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even the suffering became enjoyable.



Abstract

This thesis is devoted to the study of plane algebraic curves, with a particular emphasis on

their singular points. Singularities are not only natural objects arising in geometry, but also

understanding them reveals deep connections between algebra, geometry, and topology.

In the first chapter, we introduce the necessary background without delving into detailed

proofs. We then focus on intersection multiplicities and present two fundamental results:

Bézout’s theorem and Noether’s fundamental theorem. Next, we explore the local structure

of curves around singular points via Puiseux parametrization, a powerful tool allowing for

precise local descriptions. We also investigate Newton diagrams as a combinatorial method

for understanding singularities. Finally, we discuss resolution of singularities and investigate

different topological aspects.

Our goal is to gain insight into the rich and complex world of singularities and plane

algebraic curves by approaching them from multiple perspectives. The content and structure of

the thesis are inspired by the lectures of Professor András Némethi.
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1 Preliminaries

In this section, we review the basic notions of algebraic curves and present the necessary
definitions, propositions, and theorems from various fields of mathematics. Proofs are omitted,
as these results serve only as tools.

1.1 Complex projective plane

In this paper, we will work mostly in the complex projective plane, usually denoted by CP2. We
give a formal definition.

Definition 1.1.1. (Complex projective line CP1). Consider the 2-dimensional space C2 =
{(z1, z2) | z1, z2 ∈ C}. The 1-dimensional projective space, or projective line, is defined to be the
quotient of C2 \ {0} by the equivalence relation

(z1, z2) ∼ (z′1, z
′
2) ⇐⇒ ∃λ ∈ C \ {0} such that z′1 = λz1, z

′
2 = λz2.

The set of equivalence classes is denoted by CP1. A point in CP1is written as [z1 : z2], where
(z1, z2) ∈ C2 \ {0}.

Proposition 1.1.1. [Kir92] The projective line is compact in the standard topology.

Definition 1.1.2. (Complex projective plane CP2). Consider the 3-dimensional space C3 =
{(z1, z2, z3) | z1, z2, z3 ∈ C}. The 2-dimensional projective space, or projective plane is defined
to be the quotient of C3 \ {0} by the equivalence relation

(z1, z2, z3) ∼ (z′1, z
′
2, z

′
3) ⇐⇒ ∃λ ∈ C \ {0} s.t. z′1 = λz1, z

′
2 = λz2, z

′
3 = λz3.

The set of equivalence classes is denoted by CP2. A point in CP2 is written as [z1 : z2 : z3],
where (z1, z2, z3) ∈ C3 \ {0}.

Proposition 1.1.2. [Kir92] CP2 is compact and Hausdorff in the standard topology.

Definition 1.1.3. (Projective transformation). A projective transformation of the complex
projective plane CP2 = CP2 is a bijection

f : CP2 → CP2

that is induced by a linear isomorphism α : C3 → C3, i.e., for every point [x : y : z] ∈ CP2, we
have

f([x : y : z]) = [α(x, y, z)].

Remark 1.1.3. Since two linear maps differing by a nonzero scalar define the same projective
map, the group of all such transformations is the projective general linear group PGL(3,C).

Remark 1.1.4. A projective transformation can also be interpreted as a coordinate change.
If T ∈ PGL(3,C), then the new coordinates of a point or geometric object X ⊂ CP2 under
the coordinate change T are denoted by XT , which represents the image of X under the
transformation induced by T .

Proposition 1.1.5. Projective transformations send lines to lines and preserve cross ratios.

Proposition 1.1.6. [Kir92] Given three distinct points in CP1: P1, P2 and P3. There exists a
unique projective transformation sending P1 to [1 : 0], P2 to [0 : 1] and P3 to [1 : 1].

Proposition 1.1.7. [Kir92] Given four distinct points in CP2: P1, P2, P3, and P4, no three of
which are collinear. There exists a unique projective transformation sending P1 to [1 : 0 : 0], P2

to [0 : 1 : 0], P3 to [0 : 0 : 1] and P4 to [1 : 1 : 1].
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1.2 Algebraic curves

In this subsection, and frequently throughout the thesis, we will denote by P the projective
curve defined by the polynomial p.

Definition 1.2.1. (Affine algebraic plane curve). A set P of points in C2 is called an affine
algebraic curve if there exists a polynomial p ∈ C[x, y] such that P is precisely the zero set of p.

Definition 1.2.2. (Projective algebraic plane curve). A set P of points in CP2 is called
a projective algebraic curve if there exists a homogeneous polynomial p ∈ C[x, y, z] such that P
is precisely the zero set of p.

Definition 1.2.3. (Homogenisation and dehomogenisation). Given a polynomial p ∈
C[x, y], its homogenisation is the unique homogeneous polynomial p∗ ∈ C[x, y, z] such that
p∗(x, y, 1) ≡ p(x, y) and deg p∗ is minimal, that is p∗(x, y, z) ≡ zdp(x/z, y/z) where d = deg p∗.
Similarly, if given a homogeneous polynomial p ∈ C[x, y, z], its dehomogenisation is the unique
polynomial p∗ ∈ C[x, y] such that p∗(x, y) ≡ p(x, y, 1).

Proposition 1.2.1. [Ful08]

a) For p, q ∈ C[x, y] we have (pq)∗ = p∗q∗.

b) For homogeneous f, g ∈ C[x, y, z] we have (fg)∗ = f∗g∗.

c) For p, q ∈ C[x, y] we have zdeg p+deg q−deg(p+q)(p+ q)∗ = zdeg qp∗ + zdeg pq∗.

d) For homogeneous p, q ∈ C[x, y, z] we have (p+ q)∗ = p∗ + q∗.

e) For p ∈ C[x, y] we have (p∗)∗ = p.

f) For homogeneous p ∈ C[x, y, z] we have zr(p∗)
∗ = p, where zr is the greatest power of z

dividing p.

Proposition 1.2.2. [Kir92] Every non-zero homogeneous polynomial in C[x, y] factors as
product of linear polynomials. The number of these linear polynomials equals to the degree
of the homogeneous polynomial.

Theorem 1.2.3. (Euler’s Relation). [Kir92] Let p(x, y, z) ∈ C[x, y, z] be a homogeneous
polynomial of degree d. Then

x
∂p

∂x
(x, y, z) + y

∂p

∂y
(x, y, z) + z

∂p

∂z
(x, y, z) = d · p(x, y, z).

Definition 1.2.4. (Curves without common component). We say that algebraic curves
have no common component if the polynomials defining them do not have a common component.

Definition 1.2.5. (Reducible, irreducible and minimal polynomials). A polynomial is
called reducible if it can be written as the product of two polynomials (in the same ring) of
positive degrees. A non-reducible polynomial is called irreducible or minimal.

Definition 1.2.6. (Smooth/regular and singular points). Consider an algebraic curve P
defined by p ∈ C[x, y]. Then P is smooth (or regular) at X ∈ P if

gradp(X) =

(
∂p

∂x
(X),

∂p

∂y
(X)

)
̸= (0, 0).

Similarly, for homogeneous p ∈ C[x, y, z], X ∈ P is a smooth (or regular) point if

gradp(X) =

(
∂p

∂x
(X),

∂p

∂y
(X),

∂p

∂z
(X)

)
̸= (0, 0, 0).
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If P is not smooth at X, then it is singular. The set of singularities will be denoted by Sing(P )
or Sing(p).

Suppose that p ∈ C[x, y] is written as p = a0 + b0x + b1y + c0x
2 + c1xy + c2y

2 . . .. We may

assume that a0 = 0, that is the curve contains the origin. Note that
∂p

∂x
(0) = b0 and

∂p

∂y
(0) = b1,

so the origin is a singularity if and only if b0 = b1 = 0.

Definition 1.2.7. (Double point and multiple point). If at least one of c0, c1, c2 is non-zero,
then the origin is called a double point. More precisely:

• if 4c0c2 = c21 and the degree three terms are generic then the origin is called an ordinary
cusp (see Figure 2 below);

• if 4c0c2 ̸= c21 then the origin is called a node.

In general, if the first non-zero term in the expression of f has degree d then the origin is called
a multiple point of order d.

Definition 1.2.8. (Tangent lines of algebraic curves). Given a plane curve P . Let X ∈ P

be a point on the curve. Translate the curve by the vector
−−→
XO, where O denotes the origin.

Denote the new curve’s defining polynomial by p. Let p = pk1 + pk2 + . . . + pkl where pki is a
homogeneous polynomial in C[x, y] of degree ki, and k1 < k2 < . . . < kl. Write pki = lr11 · . . . · lrkk
where each li is a linear polynomial. The li polynomials define lines which are called the tangents
to P at X. The multiplicity of the tangent line li is ri.

Definition 1.2.9. (Simple tangent). In the previous definitions, if ri = 1, then li is said to
be a simple tangent.

Definition 1.2.10. (Tangent line at smooth point). The tangent line to P at a smooth
point X is the line

TXP :=

{
(x, y) ∈ C2 | ∂p

∂x
(X)x+

∂p

∂y
(X)y = c

}
where c is a constant chosen such that X lies on the tangent line.

Definition 1.2.11. (Ordinary point). If a curve P has m different simple tangents at a point
X, then we say that X is an ordinary multiple point on P .

Example 1.2.1. Here are a few examples of algebraic curves, visualised in the real affine
plane. The figures were created using Desmos [Des24].

Figure 1
conic sections

(ellipse, parabola,
hyperbola)

no singularities

Figure 2
semicubical parabola

x2 − y3

cusp singularity

Figure 3
x3 − x− y2

no singularities

Figure 4
nephroid

(x2 + y2 − 4)3 − 108y2

two cusp singularities
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Figure 5
alpha curve
x3 + x2 − y2

node singularity

Figure 6
x3 − y

singularity at
infinity

Figure 7
trident curve

xy + x3 + x2 + x
reducible curve

Figure 8
x5 + x6 − y2

non-ordinary cusp
singularity

1.3 Inflection points

Definition 1.3.1. (Hessian matrix). Let p(x, y, z) be a homogeneous polynomial of degree
d. The Hessian Hp of p is the polynomial defined by

Hp(x, y, z) = det

pxx pxy pxz
pyx pyy pyz
pzx pzy pzz

 .

Remark 1.3.1. We used and we will use the common notations pu =
∂p

∂u
and puv =

∂2u

∂u∂v
for

all u, v ∈ {x, y, z}.

Remark 1.3.2. Note that the second partial derivatives of p are homogeneous of degree d− 2
in x, y, z, so Hp is a homogeneous polynomial of degree 3(d− 2) in x, y, z.

Definition 1.3.2. (Point of inflection). A nonsingular point [a : b : c] of the projective curve
P in CP2 defined by p(x, y, z) is called a point of inflection (or flex) of P if

Hp(a, b, c) = 0.

Proposition 1.3.3. [Kir92] If p(x, y, z) is a homogeneous polynomial of degree d > 1 then

z2Hp(x, y, z) = (d− 1)2 det

pxx pxy px
pyx pyy py

px py
d · p
d− 1

 .

Proposition 1.3.4. [Kir92] If P defined by p is an irreducible projective curve of degree d, then
every point of P is a point of inflection if and only if d = 1.

1.4 Algebraic properties

The following definitions can be generalized to the projective plane.

Definition 1.4.1. (V notation). For a set of polynomials P in C[x, y], let V (P) denote the
set of points (in C2) which are the common zeroes of P, that is,

V (P) = {X ∈ C2 | p(X) = 0 for all p ∈ P}.

Proposition 1.4.1. [Ful08] If P ⊂ Q for some sets of polynomials in C[x, y], then V (P) ⊃ V (Q).

4



Definition 1.4.2. (Algebraic set). A set of points S ⊂ C2 is called an algebraic set if there
exists a set of polynomials P ⊂ C[x, y] for which V (P) = S.

Proposition 1.4.2. [Ful08] Here are a few basic properties of algebraic sets:

a) Every algebraic set is equal to V (I) for some ideal I ⊂ C[x, y].

b) The intersection of any collection of algebraic sets, and the union of any finite collection
of algebraic sets is also an algebraic set.

c) Any finite subset of C2 is an algebraic set.

Theorem 1.4.3. (Hilbert Basis Theorem). Every ideal in C[x, y] is finitely generated.
Therefore, every algebraic set can be defined by a finite set of polynomials.

Definition 1.4.3. (Reducibility of algebraic sets). An algebraic set S is reducible if there
exist algebraic sets S1,S2 ⊊ S such that S = S1 ∪ S2. A non-reducible algebraic set is called
irreducible.

Definition 1.4.4. (Ideal of a set). For a subset S ⊂ C2, we define the ideal of S to be

I(S) = {p ∈ C[x, y] | p(s) = 0 for all s ∈ S}.

Proposition 1.4.4. [Ful08]

a) I(∅) = C[x, y].

b) I({(a, b)}) = (x− a, y − b).

Proposition 1.4.5. [Ful08] Let P be a set of polynomials in C[x, y], and let S be a set of points
in C2.

a) I(V (P)) ⊃ P and V (I(S)) ⊃ S.

b) V (I(V (P))) = V (P) and I(V (I(S))) = I(S).

Proposition 1.4.6. [Ful08] An algebraic set S is irreducible if and only if I(S) is a prime ideal.

Proposition 1.4.7. [Ful08] Let S be an algebraic set. Then there exist unique irreducible
algebraic sets S1, . . . ,Sk such that

S =
k⋃

i=1

Si and Si ̸⊂ Sj for i ̸= j.

Definition 1.4.5. (Irreducible components). Using the notation in the previous proposition,
the algebraic sets S1, . . . ,Sk are called the irreducible components of S.

Theorem 1.4.8. (Hilbert’s Nullstellensatz). Let p, q ∈ C[x, y]. Then V (p) = V (q) if and
only if p and q have the same set of irreducible factors (up to multiplicity). This is equivalent
to the existence of k, ℓ ∈ N such that p | qk and q | pℓ.

Corollary 1.4.9. Suppose p, q ∈ C[x, y] are irreducible. Then V (p) = V (q) if and only if there
exists a scalar λ ∈ C \ {0} such that p = λq.

Corollary 1.4.10. When studying algebraic curves, we may assume that the defining
polynomial has no repeated factors.

Definition 1.4.6. (Zariski topology). The Zariski topology on C2 or CP2 is the topology in
which the closed sets are the algebraic sets.
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1.5 Varieties

In this subsection, P will denote a point, not a curve.

Definition 1.5.1. (Variety). An irreducible algebraic set is called a variety.

Definition 1.5.2. (Coordinate ring). For a variety V ⊂ Cn we denote the ring
C[x1, x2, . . . , xn]/I(V ) by Γ(V ) and call it the coordinate ring of V .

Definition 1.5.3. (Residue). LetM denote the residue ofM ∈ C[x1, . . . , xn] in the coordinate
ring.

Proposition 1.5.1. [Ful08] Γ(V ) is an integral domain, and thus has no zero divisors.

Definition 1.5.4. (Field of rational functions). The quotient field of the coordinate ring
Γ(V ) is denoted by C(V ) and called the field of rational functions on V .

Definition 1.5.5. (Local ring). Given a variety V , the local ring of V at P ∈ V is the set of
rational functions on V that are defined at P . It is denoted by OP (V ).

Proposition 1.5.2. [Ful08] Γ(V ) ⊂ OP (V ) ⊂ C(V ).

Definition 1.5.6. (Maximal ideal). The maximal ideal of OP (V ) is denoted by mP (V ).

Proposition 1.5.3. [Ful08] mP (V ) is the ideal of all the rational functions that vanish at P .

Proposition 1.5.4. [Ful08] mP (V ) is the set of non-units in OP (V ).

Proposition 1.5.5. [Ful08] Given an ideal I of C[x1, . . . , xn]. Suppose that V (I) is the finite
set consisting of P1, . . . , Pk. Then there exists a natural isomorphism

C[x1, . . . , xn]/I ∼=
k∏

i=1

OPi(C
n)/IOPi(C

n)

where IOPi(Cn) denotes the ideal of OPi(Cn) generated by I.

Proposition 1.5.6. [Ful08] Let V be variety and P one of its points. Suppose that J is an
ideal of C[x, y] containing I(V ). Let J ′ denote the image of J in Γ(V ). Then OP (C2)/JOP (C2)
is isomorphic to OP (V )/J ′OP (V ).

Definition 1.5.7. (Regular functions). Let Y be an open subset of an (affine or projective)
variety and f : Y → C a function. For affine varieties, f is said to be regular at a point P ∈ Y if
there is an open neighbourhood U with P ∈ U ⊂ Y and polynomials g, h ∈ C[x, y] such that h
is nowhere zero on U and f = g

h on U . For projective varieties, f is said to be regular at a point
P ∈ Y if there is an open neighbourhood U with P ∈ U ⊂ Y and homogeneous polynomials
g, h ∈ C[x, y, z] of same degree such that h is nowhere zero on U and f = g

h on U . We say f is
regular on Y if it is regular at every point of Y .

Definition 1.5.8. (Morphisms). If X,Y are two varieties, a morphism φ : X → Y is a
continuous map such that for every open set V ⊂ Y and for every regular function f : V → C
the function f ◦ φ : φ−1(V ) → C is regular. An isomorphism φ : X → Y of two varieties is a
morphism which admits and inverse morphism ψ : Y → X with ψ ◦ φ = idX and φ ◦ ψ = idY .

Definition 1.5.9. (Rational Maps). Let X,Y be varieties. A rational map φ : X 99K Y is an
equivalence class of pairs ⟨U,φU ⟩ where U is a non-empty open subset of X, φU is a morphism
of U to Y , and where ⟨U,φU ⟩ and ⟨V, φV ⟩ are equivalent if φU = φV on U ∩ V . The rational
map φ is dominant if for some pair ⟨U,φU ⟩, the image of φU is dense in Y .

Definition 1.5.10. (Birational map). LetX,Y be two varieties. A birational map is a rational
map φ : X 99K Y which admits an inverse ψ : Y 99K X. If we have such maps, we say that X
and Y are birationally equivalent or simply birational.

6



1.6 Intersection number

In this subsection, F and G denotes two algebraic curves. P denotes a point, not a curve.

