

Theorem 3.2. s1. is a complete isomorphism-invariant on trees.

Theorem 3.3. s3. is a complete isomorphism-invariant on 3-connected planar graphs.

Theorem 3.4. If G is k-connected and H is not, then skG ̸= skH

We will also examine in Section 3.5 how in the case of k = 1, the different
s1(v) labels computed for the vertices themselves in a slightly modified version of
the above algorithm can help us achieve a canonical labeling, and how this method
relates to a more practical method of graph canonization.
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3.3 Search-tree algorithms

In this section, we discuss one of the most widely used methods of graph canon-
ization, in which a search-tree of ordered partitions is used to sift through various
permutations of the vertices of a graph.

Let us take a step back and examine how one could pick out a labeled graph to
represent a given isomorphism class when a reasonable runtime is not a concern. If
we could define a order on the labeled graphs belonging to this isomorphism class,
then we could choose the first graph in the order to be the canonical representation.
With this approach, we can give a very simple canonization algorithm, as the iso-
morphism class of any given input graph G of size n can be computed by simply
permuting the vertices of the graph in all possible ways, and adding the resulting
graph to our (initially empty) collection. It is not even an issue if different permu-
tations lead to the same graph, as the lexicographically minimal representative will
be found and kept either way. This brute-force approach clearly gives us a proper
canonical representative in the form of a canonical labeling, but is also completely
unfeasible in practice, simply because of the sheer amount of labeled graphs that
need to be examined, n!.

Search-tree canonization algorithms essentially attempt to take the above ap-
proach and make it a bit more friendly with certain heuristics and reductions. The
main goal is to reduce the number of permutations that actually need to be exam-
ined in the above method, while still guaranteeing that the chosen graph is indeed a
lexicographically minimal re-labeling of the initial graph according to some ordering.

Definition. A canonization search-tree of the graph G is the pair formed by a rooted
tree T = (VT , F ) and a collection of ordered partitions {πt : t ∈ VT} such that:

• for the root r ∈ VT , we have the unit partition πr = (V (G)),

• for any t ∈ VT \ {r}, we have: πt ≤ πp(t), where p is the parent function within
T ,

• for any leaf l ∈ VT , we have an ordered trivial partition πl = ({µ1}, {µ2}, . . . , {µn})
for some permutation µ ∈ Sn.

Clearly, for each leaf of such a tree, we can apply the permutation corresponding
to its partition to G, giving us a new labeling of the graph. However, in search-tree
algorithms, we usually apply the inverse of the above permutation, for reasons which
should become clear once the nature of these algorithms is more closely examined.
See Figure 5 for an example of how an ordered trivial partition translates to a
permutation of V (G).

Now we can properly introduce the core idea of search-tree canonization algo-
rithms: if we can generate a canonization search-tree such that the leaves of the
tree yield an identical collection of graph forms for different, yet isomorphic starting
graphs, then it is sufficient to search for a lexicographically minimal form amongst
those.

Clearly, the more children we give to each partition, the wider the search-tree
becomes, and the more permutations we need to examine. Excessive calculations
are generally not ideal, so we want to minimize the number of children that we give
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4

5 1

3 2

5

1 2

3 4

({5}, {1}, {3}, {2}, {4})

Figure 5: Permuting vertices based on an ordered trivial partition.

to each node, that is, make the partition of each child as fine as possible compared
to its parent, while still guaranteeing that the resulting permutations give us the
lexicographically smallest form. To achieve this, our best tool is to use certain graph
properties that can be calculated somewhat efficiently, but can also help us tell apart
“different” vertices from one another, and preferably gives us a straightforward way
of ordering the different vertex-groups, giving us a way of determining how to make
the children ordered partitions as fine as possible.

How to choose children partitions The general idea is the following: we
start out with the ordered partition π of the current node, and we calculate an
isomorphism-invariant vertex-function on the graph with the given partition.

Definition. We say that a function g : Gn × Π∗
n × V (G) 7→ U with arbitrary U

target set is isomorphism-invariant if for any input G ∈ Gn, π ∈ Π∗
n, v ∈ V (G) and

permutation µ ∈ Sn, we have g(G, π, v) = g(µ(G), µ(π), µ(v)).

Let us assume that we have an isomorphism-invariant function g, and its reach
U is a naturally ordered set, such as R. If two vertices, u and v are within one cell of
π such that g(G, π, u) < g(G, π, v), we can separate them based on g(G, π, .)-value.
In fact, we can split up the entire W cell containing u and v: the elements of W
are put into new cells, which take the place of W in the ordered partition. If π =
(X1, X2, . . . , Xk,W,Xk+2, . . . ), then π′ = (X1, X2, . . . , Xk,W1,W2, . . . ,Wl, Xk+2, . . . ),
where W1 contains the elements of W with minimal g(G, π, .)-value, W2 those with
the second-smallest, and so on. We can clearly do this for any cell in which there
are atoms for which the g(G, π, .)-value differs.

Once we have a partition π∗ in this manner for which vertices in one cell always
have the same g(G, π∗, .)-value, we say that π∗ is the g-refined version of the partition
π. At this point, if π∗ is trivial, we can simply give the search-tree node of π a
single child containing π∗. Otherwise, we cannot efficiently differentiate between
the different vertices with g, so we must resort to more naive methods of vertex
identification, in the form of individualization. We choose a non-trivial cell W from
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π∗ in an isomorphism-invariant way, such as simply choosing the earliest one in the
order, and we can give a child partition to the node of π for each element x of W ,
in which W is replaced by {x},W \ {x} in the partition.

Thus, given some refining procedure g, we can construct our search-tree by the
aptly named refinement-individualization paradigm:

Algorithm 3 Refinement-individualization search-tree

procedure Canon(G)
π ← {V (G)}
CanonRec(G, π)

end procedure

procedure CanonRec(G, π)
Refineg(G, π)
if |π| = |V (G)| then

Leaf(G, π)
else

X ← ChooseCell(G, π)
for all x ∈ X do

π′ ← Ind(π, x)
CanonRec(G, π′)

end for
end if

end procedure

Here, the Refineg, Leaf, ChooseCell and Ind subroutines behave in the way
previously described:

• Refineg is an isomorphism-invariant subroutine which transforms the input
partition π into a g-refined version of it.

• Leaf Examines the graph form given by the permutation gained from the
ordered trivial partition π, and decides whether it is lexicographically smaller
than the current minimal form, and replaces it if so.

• ChooseCell is an isomorphism-invariant subroutine which chooses a non-
trivial cell of the input partition π.

• Ind Replaces the cell W of x within π with {x},W \ {x}.

Ideally, g should be able to tell apart and sort different vertices while still being
able to be calculated for every node of the search tree without problem. Notice that
if g is a constant, then we only ever refine our partitions through individualization,
and our search-tree will end up performing the same amount of graph-comparisons as
the brute-force method, as the leaves of the tree will just be all possible permutations
of V (G), see Figure 6 for an example. In the figure, only the ordered partitions of
the two leaves on the side are written for the sake of brevity.

It is also important to point out that in practice, this “search-tree” is never
property constructed in its entirety, and is instead traversed through recursion in a
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t1

{v1, v2, v3}

t2

{v1}, {v2, v3}
t5

{v2}, {v1, v3}
t8

{v3}, {v1, v3}

t3

{v1}, {v2}, {v3}

t4 t6 t7 t9

. . .

t10

{v3}, {v2}, {v1}

Figure 6: A search-tree representation of the brute-force method.

manner similar to a depth-first search on such a search-tree, storing only information
that is relevant in tracking the lexicographically smallest form of the input graph.
It is referred to as a search-tree simply to make it easier to visualize and imagine
how the methods and applications take advantage of the order in which partitions
are examined.

3.4 McKay’s algorithm

Brendan McKay [17], a notable figure in the development of search-tree-based can-
onization, introduced one of the most practical g-functions in the form of equitable
partitions, and in addition to the tactics above also uses automorphisms found
throughout the run of the algorithm to prune certain parts of the search-tree when
different branches are noticed to be “similar”. This is especially useful when the
input graph has a large amount of automorphisms, as such graphs are usually noto-
riously difficult to refine using g-functions in the manner described above, as many
vertices that are not even in one orbit can act similar to one another in many ways,
so their gπ values will be the same for even relatively fine π ordered partitions, so
more individualization steps need to be taken than with asymmetrical graphs.

3.4.1 Equitable partitions

Most isomorphism-invariant calculations take great advantage of certain degree and
distance-related information, as these relations and properties stay constant when
the graph is permuted. When permuting the vertices of a graph, the degree of a
given node will be the degree of its original image, no matter how we calculate
it. McKay’s algorithm uses the idea of a generalized “degree” property that also
takes great advantage of the partition that we already have at whatever place in the
search-tree we may be.

Definition. Given a graph G, we say that a partition π of V (G) is equitable when
for any two, possibly equal cells X, Y ∈ π, there exists k ∈ N such that for any
x ∈ X we have d(x, Y ) = k.
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To put it simply, the elements of any given cell in an equitable partition have
the same number of neighbors in every cell. This gives us a suitable g-function to
refine our ordered partition π: for each vertex v ∈ V (G), we calculate how many
neighbors v has in each cell of π. Since the cells themselves have proper order, this
gives us an ordered array of |π| integers, which gives us a straightforward way of
lexicographically sorting the vertices among the cells of π.

Note that if this refinement is “successful,” that is, at least one cell was split into
subsets due to different vertices having different amounts of neighbors in certain cells,
the resulting partition is not yet guaranteed to be equitable. Let us say, for example,
we have an ordered partition π = (X1, X2, . . . Xk) in which u, v ∈ X1 violate the
equitability condition: d(u,X2) < d(v,X2), but there are otherwise no bad cell
pairs. We split the elements of X1 based on the size of their neighborhoods in X2,
resulting in π′ = (Y1, Y2, X2, . . . Xk). Now, for every vertex who had neighborhoods
in X1 have those neighbors split among Y1 and Y2, and it is entirely possible that
this ruins their uniform degrees toward the subsets. Say, for example, that vertices
in X3 all had one neighbor in X1. Now each vertex z ∈ X3 that had its neighbor in
Y1 will have d(z, Y1) = 1, and those that had it in Y2 will have d(z, Y1) = 0. Clearly,
equitability needs to be reevaluated whenever we split cells, and only stopped once
all pairs of cells are confirmed to abide by the equitability condition. The most basic
version of equitability refinement would therefore be the following: Check for every
pair of cells X, Y ∈ π whether any two vertices violate the condition. If so, split
elements of X by their degree in Y . The resulting subsets of X are added to the
list of cells that need to be checked for violating pairs. This is done until we run
out of cell-pairs that need to be examined, at which point we can conclude that the
partition is equitable.

