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Introduction

In this thesis, we look at different ways to price a European call option. Chapter 1 con-
tains the most important definitions and concepts, such as filtrations, (adapted) stochastic
processes, and derivative securities in general. In Chapter 2, we consider a discrete-time
approach, which allows us to introduce important techniques, such as hedging and risk-
free pricing. Chapter 5 is the corresponding continuous-time analogue to the model intro-
duced in Chapter 2; here we derive the Black-Scholes-Merton partial differential equation,
a starting point of modern mathematical finance and option pricing. The intermediate
chapters contain the mathematical framework that allows us to derive the results in the
fifth chapter, namely Brownian motion and Itô calculus. The most unusual result, in our
opinion, is that one can integrate stochastic processes with respect to other stochastic
processes (Itô integral). Chapter 3 introduces Brownian motion, an essential concept for
continuous-time modeling, while Chapter 4 considers the calculus needed, built up from
the most basic simple processes to the more general case discussing Itô processes, with
the pinnacle being the Itô-Doeblin formula. Finally, Chapter 6 contains an outlook to
other derivative securities (exotic options), and ways to price them with other tools than
the ones we derived, for example, Monte Carlo simulations, or switching the assumption
of the underlying following a geometric Brownian motion to a more market-fitting Lévy
process.

4



Chapter 1

Essentials

This chapter contains the basic mathematical definitions and theorems we used in the
later chapters, as well as a few financial concepts we had to include for cohesive purposes.

Definition 1.0.1 Let (Ω,A,P) be a probability space. We call the sequence (Xn)n∈N of
random variables X1, X2, ... a discrete-time stochastic process. Now let us fix the positive
number T , and define a random variable for every t ∈ [0, T ]. We call the collection {X(t) :

t ∈ [0, T ]} a continuous-time stochastic process.

Definition 1.0.2 [1] Let (Ω,A,P) be a probability space, and let T be a fixed positive
number. Suppose that for every t ∈ [0, T ] there is a sigma-algebra F(t) such that if s < t,
then F(s) ⊂ F(t); we call {F(t) : t ∈ [0, T ]} a filtration.

This definition is for a continuous filtration; one can easily imagine what the discrete-
time analogue must be like, and can see an example of it in Definition 1.0.4.

Definition 1.0.3 [2] Let (Ω,A,P) be a probability space, F ⊂ A a sub-sigma algebra and
X : Ω → R be a random variable satisfying E(|X|) < ∞. Then, the conditional expectation
of X given F , denoted by E(X|F) is a random variable Y with the properties
(i) Y is F-measurable
(ii) ∀ A ∈ F :

∫
A
X dP =

∫
A
Y dP

Any Y satisfying (i) and (ii) is said to be a version of E(X|F).

Definition 1.0.4 [3] Let (Ω,A,P) be a probability space, and let (Fn)n∈N be a filtration,
an increasing sequence of sub-sigma algebras of A. A sequence of integrable random vari-
ables (Xn)n∈N is called a martingale with respect to (Fn), if for all n ≥ 0
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(i) Xn is Fn-measurable
(ii) E(Xn+1|Fn) = Xn

Definition 1.0.5 Let X1, X2, ... be a sequence of random variables (discrete-time stochas-
tic process), and let (Fn)n∈N be a filtration. We say that (Xn)n∈N is adapted to this filtra-
tion, of for every n ∈ N Xn is Fn-measurable.

Note: If we don’t specify the filtration and just say that (Xn) is an adapted stochastic
process, we always think of the natural filtration Fn = σ{X1, ..., Xn}, the sigma-algebras
generated by the random variables X1, ...Xn.

Definition 1.0.6 [4] Let (Ω,A,P) be a probability space, and (Xn)n∈N be a sequence of
random variables and X be a random variable. We say that Xn converges to X in L2, if

limn→∞ E((Xn −X)2) = 0

Definition 1.0.7 [5] (Lagrange Mean Value Theorem) Let f : R → R be continuous on
[a, b] and differentiable on (a, b). Then, there exists c ∈ (a, b) such that

f ′(c) = f(b)−f(a)
b−a

We also want to specify what a derivative security is. This is a financial contract between
two participants, a buyer and a seller. The value of a derivative security depends on the
value of the underlying asset, which can be about anything, but in our case, it’s a stock.
A European call option is a derivative security, which conveys to its owner the right, but
not the obligation to buy a specified amount of the underlying asset (stock) for a specified
price (strike price) at a specified time (maturity date). The owner pays a premium for
the option when it’s set up. In this text we only consider the European call option, which
when exercised, pays the amount max(S − K, 0), where S is the underlying stock price
and K is the strike price. If K > S, then the option expires worthless, hence the zero in
the defining formula. We summarize this in the following

Definition 1.0.8 [6] A European call(put) option gives the holder the right, but not the
obligation, to buy(sell) an asset at a specified time t, for a specified price, K. The payout
of the option is then max(S −K, 0) (or for a put option max(K − S, 0)).
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Lastly, a few financial terms; we do not call these definitions because they are not math-
ematically precise, and we preserve that notation for mathematical terms.
The stock market is where stocks are traded. A stock is a type of security that represents
partial ownership in a company. Generally speaking, a stock is considered a risky asset
due to its tendency to fluctuate in value. A unit of stock is called a share. [6]
The money market includes securities that are basically risk-less. The money invested in
the money market accumulates interest rate over time.
The interest rate, denoted by r ≥ 0, is the reason one would invest in the money market.
One dollar invested in the money market will pay off (1 + r)t dollars in t years (if the
interest rate is accumulated annually). Similarly, one dollar borrowed from the money
market will result in a debt of (1 + r)t in t years. [7]
A portfolio is just a collection of securities.
Arbitrage is a trading strategy that starts with no money, has zero probability of losing
money, and has a positive probability of making money. Though real-life markets some-
times exhibit arbitrage, it only lasts a short amount of time, because trading takes place
to remove it. A key feature of efficient markets is that they don’t allow arbitrage. [7]
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Chapter 2

Binomial model

The binomial asset-pricing model is interesting to us for two reasons: one is that with
sufficient enough time steps it could be used in practice to price derivative securities, and
two, because we can develop the arbitrage-free pricing theory and risk-neutral pricing in
a relatively easy environment. These concepts form the core of this thesis, and they will
be picked up again in Chapter 5, but in a different context.
Our main source while writing this chapter was [7].

2.1 One-period model

In this simple case, we only have one time step and thus two time periods: time zero,
which we think of as the present, and time one, the future. At time zero, we know the
value of a stock (we denote this by S(0)), but at time one we do not; the only thing we
know is that it’ll be one of two values: S1(A) or S1(B), where A and B are the two possible
outcomes of a random experiment ([7] thinks of this as a coin toss). Let us denote the
probabilities of these events occurring by p > 0 and q = 1− p > 0, respectively.

Definition 2.1.1 We call the positive numbers u and d the up-factor and down-factor,
where

u = S1(A)
S(0)

, d = S1(B)
S(0)

We make the assumption d < u, otherwise we relabel the fractions defined above.
We only consider the case S1(A) ̸= S1(B), otherwise the stock movement is not random
and the model is not interesting.
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A key feature of efficient markets is that wealth cannot be generated without risk, so in
short, an efficient market cannot allow arbitrage. This idea lies at the heart of arbitrage-
free pricing theory.