Definition 1.6.1. (Proper intersection). Given two curves F,G. They intersect at P
properly if they have no common component passing through P .

Definition 1.6.2. (Transverse intersection). Given two curves F,G. They intersect at P
transversally if P is a regular point on both F and G, and the tangent lines at P are different
on the two curves.

Definition 1.6.3. (Multiplicity at the origin). Given a plane curve F defined by the
polynomial f ∈ C[x, y]. Let f = fk1 + fk2 + . . . + fkl where fki is a homogeneous polynomial
in C[x, y] with degree ki, and k1 < k2 < . . . < kl. We define the multiplicity of F at the origin
(0, 0) by k1, and denote it by m(0,0)(F ).

Remark 1.6.1. The origin lies on a curve F if and only if the multiplicity is positive. The
origin is a smooth point of a curve F if and only if its multiplicity is 1.

Definition 1.6.4. (Multiplicity in general). Given a point P and a curve F . Let τ denote

the translation by the vector
−−→
PO where O denotes the origin. Then we define the multiplicity

of F at P by mO(F ◦ τ) and denote it by mP (F ).

Definition 1.6.5. (Intersection number). For curves F,G let the intersection number at a
point P be

I[F,G](P ) := dimC(OP (C2)/(F,G)).

Proposition 1.6.2. [Ful08] The intersection number defined above is the unique I∗[F,G](P )
number which satisfies the following properties:

a) If F and G intersect properly at P , then I∗[F,G](P ) is a non-negative integer, while if
they don’t intersect properly then I∗[F,G](P ) = ∞.

b) I∗[F,G](P ) = 0 if and only if P /∈ F ∩G.

c) I∗[F,G](P ) only depends on the components of F and G that pass through P .

d) For a coordinate change T which sends Q to P , we have I∗[F,G](P ) = I∗[F ◦T,G◦T ](Q).

e) I∗[F,G](P ) = I∗[G,F ](P ).

f) I∗[F,G](P ) ≥ mP (F )mP (G), where the equality occurs if and only if there is no common
tangent at P .

g) F = F a1
1 · F a2

2 · . . . · F ak
k and G = Gb1

1 · Gb2
2 · . . . · Gbl

l implies I∗[F,G](P ) =∑
1≤i≤k,1≤j≤l

aibjI
∗[Fi, Gj ](P ).

h) For any H ∈ C[x, y] we have I∗[F,G](P ) = I∗[F,G+HF ](P ).

1.7 Inverse function theorem

Theorem 1.7.1. (Inverse function theorem). [Kir92]

a) Let f : U → V be a holomorphic bijection between open subsets U and V of C. Then

f ′(z) ̸= 0 for all z ∈ U

and the inverse
f−1 : V → U

of f is holomorphic.
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b) Let f : U → C be a holomorphic function, defined on a neighbourhood U of a in C, such
that

f ′(a) ̸= 0.

Then the restriction of f to any sufficiently small open neighbourhood of a in U is a
holomorphic bijection onto an open neighbourhood of f(a) in C.

Proposition 1.7.2. [Kir92] Suppose that U is an open subset of C and that f : U → C is
continuous. If the restriction of f to

U \ {a1, . . . , am}

is holomorphic for some a1, . . . , am ∈ U , then f is holomorphic.

1.8 Implicit function theorem

Theorem 1.8.1. (Implicit function theorem). [Hör66] Let fj(w, z), j = 1, . . . ,m be analytic
functions of (w, z) = (w1, . . . , wm, z1, . . . , zn) in a neighbourhood of w0, z0 in Cm×Cn and assume
that

fj(w0, z0) = 0, j = 1, . . . ,m

and that

det

(
∂fj
∂wk

)m

j,k=1

̸= 0

at (w0, z0). Then the equations fj(w, z) = 0, j = 1, . . . ,m, have a uniquely determined analytic
solution w(z) in a neighbourhood of z0, such that w(z0) = w0.

Corollary 1.8.2. [Kir92] Let a(z, w) be a polynomial with complex coefficients in two variables
z and w. Suppose that

a(z0, w0) = 0 ̸= ∂a

∂w
(z0, w0).

Then there is a holomorphic function f : U → V where U and V are open neighbourhoods of
z0 and w0 in C such that

f(z0) = w0

and if z ∈ U and w ∈ V then
f(z) = w

implies
a(z, w) = 0.

Moreover
a(z, w) = (w − f(z)) · b(z, w)

where b(z, w) is a polynomial in w whose coefficients are holomorphic functions of z.

Corollary 1.8.3. [Kir92] Let a(z, w) be a polynomial with complex coefficients in two variables
z and w such that

a(z0, w0) = 0

and the polynomial a(z0, w) in w has a zero of order m at w0. Then given any ε > 0 there exists
δ > 0 such that if |z − z0| < δ then the polynomial a(z, w) in w has at least m zeros (counting
multiplicities) in the disc

{w ∈ C : |w − w0| < ε}.
Remark 1.8.4. [Kir92] The corollary above holds for all continuous functions a(z, w), for which
∂a

∂w
(z, w) is continuous and for fixed w both a(z, w) and

∂a

∂w
(z, w) are holomorphic in z, while

for fixed z they are both holomorphic in w.
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1.9 Resultant

Definition 1.9.1. (Resultant). Let f(x) = a0x
n+a1x

n−1+· · ·+an and g(x) = b0x
m+b1x

m−1+
· · · + bm be two complex polynomials. The resultant Res(f, g) is defined as the determinant of
the (n+m)× (n+m) Sylvester matrix of f and g, that is,

Res(f, g) = det(S(f, g)),

where S(f, g) is the matrix

S(f, g) =



a0 a1 · · · an 0 · · · 0
0 a0 a1 · · · an · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 a0 a1 · · · an
b0 b1 · · · bm 0 · · · 0
0 b0 b1 · · · bm · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 b0 b1 · · · bm


,

where there are m rows coming from the coefficients of f and n rows from the coefficients of g.

Definition 1.9.2. (Resultant for polynomials in three variables). Let f(x, y, z) and
g(x, y, z) be two complex polynomials. Assume that we regard f and g as polynomials in the
variable x. Then the resultant Resx(f, g) is defined as the resultant of f and g considered as
polynomials in x: that is,

Resx(f, g) = det(S(f, g)),

where S(f, g) is the Sylvester matrix formed from the coefficients of f and g viewed as
polynomials in x.

Proposition 1.9.1. [Kir92] Let f, g ∈ C[x]. Then f and g have a nonconstant common factor
if and only if Res(f, g) = 0.

Proposition 1.9.2. [Kir92] Let f, g ∈ C[x, y, z] be nonconstant homogeneous polynomials with
f(1, 0, 0) ̸= 0 and g(1, 0, 0) ̸= 0. Then f and g have a nonconstant homogeneous common factor
if and only if Resx(f, g) ≡ 0.

Proposition 1.9.3. [Kir92] The degree of Resx(f, g) is deg(f) · deg(g).

Proposition 1.9.4. [Kir92] Let f(x) = (x−α1) · . . . ·(x−αm) and g(x) = (x−β1) · . . . ·(x−βn).
Then

Res(f, g) =
∏

1≤i≤m,1≤j≤n

(βj − αi).

Corollary 1.9.5. Let f, g, h ∈ C[x]. Then Res(f, gh) = Res(f, g) · Res(f, h).

Proposition 1.9.6. [Kir92] Let f, g ∈ C[x, y, z] and suppose that f(x, y, z) = (x−a1) · . . . · (x−
am) and g(x) = (x− b1) · . . . · (x− bn) where a1, . . . , am, b1, . . . , bn are polynomials in y, z. Then

Resx(f, g) =
∏

1≤i≤m,1≤j≤n

(bj − ai).

Corollary 1.9.7. Let f, g, h ∈ C[x, y, z]. Then Resx(f, gh) = Resx(f, g) · Resx(f, h).
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1.10 Formal power series

Definition 1.10.1. (Ring of formal power series). Let

C[[x, y]] :=

 ∑
(µ,ν)∈N2

aµ,νx
µyν | aµ,ν ∈ C


denote the ring of (complex) formal power series (of two variables).

Remark 1.10.1. We similarly define the well-known ring of formal power series in one variable:

C[[x]] =

{∑
ν∈N

aνx
ν | aµ ∈ C

}
.

Definition 1.10.2. (homogeneous part). For any non-negative integer d, the homogeneous
part of the power series f =

∑
(µ,ν)∈N2 aµ,νx

µyν of degree d is

f(d) :=
∑

µ+ν=d

aµ,νx
µyν .

Definition 1.10.3. (Polynomial part). For any non-negative integer d, the polynomial part
of the power series f =

∑
(µ,ν)∈N2 aµ,νx

µyν of degree d is

f (d) :=
d∑

k=0

f(k).

Remark 1.10.2. We have a ring extension C[x, y] ⊂ C[[x, y]] if we set f + g =
∞∑
k=0

(f(k) + g(k))

and fg =
∞∑
k=0

 ∑
p+q=k

(f(p)g(q)

 for any f, g ∈ C[[x, y]].

Definition 1.10.4. (Order). For all f ∈ C[[x, y]] we define its order by

ord f :=

{
min{k : f(k) ̸= 0} f ̸= 0,

∞ f = 0.

Proposition 1.10.3. [Fis01] For all f, g ∈ C[[x, y]] we have ord(f + g) ≥ min{ord f, ord g} and
ord(fg) = ord f + ord g.

Corollary 1.10.4. C[[x, y]] is an integral domain.

Definition 1.10.5. (m(k)). Let m := {f ∈ C[[x, y]] | ord f ≥ 1} and for k ≥ 2 let m(k) := {f ∈
C[[x, y]] | ord f ≥ k}.

Proposition 1.10.5. [Fis01] m is the unique maximal ideal of C[[x, y]].

Proposition 1.10.6. [Fis01] For k ≥ 2, m(k) = mk.

Proposition 1.10.7. [Fis01] The elements of C[[x, y]] of order 0 are precisely the units.

Definition 1.10.6. (Formal convergent sequence). A sequence (fn)n∈N in C[[x, y]] is called
formally convergent to f ∈ C[[x, y]] if for every positive integer k there exists an N ∈ N such
that f − fn ∈ mk for all n ≥ N .
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Definition 1.10.7. (Cauchy sequence). A sequence (fn)n∈N in C[[x, y]] is called a (formal)
Cauchy sequence if for every positive integer k there exists an N ∈ N such that fm − fn ∈ mk

for all m,n ≥ N .

Proposition 1.10.8. [Fis01] Every Cauchy-sequence in C[[x, y]] is formally convergent.

Proposition 1.10.9. [Fis01] For a formal power series f(x, y) =
∑

(µ,ν)∈N2 aµ,νx
µyν the

following are equivalent:

a) There exists non-zero complex numbers x0, y0 such that f(x0, y0) converges.

b) There exists positive real numbers r, s such that f(r, s) converges.

c) There exists positive real numbers r, s such that
∑

(µ,ν)∈N2 |aµ,ν |rµsν converges.

Definition 1.10.8. (Convergent power series). A formal power series is called convergent
if it satisfies one of the (equivalent) conditions in the previous proposition. The set of convergent
power series is denoted by C⟨x, y⟩.

Definition 1.10.9. (Generality). Let f ∈ C[[x, y]] and let f denote f(x, 0). Then f is general
in x if f ̸= 0. If ord f = d then we say that f is general in x of order d. We similarly define the
general property in y.

1.11 Some basic topology

Proposition 1.11.1. [Ken11] Any algebraic curve in CP2 is pathwise connected.

Corollary 1.11.2. Any algebraic curve in CP2 is connected.

Proposition 1.11.3. [Ken12] Any smooth irreducible algebraic curve in CP2 is orientable.

Definition 1.11.1. (Triangulation). Let S be a finite CW-complex of dimension 2. A
triangulation of S is given by the following data:

a) a finite nonempty set V of points of X called vertices,

b) a finite nonempty set E of continuous maps e : [0, 1] → X called edges,

c) a finite nonempty set F of continuous maps f : ∆ → X called faces, where

∆ = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≤ 1}

satisfying

i) V = {e(0) : e ∈ E} ∪ {e(1) : e ∈ E} ;

ii) if e ∈ E then e(t) ∈ V if and only if t ∈ {0, 1}, and the restriction of e to (0, 1) is a
homeomorphism onto its image in X;

iii) if ẽ, ē are distinct edges then ẽ(t) ̸= ē(s) for all s, t ∈ (0, 1);

iv) if f : ∆ → X is a face then the restriction of f to

∆0 = {(x, y) ∈ R2 : x > 0, y > 0, x+ y < 1}

is a homeomorphism of ∆0 onto a connected component Kf of

X −
⋃
e∈E

e([0, 1]),
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and if σi : [0, 1] → ∆ for 1 ≤ i ≤ 3 and r : [0, 1] → [0, 1] are defined by

σ1(t) = (t, 0) σ2(t) = (1− t, t) σ3(t) = (0, 1− t), r(t) = 1− t

then either f ◦ σi or f ◦ σi ◦ r is an edge efi ∈ E for 1 ≤ i ≤ 3;

v) the mapping f 7→ Kf from F to the set of connected components of X −
⋃

e∈E e([0, 1]) is
a bijection;

vi) for every e ∈ E there is exactly one face fe+ ∈ F such that e = fe+ ◦σi for some i ∈ {1, 2, 3}
and exactly one face fe− ∈ F such that e = fe− ◦ σi ◦ r for some i ∈ {1, 2, 3}.

#V,#E,#F denotes the number of elements of sets V,E, F , respectively.

Definition 1.11.2. (Euler number). The Euler number χ of a triangulation is defined by
χ := #V −#E +#F .

Proposition 1.11.4. [Kir92] The Euler number is independent of triangulations.

Proposition 1.11.5. [Kir92] χ(CP1) = 2.

Definition 1.11.3. (Topological genus). Let S be a compact, connected, orientable smooth
surface. The topological genus g(S) is defined as

g(S) = 1− 1

2
χ(S).

where χ(S) is the Euler characteristic of the surface.

Proposition 1.11.6. [Hat02] Let S be a compact, connected, orientable smooth surface. The
topological genus g(S) is the number of handles on S, that is, the number of tori appearing in
a connected sum decomposition

S ∼= T 2#T 2# · · ·#T 2︸ ︷︷ ︸
(g times)

if g ≥ 1, S ∼= CP1 if g = 0.

Definition 1.11.4. (Covering projection). A continuous map π : Y → X between
topological spaces X and Y is called a covering projection if each x ∈ X has an open
neighbourhood U in X such that π−1(U) is a disjoint union of open subsets of Y , each of
which is mapped homeomorphically onto U by π.

Proposition 1.11.7. [Kir92] Let π : Y → X be a covering projection and let f : A → X be a
continuous map. Suppose that A is simply connected, path connected and locally path connected
(i.e. every a ∈ A has arbitrarily small path connected open neighbourhoods in A). Then given
any a ∈ A and y ∈ Y such that f(a) = π(y) there is a unique continuous map F : A → Y such
that F (a) = y and

π ◦ F = f.

If moreover f is a homeomorphism onto its image f(A), then F is a homeomorphism onto a
connected component of π−1(f(A)).

Proposition 1.11.8. [Kir92] Let π : Y → X be a continuous map and suppose that every
x ∈ X has an open neighbourhood U in X such that each connected component of π−1(U)
contains at most one point of π−1(x). Suppose that Y is compact and that V is an open subset
of X such that π : π−1(V ) → V is a covering projection. If f : [0, 1] → X is continuous and
f−1(V ) contains the open interval (0, 1) then given τ ∈ (0, 1) and y ∈ Y such that π(y) = f(τ)
there is a unique continuous map F : [0, 1] → Y such that F (τ) = y and π ◦ F = f .

Remark 1.11.9. It is easy to modify this argument to apply when [0, 1] is replaced by ∆ and
(0, 1) is replaced by

∆− {(0, 0), (1, 0), (0, 1)}.
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1.12 Riemann surfaces

Definition 1.12.1. (Locally homeomorphic spaces). Let X and Y be topological spaces.
We say X is locally homeomorphic to Y if for all x ∈ X there exist open sets U ⊂ X and V ⊂ Y
such that x ∈ U and U is homeomorphic to V .

Definition 1.12.2. (n-manifold). An n-manifold is a Hausdorff topological space with a
countable basis that is locally homeomorphic to Rn.

Definition 1.12.3. (Biholomorphic Function). Let U ⊂ C be open. A function f : U →
V ⊂ C is called biholomorphic if it is a holomorphic bijection with a holomorphic inverse.

Definition 1.12.4. (Complex Atlas). Let X be a 2-manifold. A complex atlas on X consists
of an open cover {Ui}i∈I and a collection of associated homeomorphisms {ϕi : Ui → Vi ⊂ C}i∈I
with the following property:

ϕi ◦ ϕ−1
j is biholomorphic on ϕj(Ui ∩ Uj) ∀i, j ∈ I.

The homeomorphisms belonging to a complex atlas are called charts. Two charts are called
compatible if they satisfy the property above. Two complex atlases are considered equivalent if
their union is itself an atlas.

Definition 1.12.5. (Riemann Surface). A Riemann surface X is a connected 2-manifold
with a complex structure given by an equivalence class of atlases on X.

1.13 Meromorphic functions

Definition 1.13.1. (Isolated singularity). Let f be a holomorphic function on an open set
D \ {c}, where D ⊂ C is a domain and c ∈ D. Then the point c is called an isolated singularity
of f if there exists a punctured neighbourhood U = {z ∈ C : 0 < |z − c| < ε} ⊂ D such that f
is holomorphic on U , but not defined or not holomorphic at c.

Proposition 1.13.1. [Kós24] Let f be a holomorphic function on a punctured neighbourhood
of a point c ∈ C. The following statements are equivalent:

1) The function f has a holomorphic extension to a full neighbourhood of c, i.e., there exists
a function f̃ holomorphic on |z − c| < ε such that f̃(z) = f(z) for all z ̸= c.

2) The singularity of f at c is removable in the sense that the Laurent series of f around c
contains no terms of negative degree.

3) lim
z→c

f(z) exists and is finite.