Efficient equitability computation It is not difficult to verify that indeed, given
isomorphic input graphs, the above method will always give us isomorphic equitable
ordered partitions when using the above method, but the calculations, despite being
polynomial, are somewhat excessive, as we might calculate a lot of “useless” data if
we carelessly calculate the cell-degrees of every vertex every time a cell is split. Say
we have π = (X1, X2, X3, X4). We notice that X1 and X2 violate the equitability
condition, and we get (Y1, Y2, X2, X3, X4) after the split. Notice how X2, X3, X4

remain unaffected, so the cell-degrees of their vertices towards one another remain
the same, we do not need to calculate them. We can use McKay’s classic theorem [17]
to make the proving of correctness a little simpler:

Theorem 3.5. For any graph G and any partition π of V (G), there exists a unique
coarsest equitable partition π∗ for which π∗ < π.

This means that as long as we can choose the order of the cells of π∗ in an
isomorphism-invariant manner, we can reach this partition consistently among iso-
morphic graphs more efficiently, so long as we always make cell-splits that are clearly
necessary to ensure equitability. Thus comes the idea of active cells: we want to
mark which cells are interesting to us in terms of whether they could potentially vi-
olate the equitability condition, and only calculate the cell-degrees of the vertices of
G toward these cells. This is simply achieved by marking cells of π active whenever
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they are split into subsets. Whenever we split a cell, whether through individualiza-
tion or because of refinement, the resulting subsets are all marked as active. Now,
we only need to examine the degrees of vertices toward active cells. We take an
active cell Y , and then compare with every cell in the graph. We go cell by cell,
and whenever we notice that some cell X has vertices with different degrees in Y ,
we split X right away, marking the resulting subsets as active, and continuing with
examining neighborhoods in Y . If it is concluded that all remaining cells satisfy the
equitability condition with Y , then we can mark Y as no longer active, and we can
do the same check for the next active cell. It can naturally be inferred that once
there are no longer any active cells, our partition is equitable, and we can move on
to individualization.

3.4.2 Automorphism pruning

While equitability-based refinement is usually very efficient in practice, it does not
always solve the issue posed by very symmetrical graphs, that is, graphs with large
automorphism groups. Take the simple case of Kn, the complete graph. Clearly, all
vertices “behave” in the exact same way in any scenario, and any partition on its
vertices is trivially equitable. This means that the only way for the algorithm so far
to make progress is through individualization steps, which results in n! leaves, and
all possible permutations will need to be checked, despite the fact that they all result
in the one and only form that labelings of Kn can take. To combat this, McKay
introduces the idea of pruning branches of the search-tree which are guaranteed to
yield leaves that have permutations resulting in graphs that some earlier branch has
already provided.

Let us imagine that in our search tree, there are two nodes a and b with ordered
partitions πa and πb that are isomorphic. Consider the subtrees below a and b. Be-
cause of the isomorphism-invariant manner in which we construct our search-tree,
the entire subtree must be isomorphic as well. We always individualize cells that
correspond to one another, and refinement will result in isomorphic partitions as
well. Clearly, isomorphic ordered trivial partitions give us permutations that result
in identical graph-forms, so it would be sufficient to examine only the subtree below
a in order to find our canonical form. Unfortunately, no efficient method for de-
termining whether two ordered partitions are isomorphic or not is currently known,
and even if such a subroutine existed, comparing the currently examined partition to
every single one that came before which it could potentially be isomorphic to could
be troublesome. Instead, McKay’s algorithm finds automorphisms as the search-
tree is traversed, and examines how they relate to the current partition with each
individualization step.

Finding automorphisms McKay’s method of finding automorphisms on G is by
utilizing the graph-forms given by the leaves as they are examined. Once the first
leaf t0 of the tree is reached, we check what labeled graph its permutation µ0 leads to,
and store the graph µ0(G) as our basis for checking automorphisms. Then, for every
subsequent leaf, we check whether µ(G) = µ0(G) holds for the permutation µ yielded
from their ordered trivial partition. If so, then clearly, µ0 ◦ µ−1 is an automorphism
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of G: µ−1(µ0(G)) = µ−1(µ(G)) = G. In fact, it is shown by McKay [17] that any
automorphism in the graph can be obtained this way:

Theorem 3.6. Given the search-tree T produced by equitability refinement without
any further pruning. For any µ ∈ Aut(G), if there is a node in T whose ordered
partition is π, there is also a node whose partition is µ(π).

One might think to compare each found graph to not just the initially examined
graph, but to all graphs that were examined up until this point in order to find
automorphisms that we might potentially miss otherwise, but this is not a beneficial
idea for various reasons. Firstly, in order to make all of the necessary comparisons,
we would need to store at least all the permutations inferred from the leaves of
the search-tree, which, given that there is no polynomial bound on the size of the
search-tree, could make the memory requirements infeasible. Furthermore, the sheer
number of comparisons could square our already non-polynomial runtime, which
would defeat the entire purpose of finding automorphisms in the first place.

Additionally, this would not result in the finding of any “new” automorphisms
anyhow. Consider once again the isomorphism-invariant shape of our search-tree.
Let us say, for example, that the currently examined leaf z gives us a permutation
whose resulting labeled graph is identical to the one we found from a sibling leaf
t1 of t0. It then follows that the partition belonging to the parent pt of t1 must be
isomorphic to that of the parent pz of z, and, transitively, z must have some sibling y
whose partition is isomorphic to t1’s sibling t0. Furthermore, since the isomorphism
µ for which µ(πpt) = πpz is also an isomorphism between t1 and z, as well as t0 and
y, it is not difficult to see that the automorphisms provided by the two pairs are
indeed the same exact automorphism.

This naturally works for any two leaves of the search-tree, as for any leaves l1, l2
with identical resulting labeled graphs, t0 will have a corresponding vertex y in a
subtree given by the relation of l1 and l2 to t0 for which the partition of y gives
a graph form identical to µ0(G). Therefore, comparisons with µ0 alone should be
sufficient.

Using automorphisms We have mentioned that with equitability refinement,
any automorphism present in G can in fact be obtained from the search-tree through
the above method. However, we do not simply want to collect automorphisms, we
want to prune our search-tree. Here is the basic method in which McKay uses
automorphisms to decrease necessary computations: whenever an individualization
would occur on a partition π, we can reduce the number children generated based on
the current partition and the automorphisms found so far. Consider that we have
stored an automorphism µ for which all cells of π are fixed “points” of µ. That is,
for any cell X ∈ π and x ∈ X, we have µ(x) ∈ X.

Now let us say that X ∈ π is the cell chosen for individualization in this step of
the construction of our search-tree. Consider two distinct vertices u, v ∈ X for which
µ(u) = v. In accordance to the reasoning earlier, it is plain to see that breaking
out u or v from the graph results in isomorphic partitions, with µ being the clear
isomorphism, which in turn results in isomorphic subtrees, giving us isomorphic
trivial partitions in the leaves, which give identical labeled forms. Therefore, it is
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enough to generate a child partition for only one of u or v. So when individualizing
X, we check for the following for each stored automorphism µ:

• Are the orbits of µ contained within cells of π?

• If so, choose an arbitrary element from each orbit within X to keep, the rest
are marked as duplicates.

• When generating the children partitions of π, only individualize vertices that
were not marked as duplicates.

All of this can be efficiently decided and computed with appropriate data struc-
tures. It should be noted that pruning the search-tree in this way will in turn remove
permutations that lead to graph forms identical to µ0(G). However, it can be shown
that enough automorphisms are always collected that are sufficient to form a gener-
ator of the automorphism group of G. Any automorphism of G can be constructed
by successively applying automorphisms stored throughout the examination of the
search-tree. In particular, we can calculate the orbits of V (G) by the time the algo-
rithm terminates, and we can make notes of certain vertices being in the same orbit
throughout the run of the process. This is especially good for pruning the root of
the tree. Since the first condition is trivially satisfied for pruning, we only need to
check that the individualized vertices are not within one orbit, which can be easily
ensured in accordance to the automorphisms found so far.

Furthermore, having access to a generator of Aut(G) gives us a relatively efficient
way of checking whether two subsets of V (G) are isomorphic with one another or
not, which will be of great importance to us in Section 3.

While the above conditions can prune branches that are isomorphic based on
automorphisms already found, it does not take into account the actual group of
automorphism that they generate. More recent versions of nauty can use the ran-
domized Schreier method [27], a probabilistic permutation algorithm to test parti-
tions for further automorphisms that can be generated from the ones already found.
While not guaranteed, it can often prune branches of the search-tree that could
otherwise not be recognized as isomorphic to previous ones by the above method
method alone.

Choosing the individualization cell While the efficiency and correctness of
the refinement procedure plays a large role in the eventual breadth of the search-
tree, the importance of choosing the individualized cell should not be understated.
While choosing the first non-trivial cell is a simple way to ensure the isomorphism-
invariance of our choice, consider how the actual cell affects what our search-tree
will look like. A new branch will be started and examined for each element of the
target cell, meaning that we might end up with more leaves than if we were to choose
a smaller target cell. In addition, as pointed out by McKay in [19], individualizing
elements in a smaller cell should intuitively lead to permutations that have a higher
chance of providing automorphisms that leave the correct vertices in a fixed position,
and could be used to further prune the search-tree. At first, this may seem like a clear
indicator that the target cell of choice should be the first non-trivial cell of minimal
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size as a means of minimizing the number of branches each chance we get, however,
in practice, this turned out not to be entirely the case. Kocay [15], demonstrated
that simply choosing the first non-trivial cell leads to better overall performance
than always resorting to the smallest one. It seems as though “random” cell choice
allows for refinement to tell apart more kinds of neighboring-structures more often,
resulting in more efficient partition refinements than in the naively controlled case.