Proposition 2.1.2 [7] In order to rule out arbitrage in the one-period binomial model,
we must assume

0 < d < 1 + r < u

Proof: 0 < d was already assumed in Definition 2.1.1.
Let’s assume that d ≥ 1 + r; then, we can borrow money from the money market and
invest it in the stock market by buying stock for S(0). Even in the worst-case scenario
for the stock at time one (that is S1(B) = dS(0) ≥ (1 + r)S(0)), we can pay back our
(1 + r)S(0) debt to the money market, and there is a positive probability of the stock
being worth strictly more than our debt (because uS(0) > dS(0)), allowing arbitrage.
Now let’s assume u ≤ 1 + r; by "shorting the stock" (that is, we borrow S(0) amounts
of stock from the stock market) we can immediately sell our position and invest in the
money market. Even in the best-case scenario for the stock at time one we can pay back
our uS(0) debt to the stock market and there’s a positive probability that our money
market account is worth strictly more, again allowing arbitrage. ■
Note: If there is no arbitrage in the one-period model, the inequalities in Definition 2.1.4.
must hold true.
Now let us consider a European call option. This type of derivative security gives the right,
but not the obligation to its owner to buy one share of stock at a preselected time for the
strike price K. The case most interesting for us is when S1(B) < K < S1(A), so at time
one the option is worth max(S1 −K, 0).
"The fundamental question of option pricing is how much the option is worth at time
zero."[7]
The idea behind arbitrage-free pricing is that by trading in the stock and money markets,
we replicate the option. This replication process we will call hedging. In practice, one can
think of hedging as protection against loss of value.
Let’s assume we have a derivative security paying D1(A) or D1(B) at time one, depending
on a random experiment with two possible outcomes A and B. Our goal is to determine
a time zero price D0 for this derivative security.
At time zero, we start with a cash position X0 and buy ∆0 shares of stock for S(0) per
share, so our position at time zero is
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X0 −∆0S(0)

At time one, our position looks a bit different:

X1 = (1 + r)(X0 −∆0S(0)) + ∆0S1 = (1 + r)X0 +∆0(S1 − (1 + r)S(0))

because our cash position grew by the interest rate and our stock is now worth S1 per
share.
Our goal is to assign a value to X1 in a way that

X1(A) = D1(A)

X1(B) = D1(B)

Multiplying by 1
1+r

leaves us with the two equations

X0 +∆0(
1

1+r
S1(A)− S(0)) = 1

1+r
D1(A) (1.1)

X0 +∆0(
1

1+r
S1(B)− S(0)) = 1

1+r
D1(B) (1.2)

Now we use a "trick" to solve these two equations, which will turn out to be the basis
of risk-neutral pricing. The trick is to multiply the first equation by p̃, the second by
q̃ = 1− p̃ and add them together. Doing so we get

X0 = ∆0(
1

1+r
[p̃S1(A) + q̃S1(B)]− S(0)) = 1

1+r
[p̃D1(A) + q̃D1(B)]

We can make the term multiplying ∆0 drop out by choosing

S(0) = 1
1+r

(p̃S1(A) + q̃S1(B))

and obtain

X0 =
1

1+r
(p̃D1(A) + q̃D1(B)) (1.3)

Solving the equation above for p̃ leaves us with

S0 =
1

1+r
(p̃uS(0) + q̃dS(0)) = S(0)

1+r
(p̃(u− d) + d)

⇒ p̃ = 1+r−d
u−d

, q̃ = u−1−r
u−d

Now we only need ∆0; we can simply subtract (1.2) from (1.1) to obtain

∆0 =
D1(A)−D1(B)
S1(A)−S1(B)
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We call this the delta-hedging formula (see section 5.3).
To summarize, if we start with a cash position X0 defined by (1.3) and buy ∆0 shares
of stock defined by the delta-hedging formula, then at time one our position’s worth will
match the amount that D1 is paying, regardless of how the random experiment turned
out, thus we "hedged a short position in the derivative security."[7]
We also conclude that the derivative security should be priced at

D0 =
1

1+r
(p̃D1(A) + q̃D1(B))

where the numbers p̃, q̃ are the risk-neutral probabilities and the equation itself is the
risk-neutral pricing formula [7]. By doing so, we don’t introduce arbitrage. Any other
time zero price will introduce arbitrage to the model.

2.2 Multiperiod model

In this section we generalize the previous section’s one-period model to multiple time
steps. Every time step a random experiment is conducted, and if the outcome is A, the
stock price moves up by the up-factor u; otherwise, it moves down by the down-factor
d. Additionally, we have a money market with a constant interest rate r. We assume the
inequalities in Proposition 2.1.4 to rule out arbitrage.
The starting stock price we denote by S(0) > 0, and the time one stock price by S1; this
could be one of two things: either S1(A) = uS(0) or S1(B) = dS(0).
We consider the European call option, a derivative security whose payout at any time
n is max(Sn − K, 0), where K is the strike price. The payout at time n of an arbitrary
derivative security we denote by Dn. The portfolio value at time n is denoted by Xn.
The main focus once again is to determine D0, the time zero price for said derivative
security.
In order to do so, let’s suppose that we sell the security at time zero for D0 (this is
unknown), and buy ∆0 shares of stock, leaving us with a position

X0 = D0 −∆0S(0)

At time one our portfolio is

X1 = ∆0S1 + (1 + r)(D0 −∆0S(0))

so we have two equations

11



X1(A) = ∆0S1(A) + (1 + r)(D0 −∆0S(0))

X1(B) = ∆0S1(B) + (1 + r)(D0 −∆0S(0))

We want these to be equal to D1(A) and D1(B), respectively.
At time one we can decide to buy or sell stock, given how the experiment turned out, so
at time two our portfolio becomes

X2 = ∆1S2 + (1 + r)(X1 −∆1S1)

leaving us with another four equations

X2(AA) = ∆1(A)S2(AA) + (1 + r)(X1(A)−∆1(A)S1(A))

X2(AB) = ∆1(A)S2(AB) + (1 + r)(X1(A)−∆1(A)S1(A))

X2(BA) = ∆1(B)S2(BA) + (1 + r)(X1(B)−∆1(B)S1(B))

X2(BB) = ∆1(B)S2(BB) + (1 + r)(X1(B)−∆1(B)S1(B))

At the end we have six equations for six unknowns (D0,∆0,∆1(A),∆1(B), X1(A), X1(B))

To solve this, we use the trick introduced in the previous chapter: multiply by the risk-
neutral probabilities and subtract one equation from the other to obtain

X1(A) =
1

1+r
[p̃D2(AB)− q̃D2(AA)]

so we say that the price of the option if the first experiment’s outcome is A is

D1(A) =
1

1+r
[p̃D2(AB)− q̃D2(AA)]

This is another instance of the risk-neutral pricing formula.
The delta-hedging formula becomes

∆1(A) =
D2(AB)−D2(AA)
S2(AB)−S2(AA)

Of course, similar formulas work for the other case, when the experiment’s outcome is B.
Finally, we solve the first two equations X1(A) = D1(A) and X1(B) = D1(B) as seen
in the previous chapter, and get the delta-hedging formula for ∆0 and the risk-neutral
pricing formula for D0.
We summarize this by

Theorem 2.2.1 [7] Consider an N-period binomial model with 0 < d < 1 + r < u and
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p̃ = 1+r−d
u−d

, q̃ = u−1−r
u−d

Let DN be the value of a derivative security paying off at time N . Define the sequence of
random variables DN−1, DN−2, ..., D0 by

Dn = 1
1+r

[p̃Dn+1(A) + q̃Dn+1(B)]

and define

∆n = Dn+1(A)−Dn+1(B)
Sn+1(A)−Sn+1(B)

and lastly, define the portfolio values X1, X2, ..., XN by the wealth-equation

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn)

If we set X0 = D0, then we will have XN = DN , regardless of how the random experiments
turned out.
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Chapter 3

Brownian motion

In this chapter we follow [1], and obtain Brownian motion as the limit of a scaled ran-
dom walk as the number of steps approaches infinity. To have a better understanding,
we start with symmetric random walks, mostly to familiarize ourselves with notation and
terminology such as increments, quadratic variation, variance, and the martingale prop-
erty. Section 2.4. introduces Brownian motion, Section 2.5. considers quadratic variation
of the Brownian motion, an important property that distinguishes ordinary calculus from
stochastic calculus. Section 2.6. gives an example of how the quadratic variation could be
used to estimate the volatility of a Brownian motion-driven asset price.

3.1 Symmetric random walk

Imagine standing on an arbitrarily chosen point of the real plane, with a fair coin in
hand; the game is the following: you flip the coin, and if it’s heads, you step forward and
upwards, otherwise, if it’s tails, you step forward and downwards. Informally speaking,
this is a symmetric random walk.

Formally, let’s assume we have X1, X2, ... i.i.d. random variables with P(Xj = 1) = p and
P(Xj = −1) = 1− p.
We choose p = 1

2
, allowing symmetry.

Definition 3.1.1 [1] We say (Wk)k∈N is a symmetric random walk, if

Wk =
∑k

j=1Xj
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Since Wk is the sum of independent random variables, one can think of it as a random
variable as well, meaning that (Wk)k∈N is a discrete-time stochastic process.

Below we included a picture of a python-run simulation of a random symmetric walk with
k = 100.