4) f is bounded on a punctured neighbourhood of c, i.e., there exists ε > 0 and M > 0 such
that |f(z)| < M for all 0 < |z − c| < ε.

5) lim
z→c

(z − c)f(z) = 0.

Definition 1.13.2. (Pole). Let U be an open subset of C. A function f : U → C2 said to have
a pole at a of order m if f is holomorphic on a punctured neighbourhood Ḃ(a, r) of a, but is
not defined at a, and if

f(z) =
g(z)

(z − a)m
,

where m is a positive integer, g(z) is holomorphic at a, and g(a) ̸= 0.
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Definition 1.13.3. (Meromorphic function). A meromorphic function on the open set U is
a function

f : U → C ∪ {∞}

such that f :W \ f−1({∞}) → C is holomorphic and f has a pole at each a ∈ f−1({∞}).
Definition 1.13.4. (Pair of meromorphic functions). An ordered pair (f, g) of
meromorphic functions defined on an open neighbourhood of 0 in C simply a pair if f is not
constant on any neighbourhood of 0 and the mapping defined by

t 7→ (f(t), g(t))

is one-to-one near 0.

Definition 1.13.5. (Parameter change). A parameter change is a holomorphic function ρ
defined on an open neighbourhood of 0 in C such that ρ(0) = 0 and ρ′(0) ̸= 0.

Definition 1.13.6. (Equivalent pairs). We say that two pairs (f, g) and (f̃ , g̃) are equivalent
and write

(f, g) ∼ (f̃ , g̃)

if there is a parameter change ρ such that f̃ = f ◦ ρ and g̃ = g ◦ ρ in some neighbourhood of 0.
By Theorem 1.7.1, this is an equivalence relation on the set of pairs. The equivalence class of a
pair (f, g) is called a meromorphic element. We use the notation ⟨f(t), g(t)⟩.
Definition 1.13.7. (Set of meromorphic elements). We denote the set of meromorphic
elements by M.

Definition 1.13.8. (Open sets U(f, g, r)). Let (f, g) be a pair and let r > 0 be sufficiently
small that f and g are both defined and meromorphic on the open disc D(0, r) of centre 0 and
radius r, and the map

t 7→ (f(t), g(t))

is one-to-one on D(0, r). Then

U(f, g, r) := {⟨f(t0 + t), g(t0 + t)⟩ : t0 ∈ D(0, r)} ⊂ M.

Remark 1.13.2. This can be defined because (f(t0+t), g(t0+t)) is a pair for each t0 ∈ D(0, r).

Remark 1.13.3. ⟨f, g⟩ ∈ U(f, g, r).

Proposition 1.13.4. [Kir92] There is a topology on M such that a subset of M is open if and
only if it is a union of subsets of the form U(f, g, r) just defined.

Proposition 1.13.5. [Kir92] M is a Riemann surface with the holomorphic atlas

Φ = {ϕα : Uα → Vα : α ∈ A},

where

• A is the set of all ordered triples (f, g, r) for which (f, g) is a pair, r > 0 and f, g are defined
meromorphic functions on D(0, r) such that t 7→ (f(t), g(t)) is a bijection on D(0, r);

• Uα = U(f, g, r) for all α = (f, g, r) ∈ A;

• Vα = D(0, r) for all α = (f, g, r) ∈ A;

• ϕα : Uα → Vα is the inverse of the homeomorphism D(0, r) → U(f, g, r): t0 7→ ⟨f(t0 +
t), g(t0 + t)⟩.

Proposition 1.13.6. [Kir92] The maps ⟨f, g⟩ 7→ f(0) and ⟨f, g⟩ 7→ g(0) are meromorphic
functions M → C ∪ {∞}.

14



2 Investigation of intersections

In this section, we will focus on two vital results of classical algebraic geometry: Bézout’s
Theorem, which gives a precise count of the intersection points of plane curves, and Max
Noether’s Fundamental Theorem, which provides an even deeper insight into the ideal-theoretic
structure of these intersections. Along the way, we introduce several important lemmas and
propositions that we shall use later on.

2.1 Bézout’s theorem

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.6 and subsection 1.9.

Proposition 2.1.1. Any two projective curves in CP2 intersect in at least one point.

Proof. [Kir92] Suppose that the homogeneous polynomials f, g ∈ C[x, y, z] define the curves
F and G. By Proposition 1.9.3, the resultant Rx(f, g) is a homogeneous polynomial of degree
deg f ·deg g in y and z. By Proposition 1.2.2, the resultant is either zero or equal to the product
of deg f · deg g linear factors of form bz − cy with b, c ∈ C, not both being zero. In both cases,
there exists (b, c) ∈ C2 \ {(0, 0)} such that Rx(f, g) is zero at (b, c), that is, the polynomials
f(x, b, c) and g(x, b, c) have a common root by Proposition 1.9.1. If we denote this root by a
then

f(a, b, c) = g(a, b, c) = 0,

so [a : b : c] ∈ F ∩G.

Proposition 2.1.2. If two projective curves F and G in CP2 defined by the homogeneous
polynomials f, g ∈ C[x, y, z] have no common component, then they intersect in at most deg f ·
deg g points.

Proof. [Kir92] Indirectly assume that F and G intersect in at least deg f · deg g + 1 distinct
points. Let I denote the set of intersection points. Choose a point in CP2 not lying on F or
G, or on any line determined by two points of I. By Proposition 1.1.7 we can assume that this
point is [1 : 0 : 0]. Then we have

f(1, 0, 0) ̸= 0 ̸= g(1, 0, 0),

so [1 : 0 : 0] /∈ F ∪G. By Proposition 1.9.3, the resultant Rx(f, g) is a homogeneous polynomial
of degree deg f · deg g in y and z. If Rx(f, g) is not identically zero, then it factors into
deg f · deg g linear forms bz − cy for (b, c) ∈ C2 \ {(0, 0)}. Furthermore, such a factor bz − cy
divides Rx(f, g) if and only if f(x, b, c) and g(x, b, c) have a common root a. If [a : b : c] ∈ I,
then the above vanishing holds. Since [1 : 0 : 0] /∈ I, each such [b : c] gives a distinct linear
factor bz − cy of Rx(f, g). If two such points in I gave proportional vectors (b, c) and (β, γ),
then [a : b : c], [α : β : γ], and [1 : 0 : 0] would lie on the same line bz = cy, contradicting the
choice of [1 : 0 : 0].

Hence Rx(f, g) has at least deg f · deg g + 1 distinct linear factors, which is impossible
unless it is identically zero. By Proposition 1.9.2, this implies that F and G share a common
component, contradicting the assumption.

Proposition 2.1.3. A nonsingular projective curve C in CP2 is irreducible.

Proof. [Kir92] Suppose, for contradiction, that H = {[x : y : z] ∈ CP2 : f(x, y, z)g(x, y, z) = 0}.
By Proposition 2.1.1, there exists a point [a : b : c] ∈ CP2 such that

f(a, b, c) = g(a, b, c) = 0,
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which implies that [a : b : c] is a singular point of H (since at [a : b : c] fg has no linear part).
Contradiction.

Proposition 2.1.4. An irreducible projective curve F in CP2 has at most finitely many singular
points.

Proof. [Kir92] Let F be defined by a homogeneous polynomial f(x, y, z), and assume that [1 :
0 : 0] /∈ F (by Proposition 1.1.7). Then the coefficient of xdeg f in f(x, y, z) is non-zero, implying
that the partial derivative

g(x, y, z) =

(
∂f

∂x

)
(x, y, z)

is a non-zero homogeneous polynomial of degree deg f − 1, hence it defines a curve G in CP2.

Since deg g < deg f and F is irreducible, F and G have no common component. By
Proposition 2.1.2, they intersect in at most deg f(deg f − 1) points. Each singularity of F lies
in F ∩G, so F clearly has only finitely many singularities.

Corollary 2.1.5. Any reduced algebraic curve has only finitely many singular points.

Proof. Let f be the polynomial defining the curve, and suppose that f = f1 · f2 · . . . · fk, where
each fi is irreducible. Since the curve is reduced, each fi is different. If Fi is the curve defined
by fi, then for any 1 ≤ i < j ≤ k, Fi and Fj intersect in at most finitely many points due to
Proposition 2.1.2 because they cannot have common component. Thus, by Proposition 2.1.4, we
can only have finitely many singularities altogether.

Remark 2.1.6. For non-reduced curves, it is possible to have infinitely many singularities. As
an example, for each λ ∈ C, the point [0 : λ : 1] is a singular point of the curve x2 = 0.

Theorem 2.1.7. (Bézout’s theorem). Let F and G be projective curves in CP2 with no
common component. Then the total number of intersection points counted with multiplicities is
deg f · deg g, that is, ∑

P∈F∩G
I[F,G](P ) = deg f · deg g.

Proof. [Kir92] By Proposition 1.1.7, there exists a projective coordinate system in which the
following conditions hold:

• [1 : 0 : 0] /∈ F ∪G,

• [1 : 0 : 0] does not lie on any line containing two distinct points of F ∩G,

• [1 : 0 : 0] does not lie on the tangent line to F or G at any point of F ∩G.

Suppose that F and G are defined by homogeneous polynomials f(x, y, z) and g(x, y, z) in
this coordinate system. By Proposition 1.9.2, and Proposition 1.9.3, the resultant Rx(f, g) is a
homogeneous polynomial of degree deg f · deg g in y and z, and is not identically zero. Hence,
by Proposition 1.2.2, we can write

Rx(f, g) =

k∏
i=1

(ciz − biy)
ri ,

where each ri is a positive integer and

k∑
i=1

ri = deg f · deg g.
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The pairs (bi, ci) are distinct projective directions, meaning that (bi : ci) ̸= (bj : cj) for i ̸= j. As
we have seen in the proof of Proposition 2.1.2, for each factor there exists a unique ai ∈ C such
that Pi := [ai : bi : ci] ∈ C ∩D, and I[F,G](Pi) = ri. Hence, summing over all such intersection
points Pi, we obtain the desired formula.

Example 2.1.1. Consider the algebraic plane curves f = x + y, g = 5(x + y)2 − x + y and
h = x3−y2. After homogenizing, we have f∗ = x+y, g∗ = 5(x+y)2−xz+yz and h∗ = x3−y2z.
Note that deg f∗ = 1, deg g∗ = 2 and deg h∗ = 3. So what does Bézout’s theorem (Theorem 2.1.7)
tell us?

• f∗ and g∗ should intersect at 1 ·2 = 2 points, as they do not have a common component. In
Figure 9, however, they only intersect at the origin. This is because one of the intersection
points of the curves is not visible in the real plane, it is in fact [1 : −1 : 0].

• f∗ and h∗ should intersect at 1 ·3 = 3 points, as they do not have a common component. In
Figure 9, however, there are only two intersection points. This does not contradict Bézout’s
theorem, as here the origin has a multiplicity of 2.

• g∗ and h∗ should intersect at 2 · 3 = 6 points, as they do not have a common component.
In Figure 9, only three of the intersections are visible. This is because the origin has a
multiplicity of 2 and two other intersections are complex, thus lie outside of the real plane.

Figure 9
f = x+ y, g = 5(x+ y)2 − x+ y , h = x3 − y2 near the origin in the real plane.

The figure was created by [Des24].

Corollary 2.1.8. For projective curves F,G without common component defined by f and g if
every point of F ∩G is nonsingular on both curves and the tangents to F and G at these points
are different lines, then F ∩G consists of exactly deg f · deg g points.

Proof. It follows from Bézout’s theorem and from Proposition 1.6.2 part f).

2.2 Noether’s fundamental theorem

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.3, subsection 1.4, subsection 1.5 and subsection 1.6.
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Definition 2.2.1. (Zero cycle). For points P1, P2, . . . , Pk ∈ CP2 and non-zero integers

nP1 , nP2 , . . . , nPk
we define the zero cycle as the sum

k∑
i=1

nPiPi.

Remark 2.2.1. For each point in CP2 not appearing in a zero cycle, we may consider it as
appearing in the cycle with coefficient zero.

Remark 2.2.2. Zero cycles define a group (a free commutative group with base CP2).

Definition 2.2.2. (Degree). The degree of the zero cycle
∑
nPiPi is

∑
nPi .

Definition 2.2.3. (Positive zero cycle). A zero cycle is positive if for all Pi, nPi ≥ 0.

Definition 2.2.4. (Relations). The zero cycle
∑
nPiPi is said to be greater than or equal to∑

mPiPi (denoted by ≥), if nPi ≥ mPi for every Pi.

Definition 2.2.5. (Intersection cycle). The intersection cycle of projective curves F,G
without common components

F •G =
∑

P∈F∩G
I[F,G](P ) · P.

Proposition 2.2.3. The intersection cycle of curves F,G is a zero cycle of degree deg f · deg g,
where f and g are the polynomials defining F and G.

Proof. Follows immediately from Bézout’s theorem Theorem 2.1.7).

Proposition 2.2.4. Given algebraic curves F,G,H defined by the homogeneous polynomials
f, g, h, respectively. Suppose no two of them have a common component.

a) Then F •GH = F •G+ F •H.

b) If deg h = deg g − deg f then F • (G+HF ) = F •G.

Proof. Note that F and GH cannot have a component, since then either F and G or F and H
would have to have a common component. Similarly, F and G + HF cannot have a common
component, as it would imply that F and G have one as well. Now, part a) follows from part g)
of Proposition 1.6.2, while part b) is a direct consequence of part h) of Proposition 1.6.2.

Definition 2.2.6. (Noether’s condition). Suppose that the homogeneous polynomials f, g, h
define the curves F,G,H. Let F and G be two projective curves passing through a point P ,
without a common component. We say thatH satisfies Noether’s condition at P if h∗ ∈ (f∗, g∗) ⊂
OP (CP2), that is, there exist a, b ∈ OP (CP2) such that h∗ = af∗ + bg∗.

Theorem 2.2.5. (Max Noether’s Fundamental Theorem). Let F,G,H be projective
curves such that F and G have no common component. Suppose they are defined by the
homogeneous polynomials f, g, h, respectively. Then there exist homogeneous polynomials a, b
(respectively of degrees deg h − deg f and deg h − deg g), such that h = af + bg if and only if
Noether’s condition is satisfied at every point P ∈ F ∩G.

Proof. [Ful08] Start with the simpler direction: if such a, b polynomials exist, then Noether’s
condition is satisfied everywhere. By dehomogenizing the equation h = af + bg, we see that
h∗ = af∗ + bg∗, thus indeed Noether’s condition is met everywhere.

Now let us prove the other direction. Take a line that does not pass through any intersection point
of F and G (there are finitely many points to avoid due to Bézout’s theorem Theorem 2.1.7).
Transform this line into the ideal line using a projective transformation (which is possible
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by Proposition 1.1.7). By Noether’s condition, the image of h∗ in OP (CP2)/(f∗, g∗) is zero
(as it is in the kernel of the natural projection). Now, due to Proposition 1.5.5, the image of
h∗ is also zero in C[x, y]/(f∗, g∗), that is, h∗ = af∗ + bg∗ for some a, b ∈ C[x, y]. Then, using
Proposition 1.4.7, for appropriate r,

zrh = zr(h∗)
∗ = zr(af∗ + bg∗)

∗ = af + bg, (♣)

where a, b are homogeneous polynomials.

Now prove that multiplication by z in C[x, y, z]/(f, g) is injective. We need to see that
if zh is in the kernel, that is, zh = af + bg, then h is also in it. Note that then
a(x, y, 0)f(x, y, 0) = −b(x, y, 0)g(x, y, 0). Since f and g have no common components,
f(x, y, 0), g(x, y, 0) are relatively prime, this is only possible if b(x, y, 0) = cf(x, y, 0) and
a(x, y, 0) = −cg(x, y, 0) for some c ∈ C[x, y]. Then, the polynomials a + cg, b − cf both are
multiples of z. Thus, for appropriate a∗, b∗, zh = (a + cg)f + (b − cf)g = z(a∗f + b∗g), from
which it follows that h = a∗f + b∗g.

Returning back to the theorem, from Equation ♣ the image of h in C[x, y, z]/(f, g) is
zero, so there are a′, b′ ∈ C[x, y, z] with h = a′f + b′g. If we write a′ and b′ as sums
of homogeneous polynomials as a′ =

∑
a′i and b′ =

∑
b′i (where a′i, b

′
i are homogeneous

polynomials of degree i), then we see that

h = a′deg h−deg ff + b′deg h−deg gg.

Proposition 2.2.6. Let F,G,H be projective curves such that no two of them have no common
component, and furthermore F • H ≥ F • G. Then if Noether’s condition is satisfied at every
point P ∈ F ∩G, there exists such a curve G′ such that F •G′ = F •H − F •G.

Proof. [Ful08] Due to Noether’s theorem (Theorem 2.2.5), there are curves A,B such that H =
AF +BG. Then, according to Proposition 2.2.4,

F •H = F • (AF +BG) = F •BG = F •B + F •G,

thus F •B = F •H − F •G.

Proposition 2.2.7. Let F,G,H be projective curves such that no two of them have no common
component. If every point of F ∩G is smooth on F and F •H ≥ F •G, then Noether’s condition
is satisfied at every point F ∩G.

Proof. [Ful08] Let P ∈ F ∩ G. Then I[F,H](P ) ≥ I[F,G](P ), thus h∗ ∈ (g∗) ⊂ OP (F ). By
Proposition 1.5.6 we have that OP (F )/(g∗) is isomorphic to OP (C2)/(f∗, g∗), thus the residue
of h∗ is also zero. Hence, Noether’s condition is met.

Theorem 2.2.8. (Cayley-Bacharach Theorem). Let F,G,H be cubic curves, with F
irreducible. If F • G =

∑9
i=1 Pi, where the points Pi are smooth (but not necessarily distinct)

and F •H =
∑8

i=1 Pi +Q, then Q = P9.

Proof. We prove by contradiction. Take a line L that passes through P9 but not through Q.
Then L • F = R+ S + P9. Now

LH • F = L • F +H • F = (R+ S + P9) + (P1 + · · ·+ P8 +Q) = F •G+Q+R+ S.