Another method of trying to steer target cell choice which is still employed by
nauty is to specifically try and choose a cell which has many kinds of neighbors in
other cells, as individualizing vertices in such a cell would lead to refinement being
able to split more cells right away, reducing the depth of the resulting branches.
In practice, this is achieved by choosing the earliest cell which has largest number
of non-maximal neighboring cells, that is, cells for which there is at least one edge
between them and the target cell, but not all possible edges between the two are
present. This method of choosing the target cell clearly comes with more required
computation, but still performs competitively in practice.

3.4.3 An example run

Here, we show a simple example of how McKay’s search-tree canonization algorithm
computes a canonical labeling.

3

1 4

2 5

π = {{1, 2, 3, 4, 5}}

v (1,2,3,4,5)
1 3
2 2
3 2
4 3
5 2

Figure 7: Initial partition.

The initial graph G is depicted on the left of Figure 7, and on the right are the
degrees each vertex has into the so far only cell. The starting cell is always marked
as active for refinement, as equitability is usually not given. (We may remark that
a unit partition on a graph is equitable exactly when the graph is regular.) Clearly,
the partition is not equitable, as some elements of our only cell have 2 neighbors in
it, while others have 3.

We split the cell by the number of neighbors, and both resulting cells are
marked as active. Continuing with refinement, we now take the first active cell
X1 = {2, 3, 5}, and check whether the number of neighbors in it is homogenous
within each cell. The first cell checked, X1 immediately fails the test, as the vertex
3 differs form vertices 2, 5. X1 is split based on the number of neighbors within X1,
the resulting cells are marked as active.

The resulting partition in Figure 9 is eventually deemed equitable once all active
cells are cleared, as within each cell of the partition, all vertices have a consistent
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3

1 4

2 5

π = ({2, 3, 5}, {1, 4})

v {2,3,5} {1,4}
2 1 1
3 0 2
5 1 1

1 2 1
4 2 1

Figure 8: First split in first refinement.

3

1 4

2 5

π = ({3}, {2, 5}, {1, 4})

v {3} {2,5} {1,4}
3 0 0 2

2 0 1 1
5 0 1 1

1 1 1 1
4 1 1 1

Figure 9: Second split in first refinement.

number of neighbors withing any given cell. This refinement is therefore finished,
and individualization needs to take place to continue. The first non-trivial cell,
{2, 5} is chosen for individualization. Since no automorphisms have been found so
far, we do not check for any pruning. First, we examine the branch produced by
individualizing 2.

3

1 4

2 5

π = ({3}, {2}, {5}, {1, 4})

v {3} {2} {5} {1,4}
3 0 0 0 2

2 0 0 1 1

5 0 1 0 1

1 1 1 0 1
4 1 0 1 1

Figure 10: Individualization of 2.

This partition is not equitable anymore, the first violating cell-pair found is {1, 4}
and 2. The former is split appropriately.

Our ordered partition has become trivial, which means refinement is finished (as
the partition is trivially equitable), and the first leaf of the search-tree has been
found. We store the graph resulting from the application of µ0 = (3, 2, 5, 4, 1)−1 =
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3

1 4

2 5

π = ({3}, {2}, {5}, {4}, {1})

v {3} {2} {5} {4} {1}
3 0 0 0 1 1

2 0 0 1 0 1

5 0 1 0 1 0

4 1 0 1 0 1

1 1 1 0 1 0

Figure 11: Second refinement.

(5, 2, 1, 4, 3) to G. Note how the neighbor-counting table corresponding to this parti-
tion in figure 11 contains the adjacency matrix of this graph. With this, the branch
resulting from the individualization of 2 is finished. We now return to the step of
individualization in ({3}, {2, 5}, {1, 4}), this time going with 5.

3

1 4

2 5

π = ({3}, {2}, {5}, {4}, {1})

v {3} {5} {2} {1} {4}
3 0 0 0 1 1

5 0 0 1 0 1

2 0 1 0 1 0

1 1 0 1 0 1

4 1 1 0 1 0

Figure 12: Leaf resulting from the individualization of 5.

The partition is once again no longer equitable, so we split the first found vio-
lating cell during refinement, analogously to the previous case. The resulting trivial
ordered partition is depicted in Figure 12. Another leaf has been found, and the
graph resulting from applying µ1 = (3, 5, 2, 1, 4)−1 to G is identical to µ0(G), mean-
ing that this form remains lexicographically minimal, and an automorphism has
been found in the form of µ0 ◦ µ−1

1 = (5, 2, 1, 4, 3) ◦ (3, 5, 2, 1, 4) = (4, 5, 3, 1, 2).
And thus, the individualization of ({3}, {2, 5}, {1, 4}) and the recursion ends,

our search is complete. The canonically labeled graph is µ0(G), and (4, 5, 3, 1, 2) is
found to be the only non-trivial automorphism of G. The canonical form of G and
the search-tree are depicted in Figure 13.

3.4.4 Lexicographic search-tree

Another method of pruning the search-tree is to require lexicographic minimality
not just from the graph form of the individual leaves, but from the ordered partitions
that are found in the path leading down to them. More specifically, let us say that we
have some ≤Π ordering on the ordered partitions of V (G), which can be computed
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1

5 4

2 3

{1, 2, 3, 4, 5}

{3}, {2, 5}, {1, 4}

{3}, {2}, {5}, {1, 4}

{3}, {2}, {5}, {4}, {1}

{3}, {5}, {2}, {1, 4}

{3}, {5}, {2}, {1}, {4}

Figure 13: Canonically labeled graph and the corresponding search-tree.

in an isomorphism-invariant manner. Something that can be calculated relatively
efficiently, as we would want to do this within each node of the search tree, such as
taking the sizes of cells of each partition and comparing their square sum, or their
geometric center, or any other isomorphism-invariant value that can be calculated
from the structure of π. Information from the graph itself and the order of cells can
also be used to further help identifying different partitions more easily. If such a
comparison is feasibly achieved, then we can make our search shorter by requiring
that whenever individualization occurs, only the lexicographically smallest ordered
partitions are kept and examined further for subtrees. Since equitability refinement
gives us so much specification as to how the partitions resulting from individual-
ization “should look”, this comparison is usually applied only after refinement has
taken place and equitability is established.

3.5 Equitability and the hashing algorithm

Let us think back on the algorithm presented in Section 3.2. In it, we continuously
updated the “structural status” of vertices in the form of modifying their represen-
tative strings based on what string their neighbors have, and eventually categorized
them based on what conclusions their strings provided as to how the neighboring
of each vertex distinguished it from the others. One might notice that this general
paradigm is very similar to the one performed by equitability refinement, in which
we continuously examine the neighborhoods of vertices, and then separate previously
“similar” vertices that were in one cell when their neighborhoods are determined to
be different in a specific way.

This might lead one to examine more closely the connection between the vertex-
hashing canonization algorithm and the equitability condition. To better understand
how these two are related, let us take a look at a generalized version of Algorithm 2
which can also utilize a given ordered partition π to further help identify vertices that
are “different” in regards to the actual partition itself. The only difference required
to achieve this is the nature of the initial strings given to vertices. When computing
HashLabel in Algorithm 2, initial labels were only determined by whether a vertex
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was in the differentiating set or not, however, the ordered partition π allows us to set
these more appropriately: to compute the hash-refined partition HashPartition-
Label(G, π, k) (hereby referred to as HPL(G, π, k)), we calculate a specialized hash
label for each vertex, where the initial label of each u ∈ V (G) to the position of its
cell within π, except for v, which receives a unique individualizing label “c∗”, where
c is the position of the cell of v within π. These “c∗” characters are considered lexi-
cally minimal during concatenation ordering. From there, the resulting strings are
computed through the same concatenation-cycles as in the case of the unit partition.
At the end of k cycles, we split the current cells based on lexicographic ordering by
the label each vertex has at the end of the last cycle. Important to note is that here,
k refers to the number of concatenation cycles, not the number of individualized
vertices, which in this case is always 1.

1

2

3

4

5

6

0∗

0

0

1

1

2

1

2

3

4

5

6

(0∗, 12)

(0, 11)

(0, 12)

(1, 0∗0)

(1, 01)

(2, 0∗1)

Figure 14: Strings at the end of the first concatenation cycle for v = 1.

See Figure 14 for an example of how this works. The graph pictured has the
ordered partition π = ({1, 2, 3}, {4, 5}, {6}), and the strings calculated during the
computation of v∗k(G, π, 1) are shown. Note how here, all vertices already have
different labels. Aggregating these strings gives us:

s∗(1) = “((0∗, 12), (0, 11)(0, 12)(1, 0∗0)(1, 01)(2, 0∗1))”

, which is the final label of 1 with k = 1. In HPL(G, ({1, 2, 3}, {4, 5}, {6}), 1), it
will be in one cell with the vertices that receive this exact string after their own
initialization.

Now let us consider how the equitability condition affects the way HPL affects
the partition. First let us ensure that HPL never coarsens the partition, or intersect
any cells by chance, that is, it can be used as a way to refine partitions.

Theorem 3.7. For any graph G and partition π of V (G) and k ∈ N, we have
HPL(G, π, k) ≤ π, that is, every cell of the former is a subset of a cell within π.

Proof. Consider some x ∈ Xi atom from the i-th cell of π. Let us examine the
computation of s∗1(x). Initially its label is “i∗”, and, because the previous label is
always kept one the left, we can show that for any v ∈ V , after k concatenation
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cycles, the first k characters are parenthesis openings for each vertex, and the k-th,
first non-parenthesis character within sk(v) is its starting label character, in the case
of x, “i∗” specifically in the case of x.

We can use induction by the number of concatenation cycles. For k = 1, the
claim is true by the nature of the algorithm. Assuming this hold for k, then each
string in the next concatenation cycle will begin with a parenthesis opening, followed
by its previous label, thus showing that the claim holds for k + 1.