Figure 3.1: Random walk

In order to better understand Brownian motion, we consider some properties of the sym-
metric random walk, namely independent increments, martingale property and quadratic
variation.

Definition 3.1.2 [1] Let k < l ∈ N; we call the random variable Wl −Wk =
∑l

j=k+1Xj

the increment of the random symmetric walk between k and l.

Having independent increments means that if we choose k0 < k1 < ... < kn, ki ∈ N, then
the random variables

Wk1 −Wk0 ,Wk2 −Wk1 , ...,Wkn −Wkn−1

are independent. This is due to Wki−Wki−1
=

∑ki
j=ki−1+1 Xj, so if the intervals are nonover-

lapping, the sum depends on different (thus independent) variables.
Moreover, it’s easy to see that E(Wki −Wki−1

) = 0, since the expected value is linear and
trivially E(Xj) = 0 ∀ j ∈ N.
Similarly, we have V ar(Wki −Wki−1

) = ki − ki−1, because V ar(Xj) = E(X2
j ) = 1.

We say that the variance of the symmetric random walk accumulates at rate one per unit
time, meaning that the variance of the increment over a time interval k to l equals l− k.

Now let us show the martingale property; let m < n ∈ N and suppose Fn is the corre-
sponding sigma-algebra, the one generated by {W1,W2, ...,Wn}. Then,

15



E(Wm|Fn) = E((Wm −Wn) +Wn|Fn) =

= E(Wm −Wn|Fn) + E(Wn|Fn) =

= E(Wm −Wn)︸ ︷︷ ︸
0

+Wn = Wn

Definition 3.1.3 [1] Let n ∈ N; we define the quadratic variation of the random sym-
metric walk as

[W,W ]n :=
∑n

j=1(Wj −Wj−1)
2

Note that [W,W ]n = n, and unlike the variance, this value is path-dependent. We will see
the importance of this quantity when we consider the volatility of Brownian motion-driven
asset prices.

3.2 Scaled symmetric random walk

In this section we assume that nt is an integer.
This topic is a simple modification of the previous section’s results, but important in the
sense that we obtain Brownian motion as the limit of a scaled symmetric random walk as
n → ∞. Let’s begin with the

Definition 3.2.1 [1] Let us fix n ∈ N, and define the scaled random walk as

W n(t) := 1√
n
Wnt

The figure below demonstrates a realization of such a process with n = 100 and t = 5.
One can easily see that in essence we just "speed up the walk" by scaling down the step
size and speeding up time.

We define increments and quadratic variation as seen in the previous section; similarly
to the random walk, the W n(ti+1) − W n(ti) increments are independent, have zero for
expected value and ti+1 − ti for variance. These statements can be verified using the
definition, but we’ll see it in more detail in the next

Proposition 3.2.2 [1] The quadratic variation of the scaled symmetric walk up to a time
t equals t.

Proof: Let t ≥ 0. Then, we have
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Figure 3.2: Wn(t), n = 100, t = 5

[W (n),W (n)](t) = [ 1√
n
W, 1√

n
W ](nt) =

∑nt
j=1(

1√
n
Wj − 1√

n
Wj−1)

2 =

=
∑nt

j=1(
1√
n
Xj)

2 =
∑nt

j=1
1
n
= t ■

Note that although this calculation depends on the path realized, it doesn’t really matter
which path we take as long as it goes from 0 to t.

3.3 Limiting distribution

As previously mentioned, we’re interested in the limit of the scaled random walk as n

approaches infinity. For this to make sense, we’ll fix the parameter t, write out the
moment-generating function of W n(t), and show that as n → ∞ we approach the moment-
generating function of the limiting distribution.
To grasp what a limiting distribution might be, we call upon the Central Limit Theorem,
stating that a sequence of independent, identically distributed (i.i.d.) random variables
converges in distribution to a normally distributed random variable. We use this fact in
the next

Theorem 3.3.1 [1] Fix t ≥ 0, let n → ∞. The distribution of W n(t) converges to the
distribution of Z, where Z is a normal distribution with mean zero and variance t.

Proof: Let us write out the moment-generating function of Z:

φZ(u) = E(euZ) = 1√
2πt

∫∞
−∞ eux · e−x2

2t dx

Now, since ux− x2

2t
= − (x−ut)2

2t
+ u2t

2
, we have
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φZ(u) = e
u2t
2 · 1√

2πt

∫∞
−∞ e−

(x−ut)2

2t dx = e
u2t
2

because the second term in the multiplication is the density function of a normally dis-
tributed random variable with mean ut and variance t.

Now let’s consider the moment-generating function for W (n)(t):

φW (n)(t)(u) = E(e
u√
n
Wnt) = E(e

u√
n

∑nt
j=1 Xj) =

= E(
∏nt

j=1 e
u√
n
Xj) =

∏nt
j=1 E(e

u√
n
Xj) =

= ( e
u√
n+e

− u√
n

2
)nt

It’s easier to show the convergence by taking the logarithms, so we need to show that

limn→∞ nt log e
u√
n+e

− u√
n

2
= u2t

2
.

Now let us substitute x := 1√
n

and write

limx→0 t · log eux+e−ux

2

x2

Both the numerator and the denominator converges to 0, so we can apply L’Hospitals
rule:

∂x log eux+e−ux

2
= u(eux−euux)

eux+e−ux

∂x x2 = 2x

Thus, we have

limx→0
u(eux−e−ux)
2x(eux+e−ux)

Once again, we need to apply L’Hospitals rule

∂x u(eux − e−ux) = u2(eux + e−ux)

∂x 2x(eux + e−ux) = 2(eux + e−ux)

And finally, we can compute

limx→0 t · log eux+e−ux

2

x2 = limx→0 t · u2(eux+e−ux)
2(eux+e−ux)

= u2t
2

■
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3.4 Brownian motion

At last, we can finally define Brownian motion.

Definition 3.4.1 [1] Let (Ω,A,P) be a probability space, and for ω ∈ Ω suppose that
there is a continuous function B(t), t ≥ 0 that depends on ω; we say that B(t), t ≥ 0 is
a Brownian motion, if for all t0 < t1 < ... < tn the increments

B(t1)−B(t0), B(t2)−B(t1), ..., B(tn)−B(tn−1)

are independent and are normally distributed with

E(B(ti)−B(ti−1)) = 0 and

V ar(B(ti)−B(ti−1)) = ti − ti−1

An important property of the Brownian motion is that it’s a martingale; for this to make
sense, we need to define a filtration for the Brownian motion.

Definition 3.4.2 [1] Let (Ω,A,P) be a probability space on which the B(t), t ≥ 0 Brown-
ian motion is defined. A filtration for B(t) is a collection of sigma-algebras F(t) satisfying

1.(Information accumulates) F(s) ⊂ F(u) ∀ 0 ≤ s < u

2. (Adaptivity) ∀ t ≥ 0 B(t) is F(t)-measurable, meaning that the information available
at time t is sufficient to evaluate B(t)

3. (Independence of future increments) ∀ 0 ≤ s < u the increment B(u) − B(s) is inde-
pendent of F(s)

Theorem 3.4.3 [1] B(t), t ≥ 0 is a martingale with the filtration defined above.

Proof: We just have to show the martingale property; let 0 ≤ s < u and consider the
second property (adaptivity)

E(B(u)|F(s)) = E(B(u)−B(s) +B(s)|F(s)) =

= E(B(u)−B(s)|F(s)) + E(B(s)|F(s)) =

= E(B(u)−B(s)) +B(s) = B(s) ■
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3.5 Quadratic variation

Previously we computed quadratic variation for the scaled random walk, and we noticed
that up to time T it turned out to be exactly T . We derived this result by taking all steps
up to time T , squaring them and adding them up.
Now, with Brownian motion, we face a problem: there is no natural step size for the
process, so if we want to compute quadratic variation up to time T , any step size is
allowed. Thus, we will simply take a large number n, divide T by n, and call T

n
our step

size. By doing this, we can compute∑n
j=1(B( jT

n
)−B( (j−1)T

n
))2

Of course, this considers only a discrete amount of partition points, so naturally, we will
take the limit of the expression above as n → ∞, reducing the step size and increasing
the number of partition points.
The reason we consider quadratic variation in such detail is because it makes stochastic
calculus different from ordinary calculus in the sense that ordinary continuous, bounded,
real-valued functions have zero quadratic variation, as shown below, unlike Brownian
motion, which, although continuous, is nowhere differentiable with respect to the time
variable.