Then (LH/G) • F = Q+R+ S. Since LH/G is quadratic, Q,R, S are collinear, and the line L
passes through points R and S, but then it must also pass through Q, a contradiction.
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Figure 10
The Cayley-Bacharach theorem demonstrated with

F = −8177009737992995840x3 − 6802848028953690112x2y + 258056927424033800000x2

−24182716091392440000xy2 + 35700175270525470000xy − 2186389994062293200000x+
29405882122725134000y3 + 404039055395198140000y2 + 301273285376213000000y

+3258526694272665600000 [Nag25],
G = (−5.1x+ 1.38y + 14.08)(3.71x+ 1.64y − 38.67)(2.64x+ 1.65y − 45.35),

H = (−1.23x+ 6.95y − 3.85)(−2.62x+ 7.21y + 39.73)(−0.98x+ 8.39y + 61.22).
The figure was created by [Des24].

Lemma 2.2.9. A nonsingular complex cubic projective curve has exactly nine points of
inflections (with counting multiplicity).

Proof. Let F be the the curve. By Remark 1.3.2, its Hessian is a homogenous polynomial of
degree 3. We denote the curve defined by this polynomial by G. As F is nonsingular, it is
irreducible due to Proposition 2.1.3. Thus, F and G can only have a common component if
every point on F is a point of inflection. Luckily, Proposition 1.3.4 guarantees that this is not
the case. Hence, we may apply Bézout’s theorem (Theorem 2.1.7), and the result follows.

Remark 2.2.10. It can be shown that the Hessian matrix’s polynomial intersects F
transversally at each intersection, thus F has exactly nine different points of inflection. However,
we will only use the existence of a point of inflection.

Definition 2.2.7. (⊕ operation). Let F be a nonsingular cubic projective curve defined by
a homogeneous polynomial of degree three. Fix a point of inflection O on the curve (which is
possible by the lemma and remark above). Now for every point P ∈ F \ {O}, let F be the third
intersection point of the line through O and A with F (counting multiplicities, well-defined by
Bézout’s theorem Theorem 2.1.7). Furthermore, for points P,Q ∈ F , let P ⊕Q = R, where R is
the third intersection point of the line through P and Q with F (with counting multiplicities).

Proposition 2.2.11. The operation ⊕ defined above on the nonsingular cubic projective curve
F with O ∈ F as the identity element determines a commutative group structure on F .

Proof. [Men11] It is easy to see that O indeed acts as the identity element. Furthermore, the
inverse is well-defined, as for each point P , it will be the third intersection point of the line
through O and P . The commutativity is trivial. So we only need to prove the associativity, that
is (A⊕B)⊕C = A⊕ (B ⊕C). Let S be the third intersection point of the line through A⊕B
and C with F , and let T be the third intersection point of the line through B ⊕ C and A with
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F . We want to prove that S = T , which is equivalent to S = T . Define two cubic curves: let M
be the product of the lines through AB,O(B ⊕ C), CS and let N be the product of the lines
through BC,O(A⊕B), AT . Then

F •N = A+B + C +O +A⊕B +A⊕B +B ⊕ C +B ⊕ C + S

and
F •M = A+B + C +O +A⊕B +A⊕B +B ⊕ C +B ⊕ C + T.

Therefore, by Theorem 2.2.8, S = T .

Figure 11
Proof of associativity of the ⊕ group structure on curve F from Figure 10.

Proposition 2.2.12. For cubic curves F,G, let F • G =
∑9

i=1 Pi and C be a conic such that
F • C =

∑6
i=1 Pi, where P1, . . . , P6 are smooth points on F . Then P7, P8, and P9 are collinear.

Proof. According to the condition F • G ≥ F • C and the points F ∩ C are smooth, thus by
Proposition 2.2.7, Noether’s condition is met everywhere. Proposition 2.2.6 states that then
P7 + P8 + P9 = F •B, where degB = 3− 2 = 1, thus the three points are indeed collinear.

Theorem 2.2.13. (Pascal’s Theorem). The intersection points of the opposite sides of a
hexagon inscribed in a conic are collinear.

Proof. Let the hexagon be P1P2P3P4P5P6, C the conic, F = (P1P2)(P3P4)(P5P6) and G =
(P2P3)(P4P5)(P6P1). Then F •G = P1 +P2 +P3 +P4 +P5 +P6 +P1P2 ∩P4P5 +P2P3 ∩P5P6 +
P3P4 ∩ P6P1. The previous proposition states that the last three points are on a line.

Proposition 2.2.14. Let C be a nonsingular cubic curve. If the degrees of curves F,G are m
and F • C = P1 + · · ·+ P3m, and G • C = P1 + · · ·+ P3m−1 +Q. Then Q = P3m.

Proof. We prove by contradiction. Let L be a line passing through P3m and Q. Then L intersects
C at a third point, R. Draw a tangent at Q, call it E. Notice that then

LG • C = L • C +G • C = P3m +Q+R+ P1 + . . . P3m−1 +Q = F • C + 2Q+R.

Thus LG • C ≥ F • C, thus 2Q+R = L′ • C for some line L′. But then L′ is the tangent at Q,
thus L′ = E. However, L′ passes through Q,R, thus L′ = L. Summing up, L = E. This is only
possible if Q = P3m. Contradiction.
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3 Resolutions

One of the fundamental goals in algebraic geometry is to resolve singularities, that is, to construct
a well-behaved object that retains the essential geometric information of the original curve but
is entirely nonsingular.

Definition 3.0.1. (Resolution of singularities). Given an open subset Y of a projective
variety, a resolution of singularities of Y is a nonsingular variety X together with a birational
map π : X → Y where π is an isomorphism above the nonsingular locus of Y .

As a first step, we examine the process of normalisation, which offers a global method for
improving the structure of a curve. The normalisation of a curve replaces it with a new one
that is normal — meaning it contains no singularities arising from algebraically inseparable or
”glued” branches. The normalisation is canonical, that is, it always exists and is unique. For
curves, the normalisation is, in fact, the resolution.

In what follows, we will study a key tool for constructing resolutions: the blow-up. Blow-ups
serve as local modifications that gradually improve the geometry of a space. While a single
blow-up may not always suffice to eliminate all singularities, iterated blow-ups can eventually
yield a fully desingularized (smooth) model of the curve.

Figure 12
Desingularisation of the alpha curve (Figure 5).

Figure adapted from [Ken11], modified by the author.

3.1 Normalisation

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.13.

In this subsection, we will work with an irreducible plane curve P defined by the homogeneous
polynomial p ∈ C[x, y, z] of degree d.

Definition 3.1.1. (Normalisation). Let P be an irreducible algebraic plane curve. A
normalisation of P is a pair (P̃ , π), where P̃ is a smooth, connected, compact Riemann surface,
and π : P̃ → P is a continuous and surjective map such that:

• π is holomorphic,

• the restriction π : P̃ \ π−1(Sing(P )) → C \ Sing(P ) is a biholomorphism,
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• π is universal among all such maps from nonsingular Riemann surfaces to P , i.e., for
any such map ϕ : S → P where S is smooth and ϕ is birational, there exists a unique
holomorphic map f : S → P̃ such that ϕ = π ◦ f .

Definition 3.1.2. (Riemann surface of irreducible curve). Let p(x, y, z) be a nonconstant
irreducible homogeneous polynomial of degree d. The Riemann surface Sp of p(x, y, z) is the
open subset of M consisting of all those elements ⟨f, g⟩ of M satisfying

p(f(t), g(t), t) = 0

for all t in some neighbourhood of 0. If P is the projective curve defined by p, then we write P̃
for Sp and define π : P̃ → P by

π(⟨f, g⟩) =

{
[f(0), g(0), 1] if f and g are both holomorphic near 0,

[f (m)(0), g(m)(0), 0] otherwise

where f (m)(t) = tmf(t) and g(m)(t) = tmg(t), and m is greater value amongst the multiplicity
of the pole at 0 of f or g.

Proposition 3.1.1. The map π : P̃ → P is continuous, and its restriction to P̃ \ π−1(Sing(P ))
is holomorphic.

Proof. [Kir92] Let ⟨f0, g0⟩ ∈ P̃ be such that both f0 and g0 are holomorphic in a neighbourhood
of 0. Then π is continuous at ⟨f0, g0⟩ because it can be expressed locally as the composition of the
continuous map π : C3 \ {0} → CP2, given by π(x, y, z) = [x : y : z], and the map P̃ → C3 \ {0}
defined by

⟨f, g⟩ 7→ (f(0), g(0), 1)

which is holomorphic in each coordinate by Proposition 1.13.6. If f0 has a pole at 0 of order
at least equal to that of g0, then near ⟨f0, g0⟩, the map π can be written as the composition of
π : C3 \ {0} → CP2 with the map

⟨f, g⟩ 7→
(
1,
g(0)

f(0)
,

1

f(0)

)
,

which the coordinates are holomorphic near ⟨f0, g0⟩. Therefore, π is continuous at such points.
The same reasoning applies if g0 has a higher-order pole than f0, since then π remains
continuous at ⟨f0, g0⟩.

To establish that the restriction of π to P̃ \ π−1(Sing(P )) is holomorphic, choose an
element α = ⟨f, g, r⟩ ∈ A. Then the holomorphic chart φα : Uα → Vα has inverse

t0 7→ ⟨f(t0 + t), g(t0 + t)⟩

defined on Vα = D(0, r). A holomorphic chart ψβ on P \ Sing(P ) is constructed from one of the
maps taking [x : y : z] to one of the ratios x

z ,
y
z ,

z
x ,

z
y ,

x
y , or

y
x .

The composition ψβ ◦ π ◦ φ−1
α is then defined wherever the expression corresponds to

one of the functions f , g, g/f , f/g, 1/g, or 1/f . Each of these is meromorphic, meaning they
extend to holomorphic functions on subsets of C ∪ {∞}.

Since charts on P map into C, the composition ψβ ◦ π ◦ φ−1
α is holomorphic on its domain.

Consequently, the restriction of π to P̃ \ π−1(Sing(P )) is holomorphic.
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Proposition 3.1.2. The restriction of π : P̃ → P to P̃ \ π−1(Sing(P )) defines a bijection onto
P \ Sing(P ).

Proof. [Kir92] Let us assume that [a : b : c] is a smooth point on P where c ̸= 0. Without loss of
generality, we may suppose that c = 1. In that case, either ∂p

∂x or ∂p
∂y must be non-zero at (a, b, 1),

as if both partial derivatives were zero, then by Theorem 1.2.3 the derivative with respect to z,
namely ∂p

∂z , would also vanish, implying that [a : b : 1] is singular, contrary to our assumption.
Hence, we can assume without loss of generality that

∂p

∂y
(a, b, 1) ̸= 0.

We aim to prove that there is a unique ⟨f, g⟩ ∈ P̃ such that π(⟨f, g⟩) = [a : b : 1]. Note that the
implicit function theorem (Corollary 1.8.2) guarantees the existence of open neighbourhoods U
and V of a and b in C, respectively, and a holomorphic function h : U → V such that

p(x, y, 1) = 0 if and only if y = h(x),

for all x ∈ U and y ∈ V . Suppose now that f and g are holomorphic functions near 0 satisfying
f(0) = a and g(0) = b and that

p(f(t), g(t), 1) = 0

for all t sufficiently close to 0. Then it must be that

g(t) = h(f(t))

for all t near 0. Therefore, if ⟨f, g⟩ is an element of P̃ , we conclude that f is injective near 0,
and we may define a change of parameter ρ(t) = f(t)− a. This gives

⟨f, g⟩ = ⟨a+ ρ(t), h(a+ ρ(t))⟩ = ⟨a+ t, h(a+ t)⟩,

and this is the unique element of P̃ such that π(⟨f, g⟩) = [a : b : 1].

In the case where c = 0, a similar argument applies. One instead considers the polynomial
p(x, 1, z) or p(1, y, z) in place of p(x, y, 1), and uses the implicit function theorem with the
functions 1

g ,
1
f ,

g
f , or

f
g in place of f and g.

Proposition 3.1.3. The map π : P̃ → P is surjective.

Proof. [Kir92] Let [a : b : c] ∈ P be arbitrary. Our goal is to show that the preimage
π−1([a : b : c]) is non-empty. By choosing coordinates appropriately, we may suppose that
[0 : 1 : 0] /∈ P . Then ∂p

∂y is not identically zero. Since P is irreducible, Proposition 2.1.4 implies

that there are only finitely many points in P where ∂p
∂y = 0.

First, consider the case c ̸= 0. Without loss of generality, we take c = 1. Then there
exists ε > 0 such that for all x ∈ C with 0 < |a − x| ≤ ε, there is no y ∈ C such that
[x : y : 1] ∈ P and

∂p

∂y
(x, y, 1) = 0.

Define D±(a, ε) as the open disc D(a, ε) in C with the straight segment from a to a±ε removed.
The sets D±(a, ε) are simply connected. By Proposition 1.11.7, the holomorphic map ϕ : P →
CP1 defined by ϕ([x : y : z]) = x is a homeomorphism when restricted to each connected
component of ϕ−1(D±(a, ε)). This restriction maps onto D±(a, ε), and there are d connected
components in total. The inverse function theorem (Theorem 1.7.1) ensures that the inverse of
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ϕ on the jth component of ϕ−1(D±(a, ε)) is holomorphic and must be of the form

x 7→ [x : f±j (x) : 1],

where
p(x, f±j (x), 1) = 0

for all x ∈ D±(a, ε). Furthermore, if i ̸= j, then f±i (x) ̸= f±j (x) for x ∈ D±(a, ε), since

[x : f±i (x) : 1] and [x : f±j (x) : 1] belong to different connected components of ϕ−1(D±(a, ε)).

As P is compact, each function f±j is bounded on D±(a, ε). Hence, the only possible
limits as x → a are the finite set of values y ∈ C for which [a : y : 1] ∈ P . Among these, b is
one such value, so [a : b : 1] lies in the closure of ϕ−1(D±(a, ε)), implying that b is the limit of
f±j (x) for some j as x→ a.

Since D±(a, ε) are disjoint open subsets of D(a, ε) and each has d holomorphic branches
f±1 , . . . , f

±
d , we may relabel them so that f+j agrees with f−σ(j) on the common boundary, where

σ is a permutation of {1, . . . , d}. We may assume this permutation satisfies

σ(i) = i+ 1.

If 1 ≤ i < m, then σ(i) = i+1 and σ(m) = 1 for some m ≤ d. This setup defines a holomorphic
function

g :
{
t ∈ C : 0 < |t| < ε1/m

}
→ C

as follows:

g(t) = f+j (a+ tm) if
(2j − 2)π

m
< arg(t) <

2jπ

m
,

g(t) = f−j (a+ tm) if
(2j − 1)π

m
< arg(t) <

(2j + 1)π

m
.

The function g is bounded and converges to b as t → 0, so it extends holomorphically to the
disc D(0, ε1/m), and g(0) = b by Proposition 1.13.1. Moreover,

p(a+ tm, g(t), 1) = 0 for all t ∈ D(0, ε1/m).

Hence, the mapping
t 7→ (a+ tm, g(t))

is injective onD(0, ε1/m) because f±i (x) ̸= f±j (x) whenever i ̸= j. Thus, the element ⟨a+tm, g(t)⟩
lies in P̃ and maps via π to

π(⟨a+ tm, g(t)⟩) = [a : b : 1].

Now, consider the case when c = 0. Then a ̸= 0 since [0 : 1 : 0] /∈ P , and we may take a = 1
without loss of generality. Then there exists ε > 0 such that for all x ∈ C with |x| > 1/ε, there
is no y such that [x : y : 1] ∈ P and

∂p

∂y
[x : y : 1] = 0.

Define

D±(∞, ε) =

{
x ∈ C : |x| > 1

ε
, x /∈ R±

}
,

where R+ and R− denote the positive and negative real axes in C, respectively. The argument
used earlier can be repeated in this case, with a replaced by ∞, and a+ tm replaced by t−m.

25



This shows that there is an element of P̃ of the form ⟨t−m, g(t)⟩ such that π(⟨t−m, g(t)⟩) =
[1 : b : 0] = [a : b : c]. This completes the proof.

Corollary 3.1.4. For any a ∈ C∪{∞}, the meromorphic function φ ◦π given by ⟨f, g⟩ 7→ f(0)
(see Proposition 1.13.6) on C̃ takes the value a precisely d times (counted with multiplicities).

Proof. [Kir92] Recall from Proposition 1.13.6 that the map C̃ → CP1, defined by ⟨f, g⟩ 7→ f(0),
is a meromorphic function on P̃ . Consider the permutation σ introduced during the proof of the
previous proposition, and decompose it into disjoint cycles:

σ = σ1 · · ·σl,

where each σi is a cycle of length mi ≥ 1, and the sum m1 + · · ·+ml equals d.

Then the argument in the proof implies that for any a ∈ C, there exist holomorphic
functions g1, . . . , gl defined near t = 0 and corresponding elements

⟨a+ tmj , gj(t)⟩ ∈ P̃

such that
(φ ◦ π)−1(a) = {⟨a+ tmj , gj(t)⟩ : 1 ≤ j ≤ l} .

Moreover, each point ⟨a+ tmj , gj(t)⟩ maps to a under φ ◦ π with multiplicity mj , meaning that
the order of vanishing of the function φ ◦ π − a at ⟨a+ tmj , gj(t)⟩ is exactly mj . As a result, for

all a ∈ C, the meromorphic function φ ◦ π on P̃ takes the value a precisely d times (counted
with multiplicities). The same conclusion holds in the case where a = ∞.

Lemma 3.1.5. Let Φ : S → CP1 be a meromorphic function on a Riemann surface S, which
assumes each value a ∈ CP1 exactly d times, counting multiplicities. Then S is compact.

Proof. [Kir92] Since CP1 is compact by Proposition 1.1.1, it suffices to prove that for every
point a ∈ CP1, there exists an open neighbourhood Wa ⊂ CP1 such that the preimage Φ−1(Wa)
is contained within a compact subset Sa ⊂ S.