Because this character is lexicographically minimal in all aggregation orderings,
including the computation of s∗k(x) itself, it is plain that the first non-parenthesis
character of this final label must be i∗ as well. This holds true for all vertices, and
thus any vertices with the same final label need to come from the same starting cell.
Since the new partition is formed by grouping vertices with the same final string
together, this proves the theorem.

Now let us show that HPL(., ., 1) is a good “detector” of equitability, that is, if
a partition is not equitable, it will show up as an irregularity after just one concate-
nation cycle.

Theorem 3.8. For any graph G and partition π of V (G), if π is not equitable, then
HPL(G, π, 1) < π.

Proof. Because of the previous theorem, it suffices to show that there are two vertices
which start in the same cell but end up with differing final strings.

Let us take two cells Xi, Y ∈ HPL(G, π, 1) which violate the equitability condi-
tion, and take x1, x2 ∈ Xi for which d(x1, Y ) ̸= d(x2, Y ). We want to demonstrate
that s∗1(x1) ̸= s∗1(x1). Because they are in one cell, consider what s1(x1) and s1(x2)
look like in their respective label calculations. Because they violate the equitability
condition, they have a different number of instances of the initial string belonging
to the elements of Y , meaning that these strings are different.

Furthermore, because the “individualized” vertex is always the only one with
“i∗” as its first non-parenthesis character, a property that all vertices keep with their
initial character as we have seen in the proof of Theorem 3.7, the strings of these
vertices will be first in the lexicographic order when aggregating all strings during
the computation of s∗1(x1) and s∗1(x2), respectively. Therefore, this starting segment
differs between the two vertices, thus X must split into at least two parts.

A trivial consequence of this theorem is that the repeated application of the above
partition refinement function is an isomorphism-invariant method of reaching a finer
ordered equitable partition, as the partition eventually either naturally becomes
equitable or ends up as trivial, which in turn would trivially make it equitable. This
is essentially a more general way of describing a refinement procedure that ensures
equitability in the partition produced. An examination of what the equitability-wise
implications may be when k is higher than 1 are elaborated in Section 5.3.

3.6 Algorithms for larger graphs

While our research is concerned mainly with the canonization of smaller graphs, it
should be mentioned that there are other heuristics and approaches which can be
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implemented to more efficiently arrive at a canonical representation of a graph, but
which only provide a considerable improvement when the graphs are large enough
to warrant extensive computations to begin with, and are simply not preferable to
other methods when the input graphs are too small. In this section, we briefly
discuss some of these approaches to gain further insight into graph canonization
tactics.

3.6.1 The Traces search-tree

Traces [19] is a leading canonization tool developed alongside nauty which at-
tempts to take even further advantage of automorphism-pruning by finding automor-
phisms “before” actual canonization begins, therefore it is highly efficient on graphs
with particularly large automorphism groups, where any two particular leaves are
more likely to contain permutations that can give us automorphisms.

While most search-tree canonization algorithms, such as the one described in the
previous section traverse the search-tree in a recursive, depth-first manner, Traces
a breadth-first approach to it. Once refinement has taken place, Instead of examining
each branch resulting from individualization of a cell one after another, all potential
children partitions are generated right away. Now for each generated node t, a
“quick-run” of the search algorithm is performed, as in the computation of a single
test-leaf that could be generated on the branch of t during the course of a search-
tree algorithm. The permutations yielded from these leaves are now examined for
automorphisms alone, and any that are found are stored straight away.

0

1

2

3

4

5

6

7

8

Figure 15: Traces quick-runs detect early automorphism.

This is demonstrated on the example shown in Figure 15, adopted from [19].
The graph on the left is examined as normal, after refinement has taken place,
the cell {1, 3, 5, 7} is chosen for individualization. In a breadth-first manner, all
children partitions generated are processed one by one, and for each one we randomly
compute a test-leaf from its branch. After the individualization of 1, the leaf with
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({1}, {5}, {3}, {7}, {2}, {0}, {8}, {6}, {4}) is reached, and after the individualization
of 3, the one with ({3}, {1}, {7}, {5}, {0}, {6}, {2}, {8}, {4}) is. Comparing these
forms gives us na automorphism right away, which in fact lets us prune the other
two initial individualization branches. Therefore, only the first two branches are
actually fully processed.

Another quirk of this algorithm is the preferred choice of target cell when it
comes to individualization. Because of the previously mentioned quick-run tactic,
the more chances of finding automorphisms in such a way, the more pruning we can
perform on the tree and therefore target cells of higher size are actually preferred.

3.6.2 Graphs with bounded tree-width

Similarly to how various problems are often easier to solve on trees, another classic
approach to decreasing the complexity of certain problems is through assumption of
limited tree-width. While often not very practical due to extremely high constant
multipliers, these can be used to show that it is theoretically possible to compute
various difficult decision and optimization problems on a graph, given that a tree-
decomposition of the graph can be given.

Definition. A tree-decomposition of a graph G is a tree T and a collection of vertex-
sets v : V (T ) 7→ 2V (G) such that all vertices of V (G) are present in at least one set,
all edges have at least one set with both end-points in it, and {t ∈ T : u ∈ v(t)} is
a spanning tree of T for any u ∈ U .

The tree-width of a graph G is min{max |v(t)| : t ∈ T, (T, v) is a tree-
decomposition of G} − 1.

Some classic results regarding tree-decompositions include Bodlaender’s and
Kloks’s [8] algorithm which, for a given a constant k, if a graph has tree-width
at most k, constructs an appropriate tree-decomposition in linear time. A relevant
result of Bodlaender is one from 1990 [7], in which he gives an algorithm which
operates on partial k-trees, a constructively defined family of graphs with known
tree-width, as a tree-decomposition of width at most k is known for them by defini-
tion. This algorithm shows that the isomorphism problem can in fact be solved for
partial k-trees in polynomial time when k is a constant. Which in turn implies that
the approximation holds true for all graphs of tree-width at most k.

The essence of the algorithm lies in the exhaustive examination of all k-tuples
in the graph, and using dynamic programming to check whether it is possible to
build up a proper tree-decomposition from them. It was recently discovered by
Lokshtanov [16] that Bodlaender’s algorithm can in fact be modified to not just
decide the isomorphism of these graphs, but to construct a canonical labeling of G
in polynomial time, assuming that it is of constant tree-width, as well as a canonical
representation of constant size, giving the first documented canonization algorithm
that runs in FPT time.

Other results regarding canonization of bounded tree-width graphs include El-
berfeld’s [12] proof that the computation of a canonical form for graphs of bounded
tree-width is in fact in LOGSPACE, that is a canonical form for such a graph can be
computed using O(logc

n) memory for some c > 0, and Arvind’s [3] recent proof that
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k-tree canonization is in FNNL, that is, it can be solved in logaritmic space with the
help of an unambiguous LOGSPACE oracle, which they then used to prove that the
isomorphism problem is in fact in the strongly unambiguous LOGSPACE problem
class.

4 Non-ismorphic graph generation

Graph canonization has applications in data mining, chemical analysis and vari-
ous theoretical problems concerning graph symmetry and isomorphism. One such
problem is the ability to generate graphs only up to isomorphism. Often we may
want to be able to run or test a certain function or method on many graphs, but
in many cases, the results are not meaningfully different amongst graphs that are
isomorphic, because the properties that are examined are similar in each one. In this
case, it would be sufficient to only examine one representative of each isomorphism
class, which would greatly decrease the amount of computation required, while still
getting all the desired information.

Thus the problem: is there an efficient way of generating all graphs of size
n up to isomorphism, that is, only one representative of each isomorphism class?
Canonical labeling may come to mind straight away, but their application is not as
straightforward as it may seem at first. Simply generating every labeled graph of
size n and only outputting each graph in case it is the canonical form defeats the
entire purpose of non-isomorphic generation, as getting around the sheer amount of
different labeled graphs is in itself what we are trying to achieve. However, canonical
labelings can indeed be used to efficiently provide such a collection of graphs. McKay
proposes a method [18] of generating graphs of a given size in such a manner that
relies only on being able to calculate a canonical labeling for a graph, and having
access to a generator of its automorphism group. The algorithm outlined in Section
3.4 provides both of these.

Generating graphs Generating graphs of size n without regard for isomorphisms

is simple enough, we simply have to go through all 2(n
2) possible edge-sets in some

manner. This clearly takes an exponential amount of time no matter how we ap-
proach the problem due to the sheer number of graphs that need to be outputted.

While time-consuming, the actual realization of iterating through {0, 1}(
n
2) is not

particularly difficult from a technical standpoint. We will examine a method of do-
ing so which, while not being exactly straightforward, will give us a practical way
of utilizing graph canonization to remove any graphs that are not important to us
in the isomorphism-free case. Imagine that we already have access to a list of all
graphs withing Gn−1. We could then compute all elements of Gn in the following
way: for every G ∈ Gn−1, we add a new vertex with the label n to G and add a new
graph to our collection for every possible neighboring of the new node.

Claim 4.1. Gn = {(V (G)+{n}, E(G)+F ) : G ∈ Gn−1, F = {nu : u ∈ U ⊆ V (G)}}.

To verify this, simply consider that for any H ∈ Gn, we can delete the vertex
with the label n, the resulting G = H − {n} graph is a good “parent” graph for
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H with the neighborhood of the deleted vertex in the above formula. This gives
us a simple way of generating all elements of Gn from nothing: We start off with
C1 := {K1} and then, for every i = 2, 3, . . . , n, we go through each G ∈ Ci−1, and
add G+{i}+F to Ci for every F ∈ 2[i−1]. We can confirm, through the same line of
logic as before, that this way, Ck = Gk for any k ∈ [n] at the end of generation. This
method of graph generation is beneficial specifically because it gives an efficient way
of filtering out specific graph properties.

Definition. We say that a graph property P : G∗ 7→ {0, 1} is vertex-hereditary if
for any H ∈ G∗ such that P (H) = 1 holds, P (G) = 1 also holds for any induced
subgraph G ⊆ H.

Some examples of vertex-hereditary properties are:

• triangle-freeness,

• planarity,

• upper limit on vertex degrees,

• upper limit on number of edges,

• bipartiteness,

• “logical or” of other vertex-hereditary properties,

• “logical and” of other vertex-hereditary properties.

