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2 Introduction

2.1 Motivation and history

The problem of optimal mass transportation was introduced by Monge at the end of the 18th cen-

tury and then further improved by Kantorovich in the 1940s. Around the 1980s, analysts started

to work in the field of optimal transport (abbreviated OT) more significantly, and since then it has

evolved into an ever-growing area of research in analysis. Among the diverse application areas

of optimal transport we should highlight the solutions of partial differential equations, geometry,

stochastic analysis and various topics in mathematical physics, especially in fluid mechanics. Fur-

thermore, the optimal transportation of information plays an important role in the mathematical

theory of artificial intelligence, machine learning and image processing, so the recent rapid devel-

opment of these areas attracts even more attention to OT [16]. Obviously the nature of the problem

also implies application opportunities in Economics, since the transport cost minimization problem

can be efficiently adapted to real life transportation problems.

Quantum optimal transport problems (abbreviated QOT), i.e., the classical optimal transport

problems formulated using the framework of quantum mechanics are also of growing interest in

the last decades. The non-commutativity of the quantities used in the quantum formulation usually

makes the questions more difficult, thereby the solutions require a different approach. QOT is a

widely applicable area as well, particularly in quantum information theory, but it can be used for

quantum walks, quantum automata and quantum games, too [10].

The purpose of my thesis is to provide a brief introduction to both the theory of classical

transport and the mathematical framework used in quantum mechanics, then, by fusing these two

areas, to briefly describe different approaches to quantum optimal transport problems. Among

these approaches, we are going to deal with the quantum channel formulation by De Palma and

Trevisan [6] in more detail.
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2.2 The classical optimal transport problem

Assume that we have some bakeries located in a country which produce a given quantity of bread

every day. We also know how much bread a town needs per day to feed its population and we have

a function which describes the cost of transporting a unit mass of bread from bakery x to town y.

Our aim is to create a plan for transporting the bread from bakeries to towns so that the total cost

of the transportation is minimal.

The classical optimal transport problem was first formulated mathematically by the French

mathematician Gaspard Monge in 1781 in the following way [13]. We define the problem using

the notations from Topics in Optimal Transportation by Cédric Villani [20].

We are given two measure spaces (X ,AX ,µ) and (Y,AY ,ν) on the Polish spaces (separable,

complete metric spaces) X and Y such that µ(X) = ν(Y ) < ∞. Without loss of generality we can

assume that µ(X) = ν(Y ) = 1, therefore µ and ν are both probability measures. The measure µ

describes the initial distribution of products on the set X and ν describes the required distribution

of products after the transportation. Moreover the cost function c(x,y) : X ×Y → R+∪{+∞} is a

measurable function which describes the cost of transporting one unit of the product from location

x to location y.

Monge formulated the problem in the way that we cannot split the mass of products, i.e. we

have to transport all the products from location x to the same location. In this case a transportation

plan can be given by a measurable map T : X →Y , where we transport the mass from location x to

location T (x).

Definition 2.1 (Pushforward of a measure). If T : X → X is a map and (X ,A ,µ) is a measure

space, for A ⊂ X we denote (T #µ)[A] := µ[T−1(A)] = µ[x ∈ X : T (x) ∈ A] and call it the pushfor-

ward of µ by T .

It is obvious that among the measurable maps T : X →Y the ones which describe a transporta-

tion from µ to ν are exactly those for which ν = µ ◦T−1.

The total cost of the transportation given by the transport map T is the following integral:

I[T ] :=
∫

X
c(x,T (x))dµ(x).
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Optimal transport plans can be found by minimizing on the set of all maps T which meet the

above described conditions.

The problem remained unsolved for a long time and some further modification of the conditions

was needed to create a more tangible formulation of the problem.

The most conspicuous issue with Monge’s formulation is that such a map T which meets the

conditions does not always exist. Indeed, let us consider X = Y = [−1,1] with Dirac-masses:

µ = δ0,ν = 1
2δ−1 +

1
2δ1. All the mass from x = 0 must be transported into the same point, so no

transfer map will have image ν .

It took more than 150 years until a Russian mathematician Leonid Vitalyevich Kantorovich

suggested a relaxed version of the optimal transport problem [11]. The starting point is similar, we

are again given two probability distributions: µ and ν on the sets X and Y . The set of probability

measures on the set X is denoted as Prob(X). However, now instead of transfer maps we consider

transference plans, which are probability measures on the product space X ×Y .

Definition 2.2 (Transference plan). A transference plan between the probability measures µ ∈

Prob(X) and ν ∈ Prob(Y ) is a probability measure π ∈ Prob(X ×Y ) such that∫
Y

dπ(x,y) = dµ(x) and
∫

X
dπ(x,y) = dν(y),

or in other words π[A×Y ] = µ[A] and π[X ×B] = ν [B] for all measurable subsets A ⊂ X ,B ⊂ Y .

This definition describes a π with marginals µ and ν , so it meets our expected condition that

the total mass transported from location x is dµ(x) and the total mass transported to location y is

dν(y).

In this case the transport cost corresponding to a given probability measure π is

I[π] :=
∫

X×Y
c(x,y)dπ(x,y).

Let Π(µ,ν) denote the set of transference plans from µ to ν . Using these notations Kan-

torovich’s optimal transport problem is formulated as finding

inf
π∈Π(µ,ν)

(∫
X×Y

c(x,y)dπ(x,y)
)
.
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One of the most important aspects in which Kantorovich’s problem differs from Monge’s is that

now mass from a given location can be split. The set Π(µ,ν) is always nonempty, since µ ⊗ν ∈

Π(µ,ν).

The Kantorovich problem with a specific class of cost functions admits a dual formulation.

Definition 2.3 (Lower semi-continuous function). A function f : X → R∪ {−∞,+∞} is lower

semi-continuous at x0 ∈ X if liminfx→x0 f (x)≥ f (x0).

Theorem 2.4 (Kantorovich duality, Theorem 1.3. in[20]). Let X ,Y be Polish spaces, µ ∈Prob(X),ν ∈

Prob(Y ) and let c : X ×Y → R+∪{+∞} be a lower semi-continuous function.

If Φc = {(ϕ,ψ) ∈ L1(dµ)×L1(dν) : ϕ(x)+ψ(y)≤ c(x,y) for (µ ⊗ν)-every (x,y)} and

J(ϕ,ψ) =
∫

X ϕdµ +
∫

Y ψdν , then

(i)

inf
Π(µ,ν)

I[π] = sup
Φc

J(ϕ,ψ).

(ii) infΠ(µ,ν) I[π] = minΠ(µ,ν) I[π], i.e. the infimum is attained.

In the case of X = Y and the cost function being a distance (proper metric), that is c(x,y) =

d(x,y), the cost of the optimal transport

W1(µ,ν) := inf
π∈Π(µ,ν)

(∫
X×X

d(x,y)dπ(x,y)
)

is a distance between probability distributions over X called the Wasserstein distance of order

1. Similarly we can define the Wasserstein distance of order p for all p ≥ 1 values as

Wp(µ,ν) := inf
π∈Π(µ,ν)

(∫
X×X

d(x,y)pdπ(x,y)
)1/p

.

2.3 Prerequisites from linear algebra

The formulation of quantum mechanics is based on linear algebra, but physicists tend to use dif-

ferent notations than linear algebra textbooks for mathematicians, so let us start this chapter by
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reviewing the most important algebraic concepts and notations. Most of our notations and defini-

tons are the same as in [14], which is considered a fundamental book in quantum information

theory.

In quantum mechanics we usually consider a finite- or infinite-dimensional complex vector

space V as the starting point of our calculations. In 1939, Paul Dirac proposed the use of the so-

called bra-ket notation, which has since become a standard notation used in quantum mechanics.

In this system vectors are denoted as |ϕ⟩ and we call this object a ket.

On the vector space V we define an inner product (,), which is a mapping V ×V →C satisfying

the following properties:

(i) conjugate symmetry: (|ϕ⟩ , |ψ⟩) = (|ψ⟩ , |ϕ⟩),

(ii) linearity in the second argument: (|ξ ⟩ ,z1 · |ϕ⟩+ z2 · |ψ⟩) = z1 · (|ξ ⟩ , |ϕ⟩)+ z2 · (|ξ ⟩ , |ψ⟩),

(iii) positive definiteness: (|ϕ⟩ , |ϕ⟩)≥ 0 for all |ϕ⟩ and (|ϕ⟩ , |ϕ⟩)> 0 for all |ϕ⟩ ̸= 0.