Let {Wa : a ∈ CP} be such an open cover. Since CP1 is compact , this cover admits a
finite subcover Wa1 , . . . ,Wak . Then we can write:

S = Φ−1(Wa1) ∪ · · · ∪ Φ−1(Wak) = Sa1 ∪ · · · ∪ Sak ,

which is a finite union of compact sets, hence compact.

Now, fix any a ∈ C ∪ {∞}. Let Φ−1(a) = {s1, . . . , sl} be the set of points where Φ
assumes the value a, and let mj denote the multiplicity at sj , so that m1 + · · · +ml = d. For
clarity, assume a ̸= ∞; if a = ∞, the same reasoning applies to the function 1/Φ.

Choose local holomorphic charts φj : Uj → Vj near each sj such that φj(sj) = 0, and
such that the neighbourhoods U1, . . . , Ul are pairwise disjoint. Now define for each j the
holomorphic function

fj(z) := Φ(φ−1
j (z))− a,

which vanishes at z = 0 with multiplicitymj . Choose εj > 0 such that the closed disc D(0, εj) :=
{z ∈ C : |z| ≤ εj} ⊂ Vj . Then by Remark 1.8.4 there exists δj > 0 such that for every a′ ∈ C
with |a′ − a| < δj , the function

fj(z)− a′ + a = Φ(φ−1
j (z))− a′
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has at least mj zeros (counting multiplicities) in the open disc D(0, εj). Now define

Wa := {z ∈ C : |z − a| < min(δ1, . . . , δl)} .

and define
Sa :=

⋃
1≤j≤l

φ−1
j (D(0, εj)).

Since each φj is a homeomorphism and each D(0, εj) is compact, it follows that Sa is compact
as well. Furthermore, if a′ ∈ Wa, then the function Φ assumes the value a′ at least mj times
(with multiplicities) in each open set φ−1

j (D(0, εj)) ⊂ Uj . Since the sets U1, . . . , Ul are disjoint
and m1 + · · ·+ml = d, we conclude that Φ assumes the value a′ at least d times in total within
Sa. Therefore,

Φ−1(a′) ⊂ Sa.

This holds for every a′ ∈Wa, and thus

Φ−1(Wa) ⊂ Sa,

which completes the proof.

Proposition 3.1.6. P̃ is compact (in the standard topology).

Proof. It follows from the lemma above and Corollary 3.1.4.

Proposition 3.1.7. P̃ is connected.

Proof. [Kir92] Let A be a connected component of P̃ . Our aim is to prove that A = P̃ . As in the
proof of Proposition 3.1.3, we choose coordinates such that [0 : 1 : 0] /∈ P and define the map

ϕ([x : y : z]) = [x : z].

Let a ∈ CP1 and define D±(a, ε) as before. Then ϕ−1(D±(a, ε)) consists of d components, and
the restriction of ϕ to each component is a homeomorphism with inverse

x 7→ [x : f±j (x) : 1],

where f±j are holomorphic on D±(a, ε). We may index them so that f+j and f−σ(j) coincide on

the overlap, for a permutation σ of {1, . . . , d}. Each component is either entirely contained in
A or disjoint from it. Suppose f±j (x) ∈ A for 1 ≤ j ≤ e and that σ restricts to a permutation
on {1, . . . , e}. Then, by Corollary 3.1.4, we can write the permutation σ as a product of disjoint
cycles:

σ = σ1 · · ·σl
with lengths m1, . . . ,ml satisfying m1 + · · ·+ml = d.

If a ̸= ∞, then there exist holomorphic functions g1, . . . , gl near 0 and a non-zero constant K
such that

p(x, y, 1) = K
∏

1≤j≤l

∏
1≤s≤mj

(
y − gj(e

2πis/mj (x− a)1/mj )
)

for x and y near a. (For a = ∞, we may interchange x and z.)

Assume that the restriction of σ to {1, . . . , e} corresponds to σ1 · · ·σk with m1 + · · ·+mk = e.
Define the function

q(x, y, 1) = K
∏

1≤j≤k

∏
1≤s≤mj

(
y − gj(e

2πis/mj (x− a)1/mj )
)
,
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which is a degree e polynomial in y, with coefficients that are power series in the expressions
e2πis/mj (x− a)1/mj , which converge for x near a. Because these expressions are invariant under
permutation, the coefficients of q(x, y, 1) are symmetric polynomials in them, and hence can be
written using the elementary symmetric functions. Therefore, these coefficients are power series
in x − a. Thus, q(x, y) is a polynomial in y whose coefficients are holomorphic functions of x
near a. Moreover, for x ∈ D±(a, ε) we have

A ∩ ϕ−1(x) =
{
[x, gj(e

2πis/mj (x− a)1/mj ), 1] : 1 ≤ j ≤ k, 1 ≤ s ≤ mj

}
,

which implies that q(x, y) is independent of the choice of a ∈ P , because P is connected
(Corollary 1.11.2). In particular, q(x, y) is a polynomial in y whose coefficients are holomorphic
in x for all x ∈ P .

Now consider the case a = ∞. The same reasoning shows that the coefficients of q(x, y)
extend to meromorphic functions on CP1 with poles only at ∞. But such functions are
polynomials. Hence, q(x, y) is a polynomial in both x and y. This same argument applied to
the complementary product∏

k<j≤l

∏
1≤s≤mj

(
y − gj(e

2πis/mj (x− a)1/mj )
)

also yields a polynomial in x and y. Therefore, q(x, y) divides p(x, y, 1).

Let p̃(x, y, z) be the homogenization q∗. Then p̃ divides p(x, y, z). However, since q(x, y)
is nonconstant and p is irreducible, it must be that q and p(x, y, 1) are scalar multiples. Thus
k = l and e = d, and so A = P̃ .

Finally, with all these propositions we have showed the following:

Theorem 3.1.8. (Normalisation). P̃ is a compact connected Riemann surface. The map
π : P̃ → P is continuous and surjective. If P is nonsingular then π is a holomorphic bijection,
and in general π−1(Sing(P )) is finite and

π : P̃ \ π−1(Sing(P )) −→ P \ Sing(P )

is a holomorphic bijection.

Remark 3.1.9. [BK86] Generally speaking, each resolution of singularities is a normalisation.
For curves the two concept coincide, however, in higher dimensions it is much easier to find a
normalisation than to find a resolution.

3.2 Blow-ups via quadratic transformations

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.2, subsection 1.4 and subsection 1.6.

Definition 3.2.1. (Fundamental points). Points W1 = [1 : 0 : 0], W2 = [0 : 1 : 0], W3 = [0 :
0 : 1] ∈ CP2 are so-called the fundamental points.

Definition 3.2.2. (Exceptional lines). The lines V (x), V (y) and V (z) are so-called the
exceptional lines.

Definition 3.2.3. (Standard quadratic transformation). The standard quadratic
transformation is defined by:

q : CP2 \ {W1,W2,W3} −→ CP2, [x : y : z] 7→ [yz : xz : xy]
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Example 3.2.1. Consider the algebraic projective curve

x2y2 + x2z2 + y2z2.

Each fundamental point is a singularity. Apply the standard quadratic transformation: the new
curve is

x2z2x2y2 + y2z2x2y2 + y2z2x2z2 = x2y2z2(x2 + y2 + z2).

This is the union of three lines and a conic. It is essentially a nonsingular curve, since the lines
are more or less insignificant. Unfortunately, we are hardly ever this lucky.

Remark 3.2.1. Let U = CP2 \ V (xyz). Then q defines a morphism q : CP2 \ {W1,W2,W3} →
U ∪ {W1,W2,W3}. For [x : y : z] ∈ U , we have

q(q(x, y, z)) = q(yz, xz, xy) = (xyz, yxyz, zxyz) = (x(xyz), y(xyz), z(xyz)) = (x, y, z),

so q is an isomorphism on U , and thus a birational map of CP2 with itself.

Definition 3.2.4. (The set U). From now on, we shall denote CP2 \ V (xyz) by U .

Remark 3.2.2. Consider the triangle W1W2W3. Lines through the vertices are determined by
the ratios y : z, x : z, y : x. As the ratios go to their inverses under q, lines through the vertices
are sent to their reflections in the corresponding angle bisector. Thus, the image of a point is its
isogonal conjugate in the triangle. It follows that conics are sent to conics or lines.

Definition 3.2.5. (Algebraic transform). Let a homogeneous p ∈ C[x, y, z] define an
irreducible curve P disjoint from the exceptional lines. Define the transform

pq = p(yz, xz, xy) = p(q(x, y, z)),

a homogeneous form of degree 2 · deg p. This is called the algebraic transform of p.

From now on, we will work with a homogeneous irreducible polynomial p ∈ C[x, y, z] with
degree d. The curve defined by p will be denoted by P .

Proposition 3.2.3. Let r be the multiplicity of P at W3, then zr is the largest power of z
dividing pq.

Proof. [Rüd15] Using the standard identification of the affine plane C2 with the open subset of
CP2 where z ̸= 0, a point [x : y : 1] ∈ CP2 corresponds to (x, y) ∈ C2. In particular, the point
W3 = [0 : 0 : 1] maps to the origin (0, 0) ∈ C2.

Let p(x, y, 1) = pr(x, y) + · · · + pd(x, y), where each pi is a homogeneous polynomial of
degree i. Homogenizing this expression gives

p(x, y, z) = pr(x, y)z
d−r + pr+1(x, y)z

d−r−1 + · · ·+ pd(x, y).

Applying the transformation q, we compute:

pq(x, y, z) = pr(yz, xz)(xy)
d−r + pr+1(yz, xz)(xy)

d−r−1 + · · ·+ pd(yz, xz)

= zrpr(y, x)(xy)
d−r + zr+1pr+1(y, x)(xy)

d−r−1 + · · ·+ zdpd(y, x)

= zr
(
pr(y, x)(xy)

d−r + zpr+1(y, x)(xy)
d−r−1 + · · ·+ zd−rpd(y, x)

)
,

which completes the proof.

Using this proposition for the other fundamental points too, we can define the following:
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Definition 3.2.6. (Proper transform). Let r1 = mW1(P ), r2 = mW2(P ), r3 = mW3(P ).
Then pq = xr1yr2zr3p′, where x, y, z do not divide p′. The polynomial p′ is called the proper
transform of p with degree 2d− (r1 + r2 + r3). We denote by P ′ the curve defined by p′.

Remark 3.2.4. [Rüd15] As U is open, U ∩ P is open too in P and closed in U . Further, q and
q−1 are well-defined on U ∩ P . Moreover, q−1(U ∩ P ) = q(U ∩ P ) is a closed curve in U , since q
is an involution. For P ∗ = q(U ∩ P ) - by construction - P ∩U and P ∗ ∩U are isomorphic, so P
and P ∗ are birational.

Proposition 3.2.5. We have (p′)q = p, mW1(P ) = d − r2 − r3, mW2 = d − r1 − r3, mW3 =
d− r1 − r2. Also, p

′ is irreducible and P ∗ = P ′.

Proof. [Rüd15] We first prove the last assertion. Since (pq)q = (xyz)dp, we compute:

(pq)q = (xr1yr2zr3p′)q

= (yz)r3(xz)r2(xy)r1(p′)q

= (xyz)dp = xr2+r3yr1+r3zr1+r2(p′)q,

thus
(p′)q = xd−r2−r3yd−r1−r3zd−r1−r2p.

Since x, y, z do not divide p, and p is irreducible and not divisible by any coordinate function
(being distinct from the tangent lines), we deduce that

(p′)q = p, mW1(P ) = d− r2 − r3, mW2(P ) = d− r1 − r3, mW3(P ) = d− r1 − r2.

Also, p′ must be irreducible — otherwise, by the equation above, p wouldn’t be irreducible.
Moreover, q−1(U ∩ P ) ⊂ V (p′), so by irreducibility, we must have P ∗ = q(U ∩ P ) = V (p′).

Definition 3.2.7. (Good position). We say that a curve P is in good position if none of the
exceptional lines is tangent to P at any of the fundamental points.

Definition 3.2.8. (Excellent position). We say that P is in excellent position if it is in good
position and:

• V (x) intersects P transversally at d distinct non-fundamental points;

• both V (y) and V (z) intersect P transversally at d − mW1(P ) distinct non-fundamental
points.

Proposition 3.2.6. Let P be irreducible and suppose X ∈ CP2 with mX(P ) = r ≥ 0. Then
there are infinitely many lines through X such that each intersects P in d − r1 distinct points
other than X.

Proof. [Rüd15] Suppose X = W2, and for all λ ∈ C, define lλ = {[λ : t : 1] : t ∈ C} ∪ {X} =
V (x− λz). For

p = ar1(x, z)y
d−r1 + · · ·+ ad(x, z), ar1 ̸= 0 (♥)

define gλ(t) = p(λ, t, 1). Then

gλ(t) = ar1(λ, 1)t
d−r1 + · · ·+ ad(λ, 1),

so gλ is a degree d − r1 polynomial. If ar1(λ, 1) ̸= 0, then gλ has d − r1 roots. Now ar1(λ, 1) is
a polynomial in λ, and it only vanishes for finitely many λ, so for all but finitely many λ, we
have ar1(λ, 1) ̸= 0, and hence gλ has d− r1 distinct roots. Since p is irreducible, gλ must also be
irreducible or separable (i.e., it has no multiple roots), so its roots are distinct complex numbers.
Thus, for all but finitely many λ, the line lλ intersects P transversally at d− r1 distinct points
other than X, as claimed.
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Corollary 3.2.7. Let X1 ∈ P be a point on P . Then there exists a projective change of
coordinates T such that P T is in excellent position and T (0, 0, 1) = X1.

Proof. [Rüd15] Use the previous proposition with X1 ∈ P to construct two distinct lines l1, l2
through X1, each intersecting P in d− r1 distinct points. Now choose a point X2 ∈ l1 \ P , such
that X2 /∈ P . Since mX2(P ) = 0, we may apply the proposition again at X2, yielding infinitely
many lines intersecting P in d distinct points. Pick one, call it l3, and let X3 = l2 ∩ l3.

Throughout this construction, at each step we had infinitely many lines to choose from,
so we can ensure that none of the selected lines is tangent to P at any of the points X1, X2, X3,
and all intersections are transverse. Since tangency corresponds to a finite set of excluded
directions, avoiding them is always possible.

Now define a projective coordinate change T such that: T (X1) = W1, T (X2) = W2, T (X3) =
W3. Then the three lines l1, l2, l3 will be sent to the exceptional lines V (z), V (y), V (x),
respectively. By construction, P T is in excellent position.

From now on, we shall continue to use the notation mW1(P ) = r.

Proposition 3.2.8. If P is in good position, then:

a) P ′ is also in good position;

b) if X1, . . . , Xs are the non-fundamental points on P ′ ∩ V (x), then

mXi(P
′) ≤ I[P ′, V (x)](Xi)

and
s∑

i=1

I[P ′, V (x)](Xi) = r1.

Proof. [Rüd15] By the definition of tangency and properties of intersection multiplicity
(Proposition 1.6.2), V (x) is tangent to P ′ at W1 if and only if I[P ′, V (x)](W1) > mW1(P

′),
that is using the notations from Equation ♥

I[V (ar1(y, x)x
d−r1−r3), V (x)](W1) > d− r1 − r3.

This is equivalent to checking whether ar1(y, x) is zero at (1, 0). However, since V (x) is not
tangent to P at W1, we have ar1(1, 0) ̸= 0, so the inequality does not hold. By symmetry, the
same holds at W2 and W3, so P

′ is in good position.

For part b), using Bézout’s Theorem (Theorem 2.1.7) and the same reasoning:

s∑
i=1

I[P ′, V (x)](Xi) =

s∑
i=1

I[V (ar1(y, x)x
d−r1−r3), V (x)](Xi) = r1,

since the degree of the intersection is d, and ar1(y, x) has no multiple root in this configuration.

Example 3.2.2. [Ful08] Consider the curve P defined by

p = 8x3y + 8x3z + 4x2yz − 10xy3 − 10xy2z − 3y3z.
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Since

∂p

∂x
= 24x2y + 24x2z + 8xyz − 10y3 − 10y2z,

∂p

∂y
= 8x3 + 4x2z − 30xy2 − 20xyz − 9y2z,

∂p

∂z
= 8x3 + 4x2y − 10xy2 − 3y3.

the point W3 is a singular point of the curve (and a multiple point of order 2 to be precise).
Also, the derivatives don’t vanish in the x direction, so the curve is in good position. Now

p(x, y, 1) = 8x3y + 8x3 + 4x2y − 10xy3 − 10xy2 − 3y3,

so r1 = 2. Similarly,

p(x, 1, z) = 8x3 + 8x3z + 4x2z − 10x− 10xz − 3z,

so r1 = 1. Finally,
p(1, y, z) = 8y + 8z + 4yz − 10y3 − 10y2z − 3y3z,

implying r2 = 1. As a result, p′ =
p

x2yz
. To compute the proper transform we blow up the point

W3. The blow-up map is given by [x : y : z] 7→ [x : xy : xz]. Hence, we divide p(x, xy, xz) by
x2 · xy · xz = x4yz, and obtain

p′(x, y, z) =
p(x, xy, xz)

x4yz
.

Substituting into p gives:

p(x, xy, xz) = 8x4y + 8x4z + 4x4yz − 10x4y3 − 10x4y2z − 3x3y3z,

so we simplify:

p′(x, y, z) = 8y + 8z + 4yz − 10y3 − 10y2z − 3
y3z

x
.

Now we homogenize this expression to obtain:

p′(x, y, z) = 8y2z + 8y3 + 4xy2 − 10x2z − 10x2y − 3x3.

Observe that the singularity of W3 transformed into an ordinary multiple point.

Figure 13
p = 8x3y + 8x3z + 4x2yz − 10xy3 − 10xy2z − 3y3z and

p′ = 8y2z + 8y3 + 4xy2 − 10x2z − 10x2y − 3x3

Figure adapted from [Ful08], modified by the author.
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Proposition 3.2.9. If P is in excellent position, then:

a) Multiple points on P ′ ∩ U correspond to multiple points on P ∩ U , preserving both
multiplicity and whether the points are ordinary multiple points;

b) W1,W2,W3 are ordinary multiple points on P ′, with multiplicities d, d− r1, d− r1;

c) There are no non-fundamental points on P ′ ∩ V (y) or P ′ ∩ V (z). If X1, . . . , Xs are the
non-fundamental points on P ′ ∩ V (x), then:

mXi(P
′) ≤ I[P ′, V (x)](Xi)

and
s∑

i=1

I[P ′, V (x)](Xi) = r1.