3.5.1 First-order variation

To better understand quadratic (second-order) variation, first we introduce first-order
variation. Informally speaking, we want to compute the fluctuation of the function f

between 0 and T by adding up the up and down movements in a way that the down
movements don’t subtract but rather add to our term. For this, we partition the interval
[0, T ], take the difference between the values taken by our function in the partition points,
add them up, and take the limit as the number of partition points approaches infinity, or
equivalently, as the maximum step size in the partition approaches zero.

Definition 3.5.1 [1] Let f : R → R, and P be a partition of the interval [0, T ] with
partition points 0 = t0 < t1 < ... < tn = T . We denote the maximum step size of P with
∥P∥ = max{ti− ti−1 : i = 1, ..., n} and define the first-order variation of f between 0 and
T as

lim∥P∥→0

∑n
j=1 |f(tj)− f(tj−1)|
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Now, if f : R → R is continuous on [0, T ] and differentiable on (0, T ), then by Lagrange’s
Mean Value Theorem we have

f(tj)−f(tj−1)

tj−tj−1
= f ′(cj), where cj ∈ (tj−1, tj), and thus

|f(tj)− f(tj−1)| = |f ′(cj)| · (tj − tj−1)

so if we write out the sum in the definition for first-order variation we get∑n
j=1 |f ′(cj)|(tj − tj−1)

which is a Riemann sum for the integral of |f ′|, and so by definition

lim∥P∥→0

∑n
j=1 |f ′(cj)|(tj − tj−1) =

∫ T

0
|f ′(t)| dt.

3.5.2 Second-order variation

Definition 3.5.2 Let f : R → R. We define the quadratic variation of f from 0 to T as

[f, f ](T ) := lim∥P∥→0

∑n
j=1(f(tj)− f(tj−1))

2

Now, if we assume that f has a continuous derivative, then
∫ T

0
|f ′(t)|2 dt is finite, and

because of∑n
j=1(f(tj)− f(tj−1))

2 =
∑n

j=1 |f ′(cj)|2(tj − tj−1)
2 ≤ ∥P∥ ·

∑n
j=1 |f ′(cj)|2(tj − tj−1)

we have

[f, f ](T ) ≤ lim∥P∥→0(∥P∥ ·
∑n

j=1 |f ′(cj)|2(tj − tj−1)) =

= lim∥P∥→0 ∥P∥ · lim∥P∥→0

∑n
j=1 |f ′(cj)|2(tj − tj−1) =

= lim∥P∥→0 ∥P∥ ·
∫ T

0
|f ′(t)|2 dt = 0,

meaning that most functions ordinary calculus offers are uninteresting if we consider
second-order variation.

In the case of Brownian motion, we can’t accept a calculation like the above, because
it depends on the Mean Value Theorem, and that assumes the existence of a derivative
on (0, T ), but our Brownian motion is nowhere differentiable with respect to the time
variable, so we need a different approach. Nonetheless, we have

Theorem 3.5.3 [1] Let B(t), t ≥ 0 be a Brownian motion, T ≥ 0. Then,
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[B,B](T ) = T

almost surely.

To prove this in fashion, we define the kurtosis of a normal random variable and compute
it in the general case to apply it to the special case, when the variables are the increments
of a Brownian motion.

Definition 3.5.4 [1] Let Z be a normal random variable with mean µ and variance σ2.
Then, the kurtosis of Z is

E(Z4)
V ar(Z)2

Lemma 3.5.5 [1] Let Z be as in Definition 2.5.4. Then, Z has kurtosis of 3.

Proof: We can adjust Z by subtracting µ leading to Z − µ with expected value zero
and variance σ2. Previously, we computed the moment-generating function for Z−µ, that
is φ(u) = E(eu(Z−µ)) = e

u2σ2

2 .
Differentiating φ(u) with respect to u we obtain

φ′(u) = E((Z − µ)eu(Z−µ)) = uσ2e
u2σ2

2

By substituting u = 0 we get

φ(0) = E(Z − µ) = 0

Differentiating for a second time we obtain

φ”(u) = E((Z − µ)2eu(Z−µ)) = (σ2 + u2σ4)e
u2σ2

2

Once again, we can simply substitute u = 0 to get the second moment of Z.
Differentiating two more times we get

φ(4)(u) = E((Z − µ)4eu(Z−µ)) = (3σ4 + 6σ6u2 + σ8u4)e
u2σ2

2

And lastly, substituting u = 0 we can safely say that E((Z − µ)4) = 3σ4, leading to a
kurtosis of 3σ4

(σ2)2
= 3 ■

Proof (of Theorem 2.5.3) We want to compute

lim∥P∥→0

∑n
j=1(B(tj)−B(tj−1))

2
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so let us denote
∑n

j=1(B(tj)−B(tj−1))
2 by Qn.

Of course Qn is a random variable, because it depends on the path that the Brownian
motion B(t) takes; we will show that the expected value of Qn is T , regardless of the
path, and that the variance of Qn converges to zero as the number of partition points
approaches infinity, so in essence we prove that Qn converges in L2 to T .

First we note that since Qn is the sum of independent random variables, both the expected
value and variance of Qn is the sum of the expected values and variances of (B(tj) −
B(tj−1))

2 =: b2j , thus

E(Qn) =
∑n

j=1 E(b2j) =
∑n

j=1 V ar(bj) =
∑n

j=1(tj − tj−1) = T

To prove L2 convergence we need to show that

V ar(Qn) = E((Qn − E(Qn))
2) = E((Qn − T )2) → 0, ∥P∥ → 0.

As mentioned above,

V ar(Qn) =
∑n

j=1 V ar(b2j) =
∑n

j=1 E((b2j − (tj − tj−1))
2) =

=
∑n

j=1[E(b4j)− 2(tj − tj−1)E(b2j) + (tj − tj−1)
2] =

∑n
j=1 E(b4j)− (tj − tj−1)

2

To compute the fourth moment of bj, we take advantage of the fact that bj is a normal
random variable with mean zero and variance tj − tj−1 (See Definition 2.4.1.), so the
kurtosis of bj is 3, meaning that E(b4j) = 3V ar(bj)

2 = 3(tj − tj−1)
2, so we can write

V ar(Qn) =
∑n

j=1 2(tj − tj−1)
2 ≤ 2∥P∥ ·

∑n
j=1(tj − tj−1) = 2∥P∥T

So, if ∥P∥ → 0, then V ar(Qn) → 0, and we conclude that lim∥P∥→0

∑n
j=1(B(tj) −

B(tj−1))
2 = E(Qn) = T ■

In conclusion, we say that "Brownian motion accumulates quadratic variation at rate one
per unit time" [1]

3.6 Volatility of geometric Brownian motion

As promised, we show how the quadratic variation can be used to approximate the volatil-
ity of Brownian motion-driven asset prices.
First, let us define the "asset-price model used in the Black-Scholes-Merton option-pricing
formula" [1].
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Definition 3.6.1 [1] Let α and σ > 0 be constants, and consider the expression

S(t) = S(0) exp(σB(t) + (1− σ2

2
)t).

We call S(t), t ≥ 0 a geometric Brownian motion.