From the first and second properties it is easy to show that the inner product is conjugate linear

in its first argument. The standard inner product on Cn is defined as (v,w) := ∑
n
i=1 vi ·wi.

The standard bra-ket notation for the inner product is ⟨ϕ|ψ⟩ := (|ϕ⟩ , |ψ⟩).

Definition 2.5 (Hilbert space). A Hilbert space is a linear space equipped with an inner product,

which is complete with respect to the norm induced by the inner product.

It can be shown that every finite-dimensional inner product space is a Hilbert space. From now

on in this section we consider the case dimV < ∞.

The dual of the vector |ϕ⟩ is denoted as ⟨ϕ|, and we call it a bra. This dual is a linear functional

⟨ϕ| : V → C which maps each |ψ⟩ ∈V to ⟨ϕ|ψ⟩ ∈ C.

AT is the transpose of the matrix A, A∗ is the entry-wise complex conjugate and A† = (AT )∗ is

the adjoint or Hermitian conjugate.

Besides vectors, the other most important objects are linear operators. The map A : V →W is

a linear operator from the vector space V to another vector space W if

A

(
∑

i
zi |ϕi⟩

)
= ∑

i
ziA(|ϕi⟩) for all z1, . . . ,zm ∈ C and |ϕ1⟩ , . . . , |ϕm⟩ ∈V.
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Instead of A(|ϕ⟩) we often use the shorter notation A |ϕ⟩. Some frequently used linear operators

are the identity operator I, which maps all vectors to themselves, and the zero operator 0, which

maps all vectors to the zero vector.

For the composition of two linear operators we use the notation (BA)(|ϕ⟩) := B(A |ϕ⟩), i.e. the

operators act on the vectors from right to left.

If the dimensions of the vector spaces V and W are dim V = n,dim W = m, then the linear

operators A : V →W can be represented by complex m×n matrices if we fix a basis |v1⟩ , . . . , |vn⟩

in V , a basis |w1⟩ , . . . , |wm⟩ in W and we define the matrix A ∈ Cm×n so that

A |v j⟩=
m

∑
i=1

Ai j |wi⟩ .

The Pauli matrices are four 2× 2 complex matrices, which frequently occur in quantum me-

chanics, especially in quantum computing, where they represent the Pauli gates in quantum cir-

cuits. These four matrices are:

I =σ0 =

1 0

0 1

 ,X =σ1 =σx =

0 1

1 0

 ,Y =σ2 =σy =

0 −i

i 0

 ,Z =σ3 =σz =

1 0

0 −1

 .

The Pauli matrices form a basis of the 2×2 Hermitian (A = A†) matrices over the real numbers,

they also form a basis of all 2× 2 complex matrices over the complex numbers, they are unitary

(U∗ =U−1) and have trace 0 (except for σ0).

Definition 2.6 (Orthogonality). The vectors |ϕ⟩ and |ψ⟩ are orthogonal if ⟨ϕ|ψ⟩= 0.

The norm of a vector |ϕ⟩ is || |ϕ⟩ || :=
√
⟨ϕ|ϕ⟩. Unit vectors are vectors with norm 1. A set of

vectors {ϕi}i∈I is orthonormal if

⟨ϕi|ϕ j⟩= δi j =

1, if i = j

0, otherwise .

With the Gram–Schmidt procedure the existence of an orthonormal basis in every finite-dimensional

vector space can be shown. In our calculations we always choose orthonormal bases for the matrix

representation of the linear operators and if the operator maps the vector space to itself, we use
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the same orthonormal basis for the domain and the codomain. This convention makes defining

the inner product of two vectors more convenient. Indeed, if |ϕi⟩i∈I is an orthonormal basis in the

vector space V and for the vectors |ψ⟩ , |ξ ⟩ ∈V we have |ψ⟩= ∑i∈I ψi |ϕi⟩ and |ξ ⟩= ∑ j∈I ξ j |ϕ j⟩,

then

⟨ψ|ξ ⟩=

(
∑
i∈I

ψi |ϕi⟩ ,∑
j∈I

ξ j |ϕ j⟩

)
= ∑

i, j∈I
ψ

∗
i ξ j ⟨ϕi|ϕ j⟩= ∑

i, j∈I
ψ

∗
i ξ jδi j = ∑

i∈I
ψ

∗
i ξi.

So the vectors |ϕ⟩ of the vector space V can be represented as row vectors and the duals ⟨ϕ| of

the vectors as row vectors with coordinates conjugate to the vector |ϕ⟩.

The bra-ket notation also makes it possible to define the outer product of vectors in an insightful

way.

Definition 2.7 (Outer product of vectors). If |ϕ⟩ ∈ V, |ψ⟩ ∈ W, then let |ψ⟩⟨ϕ| : V → W be the

linear operator defined as

(|ψ⟩⟨ϕ|)(|ξ ⟩) := |ψ⟩⟨ϕ|ξ ⟩= ⟨ϕ|ξ ⟩ · |ψ⟩ .

The linear combination of such operators is defined similarly, i.e. ∑i zi |ψi⟩⟨ϕi| is a linear

operator, which maps the vector |ξ ⟩ to ∑i zi |ψi⟩⟨ϕi|ξ ⟩.

The outer product notation can be used to write the identity operator in a different form:

Theorem 2.8 (Completeness relation for orthonormal vectors). If the vector space V has an or-

thonormal basis (|i⟩)i∈I , then ∑i |i⟩⟨i|= IV .

Proof. (|i⟩)i∈I is an orthonormal basis, hence every vector |ϕ⟩ ∈V can be written as |ϕ⟩= ∑i ϕi |i⟩.

We have seen before, that for orthonormal bases ⟨ϕ|ψ⟩= ∑i ϕ∗
i ψi, hence ϕi = ⟨i|ϕ⟩, so(

∑
i
|i⟩⟨i|

)
|ϕ⟩= ∑

i
|i⟩⟨i|ϕ⟩= ∑

i
ϕi |i⟩= |ϕ⟩

We can represent an arbitrary linear operator A : V →W using the completeness relation. Sup-

posing (|ϕi⟩)i∈I is an orthonormal basis in V and (|ψ j⟩) j∈J is an orthonormal basis in W , we have

IV = ∑i |ϕi⟩⟨ϕi| and IW = ∑ j |ψ j⟩⟨ψ j|.

A = IW AIV = ∑
i∈I, j∈J

|ψ j⟩⟨ψ j|A |ϕi⟩⟨ϕi|= ∑
i∈I, j∈J

⟨ψ j|A |ϕi⟩ |ψ j⟩⟨ϕi| .
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Definition 2.9 (Eigenvector, eigenvalue). The vector |v⟩ is an eigenvector of the linear operator

A : V →V with eigenvalue λ ∈ C if A |v⟩= λ |v⟩.

Definition 2.10 (Diagonal representation). A linear operator A acting on V is diagonalizable if

there exists an orthonormal set (|i⟩)i∈I of its eigenvectors such that A = ∑i λi |i⟩⟨i|.

If A is a bounded linear operator on a Hilbert space H (in this finite-dimensional case ev-

ery linear operator is bounded), the Riesz representation theorem states that there exists a unique

bounded linear operator denoted as A† such that (|ϕ⟩ ,A |ψ⟩) = (A† |ϕ⟩ , |ψ⟩) for all |ϕ⟩ , |ψ⟩ ∈ V .

We call the operator A† the adjoint or the Hermitian conjugate of A.

Definition 2.11 (Hermitian operator). An operator A is Hermitian or self-adjoint if A† = A.

Theorem 2.12. All eigenvalues of a Hermitian operator are real.

Proof. If A = A† is a Hermitian operator with an eigenvector |v⟩ and a corresponding eigenvalue

λ , then by the properties of the complex inner product we have

λ ⟨v|v⟩ = ⟨v|λv⟩ = ⟨v|Av⟩ = ⟨A†v|v⟩ = ⟨Av|v⟩ = ⟨λv|v⟩ = λ ⟨v|v⟩, and the eigenvector |v⟩ is

nonzero, hence by the positive definiteness of the inner product we have ⟨v|v⟩> 0, therefore λ = λ

, so λ ∈ R.