Let us assume that someone only wants to generate graphs within Gn that satisfy
some vertex-hereditary property P . A straightforward approach would be to simply
generate all possible candidate graphs, then check for each one whether P holds
for them. However, the above method of generating graphs gives us a much more
efficient method. When adding some new graph G to Ci, we check whether P (G) = 1
holds, and we only keep the graph when it does. It is clear that doing this will only
get rid of violating graphs down the line, as any graph generated from G will contain
G as a spanning subgraph, thus if P (G) = 0, we will also have P (H) = 0 for any
supergraph H ⊇ G. Therefore, Ck will contain exactly the elements of Gk which
satisfy P . This way, we can save time on the examination of numerous graphs of
higher size, as they do not even need to be considered for generation as they were
already disqualified when the appropriate subgraph was first examined.

4.1 Using the canonical labeling

In the same way that vertex-hereditary properties can be removed level-by-level to
save lots of computation time in the long run, we can also use graph canonization
to ensure that in each Ci, only one representative from each isomorphism class is
present. Let us for a moment assume that we have managed to construct the set
C∗n−1 in which there is exactly one element from each isomorphism class of Gn−1.
To successfully construct the appropriate C∗n with the above method, we need to
assure that no two graphs kept are isomorphic. This could happen by one G ∈ C∗n−1
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having two different edge-sets F1, F2 for which the resulting graphs are kept, or by
two different G1, G2 ∈ C∗n−1 having such F1, F2. While posing similar problems,
the two cases are tackled differently by canonization. One can define the following
conditions that will help ensure these violations do not occur:

Definition. Given a graph G, we say that a vertex v ∈ V (G) is canonically maximal
for some canonical labeling f if v is in one orbit with some z ∈ V (G) for which there
exists a permutation µ ∈ Sn such that µ(z) = n and µ(G) = f(G). The indicator
of this property will be denoted as CanMaxf (G, v).

Basically, the vertex v needs to be isomorphic with a vertex that would receive
the highest index in a canonical labeling. The fact of it being the highest index in
particular is not a necessary trait, it is simply a way of pinning down an orbit within
f(G) that can easily be identified. However, if certain properties are known about
the actual canonical form given by f , such as in the case of McKay’s canonical label-
ing, the choice of orbit can still become useful throughout graph generation. While
trivially true, it should also be noted that there is always at least one canonically
maximal vertex in a graph for any canonical labeling.

Definition. Given a graph G, we say that a set of vertices X ⊆ V (G) is a orbitally
minimal in G if for any automorphism µ ∈ Aut(G), we have X ≤ µ(X) for some
ordering on 2V (G). The indicator of this property will be denoted as OrbMin(G,X)

Once again, the actual ordering or set of vertices is arbitrary, we simply need a
consistent way of deciding whether the subset X is a specific one withing a certain
“subset-orbit” of G. One such straightforward ordering on 2V (G) would be the lexi-
cographic ordering of the indicator vectors, where the indicator vector vX ∈ {0, 1}n

is defined as v
(i)
X =

{
1 if i ∈ X,

0 otherwise.

The same way that every graph contains canonically maximal vertices, the fol-
lowing claim regarding the density of orbitally minimal sets trivially follows from
the definition, but should still be acknowledged as it will be useful to us.

Claim 4.1. Given a graph G and a set of vertices X ⊆ V (G), there is a unique
orbitally minimal Y ⊆ V (G) such that Y = µ(X) for some µ ∈ Aut(G).

Now we can examine how these properties can help us generate non-isomorphic
graphs. Given some canonical labeling f , and a way to order sets of vertices, we
have the following algorithm:
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Algorithm 4 Non-isomorphic graph generation

procedure Gen(n)
C∗1 ← {K1}
for all i = 2, . . . , n do
C∗i ← ∅
for all (V,E) ∈ Ci−1 do

V ′ ← V ∪ {i}
for all X ∈ 2V do

E ′ ← E ∪ {vi : v ∈ X}
G′ ← (V ′, E ′)
if CanMax(G′, i) = 1 and OrbMin(G,X) = 1 then
C∗i ← C∗i ∪G′

end if
end for

end for
end for

end procedure

Here, we do the same thing as we did when generating labeled graphs, except
that a new graph is only kept when the new vertex is canonically maximal, and its
neighborhood is orbitally minimal in the “parent” graph. We can show that these
changes alone are enough to ensure that C∗k contains exactly one representative from
each isomorphism class of Gk for each k ∈ [n] at the end of the algorithm. First, we
show that at least one representative is kept from each isomorphism class.

Claim 4.2. For any G ∈ Gn, there is a C ∈ C∗n such that G ∼ C.

Proof. We will use proof by induction. For n = 1, the claim is trivially true. Let us
assume that for any i ∈ [k], the claim holds true. Now let us take some G ∈ Gk+1, and
within it, a vertex z that is canonically maximal for f , and N(z) its neighborhood
in G. Let G′ be G − z. By the induction hypothesis, there is a C ′ ∈ C∗k such that
G′ ∼ C ′. Let X ⊆ V (G′) be the vertices corresponding to N(z) with regards to
an isomorphism between G′ and C ′, and let Y ⊆ V (G′) be the lexically minimal
vertex-subset for which Y = µ(X) for some µ ∈ Aut(C ′).

Now consider C = (V (C ′)∪{n}, E(C ′)∪{vn : v ∈ Y }). We can see that G ∼ C,
as the permutation moving G′ to C ′, followed by the automorphism moving X into
Y , all appended by moving z to n and keeping it there will get us from G′ to C ′.
Furthermore, because n is the image of z in an isomorphism, it is not difficult to
see that n must also be canonically maximal within C for f , as f(G) = f(C) and
the orbit of the maximally labeled vertex is preserved through isomorphism. Since
N(n) was specifically chosen to be orbitally minimal, that condition is satisfied as
well. Based on this, we can conclude that C ∈ C∗k and C ∼ G, which proves the
claim.

So we are definitely not getting rid of too many graphs by these two conditions
alone. However, this does not necessarily mean that there are not still isomorphic
graphs within each set. It can thankfully be shown, however, that there are none.
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Claim 4.3. For any two different C1, C2 ∈ C∗n, we have C1 ≁ C2.

Proof. We will use proof by induction. For n = 1, the claim is trivially true. Let
us assume that for any i ∈ [k], the claim holds true. Now let us take two distinct
graphs C1, C2 ∈ C∗k+1. Let us indirectly assume that C1 ∼ C2. Let us take the
“parent” graphs G1 = C1 − n and G2 = C2 − n. Clearly, G1, G2 ∈ C∗k , as these are
the graph from which we generate and place C1 and C2 into C∗k+1.

Because n is a canonically maximal vertex within both graphs, there must be an
isomorphism between C1 and C2 for which n is a fixed point. Clearly, applying the
same permutation to the rest of the graph after n is removed is still an isomorphism
between the subgraphs. Thus, we have G1 ∼ G2 and from the induction hypothesis
it follows that G1 = G2. But in this case, in order for C1 and C2 to be different yet
isomorphic, the neighborhood of their new vertices must be isomorphic within G1.
But then they cannot both be orbitally minimal, as they could be moved into one
another with an isomorphism, so we would not have kept both C1 and C2, which is
a contradiction, so our assumption, C1 ∼ C2 cannot be true.

As a direct consequence of Claims 4.2 and 4.3, we get the following statement,
which proves that the above approach to non-isomorphic generation is indeed correct.

Theorem 4.1. For any G ∈ Gn, there is exactly one C ∈ C∗n such that C ∼ G.

4.2 Canonization-specific improvements

To decide whether we add a graph to C∗k , the full canonization of the graph is usually
warranted, both for deciding whether the new vertex is canonically maximal, and to
collect enough automorphisms to deicide the orbital minimality of its neighborhood.
However, if the nature of the labeling provided by f is understood, we can further
decrease the amount of necessary computation.

Note for instance what a canonically maximal vertex needs to look like when
the canonical labeling is the one described in Section 3.4. Here, the first refinement
step always sorts the vertices of the graph by degree. This means that if the vertex
n does not have maximal degree, it will immediately be placed into a non-final cell
of the partition, therefore it can never end up as the element of the final cell of
a leaf partition, which in turn means that no canonical form gives n the highest
index. This means that a new graph can only ever be kept if the degree of the node
vertex is at least has maximal degree, which, means that when examining 2V (G) for
the potential neighboring of n, it suffices to only examine subsets of size at least
max{d(v) : v ∈ V (G)}.

Even if n ends up being a vertex of maximal degree in the new graph G′, it is still
possible that it falls out of the final cell within the very first refinement step. When
this is observed, we do not need to calculate the canonical labeling any further, as
n will definitely not be canonically maximal.
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5 Implementation, improvement attempts

In this section, we will go over the specific results of our implementations, as well
as our experimentation regarding approaches to improving existing canonization
algorithms with new heuristics for the examination of vertex-partitions.

5.1 Search-tree implementation

Part of this project was to create a more modern, customizable implementation of
McKay’s search-tree algorithm outlined in Section 3.4, which is easier to pick up
and to make modifications within. The nauty [17] project, while operational and
efficient, is not very welcoming for users planning to test out their own modifica-
tions. The code of nauty is written in C, a procedural language that provides little
flexibility in terms of how users can adjust the algorithm for whatever heuristic
search-tree approach they might want to try out in their program, unless they are
willing to look through huge chunks of code whenever they want to adjust a certain
aspect of the process. Similar projects have been taken on in recent years, such
as one by Andersen [1], who made a tool that allows users to run the search-tree
algorithm with their select choice of heuristics and examination processes that were
available at the time, and let them compare and cross-reference the various methods
that can be obtained by mixing and matching them.

Our implementation is written in C++, an object-oriented language that allows
more flexibility as to how certain batches of data can interact with one another, and
gives us more leeway in terms of how new functions and methods can be added and
utilized by the algorithm without needing to modify a ton of code.