Now let 0 ≤ T1 < T2 be given, and suppose we have observed S(t) for T1 ≤ t ≤ T2 on the
partition T1 = t0 < t1 < ... < tn = T2.
The so-called log-returns over the subintervals [tj−1, tj] are

log
S(tj)

S(tj−1)
= σ(B(tj)−B(tj−1)) + (α− σ2

2
)(tj − tj−1)

Thus, the realized volatility (the sum of the squares of log-returns) is∑n
j=1(log

S(tj)

S(tj−1)
)2 = σ2

∑n
j=1(B(tj)−B(tj−1))

2+

+(α− σ2

2
)2
∑n

j=1(tj − tj−1)
2 + 2σ(α− σ2

2
)
∑n

j=1(B(tj)−B(tj−1))(tj − tj−1)

If we allow the maximum step size to approach zero, the first term of the right-hand side
is simply σ2 times the quadratic variation of the Brownian motion between times T1 and
T2, that is T2 − T1.
The second term is (α − σ2

2
)2 times the quadratic variation of t, which is zero, so that

term becomes zero.
Lastly, we have to deal with lim∥P∥→0

∑n
j=1(B(tj)−B(tj−1))(tj − tj−1). First, notice that

|(B(tj)−B(tj−1))(tj − tj−1)| ≤ max
1≤j≤n

|(B(tj)−B(tj−1))| · (tj − tj−1)

so we conclude that

|
∑n

j=1(B(tj)−B(tj−1))(tj − tj−1)| ≤
∑n

j=1 |(B(tj)−B(tj−1))(tj − tj−1)| ≤

≤ max
1≤j≤n

|(B(tj)−B(tj−1))| ·
∑n

j=1(tj − tj−1) = max
1≤j≤n

|(B(tj)−B(tj−1))| · (T2 − T1)

Now, since B(t) is continuous, lim∥P∥→0 max
1≤j≤n

|(B(tj)−B(tj−1))| = 0, and thus the third
term also becomes zero.
To summarize, if the step size is small enough, the last two terms can be ignored, and the
realized volatility is approximately equal to (T2 − T1)σ

2, so we write

1
T2−T2

∑n
j=1(log

S(tj)

S(tj−1)
)2 ≈ σ2.
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Chapter 4

Stochastic calculus

This topic is of great interest to us, because it’s stochastic calculus that lies at the heart
of sophisticated financial mathematics. Although the subject is important, discussing it in
detail is beyond the limits of this thesis, so we direct the reader to [1] for a more thorough
discussion. We used mostly [1] to write this chapter.
The goal is to introduce the Itô integral and the Itô-Doeblin formula, define a more general
stochastic process than the Brownian motion, namely the Itô process, and use it to build
an integral where we can integrate with respect to this stochastic process.

4.1 Itô integral

Let us fix T > 0, consider a Brownian motion B(t), t ≥ 0 and have ∆(t), t ≥ 0 as a
stochastic process adapted to the sigma-algebra defining B(t). The goal is to try and
make sense of what an expression ∫ T

0
∆(t) dB(t)

could mean. First, notice that if g(t) is a function differentiable with respect to t, then∫ T

0
∆(t) dg(t) =

∫ T

0
∆(t)g′(t) dt

but in our case, B(t) is not differentiable with respect to the time variable, so we need a
different approach.
Doing so, first we define the integral for "simple processes" [1], and extend it as a limit
for more general functions.
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Definition 4.1.1 [1] We say ∆(t) is a simple process, if ∆(t) is constant for every t ∈
[tj, tj+1), where 0 = t0 < t1 < ... < tn = T is a partition of [0, T ].

It might not be obvious at first glance, but ∆(t) depends on the path that the Brownian
motion takes, so it is, in nature, random (except for ∆(0), because ∆(t) depends on the
information available at time t, and there is no information available at time zero).
We think of the tj -s as trading times, and the relationship between B(t) and ∆(t) as the
relationship between a stock price and the number of shares taken in the stock.
Thus, the gain from trading at different times is

I(t) = ∆(t0)[B(t)−B(t0)], 0 ≤ t ≤ t1

I(t) = ∆(t0)B(t1) + ∆(t)[B(t)−B(t2)], t1 ≤ t ≤ t2

It’s easy to see the pattern emerging from this, so we conclude

Definition 4.1.2 [1] The Itô integral of the simple process ∆(t) is

I(t) =
∫ T

0
∆(u) dB(u) =

∑n
j=1∆(tj−1)[B(tj)−B(tj−1)] + ∆(tn)[B(t)−B(tn−1)]

One can think of I(t) as a stochastic process in t (the upper limit of integration). Doing
so, we obtain interesting results, such as

Lemma 4.1.3 [1] I(t), t ≥ 0 is a martingale.

Because of I(0) = 0 and the martingale property, we have E(I(t)) = 0 ∀ t ≥ 0, and
V ar(I(t)) can be evaluated by the Itô-isometry:

Theorem 4.1.4 [1] Let ∆(t), t ≥ 0 be a simple process and I(t) the Itô integral for the
simple process. Then,

E(I2(t)) = E(
∫ t

0
∆(u) dB(u)).

We have shown in the previous chapter that "Brownian motion accumulates quadratic
variation at rate one per unit time" [1]. Now, B(t) is scaled down by ∆(t) as it enters
I(t) =

∫ t

0
∆(u)dB(u), so it’s not that surprising that since the increments are squared

in the computation of quadratic variation, the quadratic variation of I(t) will depend
somehow on ∆2(u).

Theorem 4.1.5 [1] The quadratic variation accumulated up to time t by the Itô integral
is
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[I, I](t) =
∫ t

0
∆2(u) du

Proof: The idea is that first we look at the subintervals [tj−1, tj), where ∆(u) is constant,
compute the quadratic variation, and then add the terms up.
To do this, we take the partition tj−1 = s0 < s1 < ... < sm = tj, and consider∑m

k=1(I(sk)− I(sk−1))
2 =

∑m
k=1(∆(tk−1)(B(tk)−B(tk−1)))

2 =

= ∆2(tk−1)
∑m

k=1(B(tk)−B(tk−1))
2

If we allow m to approach infinity, the maximal distance between partition points ap-
proaches zero, so the sum converges to the quadratic variation accumulated by the Brow-
nian motion B(t) between tk−1 and tk, which of course is tk−1 − tk.
Thus, we can write∑m

k=1(I(sk)− I(sk−1))
2 = ∆2(tk−1)(tk−1 − tk) =

∫ tk
tk−1

∆2(u) du

because ∆(u) = ∆(tk−1) ∀ u ∈ [tk−1, tk).
This holds true for all subintervals, so we conclude that

[I, I](t) =
∫ t1
t0

∆2(u) du+
∫ t2
t1

∆2(u) du+ ... =
∫ t

0
∆2(u) du ■

Now we consider more general functions as integrands, namely ∆(t) is allowed to be
continuous and have jumps. We only assume that it is adapted to the same filtration as
the simple process and the "square-integrability condition"[1] E[

∫ T

0
∆2(t) dt] < ∞.

As promised, we expand the Itô integral to more general integrands by taking a limit; in
order to do so we first approximate ∆(t) by a series made of simple processes ∆n(t). The
construction is the following: partition [0, T ] by the partition points 0 = t0 < t1 < ... <

tn = T , and let ∆n(t) = ∆(tj) for tj < t < tj+1 ∀ j ∈ {0, 1, ..., n− 1}. As the number of
partition points approaches infinity, we get a better and better approximation for ∆(t) in
the sense that

limn→∞ E(
∫ T

0
|∆n(t)−∆(t)|2 dt) = 0

Since the integral has been defined for simple processes, we simply define it for ∆(t) as
the limit ∫ T

0
∆(u) dB(u) = limn→∞

∫ T

0
∆n(u) dB(u)

We think of the integral once again as a stochastic process in its upper limit of integration
0 ≤ t ≤ T . This allows us to derive the following results
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Theorem 4.1.6 [1] Let T be a fixed positive constant, ∆(t), t ≥ 0 an adapted stochastic
process that satisfies the square-integrability condition, and let I(t) =

∫ t

0
∆(u) dB(u),

where the integral is the limit defined above. Then, I(t), thought of as a stochastic process
in t has the following properties:
(i) I(t) is continuous
(ii) I(t) is adapted to the filtration F(t) ∀ t ≥ 0

(iii) I(t) is linear
(iv) I(t) is a martingale
(v) E(I2(t)) = E(

∫ t

0
∆2(u) du)

(vi) [I, I](t) =
∫ t

0
∆2(u) du

Proposition 4.1.7 [1] Let B(t), t ≥ 0 be a Brownian motion, T > 0 fixed and 0 ≤ t ≤ T .
Then ∫ t

0
B(u) dB(u) = 1

2
B2(t)− 1

2
t

One way to prove this is to use the definition above, construct a series of simple processes
approximating the Brownian motion and evaluate the limit of the integrals. We will follow
a different path and use the Itô-Doeblin formula (see next section), but the details can be
found in [1].