Definition 2.13 (Projector). Let V be a vector space with a subspace W, dim V = n, with an

orthonormal basis |1⟩ , . . . , |n⟩ and dim W = k with the basis |1⟩ , . . . , |k⟩, which is obviously or-

thonormal as well.

P := ∑
k
i=1 |i⟩⟨i| is called the projector operator into the subspace W.

It is important to emphasize that this definition is independent of the choice of the orthonormal

basis. It can be shown that P is Hermitian and its orthogonal complement Q := I−P is a projector

onto the subspace of V spanned by |k+1⟩ , . . . , |n⟩. Now we define some operator classes and look

through their most important properties.

Definition 2.14 (Normal operator). An operator A is normal if it commutes with its Hermitian

conjugate, i.e. AA† = A†A.
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One of the most frequently used results in operator theory is the following.

Theorem 2.15 (Spectral decomposition theorem). An operator A : V →V is diagonal with respect

to an orthonormal basis of V if and only if it is normal.

It can also be shown that a normal matrix is Hermitian if and only if all of its eigenvalues are

real. Using the spectral decomposition theorem we can create operator functions from a given

function f : C→C, for example we can take the n-th root or the exponential of a normal operator.

If A is a normal operator with A = ∑i∈I λi |ϕi⟩⟨ϕi| spectral decomposition, we define f (A) as

f (A) := ∑i∈I f (λi) |ϕi⟩⟨ϕi|.

Theorem 2.16 (Pauli matrix exponentials). If v⃗ ∈ R3, ||⃗v|| = 1 and t ∈ R, then exp(it⃗v · σ⃗) =

cos(t)I + isin(t )⃗v · σ⃗ , where v⃗ · σ⃗ = ∑
3
j=1 v jσ j.

Definition 2.17 (Unitary operator). An operator U acting on a finite dimensional vector space V

is unitary if UU† = IV or equivalently U†U = IV .

Theorem 2.18 (Properties of unitary operators [19]). Let H be a finite dimensional Hilbert space

and U : H → H be a bounded linear operator. The following properties are equivalent:

(i) U is an isometry: ||Ux||= ||x|| for all x ∈ H ,

(ii) U preserves the inner product: ⟨Ux|Uy⟩= ⟨x|y⟩ for all x,y ∈ H ,

(iii) U is unitary.

This result implies that if (|ϕi⟩)i∈I is an orthonormal basis and U is unitary, then the set of

the vectors|ψi⟩ :=U |ϕi⟩ is also orthonormal and U = ∑i∈I |ψi⟩⟨ϕi|. It can also be shown that the

operator defined with the two orthonormal bases (|ϕi⟩)i∈I and (|ψi⟩)i∈I as A := ∑i∈I |ψi⟩⟨ϕi| is

unitary.

Definition 2.19 (Positive operator). An operator A : V → V is positive if (|ϕ⟩ ,A |ϕ⟩) ≥ 0 for all

|ϕ⟩ ∈V . If the stricter condition (|ϕ⟩ ,A |ϕ⟩)> 0 holds for all |ϕ⟩ ≠ 0, then the operator is positive

definite.
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Theorem 2.20 (Square root of positive operator [19]). Let H be a complex Hilbert space and let

A ∈ B(H ) be a positive operator. There exists a unique positive operator B ∈ B(H ) such that

B2 = A.

Definition 2.21. We call the positive operator B the positive square root of the positive operator A

if B2 = A. The positive square root is denoted as A1/2 or
√

A.

We continue by defining the tensor product of Hilbert spaces, which is an essential tool used

in the description of composite quantum systems. If V and W are Hilbert spaces with dim V =

n,dim W = m, then their tensor product space is an mn-dimensional Hilbert space denoted as

V ⊗W . The elements of the tensor product space are linear combinations of elements of the form

|ϕ⟩⊗ |ψ⟩, where |ϕ⟩ ∈V, |ψ⟩ ∈W . If the space V has an orthonormal basis (|i⟩)n
i=1 and the space

W has an orthonormal basis(| j⟩)m
j=1, then by definition the space V ⊗W has an orthonormal basis

(|i⟩)n
i=1 ⊗| j⟩)m

j=1.

The tensor product has to satisfy the following properties:

• z(|ψ⟩⊗ |ξ ⟩) = (z |ψ⟩)⊗|ξ ⟩= |ψ⟩⊗ (z |ξ ⟩) for z ∈ C, |ψ⟩ ∈V, |ξ ⟩ ∈W ,

• (|ψ1⟩+ |ψ2⟩)⊗|ξ ⟩= |ψ1⟩⊗ |ξ ⟩+ |ψ2⟩⊗ |ξ ⟩ for |ψ1⟩ , |ψ2⟩ ∈V, |ξ ⟩ ∈W ,

• |ψ⟩⊗ (|ξ1⟩+ |ξ2⟩) = |ψ⟩⊗ |ξ1⟩+ |ψ⟩⊗ |ξ2⟩ for |ψ⟩ ∈V, |ξ1⟩ , |ξ2⟩ ∈W .

Linear operators on the tensor product space can be defined in the following way. Let A : V →V

and B : W → W be linear operators, then let A ⊗ B : V ⊗W → V ⊗W be an operator defined

as (A⊗B)(|ψ⟩⊗ |ξ ⟩) := A |ψ⟩⊗B |ξ ⟩ for |ψ⟩ ∈ V, |ξ ⟩ ∈ W . If we extend this definition for all

elements of V ⊗W linearly, we get the linear operator A⊗B.

With the help of the inner product on V and W , we can also define an inner product on V ⊗W

as: (
∑

i
zi |ϕi⟩⊗ |ξi⟩ ,∑

j
w j |ψ j⟩⊗ |ζ j⟩

)
:= ∑

i, j
z∗i w j ⟨ϕi|ψ j⟩⟨ξi|ζ j⟩ .

We represent the tensor product in a fixed basis by the Kronecker product.
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The Kronecker product of the A ∈ Ci× j and B ∈ Ck×l matrices is a Cik× jl matrix

A⊗B =


a1,1B . . . a1, jB

... . . . ...

ai,1B . . . ai, jB

 .

For example

1 2

3 4

⊗

5 6

7 8

=


1 ·

5 6

7 8

 2 ·

5 6

7 8


3 ·

5 6

7 8

 4 ·

5 6

7 8



=


5 6 10 12

7 8 14 16

15 18 20 24

21 24 28 32

 .

The Kronecker product is bilinear and associative, however it is not commutative.

Claim 1 (Mixed product property). If the AC and BD matrix products exist, then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

The mixed product property has the important consequence that for A ∈Ci× j and B ∈Ck×l the

equality A⊗B = (Ii ⊗B)(A⊗ Il) = (A⊗ Ik)(I j ⊗B) holds.

Definition 2.22 (Trace of matrix). The trace of a matrix A is tr(A) = ∑i Aii.

It can be easily shown that the trace has the cyclic property, i.e. tr(AB) = tr(BA), and it is

complex linear, i.e. tr(A+B) = tr(A)+ tr(B), tr(zA) = z · tr(A).

Two matrices A and B are similar if there exists an invertible matrix P such that B = PAP−1,

which means that A and B represent the same linear map in two different bases. The cyclic property

of the trace implies that tr(B) = tr(PAP−1) = tr(AP−1P) = tr(A), therefore the trace of an operator

is well-defined as the trace of one of its matrix representations.

For operators in infinite-dimensional spaces we need another definition of the trace.

Definition 2.23 (Separable Hilbert space). The Hilbert space H is separable if it contains a count-

able dense subset. This condition can be shown to be equivalent with containing a countable

orthonormal basis.
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Definition 2.24 (Trace of operator). If H is a separable Hilbert space with an orthonormal basis

(|ϕk⟩)∞
k=1 and A : H → H is a positive bounded linear operator, then the trace of A is defined as

tr(A) = ∑
∞
k=1(A |ϕk⟩ , |ϕk⟩) = ∑

∞
k=1 ⟨ϕk|A|ϕk⟩.