For the purposes of general performance testing on our implementation, the
algorithm was ran on large collections of graphs, as this sort of generator is usually
used repeatedly on many graphs, for the purpose of non-isomorphic generation, for
example. The total time spent on canonization of graphs was then compared with
the amount of time taken by nauty, one of the best-performing currently available
canonization tools of our time, to perform the same task. While the exact efficacy
of this tool was not reached, our higher-level implementation still canonizes small
graphs in the same magnitude of time as nauty, canonizing massive collections of
graphs without issue, and successfully computing generators for the automorphism
group of each graph examined. See Figure 16 for a comparison between the runtimes
of nauty and our own canonization tool.

5.2 Non-isomorphic generator implementation

As part of a collaboration with Lóránt Matúz, a working higher-level implemen-
tation of the non-isomorphic graph generating algorithm was also created relying
on our canonization implementation. With Matúz, we have created a tool that
successfully uses our canonization tool to filter out isomorphic graphs, and which
can also be given customizable property-checking filters, which can be used to ef-
ficiently generate graphs which possess various vertex-hereditary properties. The
graph-collections used in 5.1 to test the runtime of our implementation were all in
fact generated using this tool.
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Set Size Can [ms] nauty [ms]

C∗7 1044 3.7 2.6
C∗8 12346 38.9 20.3
G6 32768 70.5 34.6
C∗9 274668 780.4 290.5
G7 2097152 4231 1811
C∗10 12005168 30104 11806
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Figure 16: Runtimes for canonization by nauty, and by us (Can).

One major difference in the canonization used in generation is that orbital min-
imality amongst subsets of V (G) needs to be computed, which is achieved by main-
taining a list of currently known orbitally minimal subsets: whenever an automor-
phism µ of G is discovered, we check, for every vertex-subset X ⊆ V (G) whether
µ(X) is lexicographically smaller than X. If so, we know that X cannot be orbitally
minimal. Think of it this way: Imagine an initially edgeless graph H for which
V (H) = 2V (G), and whenever an automorphism of G is discovered, we add the edge
Xµ(X) for every X ⊆ V (G). Clearly, after a generator of Aut(G) is found, any
two subsets of V (G) which are in one subset-orbit are in one component of H, as
the appropriate automorphism can be re-created by stepping along the appropriate
edges, effectively taking the composite of the corresponding automorphisms. Rel-
atively simple use of pointers and light recursion can be used to effectively keep
track of the lexicographically smallest element in each component of the implicit H
graph, so this strategy can be used to map out orbitally minimal subsets given that
a generator for Aut(G) is discovered, however, this also requires us to keep track of
the current status of all possible subsets and update them accordingly every time an
automorphism of G is found, which takes at least O(2n) storage space and runtime
to maintain. Once again, canonization-specific information can be used to some-
what mitigate the amount of processing required, as certain sizes of vertex-subsets
can be known not to generate any further graphs on the next level, whether it is
because of the canonical form or any additional graph-property filters, but this is
still an exponential amount of required space. Thankfully, as stated before, the
generational algorithm can only feasibly run for an n so high, As the sheer number
of non-isomorphic graphs becomes a computational hurdle long before the subsets
become unmaintainable, not to mention that they multiply just as much as subsets
do.

Claim 5.1. |C∗n+1| ≥ 2|C∗n|

To see this, simply consider that given an X collection of non-isomorphic graphs,
we can either add a vertex of maximal or 0 degree to create a new unique graph,
giving us a collection of 2|X| non-isomorphic graphs. In reality of course, the number
of non-isomorphic graphs grows way faster.
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n |Gn| |C∗n| Lab. time [ms] Unlab. time [ms]

3 8 4 1.3 30.7
4 64 11 3.5 51.5
5 1024 34 39.2 160.8
6 32768 156 1256 1065
7 2097152 1044 84153 5743
8 2.6 ∗ 108 12346 5.9 ∗ 107 66328
9 6.8 ∗ 1010 274668 − 1.7 ∗ 106

10 3.5 ∗ 1013 12005168 − 9.1 ∗ 107
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Figure 17: Runtimes for labeled and unlabeled graph generation using our
generation tool.

As visible on Figure 17, the additional computations required to canonize ev-
ery graph encountered during recursive generation quickly turns a profit around
7 vertices, at which point enough graphs are discarded on every level such that
the sheer number of possible labeled graphs outweighs the higher runtime required
at each step. While staying manageable for longer than labeled graph generation,
isomorphism-invariance still only gets you so far, as the numbers become increas-
ingly big even then. The addition of further vertex-hereditary properties, such as
the ones described in Section 4, can make the generation of specific graph families
even quicker.

5.3 k-equitable partitions

Aside from generally delving into the ideas and methods employed in graph can-
onization, a main aspect of our research was experimenting with ways of poten-
tially making graph canonization faster with the employment of certain heuristic
improvements to existing algorithms. In particular, we took a look at a few ideas
regarding the modification of the refinement procedure in McKay’s algorithm. In
this section, we propose a generalization of the equitability condition that can ne-
cessitate finer partition splitting on certain graphs, and an isomorphism-invariant

36



vertex-classifying function based on Markov-Chain distributions. While these im-
provements are not groundbreaking, we believe that they can provide a useful tool
for deciding the isomorphism of graphs with many symmetrical attributes, as they
are able to detect anomalies in a partition that the usual notion of equitability
condition would deem equitable.

In [17], McKay proposes the equitability condition for the refinement of parti-
tions within the canonization search-tree of the input graph, and in Section 3.4, we
have already discussed the utilization and benefits of the property. This refinement
performs exceedingly well in practice for smaller graphs, however, it is a somewhat
short-sighted condition in the sense that it only considers direct edge-connections
within a graph, and does not immediately identify differences between vertices that
are only revealed after more complex connections between vertices have been made
apparent through individualization.

The idea of modifying the refinement condition is not entirely new. Tabak [23] for
instance examined a refinement process which utilizes the distances of vertex groups
to gleam information about the partitions. Here, we will define a generalization of
the equitability property by the use of walks of different length within the graph.

5.3.1 Defininitions, connection to equitability

Recall the definition of equitability: π is equitable exactly when d(x1, Y ) = d(x2, Y )
for any cells X, Y ∈ π and for x1, x2 ∈ Y . A different way of writing this down
would be that for all x ∈ X the number of 1-long walks starting from x and ending
in Y is constant. From here, two generalizations of the equitability condition can
be gleamed, with one being a further, even stricter generalization of the other.

Definition. Given a graph G, we call a partition π of V (G) k-equitable if for any
cells X, Y , there is a constant cX,Y such that for any x ∈ X, we have |{y : y ∈
Y, ∃w : w is a k-long walk starting in x and ending in y}| = cX,Y .

That is, walks staring in X need to have the same number of endpoints in Y no
matter what atom we start from within X.

Definition. Given a graph G, we call a partition π of V (G) strongly k-equitable
if for any cells X, Y , we have a multi-set MX,Y such that for any x ∈ X, we have
{wk(x, y) : y ∈ Y } = MX,Y , where wk(x, y) is the number of unique k-long walks
between x and y.

That is, walks starting in X will lead to the same “types” of endpoints within
Y no matter what atom we start from within X.

Claim 5.2. Let us take a graph G and a partition π of V (G). Then: π is strongly
k-equitable, then π is k-equitable.

It is not difficult to see that for any X, Y ∈ π, the number of non-zero elements
within MX,Y is a good candidate for cX,Y .

Claim 5.3. The following properties are equivalent for any graph G and partition
π of V (G):
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• π is equitable,

• π is 1-equitable,

• π is strongly 1-equitable

This also trivially follows, since 1-long walks are simply edges, and thus the
walk-information evaluated by the new conditions is simply once again the degree-
information examined by the simple equitability condition, the constant cX,Y is equal
to the d(x, Y ), which all x ∈ X share, and the MX,Y multi-set will be a collection
of cX,Y ones and |Y | − cX,Y zeroes. However, the equivalency ends at k = 1. There
are graphs that, while equitable, are not 2-equitable, which we will demonstrate
through an example on 8 vertices.
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5

6

7

8

π = ({1, 2}, {3, 4}, {5, 6, 7, 8})

v {1,2} {3,4} {5, 6, 7, 8}
1 0 1 2
2 0 1 2

3 1 1 2
4 1 1 2

5 1 1 0
6 1 1 0
7 1 1 0
8 1 1 0

Figure 18: Initial partition.

Examine the partition showcased in Figure 18. Here, the number table simply
shows the number of neighbors the leftmost vertex v has in a given cell C. Clearly,
the equitability condition is satisfied for all cell-pairs, but let us consider what
elements of {3, 4} can be reached from {5, 6, 7, 8} in two steps. When starting form
the vertices 7 or 8, we can reach both blue vertices, for instance, 7− 2− 3, 7− 3− 4
and 8− 4− 3, 8− 1− 4 are suitable walks. However, starting from 5 or 6, there is
no way to reach both vertices. From 5 we can only reach 4, and from 6 we can only
reach 3. Therefore, the pair {5, 6, 7, 8}, {3, 4} violates the 2-equitability condition,
and the partition can be split by the number of ending points walk starting from
the former can have in the latter.

In the table of Figure 19, we can now see both d(v, C), as well as the number
of elements in C that can be reached from v through a 2-long walk. Clearly, 2-
equitability holds.