Proof. [Rüd15] Part a) follows from the fact that P ′∩U and P∩U are isomorphic (Remark 3.2.4).
Part b) follows from Proposition 3.2.8, since P ′ is in good position, and under excellent position,
all non-fundamental intersections are transverse. In particular, since P is in excellent position,
if X1, . . . , Xd are the non-fundamental points of P ∩ V (x), then:

d∑
i=1

I[P ′, V (x)](Xi) = d,

and since the intersection numbers are all 1, we have mW1(P
′) = d. Likewise, for P ′′, we find

mW2(P
′) = mW3(P

′) = d− r1 by symmetry and the same argument.

Now, c) comes from part b) of Proposition 3.2.8, with W1 we have the exact same result,
and use it also with W2 and W3 but now the sum of the intersection numbers equals the
multiplicity of W2 or W3, which are 0 because we are in excellent position. Hence, there are no
such non-fundamental points.

Definition 3.2.9. (Pseudo arithmetic genus). Define

g∗(P ) =
(d− 1)(d− 2)

2
−

∑
M is a multiple point of P

mM (P )(mM (P )− 1)

2
.

We will use the notation rM := mM (P ) from now on.

Remark 3.2.10. By definition, ordinary multiple points do not contribute to g∗(P ).

Proposition 3.2.11. g∗(P ) is a non-negative integer.

Proof. [Rüd15] It is clear that g∗(P ) ∈ Z. We prove that it is non-negative. Let p′ = ∂p
∂z , and

consider the curve P ′ = V (p′). Let X1, . . . , Xs be the multiple points of P . Then, if P ′ ̸= 0,
the multiplicity of Xi on P

′ is at least rXi − 1, since differentiation reduces multiplicity by at
most 1. Since P and P ′ are both irreducible and share no common component, Bézout’s theorem
(Theorem 2.1.7) gives:

s∑
i=1

rXi(rXi − 1) ≤
s∑

i=1

I[V (p), V (p′)](Xi) = d(d− 1).

This inequality and the definition of g∗(P ) yield the desired result. Now suppose p′ = 0. We find
another irreducible curve G = V (g) of degree d − 1 with no common component with P , such
that mXi(G) ≥ rXi − 1. To construct g, we need

(
d
2

)
coefficients. Each multiplicity condition
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mXi(G) ≥ rXi − 1 imposes at most
rXi

(rXi
−1)

2 linear constraints. The number of remaining
degrees of freedom is:

D =

(
d

2

)
− 1−

s∑
i=1

rXi(rXi − 1)

2
.

Use these to impose that G passes through D further points on P , ensuring that G and P are
still distinct and have no common factor. Then again by Bézout’s theorem:

s∑
i=1

I[V (p), V (g)](Xi) = d(d− 1) ≥
s∑

i=1

rXi(rXi − 1) +D,

hence:

g∗(P ) =
(d− 1)(d− 2)

2
−

s∑
i=1

rXi(rXi − 1)

2
≥ 0.

Proposition 3.2.12. If P is in excellent position and X1, . . . , Xs are the non-fundamental
points on P ′ ∩ V (x), then

g∗(P ′) = g∗(P )−
s∑

i=1

rXi(rXi − 1)

2
.

Proof. [Rüd15] This is a direct computation. We know that deg(p′) = 2d−r1, so we can compute
g∗(P ′) using its definition. Also, since P ∩ U and P ′ ∩ U are in bijection (from the excellent
position assumption), all components and multiplicities matching on these parts cancel out. The
only remaining contributions to g∗(P ′) are:

• On P , the only multiple point on the exceptional lines is X,

• On P ′, we get three ordinary multiple points — but they do not contribute to g∗ by
Remark 3.2.10.

Thus, the remaining contribution to the difference between g∗(P ) and g∗(P ′) comes from the
other multiple points on V (x), giving the stated formula.

Definition 3.2.10. (Quadratic transformation). Let T be any projective change of
coordinates. Then we say that (P T ) is a quadratic transformation of P . If P T is in excellent
position and T [0 : 0 : 1] = Q, we say that the quadratic transformation is centred at Q.

Proposition 3.2.13. By a finite sequence of quadratic transformations, any projective plane
curve may be transformed into a curve with only ordinary multiple points as singularities.

Proof. [Rüd15] When applying a quadratic transformation centred at a non-ordinary multiple
point, we do not create new multiple points outside the exceptional lines. The point Q is sent
to an ordinary multiple point, and two more ordinary multiple points appear on the exceptional
lines. To see if any new multiple points appear on V (x), recall that:

g∗(P ) ∈ N, and g∗(P ) = g∗(P ′) ⇐⇒ there is no non-ordinary multiple point on P.

Otherwise,

g∗(P ′) = g∗(P )−
s∑

i=1

rXi(rXi − 1)

2
< g∗(P ).

Therefore, the sequence
g∗(P ) ≥ g∗(P ′) ≥ g∗(P ′′) ≥ . . .
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is a non-increasing sequence of non-negative integers, and it must stabilize after at most g∗(P )
steps. So, by repeatedly applying the quadratic transformation centred at non-ordinary multiple
points, we ensure that no new non-ordinary multiple points appear, and we eventually obtain a
curve with only ordinary multiple points.

Example 3.2.3. [Ken11] We present an easy example how a quadratic transformation
transforms a non-ordinary singularity to an ordinary one. Consider the curve

x4 − y4 − y2.

The lowest-degree part is y2, and both directional derivatives are zero, so it has a non-ordinary
singularity in the origin. Its homogenisation is x4 − y2z2 − y4. Applying the standard quadratic
transformation we get

y4z4 − x2z2x2y2 − x4y4 = z2(y4 − z2 − x4y2 − x4z2).

After setting z = 1 we get
y4 − x4y2 − x4.

It also has a singularity in the origin, but this time it is ordinary, since the lowest-degree part
is y4 − x4, which factors as (y + x)(y − x)(y + ix)(y − ix), from which it is clear that there are
four tangents with slopes 1,−1, i,−1.

Figure 14
x4 − y2 − y2 and y4 − x4y2 − x4 in the real plane near the origin.

Thus, we managed to prove the following:

Corollary 3.2.14. Any projective plane curve is birational to a projective plane curve with
only ordinary multiple points.

It is also worth mentioning that:

Proposition 3.2.15. [BK86] Each birational transformation of the plane is a product of
quadratic transformations.

Now we define the general blow-up.

Definition 3.2.11. (Blowing up at finitely many points). LetX1, . . . , Xt ∈ CP2 be distinct
points. We define the blowing up of CP2 at these points as follows. Let U = CP2 \ {X1, . . . , Xt},
and choose coordinates such that Xi = [ai0 : ai1 : 1] ∈ U ⊂ CP2 for all i = 1, . . . , t. Define
functions fi : U → CP1 by

fi(x0, x1, x2) = (x0 − ai0x2, x1 − ai1x2).
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Then define a map
f : U → (CP1)t, f(P ) = (f1(P ), . . . , ft(P )),

and let G ⊂ CP2 × (CP1)t be the graph of f , that is G = {(P, f(P )) | P ∈ U}. Introduce
homogeneous coordinates (yi0, yi1) on the ith copy of CP1, and define the blow-up B ⊂ CP2 ×
(CP1)t by:

B = V (yi1(x1 − ai1x2)− yi0(x0 − ai0x2) : i = 1, . . . , t) .

Definition 3.2.12. (π and the exceptional divisor). Let π : B → CP2 be the projection
onto the first factor. Then π is a birational morphism, and the exceptional divisor over Xi is
defined as Ei := π−1(Xi).

Proposition 3.2.16. Ei = {Xi}×{f1(Xi)}×· · ·×{fi−1(Xi)}×CP1×{fi+1(Xi)}×· · ·×{ft(Xi)},

Proof. [Rüd15] Observe that the point {Pi, (yi0, yi1), . . . , (yi0, y+ t1)} lies in B whenever yi0, yi1
are arbitrary and for each j ̸= i, (yj0, yj1) = fj(Xi). These points are well-defined because the
points Xi are distinct, and each fj is defined everywhere on CP2 except at Xj .

Now let j ∈ {1, . . . , t} and suppose (yj0, yj1) lies in the j-th copy of CP1 in B. By
definition, we have:

yj1(a1 − aj1)− yj0(a0 − aj0) = 0.

If i = j, then this equation imposes no condition, so yi0 and yi1 can be arbitrary. If i ̸= j, then
(up to scalar multiplication) the equation determines a unique point:

yj0 = a1 − aj1, yj1 = a0 − aj0,

so the corresponding point in CP1 is (a1 − aj1, a0 − aj0) = fj(a0, a1, 1) = fj(Xi), as desired.

Corollary 3.2.17. B \
⋃t

i=1Ei = B ∩ (U × CP1 × · · · × CP1) = G.

Definition 3.2.13. (Blow-up of a projective plane curve). Let X1, . . . , Xt ∈ CP2 be
distinct points, and let π : B → CP2 be the blow-up of CP2 at these points. Let P ⊂ CP2 be a
projective plane curve. Then we define the blow-up of the curve P at X1, . . . , Xt as

P̃ := π−1(P ∩ U) = π−1(P \ {X1, . . . , Xt}),

where U = CP2 \ {X1, . . . , Xt}.

Without proof, we state an important proposition.

Proposition 3.2.18. [Rüd15] If X1, . . . , Xt are the only singular points of P , and they are all
ordinary, then the blow-up curve P̃ is nonsingular, and P̃ and P are birational.

Hence, we have the following vital corollary:

Corollary 3.2.19. Let P be any projective plane curve. Then P is birational to a nonsingular
projective curve.

We remark that this can be generalized to any field of characteristic 0:

Theorem 3.2.20. (Hironaka’s resolution theorem). [Hir64] Every singular algebraic
variety over a field of characteristic zero admits a resolution of singularities by a sequence
of blow-ups of smooth subvarieties of codimension ≥ 2.

Remark 3.2.21. In positive characteristic, the resolution of singularities remains an open
problem in dimensions greater than two. It is, however, known to hold for algebraic curves,
and has been partially established for surfaces.
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4 Puiseux’s expansion

The goal of this section is to prove that any algebraic plane curve can be locally parametrized
near a locally irreducible singular point by formal power series in fractional powers of x, called
Puiseux series. The method goes back to Newton, who showed that one can consider y as
an implicit function of x, and then solve f(x, y) = 0 by expanding y as a series in powers of x1/n.

In certain cases, when ∂f
∂y (0, 0) ̸= 0, the classical implicit function theorem (Theorem 1.8)

applies and yields a convergent power series solution y = φ(x). In other cases, we want a
solution using Puiseux series.

Throughout this section, we will work with formal power series, so let

f =
∑

(µ,ν)∈N2

aµνx
µyν ∈ C[[x, y]] (♠)

be a given power series satisfying f(0, 0) = 0. After a suitable change of coordinates, we may
assume that the equation is general in y of order k > 1.

4.1 Puiseux’s formal theorem

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.10. We will work with formal power series defined as in Equation ♠.

Definition 4.1.1. (Puiseux series). Let n be a positive integer. A Puiseux series in x is a
formal power series of the form

φ(x) =
∑
r≥r0

arx
r/n, with ar ∈ C, r0 ∈ N,

that is, a power series in fractional powers of x. The set of all such series for a fixed n is denoted

C[[x1/n]] :=

∑
r≥r0

arx
r/n

 .

Definition 4.1.2. (Ring of Puiseux series). The union over all n is called the ring of Puiseux
series:

C{{x}} :=

∞⋃
n=1

C[[x1/n]].

Remark 4.1.1. [Fis01] C{{x}} is an integral domain

Definition 4.1.3. (Order). For φ(x) =
∑

r≥r0
arx

r/n, with ar ∈ C, r0 ∈ Z we define its
order by the rational number ordφ := min{m/n | am ̸= 0} ≥ 0.

Without proof we list a few important results connected to C{{x}}.

Proposition 4.1.2. [Fis01] Every normalised polynomial polynomial in C⟨x⟩[y] splits into linear
factors in the ring C{{x}}.

Proposition 4.1.3. [Fis01] The quotient field of C{{x}} is algebraically closed.

Proposition 4.1.4. [Fis01] For a Weierstrass polynomial f ∈ C⟨x⟩[y] of degree d, there is a
factorisation (y−φ1) . . . (y−φd) of f such that φi ∈ C{{x}} has positive order. If f is irreducible,
then all φi have the same order.
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Definition 4.1.4. (Carrier). The carrier of f (defined as in Equation ♠) is the set of exponent
pairs corresponding to non-zero coefficients:

carr(f) := {(µ, ν) ∈ N2 | aµν ̸= 0}.

Definition 4.1.5. (Quasihomogeneous polynomial). Let f(x, y) ∈ C[x, y] and let (p, q) ∈
N2
>0. The polynomial f is called quasihomogeneous of type (p, q) and weighted degree d if all

monomials xayb appearing in f satisfy

pa+ qb = d.

Proposition 4.1.5. Let f(x, y) be a quasihomogeneous polynomial of type (p, q) and weighted
degree d. Then:

(a) f(tqx, tpy) = tdf(x, y).

(b) The set of exponent pairs (a, b) with pa+ qb = d lies on a straight line of slope −p
q .

Proof. For part a) simply substitute:

f(tpx, tqy) =
∑

ca,b(t
px)a(tqy)b =

∑
ca,bt

pa+qbxayb.

Since each pa+ qb = d, this becomes:∑
ca,bt

dxayb = td
∑

ca,bx
ayb = tdf(x, y),

which proves the first part.

For part b), the equation pa + qb = d is a linear equation in the integer variables a and
b. The set of exponent pairs (a, b) that satisfy this equation lie on the line

b = −p
q
a+

d

q
,

which has slope −p
q . Therefore, the set of exponent pairs corresponding to monomials in f lie

on a straight line of slope −p
q , as claimed.

Proposition 4.1.6. Let f ∈ C[x, y] be a quasihomogeneous polynomial with weights p and q,
and suppose that f is general in y of order k ≥ 1. Then there exists at least one λ ∈ C such that

f(tq, λtp) = 0.

Moreover, if the carrier of f contains at least two points, then λ can be chosen such that λ ̸= 0.

Proof. [Fis01] We begin by introducing the substitution x = tq, y = λtp, so that
computations are understood formally with fractional exponents. Substituting into f , we get

f(x, y) = f(tq, λtp) =
∑

pµ+qν=kp

aµν(t
q)µ(λtp)ν =

∑
pµ+qν=kp

aµνλ
νtqµ+pν .

Since all terms satisfy pµ+ qν = kp, the exponent of t in each term is kp, so we can factor:

f(tq, λtp) = tkp
∑

pµ+qν=kp

aµνλ
ν =: tkpg(λ),
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where g(λ) ∈ C[λ] is a polynomial of degree k ≥ 1, so it has at least one complex root λ ∈ C.
Moreover, if the carrier of f contains a monomial xµyν with ν < k, then g(λ) has a non-zero
root.

Example 4.1.1. Consider the curve x2 − y3 (see Figure 2), which is general in order 3. Its
equation is clearly a quasihomogeneous polynomial with weights q = 3 and p = 2. Now, we have

x = tq = t3, y = λtp = λt2,

and obtain
f(t3, λt2) = t6(1− λ3).

Hence, f(t3, λt2) = 0 if and only if λ3 = 1. Therefore, the admissible values of λ are the three
cube roots of unity:

λ ∈
{
1, e2πi/3, e4πi/3

}
.

Proposition 4.1.7. Let f =
∑

µ,ν aµνx
µyν ∈ C[[x, y]] be general in y of order k ≥ 1, and

assume that yk ∤ f . Then there exist relatively prime positive integers p, q ∈ N with q ̸= 0, such
that:

a) for all (µ, ν) ∈ carr(f), we have qµ+ pν ≥ pk;

b) there exists at least one (µ, ν) ∈ carr(f) such that µ ≥ 1, ν < k, and qµ+ pν = pk.

Proof. (Based on [Fis01]) Let us visualise the carrier of f , which is general in y, and fix a
coordinate system with µ-axis horizontal and ν-axis vertical. Since yk ∤ f , there exists at least
one point (µ, ν) ∈ carr(f) with ν < k. Fix such a point with minimal slope through (0, k) to
some point of the carrier. That is, consider the set of lines through (0, k) that intersect carr(f),
and choose the one that hits a point (µ, ν) with the smallest positive slope. Since ν < k and
µ > 0, this slope is well-defined and rational. Now write the line as qµ+ pν = pk with relatively
prime p, q ∈ N, and observe that all other points of the carrier lie on or above this line. This
gives us the desired inequality for all points in the carrier, and equality for at least one such
point with µ ≥ 1 and ν < k.

Definition 4.1.6. (Quasihomogeneous initial polynomial). Continuing from the
proposition above, we define the quasihomogeneous initial polynomial of f as

f̃ :=
∑

qµ+pν=pk

aµνx
µyν ∈ C[x, y].

This polynomial consists of all terms of f lying on the line of slope −p/q through the point
(0, k), and it is itself general in y of order k.

Remark 4.1.8. we obtain the decomposition

f = f̃ + h, where h =
∑

qµ+pν≥pk+1

aµνx
µyν ∈ C[x, y].

The series h contains the higher-order terms with respect to the weighted order determined by
the line qµ+ pν = pk.

Now we define an iteration process which will help us to construct a solution for the Puiseux
problem.

Definition 4.1.7. (Iteration step). Let f = f̃ + h ∈ C[[x, y]] be general in y of order k ≥ 1,
and assume that yk ∤ f . Let p, q ∈ N be relatively prime integers as in Proposition 4.1.7, and
suppose that λ ∈ C satisfies

f̃(x, λxp/q) = 0.
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We then set x = xq1, y = λxp1 + xp1y1, and substitute into f . This gives:

f(x, y) = f(xq1, λx
p
1 + xp1y1) = xpk1 f1(x1, y1),

where f1 ∈ C[x1, y1] is a new series. In particular,

f1(0, y1) = g(λ+ y1),

where g(λ) =
∑
aµνλ

ν as in the previous section.