As in the finite-dimensional case, the trace is also independent of the choice of basis in the

countably infinite-dimensional case. It is well-known that for an arbitrary linear operator A the

operator |A| :=
√

A†A is a positive semidefinite operator.

Definition 2.25 (Trace-class operator). A bounded linear operator A : H → H is trace-class if

tr(|A|) = tr(
√

A†A)< ∞.

The trace-norm of a trace-class operator A is ||A||1 := tr(|A|) . The set of trace-class operators

on H is denoted as T1(H ).

Definition 2.26 (Hilbert–Schmidt inner product). Let H be a Hilbert space. The set of linear

operators LH = {A : H → H , A is linear} forms a complex vector space. This vector space can

be equipped with the inner product (A,B) := tr(A†B), under which it becomes a Hilbert space.

This inner product is called the Hilbert–Schmidt or trace inner product.

Definition 2.27 (Trace norm). The trace norm of a matrix A is defined as ||A||1 = tr(
√

A†A).

2.4 Foundation of quantum mechanics

After summarizing the most important concepts of linear algebra, let us continue with an overview

of the fundamental principles and definitions of quantum mechanics.

Quantum mechanics is a mathematical framework used to describe physical systems where

classical mechanics fails, such systems on the microscopic scale. A complete introduction to the

quantum mechanical formalism would far exceed the scope of this thesis, so we will focus on

presenting the basic principles and the concepts that will be applied later.

Postulate 2.28 (1. State space). To any isolated physical system (it may not exchange matter or

energy with its surroundings) we can associate a complex Hilbert space called the state space of

the system. The state of the system is described by a state vector, a unit vector in the state space.
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The simplest quantum mechanical system is the qubit, which is a system with a two-dimensional

Hilbert space. The elements of the standard orthonormal basis called the computational basis are

usually denoted as |0⟩ = (1,0) and |1⟩ = (0,1). The state vectors of the phase space are of the

form |ψ⟩= z0 |0⟩+ z1 |1⟩, where z1,z2 ∈ C and |ψ⟩ is a unit vector, i.e. |z1|2 + |z2|2 = 1.

In general, we call ∑i zi |ψi⟩ the superposition of the states |ψi⟩, where the state |ψi⟩ has ampli-

tude zi.

Postulate 2.29 (2. Evolution). The time evolution of an isolated quantum system can be described

by a unitary operator U , i.e. if |ψt⟩ denotes the state of the system at time t, then |ψt2⟩=U |ψt1⟩.

As we have already mentioned before, the Pauli matrices are unitary. The Pauli matrix X is

also called the bit flip matrix, because it maps |0⟩ to |1⟩ and vice versa:0 1

1 0

1

0

=

0

1

 ,

0 1

1 0

0

1

=

1

0

 .

The Pauli matrix Z is usually referred to as the phase flip channel, because it fixes the |0⟩ state

and maps |1⟩ to −|1⟩.

The second postulate has another form, which describes the evolution of the system in contin-

uous time with a differential equation called the Schrödinger equation:

ih̄
d |ψ⟩

dt
= H |ψ⟩ ,

where h̄ is a constant called the reduced Planck constant, |ψ⟩ is the state of the system and H is a

Hermitian operator called the Hamiltonian of the system.

The operator H is Hermitian and hence normal, so it has a spectral decomposition H =∑E E |E⟩⟨E|,

where the vectors |E⟩ are normalized. We call the states |E⟩ the energy eigenstates or stationary

states with energy E. The lowest energy that is the smallest eigenvalue of H is called the ground

state energy and its corresponding state is the ground state.

We get a Cauchy-type differential equation, which we can easily solve formally, however com-

puting the exact value of ψ(t) often leads to difficult problems depending on the complexity of the

Hamiltonian H.
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ih̄∂tψ(t) = Hψ(t)

ψ(0) = ψ0

The solution has the form ψ(t) = e−i H
h̄ t ·ψ0.

Now let us consider the Schrödinger equation of a free particle (the Hamiltonian does not

contain a potential term, only a kinetic term) in one dimension, which has the form

ih̄∂tψ(t,x) =− h̄2

2m
∂

2
x ψ(t,x).

We use the method of variable separation, so we are looking for a solution of the form ψ(t,x) =

f (t)g(x) and we assume that ψ(x, t) ̸= 0.

The Schrödinger equation becomes

ih̄ f ′(t)g(x) =− h̄2

2m
g′′(x) f (t).

If we divide both sides by ψ(t,x), then we can observe that the left side only depends on the

variable t and the right side only depends on the variable x, which means that they can be equal for

all t and x values only if both sides are equal to a constant, which will be denoted as E.

ih̄
f ′(t)
f (t)

=− h̄2

2m
g′′(x)
g(x)

:= E.

We can solve the two ordinary differential equations separately. The first equation is

ih̄
f ′(t)
f (t)

= E ⇔ f ′(t) =− iE
h̄

f (t),

which has the solution f (t) = f (0) · e− iE
h̄ t .

The second equation is

− h̄2

2m
g′′(x)
g(x)

= E ⇔ g′′(x) =−2mE
h̄2 g(x),

which is a second order linear homogenous ordinary differential equation with constant coeffi-

cients.

Introducing the notation k :=
√

2mE
h̄2 , the solution is g(x) = Aeikx +Be−ikx. (We can derive it

from the characteristic equation r2 + k2 = 0 ⇒ r = ±ik and the fact that if the roots are α ± iβ ,

then the solutions have the form eαx(c1 cos(βx)+ c2 sin(βx)).)
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We have obtained that the general form of the solution is

ψ(t,x) = e−
i
h̄ Et(Aeikx +Be−ikx),

where the coefficients A,B can be determined from the boundary condition ψ(0,x) = ψ0(x).

We successfuly described the evolution of a particular isolated quantum system, however when

we observe a quantum mechanical system, our measuring devices interact with the system, which

causes changes in the initial system, so it is no longer an isolated system.

The third postulate defines measurement in quantum mechanical systems.

Postulate 2.30 (3. Quantum measurement). A quantum measurement is a set of linear operators

{Mm}m∈J called measurement operators. J is the set of possible outcomes of the measurement.

The probability of the outcome m ∈ J in the measurement of a system in state |ψ⟩ is given by

p(m) = ⟨ψ|M†
mMm|ψ⟩ .

If the outcome is m, then the state of the system collapses into

Mm |ψ⟩√
⟨ψ|M†

mMm|ψ⟩
=

Mm |ψ⟩√
p(m)

.

Of course we must require that the sum of the probabilities of the possible outcomes is 1, i.e.

∑
m∈J

p(m) = ∑
m∈J

⟨ψ|M†
mMm|ψ⟩= 1.

Claim 2 (Completeness equation). The condition ∑m∈J M†
mMm = I called the completeness equa-

tion is equivalent to the condition that ∑m∈J ⟨ψ|M†
mMm|ψ⟩= 1 for all states |ψ⟩ .

Proof. If ∑m∈J M†
mMm = I, then for any state |ψ⟩ we have

∑m∈J ⟨ψ|M†
mMm|ψ⟩=

〈
ψ
∣∣∑m∈J M†

mMm
∣∣ψ〉= ⟨ψ|I|ψ⟩= 1.

On the other hand, ∑m∈J M†
mMm is positive and hence normal, so it has a spectral decompo-

sition. The condition ∑m∈J ⟨ψ|M†
mMm|ψ⟩ = 1 for all states implies that all the eigenvalues of

∑m∈J M†
mMm are 1, therefore ∑m∈J M†

mMm = I.
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To understand this concept let us consider a simple example, the measurement of a qubit in

the computational basis. We have a state vector |ψ⟩ = α |0⟩+β |1⟩ where |α|2 + |β |2 = 1 and a

quantum measurement consisting of two measurement operators,

M0 = |0⟩⟨0|=

1 0

0 0

 and M1 = |1⟩⟨1|=

0 0

0 1

 .

M†
0M0 =

1 0

0 0

 ·

1 0

0 0

=

1 0

0 0

 and M†
1M1 =

0 0

0 1

 ·

0 0

0 1

=

0 0

0 1

 ,

so applying the above formulae for the measurement outcomes we get

p(0) =
(

α β

)1 0

0 0

α

β

= |α|2andp(1) =
(

α β

)0 0

0 1

α

β

= |β |2.