5.3.2 Implementation, results

Our approach to computing a k-equitable refinement to a given partition π is to
check the number of endpoints belonging to k-long walks that start in X, and and
in the vertices to other cells alongside the checking of regular degrees into cells that
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π = ({1, 2}, {3, 4}, {5, 6}, {7, 8})

v {1,2} {3,4} {5, 6} {7, 8}
1 0,1 1,2 1,1 1,1
2 0,1 1,2 1,1 1,1

3 1,2 1,1 1,1 1,2
4 1,2 1,1 1,1 1,2

5 1,1 1,2 0,1 0,2
6 1,1 1,2 0,1 0,2

7 1,1 1,2 0,2 0,1
8 1,1 1,2 0,2 0,1

Figure 19: Initial partition.

are computed during regular equitability checking. This way, the condition can
be ensured in much the same manner, except that we compare and sort vectors
of length k when deciding whether the current out-cell violates the k-equitability
condition or not, instead of simple degrees, that is, vectors of length 1 during usual
equitability refinement. In order to efficiently perform this task, some preprocessing
will be beneficial. During regular equitability refinement, we often needed to check
whether an element form the out-cell is connected to an element of the in-cell, and
we similarly often need to check whether there is a k-long walk spanning from one
element to another in the case of k-equitability, and how many such walks go from
one vertex to another in the case of strong k-equitability. In the case of paths, this
would be extremely problematic, as even deciding whether a k-long path between
two vertices exists is an NP-complete problem, but with walks, we can decide these
questions with relative ease. To achieve this, we can calculate and store the following
matrices for future use at the beginning of the canonization:

Claim 5.4. Let us have a graph G with adjacency matrix A. Then, Ak(u, k) is the
number of k-long walks starting in u and ending in v

Simple induction by |V (G)| can be used to verify this, if Ak contains the right
elements, then multiplying by A from the right will extend each walk by a further
edge, and increase the count for the appropriate destination edge. From this, the
tool for strong k-equitability checking is directly Ak, and that of k-equitability is
simply the matrix Ãk ∈ {0, 1}n×n for which:

Ãk(u, v) =

{
1 : Ak(u, v) > 0,

0 : Ak(u, v) = 0.

In this solution, we once again run into the problem of large numbers: the elements
in Ak can get exponentially big, which requires mitigation. Simply replacing the
elements of the matrix with their position in an ordering is not desirable like it was
in the vertex-hashing algorithm from Section 3.2, as the differences in walk count
are the main way this method creates finer partitions, and a lot of different counts
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could be lost through this sort of reduction. A more fitting way of reducing data
would be to compute elements of Ak modulo M for some chosen modulus, preferably
one low enough to keep the elements small enough to comfortably work with, yet
high enough such that high variety in the amount of walks counted between vertices,
and which decreases the likelihood of an element within Ak to be an actual multiple
of M , therefore nullifying the count of walks up until that point. No such problems
are encountered when computing (̃A)k alone, as the these can easily be computed

from (̃A)k−1 by performing a “logical or” multiplication with A, where to compute

(̃A)k(i, j) we do not multiply the i-th row and j-th columns of the respective graphs,
but simply check whether there is a single k index for which Ak(i, k) = A(k, j) = 1.
To test performance, we used our canonization tool on the same collections of graphs,
examining direct runtime with both 2-equitability and regular equitability checking
enabled.

Set Size Refeq [ms] Ref2−eq [ms] # finer partitions

G5 1024 2.2 3 34
C∗7 1044 3.7 5.1 25
C∗8 12346 38.9 52.1 35
G6 32768 70.5 100.8 83
C∗9 274668 780.4 1204 46
G7 2097152 4231 6910 216
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Figure 20: Runtimes and finer partitions produced by equitable and 2-equitable
refinement.

In Figure 20, we can see the performance of the algorithm when using the regular
1-equitability refinement, and when 2-equitability is checked Unfortunately, this
method of refinement is clearly less efficient for the vast majority of graphs. The
additional information that needs to be computed in every refinement step outweighs
the impact the finer partitions provide in the cases where higher equitability is useful.

It is interesting to note, however, that there are significantly more useful cases
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when we are canonizing labeled graphs, as opposed to the unlabeled case. This is
clearly because graphs which are prone to producing partitions that are equitable,
yet not 2-equitable are necessarily somewhat symmetric, and therefore have a larger
automorphism group. The more symmetries in the graph, the more labeled forms
it has, therefore, the more times 2-equitable refinement comes in handy during
canonization. While not an overbearing group, cases where graph partitions are
finer than they would have been with regular canonization increase as the number
of vertices increases, as we can see that the number of finer-than equitable partitions
more than doubles over each set of labeled canonizations.

This implies that on larger graphs, this could be a somewhat reliable way of dif-
ferentiating between graphs which are likely to produce equitable, yet not 2-equitable
partitions, such as graphs with similar degree-sequences, or graphs which have al-
ready been collected as being “indistinguishable” based on one use of refinement, as
the resulting colored graphs contain the same types of color-neighborhoods between
vertices, a property which can be easily checked in polynomial time. One example
of a way that this can be useful is by providing a quick test for isomorphism between
such graphs: if the resulting colored graphs are different in the above way, then they
are clearly not isomorphic. When the color-neighborhoods are still similar, regu-
lar isomorphism-testing occurs. With the ability to produce finer partitions, more
graph-pairs can be identified as not isomorphic, without the need to fully canonize
each graph.

5.4 Markov chains, stationary distributions

In this section, we examine a different approach to aiding the refinement of partitions
within the graph. We note that the input graph is still assumed to be simple, but
in this section we discuss modifications that make supporting graphs non-simple.
Rather than attempting to modify or adjust the equitability condition itself, we
instead split the partition by another isomorphism-invariant vertex function, that
being the values of a stationary distribution of a Markov-chain defined on the vertices
of G.

5.4.1 Defining the Markov-chain

Rudimentary knowledge of Markov-Chains from the reader is assumed, but let us
quickly go over the basics. A Markov-chain is a certain type of sequence, where the
probabilities for what the next value in the sequence may be is only determined by
the last value taken on. In short, given only the current value in the sequence, we
can say exactly what the probability is that a certain value will be taken on next.
One of the most common ways of defining a finite-element Markov-chain is through
the use of a directed graph D = (V,A), with edge weights p : A 7→ R such that
for any u ∈ V ,

∑
uv∈A p(uv) = 1. The chance of ending up in position v exactly

n steps after being in v is denoted as p(n)(u, v). The markov-chain defined by D
is straightforward: the values the chain can take on are the vertices of the graph,
and from any value u, we can “step into” a neighboring value v with probability
p(uv), often denoted as puv. The matrix P = {puv} ∈ Rn×n is called the transition
matrix of the Markov-Chain. Two Markov-chains with transition matrices P1, P2
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are isomorphic if there is some bijection µ from the elements of the first one to the
second such that p1(x, y) = p2(µ(x)µ(y)).

A certain attribute a Markov-chain can possess that we can make use of when it
comes to graph canonizations is that they can have very particular and isomorphism-
invariant vertex-attributes that can be computed very efficiently under the correct
circumstances. In particular, we will examine how we can make use of the stationary
distribution of a Markov-Chain.

Definition. For a Markov-chain defined on the elements of X with probability
matrix P , the vector α ∈ RX is a stationary distribution of the Markov-chain if for
any x ∈ X, we have α(x) =

∑
y∈X αypyx.

Basically, if the chance of the current value being x is µ(x) for all x ∈ X, then
this is also the chance of the next value in the chain being x. Another way to think
about it is how likely it is that a specific value is the current one after a near-infinite
number of steps. For Markov-chains on finite elements, such as in the case of the
directed graph, this means an n-long column vector α for which αT = αTP , or, to
be more conventional, P Tα = α, that is, any µ ∈ [0, 1]n for which (P T − I)α = 0n,
and

∑n
i=1 αi = 1.

If the stationary distribution is unique, it can be computed efficiently with proper
linear equation solvers, so the idea is to use the cell-splitting idea described in
Section 3.3 with the distribution itself. construct a Markov-chain on the vertices of
the input graph, and compute the α stationary distribution, then split the elements
of V (G) based on the α value they receive. Clearly, if isomorphic graphs with
isomorphic partitions lead to isomorphic Markov-chains, then the method will indeed
be isomorphism-invariant, as these chains have similar stationary distributions.

Ensuring uniqueness The basics of the Markov-chain are fairly straightforward
in design: the main elements are those of V (G), and the transition matrix should
be somehow inferred from |E(G)| and π, with the more uniqueness harvested from
these the better, as we desire as much difference in distribution values as possible. As
mentioned earlier, the above approach only works if the Markov-chain we construct
has a unique stationary distribution. The initial attempt at defining a Markov-
chain would be the following: Let M(G) be the markov-chain whose elements are
the vertices of G, and in which we simply step into any neighboring vertex with
equal chance.

Claim 5.5. G ∼ H ⇐⇒ M(G) ∼M(H)

This is most easily verified by considering how the non-zero elements of the
adjacency matrix of G and the transition matrix of M(G) are in the same places,
and they move around together when the elements are permuted, which includes
the case of isomorphisms.

This is a good start, but not good enough, as it is possible that the resulting
Markov-chain has several different stationary distributions. The most simple ex-
ample would be any non-connected graph. Any stationary distributions calculated
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separately on the components could be combined convexly in order to achieve some-
what arbitrary ordering on the vertices, and since we want to compute the distribu-
tion trough the use of a linear equation system, the order in which the conditions
are listed can impact which possible distribution we end up computing.

Luckily, there is a simple way to ensure that the stationary distribution of our
Markov-chain is unique without needing to check for connected components or other
conditions, and without sacrificing any information provided by the structure of the
chain.

Definition. A Markov-chain is ergodic if there exists an n0 ∈ N such that for any
elements u, v of the chain (these can be the same) and n > n0, we have p(n)(u, v) > 0.

We care about this because one of the most crucial and often used theorems in
the field of stochastic processes is the following claim:

Theorem 5.1. [24] For an ergodic Markov-chain, the stationary distribution is
unique.

In the case of our graph-based chain, this would mean that the initial G graph
needs tp be connected, and for some n0, there must be an n-long walk between any
two vertices for any n > n0. Both of these conditions can be easily satisfied by
expanding the graph. Let Gz be the graph resulting by adding an additional vertex
z to G, and connecting it to all previously existing vertices within V (G), as well as
putting a unique loop edge on z.

Claim 5.6. G ∼ H ⇐⇒ Gz ∼ Hz.

proof: If G ∼ H, the other condition trivially holds true. If Gz ∼ Hz, simply
consider that z is the only vertex in both graphs with a loop, thus, any isomorphism
between the two leaves it in place, thus the rest of the isomorphism proves G ∼
H.

Theorem 5.2. M(G) ∼M(H) ⇐⇒ M(Gz) ∼M(Hz)

Proof: Because of Claims 5.5 and 5.6, M(G) ∼M(H) ⇐⇒ G ∼ H ⇐⇒ Gz ∼
Hz ⇐⇒ M(Gz) ∼M(Hz).