Proposition 4.1.9. Let f1 ∈ C[x1, y1] be obtained from f via the above substitution. Then:

a) f1 is general in y1 of some order k1, with 1 ≤ k1 ≤ k;

b) If k1 = k, then q = 1.

Proof. [Fis01] For part a) let us define γ(y1) := g(λ + y1) ∈ C[y1], where λ ∈ C∗ satisfies
g(λ) = 0. Then f1(0, y1) = γ(y1), and the order of f1 in y1 is k1 := ordy1(γ), which satisfies
1 ≤ k1 ≤ deg g = k, since λ is a root of g.

For b), if k1 = k, then γ(y1) = c(λ+ y1)
k for some c ∈ C∗, so

g(λ) =
∑

qµ+pν=pk

aµνλ
ν = a0kλ

k + aµ,k−1λ
k−1 + · · · .

Now, using the binomial expansion, the coefficient of yk−1
1 in γ(y1) is −ckλ, and hence for this

to be non-zero in the original f , we must have aµ,k−1 ̸= 0 for some µ > 0 with

qµ+ p(k − 1) = pk ⇒ qµ = p.

Since µ ∈ N, this implies q | p, and as gcd(p, q) = 1, it follows that q = 1.

Theorem 4.1.10. (Formal Puiseux parametrization). There exists a natural number n
and a formal power series

φ(x) =
∑
r≥r0

arx
r/n ∈ C[x1/n]

such that
f(x, φ(x)) = 0 in C[x1/n].

Proof. [Fis01] We define the iteration recursively. Start with

f0 = f, x0 = x, y0 = y, k0 = k.

At the i-th step, if ykii | fi, then yi = 0 is a solution of fi(xi, yi) = 0, and we stop. Otherwise, by
the previous results, we can write

fi = f̃i + hi

with f̃i quasihomogeneous and general in yi of order ki, and the equation of its carrier is qiµ+
piν = kipi for relatively prime pi, qi ∈ N. Then there exists λi ∈ C∗ such that

f̃i(xi, λix
pi/qi
i ) = 0.

We define the next variables by:

xi+1 = x
1/qi
i , yi = λix

pi/qi
i + x

pi/qi
i yi+1 = xpii+1(λi + yi+1).
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Substituting into fi, we get:

fi(xi, yi) = xkipii+1 fi+1(xi+1, yi+1),

where fi+1 is again general in yi+1 of order ki+1 ≤ ki by Proposition 4.1.9.

By iterating this process, we obtain sequences {pi}, {qi}, {ki} ⊂ N with k0 ≥ k1 ≥ k2 ≥ · · · ≥ 1,
and by Proposition 4.1.9 we have qj = 1 for all j ≥ N for some finite N ∈ N. Now set
x = tn, xi = tni for 0 ≤ i ≤ N, where ni = p0q1 · · · qi. Then all fractional exponents can
be avoided, and the iteration yields:

y =
∞∑
i=0

λit
mi , m0 = p0q1 · · · qN , mi+1 = mi + pi+1

N∏
j=i+2

qj .

Since pi ≥ 1, the exponents mi → ∞, and thus the series

φ(t) =
∞∑
i=0

λit
mi

is a well-defined formal Puiseux series in C{{t}}.

Finally, substituting back, we get:

f(x, φ(x)) = f(tn, φ(t)) = xr0fN+1(xN+1, yN+1) = 0,

since fN+1 is divisible by y
kN+1

N+1 and yN+1 = 0. Therefore, f(x, φ(x)) = 0.

Example 4.1.2. [Fis01]Let

f(x, y) = y4 − 2y2x− 4y2x2 − 3y2x3 + x2 + 4x3 + 7x4 + 6x5 + 2x6.

We apply the Puiseux iteration procedure. The leading quasihomogeneous part of f is

f̃0 = y4 − 2xy2 + x2,

which is quasihomogeneous of weighted degree k0 = 4 with weights 2 and 1. Solving
f̃0(x, λx

1/2) = 0 gives λ0 = −1. We make the substitution:

x = x21, y = x1(η1 + λ0) = x1(η1 − 1),

and define the transformed function f1(x1, η1) := f(x21, x1(η1 − 1)). A direct computation gives:

f1(x1, η1) = η41x
4
1 − 4η31x

4
1 + 4η21x

4
1 − 4x21η

2
1 + 8x21η1 − 3x41η

2
1

+ 6x41η1 + 4x41 + 6x61 + 2x81.

The new leading part is
f̃1 = 4η21x

2
1 + 8x21η1 + 4x41,

which again has a solution λ1 = −1 for f̃1(x1, λ1) = 0. We now substitute:

x1 = x2, η1 = η2 + λ1 = η2 − 1,

and obtain the parametrization:

x = x22, y = x2(−1 + (η2 − 1)) = x2(−1− η2).
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Setting η2 = −x2 gives a full parametrization:

x = t2, y = −t− t3.

This means the Puiseux expansion terminates after the second iteration:

f(t2,−t− t3) = 0.

Without proof, we state an important fact:

Theorem 4.1.11. (Convergence of Puiseux expansions). [Fis01] In Theorem 4.1.10 if f
is convergent, then so is φ.

Definition 4.1.8. (Branch at a singular point). Let F ⊂ C2 be a plane algebraic
curve defined by a reduced polynomial f(x, y) ∈ C[x, y], and let S ∈ F be a singular point. A
branch of F at S is an equivalence class of irreducible analytic components of the germ of F at S.

Equivalently, each branch corresponds to a distinct Puiseux expansion y = φ(x) centred
at S (after a suitable change of coordinates so that S = (0, 0) and f(0, 0) = 0), where
φ(x) ∈ C[[x1/n]] is a convergent Puiseux series satisfying f(x, φ(x)) = 0.

We state a few interesting properties of branches related to what we have seen so far:

Remark 4.1.12. The number of branches at S is the number of distinct points in the inverse
image π−1(S) under the normalisation map π : C̃ → C defined as in subsection 3.1.

Remark 4.1.13. Blowing up the plane at a singular point S separates the branches of a curve
F passing through S with different tangent lines. That is, the blow-up curve of F intersects the
exceptional divisor in as many distinct points as there are different tangent lines at S.

Remark 4.1.14. [Kir92] The branches at the origin are described by the Puiseux expansions

y = gj

(
e2πis/mjx1/mj

)
for 1 ≤ j ≤ l and 1 ≤ s ≤ mj , where gj(t) ∈ C{t} are holomorphic functions satisfying gj(0) = 0.
Each essentially different function gj corresponds to a distinct branch.

Example 4.1.3. Consider the alpha curve (Figure 5) defined by y2 = x2(x + 1). To find the
branches of the curve at the origin, we solve for y using Puiseux expansions:

y = ±x
√
1 + x.

Now expand the square root into a convergent power series:

√
1 + x = 1 +

1

2
x− 1

8
x2 + · · · ⇒ y = ±x

(
1 +

1

2
x− 1

8
x2 + · · ·

)
.

Thus, the curve admits two distinct Puiseux expansions at the origin:

y = x+
1

2
x2 − 1

8
x3 + · · · , y = −x− 1

2
x2 +

1

8
x3 − · · · .

These are not conjugate under root-of-unity transformations, and they define two distinct
branches of the curve at the origin.
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4.2 Newton polygon

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.10.

Definition 4.2.1. (Newton polygon). The Newton polygon of f is the convex hull of the
union of the first quadrant rays translated to start at the points in carr(f). That is, define

∆(f) := Conv

 ⋃
(µ,ν)∈carr(f)

{(µ+ u, ν + v) | u, v ∈ R≥0}

 ,

and the Newton polygon is the lower boundary of ∆(f), consisting of finitely many line segments
(and possibly half-lines).

Example 4.2.1. [Kir92] Consider f(x, y) = y4 − 2x5y2 − 4x8y + x10 − x11. In this case, the
Newton polygon consists of a single line segment (not including the axes).

Figure 15
Newton polygon of y4 − 2x5y2 − 4x8y + x10 − x11 illustrated with [Int19].

In the previous subsection we have seen how to construct the Puiseux expansion. Now, we shall
see another method involving the Newton polygon.

Definition 4.2.2. (Newton polygon–based Puiseux iteration). Let f(x, y) ∈ C[[x, y]] be
a convergent power series with f(0, 0) = 0.

1) Construct the Newton polygon of f .

2) Choose the lowest edge (initial segment), that is select the edge of the Newton polygon
with the smallest slope. Let p/q be its slope (with p, q being coprime positive integers).

3) Solve the initial polynomial f0(t): Write the initial form (or truncated polynomial)
corresponding to this edge:

f̃0(x, y) =
∑

(a,b) on edge

cabx
ayb.

Substitute x = x, y = λxp/q into f̃0(x, y), and solve for λ:

f̃0(x, λx
p/q) = xwf0(λ),

where f0(λ) is a polynomial in λ. Choose any root λ0 of f0.
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4) Define new variables:
x = xq1, y = xp1(λ0 + η1).

Substitute into f :
f(xq1, x

p
1(λ0 + η1)) =: f1(x1, η1),

and factor out the maximal power of x1:

f1(x1, η1) = xw1
1 · f̄1(x1, η1).

5) Repeat the process for f1: Construct the Newton polygon of f̄1, choose the steepest edge,
compute its slope p1/q1, solve the corresponding initial polynomial for λ1, and define

η1 = λ1 + η2, x1 = xq12 .

Then proceed recursively.

We obtain a sequence of positive rationals µ0 =
p0
q0
, µ1 =

p1
q1
, µ2 =

p2
q2
, . . . and complex numbers

t0, t1, t2, . . . and successive approximate solutions (x, y) = (x0, y0), (x1, y1), (x2, y2), . . . to
the equation p(x, y) = 0 related by

x = x
1/q0
1 , x1 = x

1/q1
2 , x2 = x

1/q2
3 , . . .

and
y = xµ0(t0 + y1), y1 = xµ1

1 (t1 + y2), y2 = xµ2
2 (t2 + y3), . . .

We wish to show that the Puiseux expansion

y = t0x
µ0 + t1x

µ1
1 x

µ0 + t2x
µ2
2 x

µ1
1 x

µ0 + · · ·
= t0x

µ0 + t1x
µ0+µ1/q0 + t2x

µ0+µ1/q0+µ2/(q0q1) + · · ·

is a genuine solution near the origin.

Proposition 4.2.1. Let f(x, y) ∈ C[[x, y]] and let f̄1(x1, η1) be the polynomial obtained in step
4) of the Newton polygon–based Puiseux iteration defined above. Denote by

β0 := min{b | ∃a with cab ̸= 0 and a+ µb = ν0},

the smallest exponent of y occurring in the initial form, and let

β1 := min{β | ∃α with f̄1(x1, η1) contains η
β
1 with non-zero coefficient}.

Then either β1 < β0, or the Newton–Puiseux process terminates trivially with q = 1.

Proof. [Kir92] Recall that in step 4), we write f(xq1, x
p
1(λ0 + η1)) = xν01 · f̄1(x1, η1), and the

expansion of f̄1 in η1 has constant term zero (otherwise f(0, 0) ̸= 0). Now suppose that β1 = β0.
Then

f̄1(x1, η1) = cα,β0x
α
1 η

β0
1 + · · · ,

and we must have
α+ µ(β0 − 1) = ν0 = µβ0,

which implies
µ = α.

Since µ = p/q, it follows that µ ∈ Z, so q = 1.
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Thus, unless q = 1, the exponent β1 must be strictly smaller than β0, ensuring that
each iteration introduces a new, smaller exponent and the expansion progresses.

Corollary 4.2.2. The Puiseux expansion defined as in Definition 4.2.2 can be expressed as a
formal power series in x1/n for some n ∈ N.

Proof. We have qi = 1 unless βi−1 > βi, where β0 ≥ β1 ≥ β2 ≥ · · · is a decreasing sequence of
positive integers. So there are at most finitely many i with qi > 1. If n denotes the product of
the qi values, then the Puiseux expansion may be expressed as a formal power series

y =
∑
r≥1

arx
r/n

in x1/n.

Proposition 4.2.3. Let f(x, y) ∈ C[[x, y]] be a convergent power series with f(0, 0) = 0. Then
the Puiseux expansion defined as in Definition 4.2.2 is a power series in x1/n which converges
for x sufficiently close to 0, and satisfies

f

x,∑
r≥r0

arx
r/n

 = 0.

Proof. [Kir92] From Corollary 3.1.4 it follows there are holomorphic functions g1, . . . , gl defined
near 0 and positive integers m1, . . . ,ml such that m1 + · · ·+ml = d and a non-zero constant K
such that

f(x, y) = K
∏

1≤j≤l

∏
1≤s≤mj

(
y − gj(e

2πis/mjx1/mj )
)

for all y and all sufficiently small x. We can expand each gj(t) as a convergent power series

gj(t) =
∑
r≥0

a(j)r tr

near 0. Let N be the least common multiple of m1, . . . ,ml and n. Then the series

gj(e
2πis/mjx1/mj ) =

∑
r≥r0

a(j)r e2πirs/mjxr/mj

and the Puiseux expansion
∑

r≥r0
arx

r/n can all be regarded as elements of the ring C{x1/N}
of formal power series in x1/N . If Q(y) is a polynomial in y with coefficients in C{x1/N} which
satisfies Q(c) = 0 for some c ∈ C{x1/N} and can be expressed in the form Q(y) = K(y −
c1) · · · (y−cd) for someK ∈ C\{0} and c1, . . . , cd ∈ C{x1/N}, then c = cj for some j ∈ {1, . . . , d}.
Therefore it suffices to show that, as a formal power series in x1/N , the Puiseux expansion satisfies

f

x,∑
r≥r0

arx
r/n

 = 0.

For then the Puiseux expansion must coincide with one of the series∑
r≥r0

a(j)r e2πirs/mjxr/m,

and hence must converge for sufficiently small x.
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The construction of the Puiseux expansion (Definition 4.2.2) shows that the exponent of
the smallest power of x1/N occurring in the polynomial

f

(
x,

M∑
r=r0

arx
r/n

)

is at least p0β0 + p1β1 + · · · + pMβM (as seen in Definition 4.2.2, Proposition 4.2.1 and
Corollary 4.2.2), which tends to infinity as M → ∞, since each pj and βj is a positive integer.
This tells us that every coefficient in the formal power series

f

x,∑
r≥r0

arx
r/n


is zero, i.e. the whole expression is zero in C{x1/N}, as required.

Example 4.2.2. [Kir92] Let’s continue with Example 4.2.1. We take µ0 =
5
2 and ν0 = 10. Then

the initial polynomial is

f0(t) =
∑

α+µ0β=ν0

cαβt
β = 1− 2t2 + t4 = (1− t2)2,

which has roots t0 = ±1. Thus our first approximate solutions are y = ±x5/2. We now substitute
x = x21 and y = x51(±1 + y1) into f(x, y), and factor out the term x201 , to get:

f1(x1, y1) = (±1 + y1)
4 − 2(±1 + y1)

2 − 4x1(±1 + y1) + 1− x21

= y41 ± 4y31 + 4y21 − 4x1y1 − x21 ± 4x1.

Again, the Newton polygon of f1 is a single line segment. We take µ1 =
1
2 and ν1 = 1, to get

our next approximate solution: y1 = t1x
1/2
1 , where t1 is a root of 4t2 ± 4 = 0, i.e. t1 = ±1 when

t0 = 1, and t1 = ±i when t0 = −1. In each case it is easy to check that the approximate solution

y1 = t1x
1/2
1 is in fact a genuine solution to the equation f1(x1, y1) = 0. Thus the procedure stops

at this point and the Puiseux expansions

y = x5/2 ± x11/4 and y = −x5/2 ± ix11/4

are solutions to the equation f(x, y) = 0.

Figure 16
Newton polygon of y4 ± 4y3 + 4y2 − 4xy − x2 ∓ 4x illustrated with [Int19].
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5 Noether’s formula

In this section, we introduce and prove the general genus formula for algebraic curves. Along
the way, we will also explore important invariants of singularities as well.

5.1 Ramifications

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.3 and subsection 2.1.

Given a curve P ∈ CP2 defined by the homogeneous polynomial p(x, y, z) of degree
d > 1. By Proposition 1.1.7, we may assume that [0 : 1 : 0] ̸∈ P .

Definition 5.1.1. (The φ map). Define φ : P → CP1 by [x : y : z] 7→ [x : z].

Definition 5.1.2. (Ramification index). The ramification index at a point [a : b : c] ∈ P is
the order of the zero of the polynomial p(a, y, c) in y at y = b. It is denoted by ν[a : b : c]. A
point is called a ramification point if ν[a : b : c] > 1.

Remark 5.1.1. ν[a : b : c] > 0 if and only if [a : b : c] ∈ P .

Proposition 5.1.2. For any [a : c] ∈ CP1, φ−1([a : c]) contains exactly

d−
∑

Q∈φ−1([a:c])

(ν(Q)− 1)

points.

Proof. [Kir92] Note that a point of P lies in ϕ−1([a : c]) if and only if it is of the form [a : b : c]
where b ∈ P satisfies p(a, b, c) = 0. We may assume that p(0, 1, 0) = 1 since p(0, 1, 0) ̸= 0. Then
p(a, y, c) is a monic polynomial of degree d in y, so

p(a, y, c) =
∏

1≤i≤k

(y − ωi)
mi ,

where ω1, . . . , ωk are distinct complex numbers and m1, . . . ,mk are positive integers satisfying

m1 + · · ·+mk = d.

Thus, ϕ−1([a, c]) = {[a : bωi : c] : 1 ≤ i ≤ k}, and the ramification index at [a : ωi : c] is

ν[a : ωi : c] = mi.

Combining these, we obtain the statement.

Definition 5.1.3. (Branch locus and branched cover). LetR denote the set of ramification
points. The image φ(R) is called the branch locus, and φ : P → CP1 is called a branched cover
of CP1.