The state after the measurement becomes

M0 |ψ⟩√
p(0)

=
1
|α|

·

1 0

0 0

α

β

=
α

|α|
|0⟩

if the outcome was 0 and

M1 |ψ⟩√
p(1)

=
1
|β |

0 0

0 1

α

β

=
β

|β |
|1⟩

if the outcome was 1.

An important question is whether certain quantum states are distinguishable with the help of

quantum measurement. By distinctiveness of a set of quantum states we mean that there exists

a quantum measurement such that if we measure an arbitrary state from our set, then we can

determine the measured state from the outcome of the measurement with zero error probability.

When the given set of states (|ψi⟩)i∈J is orthonormal, they are distinguishable with the

measurement M = ∪i∈J{Mi}∪{M0}, where Mi = |ψi⟩⟨ψi| for i ∈ J and for the completeness

equation M0 = I −∑i∈J |ψi⟩⟨ψi|. Indeed, for each i ∈ J we have

p(i) = ⟨ψi|M†
i Mi |ψi⟩= ⟨ψi|(|ψi⟩⟨ψi| |ψi⟩⟨ψi|) |ψi⟩= ⟨ψi|ψi⟩3 = 1,
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i.e. for the state |ψi⟩ the outcome of the measurement is i with probability 1, so we can distinguish

the states by applying this measurement.

However, it can be proved that two non-orthogonal quantum states cannot be distinguished

with any measurement. Frequently used measurements are the so-called projective measurements.

Definition 2.31 (Projective measurement). A projective measurement (or von Neumann measure-

ment) is a Hermitian operator A, which has a spectral decomposition A = ∑i∈J λiPi, where each Pi

is a projector operator onto the eigenspace of the operator M with eigenvalue λi.

Projective measurements are special cases of quantum measurements if we choose the set of

measurement operators {Mm}m∈J so that each Mm is a projector and they are pairwise orthogonal,

i.e. Mm1Mm2 = δm1,m2Mm1.

The possible measurement outcomes are the eigenvalues of A and the probability of each out-

come when measuring on a system being in the state |ψ⟩ is given by

p(λi) = ⟨ψ|P†
i Pi|ψ⟩ = ⟨ψ|Pi|ψ⟩, because by definition the projector operators Pi are Hermitian

(Pi = P†
i ) and P2

i = Pi.

If the measurement outcome is λi, the state collapses into Pi|ψ⟩√
p(i)

= Pi|ψ⟩
⟨ψ|Pi|ψ⟩ .

The expected value E(A) of the projective measurement A on a system being in state |ψ⟩ can be

computed as

⟨A⟩ψ = Eψ(A) = ∑
i∈J

λi p(λi) = ∑
i∈J

λi ⟨ψ|Pi|ψ⟩= ⟨ψ|

(
∑
i∈J

λiPi

)
|ψ⟩= ⟨ψ|A|ψ⟩ .

A common notation for the expected value of a measurement is ⟨M⟩ :=E(M), and the standard

deviation of the measurement outcomes is defined as ∆(M) :=
√

⟨M2⟩−⟨M⟩2, which corresponds

to the standard deviation commonly used in probability theory.

In quantum mechanics we call self-adjoint operators observables. The possible outcomes of

the measurement described by an observable are its eigenvalues, which are all real.

When investigating the statistics of a measurement, i.e. the probabilities of the different out-

comes, it is useful to introduce some new concepts called global and relative phases.

Definition 2.32 (Global phase factor). The state |ψ⟩ is equal to the state eiϑ |ψ⟩ up to the global

phase factor, where ϑ ∈ R.
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States that are equal up to the global phase factor are physically indistinguishable, because for

an arbitrary measurement the respective outcome probabilities are all equal:

(eiϑ |ψ⟩)† = ⟨ψ|e−iϑ and pψ(m) = ⟨ψ|M†
mMm|ψ⟩= ⟨ψ|e−iϑ M†

mMmeiϑ |ψ⟩= peiϑ ψ(m).

Definition 2.33 (Relative phase factor). Two states |ψ⟩ and |ξ ⟩ in a given basis differ by a rel-

ative phase if for each basis element |m⟩ there exists a ϑm ∈ R such that for the corresponding

coordinates ψm and ξm the equality ψm = eiϑ mξm holds.

The next postulate tells us how we can describe composite quantum systems which consist of

smaller systems.

Postulate 2.34 (4. Composite systems). The Hilbert space of a composite quantum physical sys-

tem is the tensor product of the Hilbert spaces of its component systems.

If |x⟩ is a state in the system A and |y⟩ is a state in the system B, then their tensor product

|x⟩⊗|y⟩ is a state in the composite system AB. However, not all elements can be expressed in such

a form. To see this, let us consider the two qubit state space, which has the computational basis

{|00⟩ , |01⟩ , |10⟩ , |11⟩} defined as

|00⟩= |0⟩⊗ |0⟩= (1,0,0,0)T , |01⟩= |0⟩⊗ |1⟩= (0,1,0,0)T ,

|10⟩= |1⟩⊗ |0⟩= (0,0,1,0)T , |11⟩= |1⟩⊗ |1⟩= (0,0,0,1)T .

Now we show that the state |ψ⟩ = 1√
2
(|00⟩+ |11⟩) cannot be expressed as the tensor product of

two single-qubit states.

Let us indirectly suppose that |ψ⟩= |x⟩⊗ |y⟩, where |x⟩= α |0⟩+β |1⟩ , |y⟩= γ |0⟩+δ |1⟩,

|α|2 + |β |2 = 1, |γ|2 + |δ |2 = 1.

|x⟩⊗ |y⟩=

α

β

⊗

γ

δ

=


αγ

αδ

βγ

βδ

=


1/
√

2

0

0

1/
√

2

= |ψ⟩ .

This means that αγ = 1√
2
,βδ = 1√

2
,αδ = 0,βγ = 0, which is a contradiction.

States of a composite system that cannot be expressed as the tensor product of states of the

components are called entangled states. The phenomenon of the quantum entanglement plays a
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fundamental role in several application areas of quantum information, for example in superdense

coding and quantum teleportation [14, page 96].

So far we have summarized the most important concepts of quantum mechanics, and now we

continue by describing an alternative approach using density operators instead of state vectors,

which makes a wider range of applications possible. The main difference of this approach from

the previous one is that now we do not know the current state of the observed system with certainty.

Instead, we only have a set {pi, |ψi⟩}i∈J called an ensemble of quantum states. We interpret this

ensemble as for each i ∈ J the system is in the state |ψi⟩ with probability pi.

Definition 2.35 (Density operator). For a given ensemble of states {pi, |ψi⟩} the density operator

is defined as ρ = ∑i∈J pi |ψi⟩⟨ψi| .

With the help of the density operator we can describe the evolution of a quantum system.

According to the second postulate the evolution is described by a unitary operator U , and if the

system was in state |ψi⟩ with probability pi, then after the action of the evolution operator it will be

in state U |ψi⟩ with probability pi. Therefore the evolution takes the operator ρ = ∑i∈J pi |ψi⟩⟨ψi|

to ∑i∈J piU |ψi⟩⟨ψi|U† =UρU†.

Definition 2.36 (Pure and mixed states). A quantum system is in a pure state ρ if its density

operator has rank 1, i.e. ρ = |ψ⟩⟨ψ|. If the system is not in a pure state, we call its state a

mixed state.

The density operator ρ is said to be the mixture of states ρi with probabilities pi if ρ = ∑i piρi.

We defined the density operator with the help of an ensemble of state vectors and probabilities, but

our aim is to provide a description of quantum mechanics which does not rely on state vectors at

all. The following theorem is a characterisation of density operators, which points in this direction.

Theorem 2.37. For an operator ρ there exists an ensemble {pi, |ψi⟩} if and only if tr(ρ) = 1 and

ρ is a positive operator.

We can distinguish pure states from mixed states with the following observation.