4.2 Itô-Doeblin formula

Previously we learned to integrate with respect to Brownian motion. The goal now is to
differentiate Brownian motion somehow; formally speaking, we want to make sense of the
expression

d
dt
f(B(t))

where f is differentiable, and B(t), t ≥ 0 is a Brownian motion, as usual.
Note that if B(t) was differentiable with respect to t (which is not the case), then the
chain rule from real analysis would give us

d
dt
f(B(t)) = f ′(B(t)) ·B′(t)

or in differential form

df(B(t)) = f ′(B(t)) ·B′(t) dt = f ′(B(t)) dB(t)
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But because B(t), t ≥ 0 has nonzero quadratic variation, there’s an additional term en-
tering the differential form:

df(B(t)) = f ′(B(t)) dB(t) + 1
2
f”(B(t)) dt

This we call the Itô-Doeblin formula in differential form. [1]
Integrating both sides gives us the Itô-Doeblin formula in integral form, concretely

f(B(t))− f(B(0)) =
∫ t

0
f ′(B(u)) dB(u) + 1

2

∫ t

0
f ′′(B(u)) du

where the right-hand side consists of an Itô integral (see Theorem 3.1.6.) and an ordi-
nary Lebesgue integral, with respect to the time variable. We generalize this to functions
allowing both t and x in their domain.

Theorem 4.2.1 [1] (Itô-Doeblin formula for Brownian motion) Let f(t, x) be a function
for which the partial derivatives ∂tf, ∂xf, ∂2

xf exist and are continuous, and let B(t), t ≥ 0

be a Brownian motion. Then, for every T ≥ 0 we have

f(T,B(T )) = f(0, B(0))+
∫ T

0
∂tf(t, B(t)) dt+

∫ T

0
∂xf(t, B(t)) dB(t)+ 1

2

∫ T

0
∂2
xf(t, B(t)) dt

First, we show how the formula works for the nice quadratic function f(x, t) = x2

2
, so f

doesn’t actually depend on t.
Let xj, xj−1 be arbitrarily chosen points; then, using Taylor’s expansion

f(xj)− f(xj−1) = f ′(xj−1)(xj − xj−1) +
1
2
f ′′(xj−1)(xj − xj−1)

2

Of course, in our special case f ′(x) = x and f ′′(x) = 1, so the higher derivatives are all
equal to zero, meaning that this expansion is exact.
Now let’s fix T > 0 and consider the partition P = {t0, t1, ..., tn} of the interval [0, T ]. We
want to compute the change in f(B(t)) between times 0 and T . This can be expressed by
summing the changes f(B(tj))− f(B(tj−1)) over all subintervals:

f(B(T ))− f(B(0)) =
∑n

j=1(f(B(tj))− f(B(tj−1)))

and by Taylor’s formula ∑n
j=1(f(B(tj))− f(B(tj−1))) =

=
∑n

j=1 f
′(B(tj−1))(B(tj)−B(tj−1)) +

1
2

∑n
j=1 f

′′(B(tj−1))(B(tj)−B(tj−1))
2

In our case, this boils down to
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∑n
j=1B(tj−1)(B(tj)−B(tj−1)) +

1
2

∑n
j=1(B(tj)−B(tj−1))

2

By letting ∥P∥ → 0 the term f(B(T ))− f(B(0)) is unaffected, while

lim∥P∥→0

∑n
j=1B(tj−1)(B(tj)−B(tj−1)) =

∫ T

0
B(t) dB(t) and

lim∥P∥→0

∑n
j=1(B(tj)−B(tj−1))

2 = [B,B](T ) = T

so we have

f(B(T ))− f(B(0)) =
∫ T

0
B(t) dB(t) + 1

2
T =

=
∫ T

0
f ′(B(t)) dB(t) + 1

2

∫ T

0
f ′′(B(t)) dt

which is the Itô-Doeblin formula for f(x) = x2

2
.

For the more general case f(t, x) Taylor’s formula states that

f(tj, xj) = f(tj−1, xj−1) + ∂tf(tj−1, xj−1)(tj − tj−1) + ∂xf(tj−1, xj−1)(xj − xj)+

+∂t∂xf(tj−1, xj−1)(xj − xj−1)(tj − tj−1)+

+1
2
∂2
xf(tj−1, xj−1)(xj − xj−1)

2 + 1
2
∂2
t f(tj−1, xj−1)(tj − tj−1)

2 + higher-order terms

The higher order terms all contain (xj − xj−1) or (tj − tj−1) on at least the second power
(thus, later when we substitute xj = B(tj) and take limit as ∥P∥ → 0, these terms
converge to zero, because one can always take out terms such as max(tj − tj−1)).
This gives us (by substituting xj = B(tj) and taking the sum over all subintervals)

f(T,B(T ))− f(0, B(0)) =
∑n

j=1(f(tj, B(tj))− f(tj−1, B(tj−1))) =

=
∑n

j=1 ∂tf(tj−1, B(tj−1))(tj − tj−1)+

+
∑n

j=1 ∂xf(tj−1, B(tj−1))(B(tj)−B(tj−1))+

+
∑n

j=1 ∂t∂xf(tj−1, B(tj−1))(B(tj)−B(tj−1))(tj − tj−1)+

+1
2

∑n
j=1 ∂

2
xf(tj−1, B(tj−1))(B(tj)−B(tj−1))

2+

+1
2

∑n
j=1 ∂

2
t f(tj−1, B(tj−1))(tj − tj−1)

2 + higher-order terms

By allowing ∥P∥ → 0, we get

lim∥P∥→0

∑n
j=1 ∂tf(tj−1, B(tj−1))(tj − tj−1) =

∫ T

0
∂tf(t, B(t)) dt

so the first term just adds an ordinary Lebesgue integral.
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lim∥P∥→0

∑n
j=1 ∂xf(tj−1, B(tj−1))(B(tj)−B(tj−1)) =

∫ T

0
∂xf(t, B(t)) dB(T )

meaning that the second term gives us the Itô integral in the formula.

lim∥P∥→0 |
∑n

j=1 ∂t∂xf(tj−1, B(tj−1))(B(tj)−B(tj−1))(tj − tj−1)| ≤

≤ lim∥P∥→0 max
1≤k≤n

|B(tk)−B(tk−1)| · lim∥P∥→0

∑n
j=1 |∂t∂xf(tj−1, B(tj−1))(tj − tj−1)| =

= 0 ·
∫ T

0
|∂t∂xf(t, B(t))| dt = 0

because B(t) is continuous.

lim∥P∥→0

∑n
j=1 ∂

2
xf(tj−1, B(tj−1))(B(tj)−B(tj−1))

2 =
∫ T

0
∂2
xf(t, B(t)) dt

because

lim∥P∥→0(B(tj)−B(tj−1))
2 = tj − tj−1

so we can substitute tj− tj−1 and the fourth term gives us the second Lebesgue integral in
the formula. Note that although this is not an exact substitution, it gives the same limit.
Finally

lim∥P∥→0 |
∑n

j=1 ∂
2
t f(tj−1, B(tj−1))(tj − tj−1)

2| = 0

and the higher-order terms also contribute zero.

Though this is not a precise mathematical proof, it gives us an understanding of how and
why the formula works.
With this tool in hand we can give an elegant proof for Proposition 4.1.7. Let f(x) = x2

2

and consider f(B(t)). According to the Itô-Doeblin formula

f(B(t)) = 1
2
B2(t) = 1

2
B2(0)) +

∫ t

0
f ′(B(u)) dB(u) + 1

2

∫ t

0
f ′′(B(u)) du =

= 0 +
∫ t

0
B(u) dB(u) + 1

2

∫ t

0
B(u) du =

=
∫ t

0
B(u) dB(u) + 1

2
t

Rearranging the sides we acquire
∫ t

0
B(u) dB(u) = 1

2
B2(t) − 1

2
t, as Proposition 4.1.7.

states.
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4.3 Itô processes

We want to expand our integral definition for more general stochastic processes than the
Brownian motion. The goal of this section is to introduce this more general process, the
Itô process, and then define the Itô integral with respect to Itô processes and give an even
more general form of the Itô-Doeblin formula.
We begin with the

Definition 4.3.1 [1] Let B(t), t ≥ 0 be a Brownian motion and F(t), t ≥ 0 be the asso-
ciated filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +
∫ t

0
∆(u) dB(u) +

∫ t

0
Γ(u) du

where X(0) is a nonrandom constant, ∆(u) and Γ(u) are adapted stochastic processes
satisfying

E(
∫ t

0
∆2(u) du) < ∞ and

∫ t

0
|Γ(u)| du < ∞ ∀ t > 0

As expected, first we compute the quadratic variation of the Itô process to understand
the volatility associated with it.