Thus, adding the z vertex does not “muddle” the appearance of the input graph.
Now as to how this helps us ensure the correctness of the Markov-chain:

Theorem 5.3. M(Gz) is ergodic for any G ∈ Gn.

proof: n0 = 1 works, as for any n ≥ 2, we can simply step into z, travel on the
loop in place for n − 2 steps, then step into any other element, thus the ergodic
condition is satisfied.

This, combined with the fact that we already established z to not interfere with
the uniqueness of the Markov-chain gives us a convenient solution to the distribution
uniqueness problem. We simply calculate the µ stationary distribution for M(Gz),
and then simply ignore µ(z) while partitioning the vertices.

In Figure 21, we can see the way a linear equation can be defined to give us the
stationary distribution of Gz as a result. The resulting distribution in the example
is α = (0.27, 0.18, 0.18, 0.37), which partitions V (G) into ({2, 3}, {1}), while αz can
be ignored.
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
−1 0.5 0.5 0.25
0.33 −1 0 0.25
0.33 0 −1 0.25
0.33 0.5 0.5 0.25

1 1 1 1

α =


0
0
0
0
1


Figure 21: Linear equation resulting from simple graph.

5.4.2 Implementation, results

Using partition information While the initial hopes were that the stationary
distribution by M(Gz) would immediately split V (G) into well-differentiated subsets
of vertices, perhaps even orbits, it quickly became apparent that this model by itself
was too simple for this purpose.

Claim 5.7. µ(v) = dGz (v)
|E(G)| is a stationary distribution of M(Gz).

Not to worry however, as the nature of the Markov-chain can be altered greatly
by simply adjusting the individual probabilities with which we step from certain
vertices to others. We can do this with the help of our ordered partition π =
(1, X2, . . . , Xk, {z}). Let us say that c(u) is the index of the cell which u is contained
in. Edges can then be differentiated by using the c-values of its endpoints.

In our implementation, we used the following strategy: For any vertex u, give
every connected edge uv ∈ E(Gz) a weight of c(v). Then, take S =

∑
uv∈E(Gz) c(v)

and we define the transition probabilities as: puv = c(v)
S

this simply makes the
chances of getting from one vertex to another in any number of steps different based
on the cell-based connections between the two.

Initial testing involved the utilization of the index of both endpoints, in order
to completely differentiate between any two edges at all if they were not going be-
tween the same cells, but in our results, this turned out ot not be beneficial for the
purposes of cell refinement, and simply complicated the examination of results and
computation, as the differences between numbers becomes smaller as more com-
plexity is attempted to be used to differentiate between he probabilities of steps.
The important thing in efficient refinement based on stationary distributions is to
simply differentiate between the probabilities of the outgoing edges of a vertex when
deciding where to step next.

Using distant neighbors Through initial testing, it was found that on its own,
the stationary distribution of the previously described Markov-chain still does not
give finer partitions than the equitability refinement, which would be the expected
recompensation for the greater amounts of computation necessitated by the linear
equation systems, however, we can further specify our Markov-chain to potentially
make it even stronger. Recall from Section 5.3 the matrices Ak and (̃A)k, which
describe the relationships of graphs based on the k-long walks between them. Con-
sider the following: for i = 2, . . . , k, we add additional edges to Gz for each u, v for
whom (̃A)k(u, v) = 1, that is, there is a k-long walk between u and v. This edge
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can then be given a weight similar to how we did it previously based on the cell of
the recipient vertex, as well as k to differentiate between each type of connection
between any two differing edge from a single staring point. These edges may even
be given different values based on Ak(., .), that is, the actual number of k-long walks
between them, although this aspect of Markov-chain modification was not explored.

We found that doing this can indeed result in the Markov-chain producing a
stationary distribution that gives us a finer partition than regular equitability re-
finement would, in particular, it capable of identifying and splitting up partitions
that are not k-equitable.

To test efficiency, we ran our canonization tool both with and without the help
of the stationary distribution invariant. The linear equation were solved using the
Eigen linear algebra tool for C++.

Set Size Refeq [ms] SD + Refeq [ms](∗) # finer partitions

G5 1024 2.2 4.14 0
C∗7 1044 3.3 6 1
C∗8 12346 37.1 67.3 15
G6 32768 61.8 111.7 0
C∗9 274668 751.4 1191 99
G7 2097152 4242 7752 105
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Figure 22: Runtimes and finer partitions produced by equitable refinement with and
without the distribution invariant.

See Figure 22 for the runtimes resulting from our implementation of this vertex-
invariant. 1

1The time spent on the actual solving of the linear equation system was omitted from the figure,
even though it constituted a significant portion of computation time, roughly an additional 50% to
what is listed. This is because even though practical and efficient for case-by-case use, the solving
subroutine of Eigen reserves memory for new assisting data structures with each call, which, when
done such a high numbers of times can take up a deceptively large amount of time, something that
was duly noted during development of our own implementation of the search-tree algorithm. With

45



These results clearly show that this approach to distribution-based vertex parti-
tioning is generally inferior to equitability refinement. Firstly, it takes significantly
more time to compute, as not only do we need to compute the solution of a sizable
linear equation system, but the resulting partitions, while sometimes finer than what
equitability would provide us, are often times coarser instead, given how the specific
edge-connections between vertices do not properly differentiate with the use of this
type of arithmetic. Secondly, even with the addition of higher-level neighborings
into the transition matrix, the method is still not quite as adept at picking out
k-equitable partitions as the regular modified equitability checker, as clearly visible
on the smaller graph sets. In addition to all this, even after the distribution is used
to split the cells of the partition, since the partition is often not equitable yet, reg-
ular equitability refinements still benefits us often enough to the point where full
utilization of it is preferable, even though every new cell created from the previous
method will now need to be treaded as active, meaning that very little work was
saved for the refinement procedure, despite the trouble we went through to acquire
the semi-refined partition. This is a good demonstration as to not overdo node-by-
node examination in the search-tree. Even though this method results in smaller
search trees for certain very specific graph types, it still simply results in gross
additional computation in the vast majority of cases, as well as being downright
detrimental in many.

5.4.3 An iterative approach

Clearly, the extra computations that come with the solving of a linear equation
system are simply not worth the trouble, not only because it is generally slower to
compute while offering little compensation in the form of occasionally finer parti-
tions, but also because it is not dynamic in terms of differentiating vertices as more
information is gathered while refining. When to vertices that are in one cell have dif-
ferent distribution values, they are deemed different, but this is not further utilizable
in differentiating them the way it would cause a chain-reaction of resulting violat-
ing cell-pairs teh way it would with equitability refinement, without the explicit
calculation of a new stationary distribution based on the new cell-distribution.

We can somewhat remedy these problems by taking a different approach to
“finding” the distribution in question. Earlier we mentioned how the stationary
distribution α may be thought of as the “limit” distribution of a Markov-chain, that
is, there is some starting distribution α0, for which continually stepping with the
distribution, that is, taking αi+1 = P Tαi, we have limi→∞ αi = α. Notice how as
long as the initial α0 distribution is chosen in an isomorphism-invariant manner, the
resulting distributions all behave similarly between isomorphic graphs, and their
computation requires considerably less effort than that of the actual stationary dis-
tribution. So the idea is to approximate the stationary distribution by giving an
isomorphism-invariant initial distribution α0, such as by differentiating vertices by
the cell they are in to provide further initial diversity, and then iterating the above
process for as long as we wish.

the proper structuring and memory allocation, this additional time can be assumed to be much
smaller, though still not remotely negligible.
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This approach is reminiscent of the way neighborhoods were aggregated in 2
to produce unique strings in each cycle, except here it is not the concatenation of
strings, but the linear combination of real numbers. Interestingly, we have found that
this method of distribution-refinement is actually more apt for the differentiation of
vertices: the same fineness that the stationary distribution provides is reached after
just one iteration step in a vast majority cases, meaning that much less computation
is required that if the entire linear equation needed to be solved.

Set Size Refeq[ms] SD + Refeq [ms](∗) SDit(1) + Refeq [ms] # f. p.

G5 1024 2.2 4.14 3.9 0
C∗7 1044 3.3 6.3 5.8 1
C∗8 12346 38.9 67.3 60.3 16
G6 32768 61.8 111.7 100.8 0
C∗9 274668 751.4 1191 1152 103
G7 2097152 4242 7752 6415 105
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Figure 23: Comparing distribution-invariant methods.

See Figure 23 for a comparison of distribution methods. Clearly, this is still way
slower than regular equitability refinement, but for the purposes of targeted partition
refinement, this an improvement over the stationary distribution method. Aside
from the complete dismissal of the lengthy linear equation solving, the overall search
is also noticeably quicker. The number of times partitions are finer than equitable
also increases, and the times when they are coarser are much fewer between. Another
thing to keep in mind is that with the identity αk = P Tαk−1 = P TP Tαk−2 = · · · =
(P T )kα0, we can reduce the entire computation of αk to a single matrix-vector
multiplication after (P T )k is computed, something which can be efficiently achieved
with parallel computing when many processors are available.
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Closing remarks

While these heuristics did not turn out to directly speed up the canonization of
general graphs, the ability to create finer-than-equitable partitions with two possible
methods is still remarkable. Many graph groups can be identified simply by the
identification of many differing vertices as seen in Section 3.2, and with k-equitability
being a natural extension of the hashing algorithm with the general realization of the
equitability-refinement procedure, it may be useful in the future for identification
and efficient canonization of certain groups of graphs.

Our canonization implementation and improvement attempts are just a few in
a line of many attempts at tackling the problem of efficient graph canonization
throughout history, see Section 2.3 for a partial list of the most major results in
canonization that have come from such attempts. Readers are recommended to
read up on various experimental canonization improvement attempts such as the
ones in Sections 5.3 and 5.4, to check out and attempt to comprehend some of the
most well-performing canonization tools such as nauty to see what something like
this actually looks like in practice, and to ponder how one could canonically label a
graph in a way previously unthought of. One can never know.
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Aluĺırott Nagy Szabolcs Ákos nyilatkozom, hogy a szakdolgozatom elkésźıtése során
semmilyen MI alapú eszközt nem használtam bármilyen célból.
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