Theorem 2.38. For any density operator ρ we have tr(ρ2)≤ 1 and equality holds if and only if ρ

is a pure state.
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Proof. ρ is a positive operator, so it has a spectral decomposition ρ = ∑i pi |i⟩⟨i| in an orthonormal

basis. The positivity of ρ implies that pi ≥ 0 for all i and we also know from the trace condition

for density operators that 1 = tr(ρ) = tr(∑i pi |i⟩⟨i|) = ∑i tr(pi |i⟩⟨i|) = ∑i pi. Now we know that

0 ≤ pi ≤ 1 for all i.

Using the orthonormality of the basis we get

ρ
2 = ρ ·ρ =

(
∑

i
pi |i⟩⟨i|

)
·

(
∑

j
p j | j⟩⟨ j|

)
=∑

i, j
pi p j |i⟩⟨i| j⟩⟨ j|=∑

i, j
pi p j |i⟩⟨ j|δi, j =∑

i
p2

i |i⟩⟨i| ,

so tr(ρ2) = tr
(
∑i p2

i |i⟩⟨i|
)
= ∑i p2

i tr(|i⟩⟨i|) = ∑i p2
i ≤ ∑i pi ≤ 1,

and equality holds if and only if p2
i = pi for all i, which means that all states have probability 1 or

0, therefore ρ is a pure state.

The following theorem tells us about what sets of states generate the same density operator,

which is important in quantum information.

Theorem 2.39 (Unitary freedom for density operators). The ensembles {pi, |ψi⟩} and {q j, |ξ j⟩}

generate the same density operator ρ , i.e. ρ = ∑i pi |ψi⟩⟨ψi| = ∑ j q j |ξ j⟩⟨ξ j| if and only if there

exists a unitary matrix U = (ui j) such that for all i, j, the equality
√

pi |ψi⟩= ∑ j ui j
√q j |ξ j⟩ holds.

The statement of the theorem remains valid even if the two sets of states have different car-

dinalities, as the smaller set can be extended by adding states with corresponding probabilities

zero.

The introduction of the Bloch sphere provides a useful tool for a more precise understanding

of the qubit state space. The Bloch sphere gives us a geometric interpretation of qubit states and

graphically illustrates some quantum operations, for example certain quantum channels, which we

will describe later in details.

A state vector in the qubit phase space has the form |ψ⟩= α |0⟩+β |1⟩,

where |α|2 + |β |2 = 1. From the normalizing condition we can rewrite it as

|ψ⟩= eiγ (cos
(

ϑ

2

)
|0⟩+ eiϕ sin

(
ϑ

2

)
|1⟩
)
, where γ,ϑ ,ϕ ∈ R.

States equal up to the global phase factor are indistinguishable, sowe can ignore the coefficient eiγ
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and describe the qubit states with only two real parameters ϑ and ϕ , as

|ψ⟩= cos
(

ϑ

2

)
|0⟩+ eiϕ sin

(
ϑ

2

)
|1⟩ , where ϕ ∈ [0,2π] and ϑ ∈ [0,π].

With this notation the quantum states can be visualized on the surface of the unit sphere in R3

called the Bloch sphere [2].

The Bloch sphere representation can be generalized for mixed states, too.

Theorem 2.40 (Bloch sphere representation for mixed states). If ρ ∈ C2 is a density matrix, then

it can be written in the form ρ = I+⃗r·⃗σ
2 , where r⃗ ∈ R3, ||⃗r|| ≤ 1, σx,σy,σz are the Pauli matrices

and r⃗ · σ⃗ = r1 ·σx + r2 ·σy + r3 ·σz.

Proof. We know that the four Pauli matrices form a basis of the 2× 2 complex matrices over the

complex numbers and hence any ρ ∈ C2×2 can be written in the form

ρ = z1I + z2σx + z3σy + z4σz where z1,z2,z3,z4 ∈ C.

Density operators are positive and hence Hermitian and Pauli matrices are also Hermitian, so

ρ† = ρ = z1I+ z2σx+ z3σy+ z4σz. The coefficients of a vector in a basis are unique, so z j = z j for

all j ∈ {1,2,3,4}, i.e. the coefficients are real.

The trace of a density operator is 1 and the trace is linear, so

1 = tr(ρ) = tr(z1I + z2σx + z3σy + z4σz) = z1tr(I) = 2z1 ⇒ z1 =
1
2 .

Calculating ρ2 using that I2 = σ2
x = σ2

y = σ2
z = I, σxσy =−σyσx,σxσz =−σzσx,σyσz =−σzσy,
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we get

ρ
2 =

(
1
2

I + z2σx + z3σy + z4σz

)2

=
1
4

I2 + z2
2σ

2
x + z2

3σ
2
y + z4σ

2
z + z2σx + z3σy + z4σz+

+ z2z3σxσy + z2z3σyσx + z2z4σxσz + z2z4σzσx + z3z4σyσz + z3z4σzσy

=

(
1
4
+ z2

2 + z2
3 + z2

4

)
I + z2σx + z3σy + z4σz.

Now we can calculate the trace of the operator ρ2 and use the previously proven fact that

(ρ2)≤ 1 for any density operator ρ:

tr(ρ2) = 2 ·
(1

4 + z2
2 + z2

3 + z2
4
)
≤ 1 ⇔ z2

2 + z2
3 + z2

4 ≤
1
4 ⇔

√
z2

2 + z2
3 + z2

4 ≤
1
2 .

So ρ = 1
2 (I + z2σx + z3σy + z4σz), where

||⃗r||=
√

(2z2)2 +(2z3)2 +(2z4)2 = 2
√

z2
2 + z2

3 + z2
4 ≤ 1

.

It is also not difficult to see that ρ is a pure state if and only if ||⃗r||= 1.

Investigating composite quantum systems often requires describing the state of certain subsys-

tems, which makes it necessary to define the so-called reduced density operator. For this definition

we also need the definition of the partial trace of an operator.

Definition 2.41 (Partial trace [9]). Let H1 and H2 be two Hilbert spaces with orthonormal bases

(|ψi⟩)i ⊂ H1 and (|ξ j⟩) j ⊂ H2. Then (|ψi,ξ j⟩)i, j = (|ψi⟩ ⊗ |ξ j⟩)i, j is an orthonormal basis in

H1 ⊗H2. For a linear operator A = ∑i, j,k,l Ai, j,k,l |ψi,ξ j⟩⟨ψk,ξl| on H1 ⊗H2 the partial trace of

A over H1 is a linear operator on H2 defined as

trH1[A] = ∑
j,l

(
∑

i
Ai, j,i,l

)
|ξ j⟩⟨ξl| ,

and the partial trace of A over H2 is a linear operator on H1 defined as

trH2[A] = ∑
i,k

(
∑

j
Ai, j,k, j

)
|ψi⟩⟨ψk| .
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It can be proved that the partial traces do not depend on the choice of the bases.

Claim 3. For any X ∈ L (H1),Y ∈ L (H2),A ∈ L (H1 ⊗H2):

(i) trH1⊗H2

[(
X ⊗ IH2

)
A
]
= trH1

[
X · trH2[A]

]
.

(ii) trH1⊗H2

[(
IH1 ⊗Y

)
A
]
= trH2

[
Y · trH1[A]

]
.

Proof. We only prove (i), the case (ii) is similar.

trH1⊗H2

[(
X ⊗ IH2

)
A
]

= ∑
i, j

⟨ψi ⊗ξ j|(X ⊗ IH2)A|ψi ⊗ξ j⟩= ∑
i, j

⟨ψi|X · ⟨ξ j|A|ξ j⟩ |ψi⟩

= ∑
i
⟨ψi|X ∑

j
⟨ξ j|A|ξ j⟩ |ψi⟩= ∑

i
⟨ψi|X · trH2[A]|ψi⟩= trH1[X · trH2[A]].

Definition 2.42 (Reduced density operator [15]). If we have two systems described by the Hilbert

spaces H1 and H2 and the density operator of the composite system is ρ12, then the reduced

density operator for system H1 is ρ1 := trH2 [ρ12] and the reduced density operator for system H2

is ρ2 := trH1 [ρ12].

To understand these definitions, let us take an example. One of the Bell states on the two-qubit

system is defined as |Φ+⟩= 1√
2
(|00⟩+ |11⟩) , and hence its density operator is

ρ = |Φ+⟩⟨Φ+|= 1
2
(|00⟩+ |11⟩)(⟨00|+ ⟨11|) = 1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .

If ρ1 is the reduced density operator for the first qubit, then we have that A0,0,0,0 = A1,1,1,1 =

A0,0,1,1 = A1,1,0,0 =
1
2 and the other coordinates are all zero, hence
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ρ1 = tr2(ρ) = ∑
i,k

∑
j

Ai, j,k, j |ψi⟩⟨ψk|= A0,0,0,0 |0⟩⟨0|+A1,1,1,1 |1⟩⟨1|

=
1
2
(|0⟩⟨0|+ |1⟩⟨1|) = 1

2

1 0

0 1

 .

In the case of an n-particle quantum system, which is described by the tensor product ⊗n
i=1Hi

of n Hilbert spaces we can also take the partial trace corresponding to the i-th system as

trHi[A] ∈ L (⊗ j ̸=iH j), and for any I ⊆ {1, . . . ,n} subset of indices the corresponding reduced

density operator is ρI = tr{1,...,n}\I[ρ].

The most frequently used example is the n-qubit system, which is the tensor product of the

qubit Hilbert spaces Hi = C2 . Each of the subsystems has the previously defined basis {|0⟩ , |1⟩}

and the computational basis of the n-qubit system is defined as {|x⟩}x∈{0,1}n ⊆ (C2)⊗n.
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3 Quantum mechanical approach to optimal transport

3.1 Different approaches to the transport problem

Now that we have introduced the basic concepts of both optimal transport theory and quantum

mechanics, we can continue by connecting these two areas. For making it easier to notice the

similarities between the classical and the quantum formalism, we make a table which compares

these two. In quantum mechanical context L (H ) denotes the set of linear operators A : H →H ,

O(H ) stands for the set of observables (linear self-adjoint operators), S (H ) denotes the set of

density operators (self-adjoint, positive, unit trace linear operators) and P1(H ) stands for the set

of pure states ρ = |ψ⟩⟨ψ|.

concept classical notation quantum notation

underlying set X ,Y Hilbert space H

elements of the set x,y |ϕ⟩ ∈ H

complex-valued functions f : X → C
A ∈ L (H )

linear operator

adjoint f ∗ A∗

absolute value | f |2 A∗A

real-valued functions f : X → R A ∈ O(H ) observable

non-negative functions f : X → [0,∞)
A ∈ O(H ), A ≥ 0

positive observable

expectation
∫

X f (x)dµ(x) tr[ρA]

state of the system
p probability measure

on set X

ρ ∈ S (H )

density operator (state)

extremal states
Dirac measure:δy : X → R,

δy(x) = δxy = 1x=y

pure state: |ϕ⟩⟨ϕ|,

where ⟨ϕ|ϕ⟩= 1

composite systems Cartesian product X ×Y tensor product H1 ⊗H2
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The following two statements illustrate the analogy between marginal distributions in classical

optimal transport and partial traces in quantum optimal transport.

Claim 4. A probability measure π ∈ Prob(X ×Y ) has first marginal (π)1 = µ and second marginal

(π)2 = ν if and only if

∫∫
X×Y

f (x)dπ(x,y) =
∫

X
f (x)dµ(x)

and ∫∫
X×Y

g(y)dπ(x,y) =
∫

Y
g(y)dν(y)

for all f ∈ Cb(X),g ∈ Cb(Y ) continuous, bounded functions.

Claim 5. A linear operator A ∈ L (H1 ⊗H2) has partial traces trH2 [A] = A1 and trH1[A] = A2 if

and only if

trH1⊗H2[(X ⊗ IH2)A] = trH1[X ·A1]

and

trH1⊗H2[(IH1 ⊗Y )A] = trH2[Y ·A2]

for all linear operators X ∈ L (H1),Y ∈ L (H2).

Various distances can be defined between probability distributions, many of which also have

quantum analogues. For example, let us consider the total variation distance defined on a countable

probability space X between probability measures µ and ν as

||µ −ν ||TV := sup
A⊂X

|µ(A)−ν(A)|.

Theorem 3.1 ([17]). If X is a finite or countable probability space, then

||µ −ν ||TV := supA⊂X |µ(A)−ν(A)|= 1
2 ∑x∈X |µ(x)−ν(x)|.

Proof. B := {x∈X : µ(x)≥ ν(x)}. For an arbitrary A⊂X we have µ(A) = µ(A∩B)+µ(A\B) and

ν(A) = ν(A∩B)+ν(A\B) and from the definition of the set B we know that µ(A\B) ≤ ν(A\B),

hence µ(A)− ν(A) ≤ µ(A∩B)− ν(A∩B) ≤ µ(B)− ν(B). This yields supA⊂X µ(A)− ν(A) =
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µ(B)−ν(B). For symmetry reasons, we similarly obtain that

µ(A)−ν(A)≥ µ(A∩Bc)−ν(A∩Bc)≥ µ(Bc)−ν(Bc) and hence supA⊂X ν(A)−µ(A) = ν(Bc)−

µ(Bc).

Both measures are probability measures, so µ(B)+µ(Bc) = ν(B)+ν(Bc) = 1, so µ(B)−ν(B) =

ν(Bc)−µ(Bc), therefore supA⊂X |µ(A)−ν(A)|= µ(B)−ν(B) and also |µ(B)−ν(B)|= |µ(Bc)−

ν(Bc)| = 1
2 ∑x∈X |µ(x)− ν(x)|. Putting these two equations together we get the statement of the

theorem.

In the case of the quantum analogues of the classical distances, we define the distance between

quantum states on separable Hilbert spaces instead of between probability measures.

Theorem 3.2. ||A||1 = tr(
√

A†A) = ∑ j |λ j|, where λ j are the eigenvalues (with multiplicity) of the

matrix A.

The quantum counterpart of the total variation distance is the trace distance defined as

Dtr(ρ,σ) =
1
2

tr
√

(ρ −σ)†(ρ −σ) =
1
2
||ρ −σ ||1.

Theorem 3.3 (Unitary invariance). The trace norm of a matrix (and hence the total variation

distance) is unitarily invariant, i.e. for any unitary matrix U and arbitrary matrix A the equality

||UAU†||1 = ||A||1 holds.

Proof. ||A||1 = ∑ j |λ j|, where λ j are the eigenvalues of A, so it is sufficient to show that UAU† and

A have the same eigenvalues. Supposing A |v⟩= λ |v⟩ for a vector |v⟩ ≠ 0⃗, we have (UAU†)(U |v⟩)=

UA |v⟩=Uλ |v⟩= λ (U |v⟩), so λ is also an eigenvalue of UAU†. Similarly, if (UAU†) |v⟩= λ |v⟩,

then AU† |v⟩=U†λ |v⟩= λU† |v⟩, so A has eigenvalue λ .

3.2 Quantum channels

The quantum analogues of the Markov operators are quantum channels. Let us take a closer look

at these objects. For understanding Markov operators, we need the definition of a special type of

mapping between measurable spaces.
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Definition 3.4 (Markov kernel). Let (X ,A ) and (Y,B) be measurable spaces. κ is a Markov

kernel with source (X ,A ) and target (Y,B), if it is a mapping κ : B×X → [0,1] with the following

two properties:

• for all B0 ∈ B the function x 7→ κ(B0,x) is A -measurable,

• for all x0 ∈ X the function B 7→ κ(B,x0) is a probability measure on (Y,B).

An insightful example of a Markov kernel can be provided by reformulating a Markov process

on a countable space X . If X = Y and A = B = P(X) and κ is a Markov chain, then the σ -

additivity of measures ensures that we only have to define κ on the singleton sets {y} ∈Y for each

x∈X , because κ(B,x)=∑y∈B κ({y},x) for all x∈X and B∈B. Taking κ({y},x) :=P(y,x), where

P(y,x) is the transition probability from state x to state y we obtain a Markov kernel, furthermore,

for each Markov kernel we get a proper (possibly infinite) transition matrix for a Markov process.

Definition 3.5 (Markov operator). Let (X ,A ) be a measurable space and let V be the set of real

measurable functions f : (X ,A ) → (R,B(R)). The linear operator P on the set V is a Markov

operator if the following properties hold:

• P maps bounded functions to bounded functions,

• P(1) = 1, where 1 is the constant 1 function,

• for each f ≥ 0 function P f ≥ 0, i.e. it conserves positivity.