Lemma 4.3.2 [1] The quadratic variation of the Itô-process X(t), t ≥ 0 is

[X,X](t) =
∫ t

0
∆2(u) du

Proof: Let us denote
∫ t

0
∆(u) dB(u) by I(t) and

∫ t

0
Γ(u) du by J(t). Thus, we can write

X(t) = I(t)+J(t). Both these processes are continuous in their upper limit of integration,
namely t.
Now consider the partition P = {t0, t1, ..., tn} of the interval [0, t].
Naturally ∑n

j=1(X(tj)−X(tj−1))
2 =

=
∑n

j=1(I(tj)−I(tj−1))
2+2·

∑n
j=1(I(tj)−I(tj−1))(J(tj)−J(tj−1))+

∑n
j=1(J(tj)−J(tj−1))

2

By allowing ∥P∥ → 0 the first term becomes

lim∥P∥→0

∑n
j=1(I(tj)− I(tj−1))

2 = [I, I](t) =
∫ t

0
∆2(u) du

so now we just have to show that the remaining terms contribute zero, and the proof is
complete. First,
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lim∥P∥→0 |
∑n

j=1(J(tj)− J(tj−1))
2| ≤

≤ lim∥P∥→0 max
1≤k≤n

|J(tk)− J(tk−1)| · lim∥P∥→0

∑n
j=1 |J(tj)− J(tj−1)| ≤

≤ 0 ·
∫ t

0
|Γ(u)| du = 0

because J(u) is continuous and the integral is finite.
Similarly

lim∥P∥→0 |2 ·
∑n

j=1(I(tj)− I(tj−1))(J(tj)− J(tj−1))| ≤

≤ lim∥P∥→0 max
1≤k≤n

|I(tk)− I(tk−1)| · 2 lim∥P∥→0

∑n
j=1 |J(tj)− J(tj−1)| ≤

≤ 0 ·
∫ t

0
|Γ(u)| du = 0

because I(t) is also continuous and the integral is finite. ■
Writing out the equation defining the Itô process in differential form we obtain

dX(t) = ∆(t) dB(t) + Γ(t) dt

and taking advantage of

dB(T ) dB(t) = dt, dB(t) d(t) = 0, dt dt = 0

we can write

dX(t) dX(t) = ∆2(t) dB(t) dB(t) + 2∆(t)Γ(t) dB(t) dt = Γ2(t) dt dt =

= ∆2(t) dt

summarizing the results of Lemma 4.3.2.
Though the equations above are not precisely defined, intuitively one can understand the
meaning behind them: dB(t) dB(t) = dt captures the "Brownian motion accumulates
quadratic variation at rate one per unit time" [1], dB(t) dt = 0 means that the variation
of the cross-product is zero (see section 3.6.), and so is dt dt.
The point of writing out the equations in differential form is that it might be easier to
memorize them, and to break up dX(t) into two parts when we want to define an integral
with respect to an Itô process (see the definition below).

Definition 4.3.3 [1] Let X(t), t ≥ 0 be an Itô process as in Definition 4.3.1., and let
Λ(t), t ≥ 0 be an adapted stochastic process satisfying∫ t

0
Λ2(u)∆2(u) du < ∞ and

∫ t

0
|Λ(u)Γ(u)| du < ∞
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The integral with respect to this Itô process is∫ t

0
Λ(u) dX(u) =

∫ t

0
Λ(u)∆(u) dB(u) +

∫ t

0
Λ(u)Γ(u) du

Of course we need the corresponding Itô-Doeblin formula, so consider

Theorem 4.3.4 [1] (Itô-Doeblin formula for Itô processes) Let X(t), t ≥ 0 be an Itô-
process and let f(t, x) be a differentiable function for which the partial derivatives ∂tf, ∂xf, ∂2

xf

exist and are continuous. Then, for every T ≥ 0

f(T,X(T )) = = f(0, X(0)) +
∫ T

0
∂tf(t,X(t)) dt+

∫ T

0
∂xf(t,X(t))∆(t) dB(t)+

+
∫ T

0
∂xf(t,X(t))Γ(t) dt+ 1

2

∫ T

0
∂2
xf(t,X(t))∆2(t) dt

Note: the expression above could be written in the more compressed form

f(0, X(0)) +
∫ T

0
∂t(t,X(t)) dt+

∫ T

0
∂xf(t,X(t)) dX(t) + 1

2

∫ T

0
∂2
xf(t,X(t)) d[X,X](t)

The reasoning behind the formula being correct is the same as in Theorem 4.2.1.
Note: In Chapter 5, we use a slightly different form of the above formula, namely the
differential form [1]

df(t,X(t)) = ∂tf(t,X(t)) dt+ ∂xf(t,X(t)) dX(t) + 1
2
∂2
xf(t,X(t)) dX(t) dX(t)
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Chapter 5

Black-Scholes-Merton equation

In this chapter we derive the Black-Scholes-Merton partial differential equation for the
price of an option, where the underlying asset is modeled by a geometric Brownian motion
(see definition 3.6.1). The idea is similar to the one we used in Chapter 2: we want to
determine the initial wealth required to hedge a short position in the option. Once again,
we follow [1] throughout the entire chapter.

5.1 Evolution of portfolio value

We start by defining our portfolio: we denote the portfolio value at time t by X(t). The
portfolio consists of a money market investment paying a constant interest rate r, and
a stock market investment, where the stock S(t) is modeled by a geometric Brownian
motion, so we write

dS(t) = αS(t) dt+ σS(t) dB(t)

where α and σ are constants, and B(t), t ≥ 0 is the Brownian motion.
The number of shares held at time t we denote by ∆(t); this stochastic process is adapted
to the same filtration that defines B(t).
It’s important to note that the remainder

X(t)−∆(t)S(t)

is always invested in the money market.
The change in our portfolio value is due to two factors: the change in the stock, and the
change in the money market asset (an interest is being paid), so we write
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dX(t) = ∆(t) dS(t) + r(X(t)−∆(t)S(t)) dt

Substituting into dS(t) we obtain

dX(t) = ∆(t)(αS(t) dt+ σS(t) dB(t)) + r(X(t)−∆(t)S(t)) dt =

= rX(t) dt+∆(t)(α− r)S(t) dt+∆(t)σS(t) dB(t)

This equation could be interpreted the following way: the change in the portfolio is first the
average rate of return on the portfolio rX(t) dt, second the risk premium for investing in
the stock (second term), and third the volatility proportional to the size of the investment
(third term). [1]
The analogue to this equation is the wealth equation seen in Chapter 2.
Let us introduce the discounted stock price

Definition 5.1.1 [1] We call e−rtS(t) the discounted stock price.

Similarly,

Definition 5.1.2 [1] We call e−rtX(t) the discounted portfolio value.

Let f(t, x) = e−rt; considering the Itô-Doeblin formula from the previous chapter we have

d(e−rtS(t)) = df(t, S(t)) =

= ∂tf(t, S(t)) dt+ ∂xf(t, S(t)) dS(t) +
1
2
∂2
xf(t, S(t)) dS(t) dS(t) =

= −re−rtS(t) dt+ e−rt dS(t) =

= −re−rtS(t) dt+ e−rt[αS(t) dt+ σS(t) dB(t)] =

= (α− r)e−rtS(t) dt+ σe−rtS(t) dB(t)

This we will call the differential of the discounted stock price. [1]
The differential for the discounted portfolio value is

d(e−rtX(t)) = df(t,X(t)) =

= ∂tf(t,X(t)) dt+ ∂xf(t,X(t)) dX(t) + 1
2
∂2
xf(t,X(t)) dX(t) dX(t) =

= −re−rtX(t) dt+ e−rt dX(t) =

= −re−rtX(t) dt+ e−rt[rX(t) dt+∆(t)(α− r)S(t) dt+∆(t)σS(t) dB(t)] =

= e−rt∆(t)(α− r)S(t) dt+ e−rtσ∆(t)S(t) dB(t) =

= ∆(t) d(e−rtS(t))
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So in essence discounting reduces the mean rate of return form α to α − r in the stock
price, and completely removes the underlying rate of return r from the portfolio value;
∆(t) d(e−rtS(t)) shows us that the change in the discounted portfolio value is only because
of the change in the discounted stock price. [1]