Proposition 5.1.3. Suppose that P is nonsingular. Then there are at most d(d−1) ramification
points.

Proof. [Kir92] Since P is nonsingular, it is irreducible, since if p = qr then by Proposition 2.1.1
there exists a point [a : b : c] for which q(a, b, c) = r(a, b, c) = 0 and thus [a : b : c] is a singular
point. By assumption [0 : 1 : 0] /∈ P , so the coefficient p(0, 1, 0) of yd in p(x, y, z) is non-zero.
Thus the homogeneous polynomial

∂p

∂y
(x, y, z)
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is not identically zero and has degree d − 1, so it cannot be divisible by p(x, y, z). Hence the
projective curve Q of degree d−1 defined by this polynomial has no component in common with
P . Thus the statement follows from Proposition 2.1.2, because the set R of ramification points
of P is the intersection of P and Q.

Proposition 5.1.4. Suppose that P is nonsingular. If ν[a : b : c] ≤ 2 for all [a : b : c] ∈ P , then
P has exactly d(d− 1) ramification points.

Proof. [Kir92] By Corollary 2.1.8, it suffices to show that if [a : b : c] lies in P ∩Q, then [a : b : c]
is a nonsingular point of Q, and the tangent lines to P and Q at [a : b : c] are distinct. Indirectly
suppose that [a : b : c] satisfies

p(a, b, c) = 0 = py(a, b, c),

because it lies in P and Q, and the vector

(pxy(a, b, c), pyy(a, b, c), pzy(a, b, c))

is either zero or a scalar multiple of the vector

(px(a, b, c), py(a, b, c), pz(a, b, c)).

This implies that
p(a, b, c) = 0 = py(a, b, c) = pyy(a, b, c),

that is
ν[a : b : c] > 2.

Contradiction.

Proposition 5.1.5. Suppose that P is nonsingular.

a) If d ≥ 2, then P has at most 3d(d− 2) points of inflection.

b) If d ≥ 3, then P has at least one point of inflection.

Proof. [Kir92] Since Hp is homogeneous of degree 3(d− 2), and provided that it is not constant
(when d > 2 this means not identically zero), it defines a projective curve in CP2. We know
by Proposition 2.1.3 that a nonsingular curve is irreducible, so if p and Hp would have a
nonconstant common factor, then p would divide Hp, so every point of P would be a point
of inflection. However by Proposition 1.3.4, this is a contradiction. Thus p and Hp have no
nonconstant common factor for d > 1. The statement now follows from Proposition 2.1.1 and
Proposition 2.1.2.

5.2 The genus formula

In this subsection, we will mostly rely on the notations, definitions and propositions of
subsection 1.6 and subsection 1.11.

Lemma 5.2.1. Let q(z, w) be a polynomial with complex coefficients in z and w such that for
any fixed z ∈ C the polynomial q(z, w) in w is monic of degree n. Define ϕ : V (q) → C by

ϕ(z, w) = z.

Then any z0 ∈ V (q) has an open neighbourhood U in V (q) such that each connected component
of ϕ−1(U) contains at most one point of ϕ−1({z0}).

48



Proof. [Kir92] If ϕ−1({z0}) = {(z0, w1), . . . , (z0, wk)} then

q(z0, w) =
∏

1≤i≤k

(w − wi)
mi

where m1, . . . ,mk are positive integers such that m1 + · · · +mk = n. Choose ε > 0 such that
|wi −wj | > 2ε if i ̸= j. Then by Corollary 1.8.3 there is some δ > 0 such that if |z − z0| < δ the
polynomial A(z, w) in w has at least mi roots in the disc

Di = {w ∈ C : |w − wi| < ε}

when 1 ≤ i ≤ k. Since the discs Di are disjoint and the sum of the mi is n, this means that if
|z − z0| < δ then all the roots of q(z, w) lie in D1 ∪ · · · ∪Dk, and hence

ϕ−1({z ∈ C : |z − z0| < δ}) ⊂ C × (D1 ∪ · · · ∪Dk).

Therefore every connected component of

ϕ−1({z ∈ C : |z − z0| < δ})

is a subset of V (q)×Di for some 1 ≤ i ≤ k, and hence contains at most one point of ϕ−1({z0}).

Proposition 5.2.2. Given any triangulation (V,E, F ) of CP1 such that the branch locus ψ(R)
of ψ is contained in the set of vertices V .

a) there is a triangulation (Ṽ , Ẽ, F̃ ) of P̃ such that

Ṽ = ψ−1(V ), #Ẽ = d#E, #F̃ = d#F,

where d is the degree of ψ;

b)

#Ṽ = d#V −
∑

R∈π(R)

(νϕ(R)− 1) +
∑

S∈Sing(P )

(#π−1{S} − 1).

Proof. [Kir92] We will use Theorem 3.1.8, that is the map π : P̃ → P is continuous and
surjective, R ⊃ π−1(Sing(P )) and π : P̃ − π−1(Sing(P )) → P − Sing(P ) is a homeomorphism.
For a) We must show that Ṽ , Ẽ, F̃ satisfy the conditions of the definition of a triangulation
(Definition 1.11.1), and that the formulas for #Ṽ ,#Ẽ and #F̃ are correct. For this, let
ψ = φ ◦ π : P̃ → CP1 and let (V,E, F ) be a triangulation of CP1 such that the branch locus
ψ(R) is contained in the set of vertices V . We will now use Corollary 1.11.9. Also, by the
previous lemma, Proposition 1.11.8 can be applied to the map φ. Thus, if f ∈ F and q ∈ P̃
and ψ(q) = f(t) for some t ∈ ∆ not equal to any of the vertices (0, 0), (1, 0), (0, 1), then there is
a unique continuous map f̃ : ∆ → P̃ such that ψ ◦ f̃ = f and f̃(t) = q. By Proposition 5.1.2,
ψ−1(f(t)) consists of exactly d points of P̃ (because f(t) does not belong to the branch locus
ψ(R)), so we can deduce that there are exactly d continuous maps f̃ : ∆ → P̃ such that
ψ ◦ f̃ = f . This means that #F̃ = d#F.

We can also deduce that

P̃ − ψ−1(V ) = {φ−1(t) : f ∈ F, t ∈ ∆, t /∈ {(0, 0), (1, 0), (0, 1)}}

which can be written as

{f̃(t) : f̃ ∈ F̃ , t ∈ ∆, t /∈ {(0, 0), (1, 0), (0, 1)}}.
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In particular, let

G =
⋃
f̃∈F̃

f̃(∆).

Then G contains P̃ − ψ−1(V ) and is therefore dense in P̃ because ψ−1(V ) is finite by
Proposition 5.1.2. Since P̃ is compact, G is compact, hence closed in P̃ , so G = P̃ . This implies
that

ψ−1(V ) = {f̃(t) : f̃ ∈ F̃ , t ∈ {(0, 0), (1, 0), (0, 1)}}.

If ẽ ∈ Ẽ then ψ ◦ ẽ ∈ E, so either ψ ◦ ẽ = e or ψ ◦ ẽ = σi ◦ e for some i ∈ {1, 2, 3} where σ1, σ2, σ3
are as in the definition of the triangulation (iii)). Thus, if ẽ ∈ Ẽ then either ẽ or σi ◦ ẽ lies over
e ∈ E. Let

ẽ(t) ∈ {f̃(0) : f̃ ∈ F̃ , ψ(f̃(0)) = e(0) ∈ V }.

This tells us that
ψ−1(V ) = {ẽ(0) : ẽ ∈ Ẽ} ∪ {ẽ(1) : ẽ ∈ Ẽ}.

That is, condition i) of Definition 1.11.1 is satisfied. It follows from Proposition 1.11.8 that if
e ∈ E and q ∈ P̃ and ψ(q) = e(t) for some t ∈ (0, 1), then there is a unique continuous map
ẽ : [0, 1] → P̃ such that ψ ◦ ẽ = e and ẽ(t) = q. Moreover, by Proposition 1.11.7, the restriction
of ẽ to (0, 1) is a homeomorphism onto its image in P̃ . So condition ii) of the definition follows
using the uniqueness of ẽ.

Therefore, if

Γ =
⋃
e∈E

e([0, 1]) ∪ V ∪ {e(t) : e ∈ E, t ∈ (0, 1)}

then
ψ−1(Γ) = ψ−1(V ) ∪ {ẽ(t) : ẽ ∈ Ẽ, t ∈ (0, 1)} = Γ̃

where
Γ̃ =

⋃
ẽ∈Ẽ

ẽ([0, 1]).

Furthermore, by Proposition 5.1.2 yet again, if t ∈ (0, 1) and e ∈ E, then ψ−1(e(t)) consists of
exactly d points of P̃ (because e(t) does not belong to ψ(R)), so there are exactly d continuous
maps ẽ : [0, 1] → P̃ such that ψ ◦ ẽ = e. Thus, #Ẽ = d#E. Also, by Proposition 1.11.7, if
f̃ ∈ F̃ then the restriction of f̃ to ∆◦ is a homeomorphism onto its image, which is a connected
component of

ψ−1(f(∆◦)) = φ−1(f(∆◦)) ⊂ P ◦,

and since f(∆◦) is a connected component of CP1 − ψ(R), it follows that f̃(∆◦) is a connected
component of

P̃ − ψ−1(R) = P̃ − π−1(Sing(P )).

This shows that the first half of condition iii) is satisfied; we have already noted that the second
half is true. Conditions iv) and v) follow easily from what we have already done. Thus it remains
to show that

#Ṽ = d#V −
∑
R∈R

(ν(R)− 1).

Luckily, this follows immediately from Proposition 5.1.2 since V contains ψ(R).

Now let us show part b). By Proposition 5.1.2, the inverse image under φ : P → CP1 of
any Q ∈ CP1 contains exactly

d−
∑

Q′∈φ−1{Q}

(ν(Q′)− 1)
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points. Moreover ν(Q′) = 1 if Q′ /∈ π(R) and φ−1(V ) ⊃ π(R). Thus,

#φ−1(V ) = d#V −
∑

R∈π(R)

(ν(R)− 1).

Since
π : P̃ − π−1(Sing(P )) → P − Sing(P )

is a bijection and φ−1(V ) contains Sing(P ) it follows that

#ψ−1(V ) = #π−1φ−1(V ) = d#V −
∑

R∈π(R)

(ν(R)− 1) +
∑

S∈Sing(P )

(#π−1{S} − 1)

as required.

We shall continue to use Theorem 3.1.8 as before.

Proposition 5.2.3. Suppose that coordinates are chosen on CP2 so that [0 : 1 : 0] does not lie
on P or on the tangent line to P at any of (the finitely many) points of P − Sing(P ) which are
inflection points on P . Then if R ∈ π(R) and R /∈ Sing(C) we have

ν(R) = 2 and I

[
p,
∂p

∂y

]
(R) = 1.

Proof. This immediately follows from Proposition 1.6.2’s part f) and Proposition 5.1.4.

Corollary 5.2.4. [Kir92] Suppose that coordinates are chosen on CP2 so that [0 : 1 : 0] does
not lie on P or on the tangent line to P at any of (the finitely many) points of P − Sing(P )
which are inflection points on P . Then the Euler number χ(P̃ ) of P̃ is given by

χ(P̃ ) = d(3− d) +
∑

S∈Sing(P )

(
I

[
p,
∂p

∂y

]
(S)− ν(S) + #π−1{S}

)
.

Proof. By definition
χ(C̃) = #Ṽ −#Ẽ +#F̃

where (Ṽ , Ẽ, F̃ ) is any triangulation of C̃. Therefore by proposition Proposition 5.2.2,

χ(C̃) = d(#V −#E +#F )−
∑

R∈π(R)

(ν(R)− 1) +
∑

S∈Sing(P )

(#π−1{S} − 1)

where (V,E, F ) is a triangulation of CP1. Since χ(CP1) = 2 (by Proposition 1.11.5), we have
#V −#E +#F = 2. Then by the previous proposition∑

R∈π(R)−Sing(C)

(ν(R)− 1) =
∑

R∈π(R)−Sing(C)

I

[
p,
∂p

∂y

]
(R).

Since π(R) is the intersection of the curve P in CP2 defined by p(x, y, z) and the curve in CP2

defined by ∂p
∂y (x, y, z) and Sing(P ) ⊂ π(R), it follows from Bézout’s theorem (Theorem 2.1.7)

that ∑
R∈π(R)−Sing(P )

I[p,
∂p

∂y
](R) = d(d− 1)−

∑
S∈Sing(P )

I[p,
∂p

∂y
](S).

Combining these equalities gives the required formula for χ(P̃ ).
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Definition 5.2.1. (δ(S)). Define the delta number at S by

δ(S) :=
1

2
(I[p,

∂p

∂y
](S)− ν(S) + #π−1{S}).

Remark 5.2.5. [BK86] It can be shown that δ(S) is always a positive integer and is invariant
of coordinate change.

Definition 5.2.2. (Milnor number). The Milnor number of P at S is defined as

µ(S) := I

[
∂f

∂x
,
∂f

∂y

]
(S),

Remark 5.2.6. [BK86] The Milnor number is an analytic invariant of the singularity.

The two invariants are strongly related:

Theorem 5.2.7. (Milnor-Jung formula). [Mil68] 2δ(S) = µ(S) + #π−1{S} − 1.

Now let’s turn back to the main topic:

Definition 5.2.3. (Genus of singular curve). The genus of an irreducible singular projective
curve is the genus of its resolution or normalisation (which is a smooth curve).

Theorem 5.2.8. (Noether’s formula). The genus g of an irreducible projective curve P of
degree d in CP2 is

1

2
(d− 1)(d− 2)−

∑
S∈Sing(P )

δ(S).

Proof. Simply use Corollary 5.2.4 and substitute χ(P̃ ) = 2− 2g.

Corollary 5.2.9. The Euler number of a nonsingular curve of degree d in CP2 is d(3−d), while
its genus is

1

2
(d− 1)(d− 2).

Remark 5.2.10. This formula may seem familiar. In fact, if each singularity is an ordinary
multiple point, Noether’s formula becomes the pseudo genus defined as in Definition 3.2.9.

Example 5.2.1. Consider the alpha curve (Figure 5) defined by x3 + x2 − y2. From
Example 4.1.3, we conclude that it has a node singularity at the origin, so from Noether’s

formula its genus is
2 · 1
2

− 1 = 0. In fact, it looks like a punctured torus, but why? Consider

the smooth nonsingular curve x3 − x − y2 (Figure 3) . Its genus is 1 by Corollary 5.2.9, so it
is a torus. Note that this curve has equation y2 − (x + 1)x(x − 1). Now, consider the curve
y2 − (x+ 1)x(x− ϵ) and see what happens when ϵ approaches 0. Clearly, the curve approaches
the alpha curve. However, in the mean time, the meridian of the torus originally containing
[0 : 0 : 1] and [1 : 0 : 1] (the origin and (1, 0) in the affine real plane shown in Figure 3) gets
smaller and smaller, and finally shrinks to a point: the singular origin. Thus, a meridian of
the torus collapsed to a point, which is topologically a sphere with two horns touching. The
normalisation separates the two branches at this point, which gives us a sphere (S2). This is
another way of seeing that the genus is, in fact, 0.

Figure 17
Sketch of the alpha curve.
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Theorem 5.2.11. (Clebsch’s formula). Suppose that the curve P ∈ CP2 of degree d has
only nodes and cusps as singularities. Then the genus of P is

1

2
(d− 1)(d− 2)− r − s,

where r is the number of node points and s is the number of cusps.

Proof sketch. [BK86] We must show that the delta invariants are 1 for both nodes and cusps.

For x2 − y2, we have that I = 2, ν = 2 and #π−1 = 2, so δ =
1

2
(2− 2 + 2) = 1. For x3 − y2, we

have that I = 3, ν = 2, #π−1 = 1, so δ =
1

2
(3− 2 + 1) = 1. □

Proposition 5.2.12. For any non-negative integer g there exists an algebraic curve in CP2 with
genus g.

Proof. (Based on [BK86]) Consider the plane projective curve defined by the equation

p∗ = y2 − x2g+2 − 1

which has homogenisation
p = y2z2g − x2g+2 − z2g+2.

As
∂p

∂x
= x2g+1,

∂p

∂y
= 2yz2g,

∂p

∂z
= 2g ·y2z2g−1− (2g+2)z2g+1, it has one singular point, namely

S = [0 : 1 : 0]. We will prove that it has genus g. Substitute y = 1:

z2g − x2g+2 − z2g+2 = z2g(1− z2)− x2g+2.

We can remove the factor 1 − z2 as it clearly does not affect the local singularity type. So we
have

z2g − x2g+2.

Let us use now Theorem 5.2.8. From Definition 5.2.1, we need to calculate I[p, ∂p∂x ](S), ν(S) and

#π−1{S} (note that in the original definition ∂p
∂y appears instead of ∂p

∂x , but now we have to
project on one of the other coordinates, and we have chosen x for now). The easiest one is last
one, the number of branches. Note that z2g − x2g+2 = (zg − xg+1)(zg + xg+1), there are two
distinct branches intersecting at the origin. Also, we have

I[z2g − x2g+2, (2g + 1)x2g+1](S) = I[z2g − x2g+2, x2g+1](S) = (2g + 1) · 2g = 4g2 + 2g.

As we have chosen the x coordinate for the projection, ν(S) = 2g + 2. Therefore,

δ(S) :=
1

2
(I[p,

∂p

∂x
](S)− ν(S) + #π−1{S}) = 1

2

(
4g2 + 2g − 2g − 2 + 2

)
= 2g2.

Hence, the genus is

1

2
(d− 1)(d− 2)−

∑
S∈Sing(P )

δ(S) =
1

2
(2g + 1) · 2g − 2g2 = g.

Remark 5.2.13. We also could have used Theorem 5.2.7, as the Milnor number can be easily
calculated to be µ(S) = (2g + 1)(2g − 1) = 4g2 − 1, implying

δ(S) =
1

2

(
µ(S) + #π−1{S})− 1

)
=

1

2

(
4g2 − 1 + 2− 1

)
= 2g2.
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