5.2 Evolution of option value

We only consider a European call option with payout max(S(T ) − K, 0), where T is a
prefixed time (maturity date/expiration date), and K > 0 is a prefixed constant (strike
price). The value of such an option only depends on a few factors: the time left to maturity
(when the option can be exercised), the value of the underlying asset at that time, and
the parameters r, σ,K. Out of the above, only time and stock value vary after setting up
the contract defining the option.
So, let us consider a function c(t, x); this will determine the value of our option at time t if
the stock price at that time is x = S(t). Substituting S(t) we have c(t, S(t)), a continuous-
time stochastic process.
Our main goal is to determine c(t, x), so that we have a formula for future option values
in terms of future stock prices. [1]
First, let us compute the differential of c(t, S(t)); the Itô-Doeblin formula gives us

dc(t, S(t)) =

= ∂tc(t, S(t)) dt+ ∂xc(t, S(t)) dS(t) +
1
2
∂2
xc(t, S(t)) dS(t) dS(t) =

= ∂tc(t, S(t)) dt+ ∂xc(t, S(t))[αS(t) dt+ σS(t) dB(t)] + 1
2
∂2
xc(t, S(t))σ

2S2(t) dt =

= [∂tc(t, S(t)) + αS(t)∂xc(t, S(t)) +
1
2
σ2S2(t)∂2

xc(t, S(t))] dt+

+σS(t)∂xc(t, S(t)) dB(t)

Next, let’s compute the discounted option price’s differential

d(e−rtc(t, S(t))) = df(t, c(t, S(t))) =

= ∂tf(t, c(t, S(t))) dt+ ∂xf(t, c(t, S(t))) dc(t, S(t))+

+1
2
∂2
xf(t, c(t, S(t))) dc(t, S(t)) dc(t, S(t)) =

= −re−rtc(t, S(t)) dt+ e−rt dc(t, S(t)) =

= −re−rtc(t, S(t)) dt+ e−rt[(∂tc(t, S(t)) + αS(t)∂xc(t, S(t)) +
1
2
σ2S2(t)∂2

xc(t, S(t))) dt+
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+σS(t)∂xc(t, S(t)) dB(t)] =

= e−rt[−rc(t, S(t)) + ∂tc(t, S(t)) + αS(t)∂xc(t, S(t))+

+1
2
σ2S2(t)∂2

xc(t, S(t))] dt+ e−rtσS(t)∂xc(t, S(t)) dB(t)

5.3 Equating the evolutions

In order to hedge a short position, we start with the initial capital X(0), and invest in the
stock and money markets in a way that for all t ∈ [0, T ] our portfolio value X(t) agrees
with the option value c(t, S(t)). One way to express this with the discounted prices is

e−rtX(t) = e−rtc(t, S(t))

or in differential form

d(e−rtX(t)) = d(e−rtc(t, S(t)))

Integrating both sides gives us

e−rtX(t)−X(0) = e−rtc(t, S(t))− c(0, S(0))

so if we have X(0) = c(0, S(0)), the previous equation gives us the equality we strive for.
But we already computed the differentials for the discounted values, so we just need to
compare them. This leads us to the equation

∆(t)(α− r)S(t) dt+ σ∆(t)S(t) dB(t)
!
=

!
= −rc(t, S(t)) + ∂tc(t, S(t)) + αS(t)∂xc(t, S(t)) +

1
2
σ2S2(t)∂2

xc(t, S(t)) dt+

σS(t)∂xc(t, S(t)) dB(t)

By equating the dB(t) terms we have

∆(t) = ∂xc(t, S(t)) ∀ t ∈ [0.T ]

This is the delta-hedging rule (see Theorem 2.2.1), and we call ∂xc(t, S(t)) the delta of
the option. [1]
By equating the dt terms we get

(α− r)S(t)∂xc(t, S(t)) =

= −rc(t, S(t)) + ∂tc(t, S(t)) + αS(t)∂xc(t, S(t)) +
1
2
σ2S2(t)∂2

xc(t, S(t)) ∀ t ∈ [0, T ]
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Dropping out the terms αS(t)∂xc(t, S(t)) from both sides we’re left with

rc(t, S(t)) = ∂tc(t, S(t)) + rS(t)∂xc(t, S(t)) +
1
2
σ2S2(t)∂2

xc(t, S(t))

So to summarize, we are searching for a continuous function c(t, x) that is a solution to
the Black-Scholes-Merton partial differential equation

∂tc(t, x) + rx∂xc(t, x) +
1
2
σ2x2∂2

xc(t, x) = rc(t, x) ∀t ∈ [0, T ], x ≥ 0

and satisfies the terminal condition

c(T, x) = max(0, x−K)

If we find this function and start with the initial capital X(0) = c(0, S(0)) and use the
hedge ∆(t) = ∂xc(t, S(t)), then X(t) = c(t, S(t)) ∀t ∈ [0, T ]. By allowing t → T and
considering the continuity of both X(t) and c(t, S(t)), we conclude X(T ) = c(T, S(T )) =

max(0, S(T )−K), meaning that we successfully hedged a short position in the option.
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Chapter 6

Other directions

Due to the extensive literature covering option pricing, we felt the need to include a
chapter giving directions to other approaches, as well as different kinds of options (in this
thesis we only considered European call options, a so-called vanilla option, but option
trading is way broader: there are american, asian, barrier, lookback and other kinds of
options).

6.1 Barrier options

Definition 6.1.1 [8] A barrier option is a financial derivative contract that is activated
(knocked in) or extinguished (knocked out) if the price of the underlying asset crosses a
certain barrier.

For example, an up-and-out call gives the holder the payout of a European call if the
underlying doesn’t breach the barrier before expiration. Another kind is a double-barrier
option, where there may be a lower and upper bound for the underlying price, or a two-
dimensional barrier, where the payoff is determined by one asset, while the barrier is
determined by another.
The issue with pricing such an option is barrier monitoring: it’s either done continuously
or discretely. Continuous modeling allows analytical solutions (see [9], where an algorithm
is developed for barrier option pricing in a one-dimensional Markov model by constructing
an approximating continuous-time Markov chain).
In practice, most barriers are monitored discretely; in this case, pricing is not that easy due
to three factors: (1) there are basically no closed formulas, (2) Monte Carlo simulations

40



take hours, or even days to produce a result, and (3) though the Central Limit Theorem
states that the difference between continuously and discretely monitored barrier options
should be small, but numerical computations have shown that even for large numbers the
difference is significant.
For a numerical approach on discretely monitored barrier option pricing see [10].
To deal with the problem stated in (3), Brodie and Glasserman showed that discretely
monitored barrier options can be approximated by continuous considerations. [11]

6.2 Exotic options

We also want to include a collection of different exotic options; according to [12], there
are eleven categories when it comes to dividing exotic options into classes, namely
(1) packages - are basically equivalent to portfolios containing only European calls, pos-
sibly cash, and the underlying asset
(2) compound options - are options of the kind where the underlying itself is an option
(3) forward-start options - are a kind where the payment is made in the present, but the
contracts themselves are only received in the future
(4) chooser options - are paid for in the present, but are later decided by the holder
whether they are call or put options
(5) barrier options - see previous section
(6) lookback options - whose payoff not only depends on the price of the underlying at
the maturity date, but also on the minimum or maximum price of the underlying asset
during the life of the option
(7) asian options - also called average-price, because the payout depends on the average
price of the underlying asset during the life of the option
(8) exchange options - exchange one asset for another
(9) currency translated options - whose underlying asset or strike price is denominated in
a foreign currency at a prefixed or random exchange rate
(10) rainbow options - options on risky assets that cannot be interpreted as if they were
a collection of options on one risky underlying asset
(11) binary options – options with binary and discontinuous payoff patterns

Pricing these often goes beyond the limitations of the Black-Scholes-Merton formula, and
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requires more sophisticated approaches. One of these is Lévy models. The idea here is
that instead of the geometric Brownian motion, one considers a Lévy process. The reason
for doing so is that Lévy processes capture empirical characteristics of real-life markets,
such as jumps due to market shocks. We direct the reader to [13] for exotic option pricing
under Lévy models, and to [14] for the precise discussion of Lévy processes.
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Nyilatkozat

Alulírott Elter Ádám Gusztáv nyilatkozom, hogy szakdolgozatom elkészítése során az
alább felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Writefull - teljes szöveg nyelvhelyesség ellenőrzésére
ChatGPT - python kód generálás a 15. és 17. oldalon található ábrák elkészítéséhez.

A felsoroltakon túl más MI alapú eszközt nem használtam.
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