If certain topological properties hold for the measurable space, then each Markov operator P

can be written in the form (P f )(x) =
∫

X f (y)κ(x,dy), where κ(x,A) is a Markov kernel [7]. We

call this integral form the kernel representation of the Markov operator P.

Now we can move on to the definiton of a quantum channel, but before that we need the

definition of a completely positive operator, which is a stronger condition for an operator than

positivity.

Definition 3.6 (Completely positive operator). If H1 and H2 are Hilbert spaces and φ : B(H1)→

B(H2) is a linear map, then it induces the map idk ⊗ φ : Ck×k ⊗B(H1) → Ck×k ⊗B(H2),
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where the domain of the map can be interpreted as k× k matrices with elements in B(H1) and φ

transforms each of the matrix elements ai j into φ(ai j).

φ is said to be k-positive if idk ⊗φ is a positive map and completely positive if it is k-positive

for all k ∈ Z+.

Definition 3.7 (Quantum channel). Let H1 and H2 be Hilbert spaces and Φ : T1(H1)→T1(H2)

an operator. Φ is a quantum channel if it is

• linear,

• trace preserving, i.e. tr[Φ(A)] = tr[A] for all A ∈ T1(H1),

• completely positive.

This definition explains why quantum channels are often abbreviated as CPTP (completely

positive, trace preserving) maps.

The following theorem was proved by Choi in 1975 [4] and independently from his work

applied for quantum mechanics by Kraus in 1971 [12]. Let B(H1,H2) denote the set of bounded

linear operators from H1 to H2.

Theorem 3.8 (Choi–Kraus factorisation theorem [1]). If H1 and H2 are finite-dimensional Hilbert

spaces, then for a linear map Φ : B(H1)→ B(H2) these two conditions are equivalent:

1. Φ is completely positive,

2. there exists N ∈ N and operators {Ki}N
i=1 ⊆ B(H1,H2) such that

Φ(A) = ∑
N
i=1 KiAK†

i for all A ∈ H1.

As a corollary of this theorem, we can provide a characterisation of quantum channels.

Theorem 3.9 (Characterisation of quantum channels in the finite-dimensional case). If H1 and

H2 are finite-dimensional Hilbert spaces, then for a linear map Φ : B(H1)→ B(H2) these two

conditions are equivalent:

1. Φ is a quantum channel,
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2. there exists N ∈ N and operators {Ki}N
i=1 ⊆ B(H1,H2) such that

Φ(A) = ∑
N
i=1 KiAK†

i for all A ∈ H1, and ∑
N
i=1 K†

i Ki = 1H1 .

Definition 3.10 (Adjoint of quantum channel). If Φ : L (H1) → L (H2) is a quantum channel

with Kraus representation Φ(A) = ∑
N
i=1 KiAK†

i and ∑
N
i=1 K†

i Ki = 1H1 , then its adjoint

Φ† : L (H2)→ L (H1) with respect to the Hilbert–Schmidt inner product is given as

Φ†(A) := ∑
N
i=1 K†

i AKi.

As Φ†(1H2) = ∑
N
i=1 K†

i 1H2Ki = ∑
N
i=1 K†

i Ki = 1H1 for all A ∈ L (H2), the adjoint is unital.

To grasp how quantum channels work, let us take a look at some standard examples on qubit states,

i.e. C2×2 density operators.

Example 3.11 (Identity channel). The identity channel on qubit state acts as Φ(ρ) = ρ , and its

Kraus representation is given by only one Kraus operator, K1 =

1 0

0 1

.

Indeed, Φ(ρ) = K1ρK†
1 = ρ and K1K†

1 = I.

Example 3.12 (Depolarizing channel). The depolarizing channel maps the quantum state into

itself with probability 1− p and into the completely mixed state I
2 with probability p. In general

the completely mixed state is the state proportional to the identity matrix and it describes maximal

randomness as it is the uniform distribution over all the orthonormal basis states. The depolarizing

channel models the noise in the quantum system, because with nonzero probability the initial state

is replaced by some uniform noise.

The formula for the depolarizing channel is Φ(ρ) = (1− p)ρ + pI
2 .

Taking the Bloch representation of a quantum state ρ = 1
2 (I + r⃗ · σ⃗) and using the identities

XXX = X ,XY X =−Y,XZX =−Z,Y XY =−X ,YYY = Y,Y ZY =−Z,ZXZ =−X ,ZY Z =−Y,

ZZZ = Z, we obtain


XρX = 1

2 (I + rxX − ryY − rzZ)

Y ρY = 1
2 (I − rxX + ryY − rzZ)

ZρZ = 1
2 (I − rxX − ryY + rzZ) ,
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and therefore summing up these equations we get 1
4 (ρ +XρX +Y ρY +ZρZ) = I

2 .

Substituting this into the initial equation yields

Φ(ρ) = (1− p)ρ + p
(

1
4
(ρ +XρX +Y ρY +ZρZ)

)
=

(
1− 3p

4

)
ρ +

p
4
(XρX +Y ρY +ZρZ) .

So one possible choice of the Kraus operators is

K1 =

√
1− 3p

4
I,K2 =

√
p

2
X ,K3 =

√
p

2
Y,K4 =

√
p

2
Z.

Given a quantum mechanical system described by a self-adjoint time independent Hamiltionian

H, we can define a unitary quantum channel via the time evolution of the system.

For proving this we need a lemma about the properties of the adjoint.

Lemma 3.13 (Adjoint of matrix exponential). For any operator A, we have
(
eA)†

= eA†
.

Proof. By definition, eA = ∑
∞
n=0

An

n! = 1+A+ A2

2! + · · ·

Well-known properties of the adjoint are (AB)† = B†A†,(A+B)† = A† +B†,(cA)† = c∗A†.

Using the first one it is easy to see that (An)† = (A · · ·A)† = (A†)n, and therefore

(eA)† =

(
∞

∑
n=0

An

n!

)†

=
∞

∑
n=0

(
An

n!

)†

=
∞

∑
n=0

(An)†

n!
=

∞

∑
n=0

(A†)n

n!
= eA†

.

Now we can prove the following theorem.

Theorem 3.14 (Quantum channel of Hamiltonian). If H is a self-adjoint, time independent Hamil-

tonian and U(t) = e−iHt , then for the operator Φ : R×S (H )→ S (H ) we have that Φ(t,ρ) =

Φt(ρ) =U(t)ρ(0)U†(t) is a quantum channel for all t ∈ R.

Proof. Using the characterisation theorem for quantum channels we only have to show that U is a

unitary bounded operator.

Applying the previous lemma we get (U(t))† = (e−iHt)† = e(−iHt)†
= eiH†t = eiHt , and therefore

U(t)†U(t) = eiHte−iHt = 1, so U†U = I.

Every unitary operator has norm 1 and hence is bounded.
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We also provide a counterexample to show that not all linear, trace preserving maps

Φ : L (H )→ L (H ) are quantum channels.

Definition 3.15 (Transpose). With standard braket notation, for any operator A ∈ L (H ), its

transpose is a map AT ∈ L (H ∗) such that AT (⟨ψ|) := ⟨ψ|A, i.e. ϕ(Ax) = (AT ϕ)(x) for all

ϕ ∈ H ∗,x ∈ H . It is easy to check that for finite matrices this definition coincides with the usual

matrix transpose definition.

For Cn×n matrices the transpose Φ is a linear, trace preserving map, however it is not com-

pletely positive. To see that, it is sufficient to show that id2 ⊗Φ is not a positive map.

(id2 ⊗Φ)


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



It is sufficient to see that A =


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 is positive semidefinite and

B =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 is not.

On one hand,

(a,b,c,d)A(a,b,c,d)T = (a,b,c,d)(a+d,0,0,a+d)T = a2 +ad +da+d2 = (a+d)2 ≥ 0,

on the other hand, (a,b,c,d)B(a,b,c,d)T = (a,b,c,d)(a,c,b,d)T = a2+2bc+d2, so for the vector

(a,b,c,d) = (0,1,−1,0) we have (0,1,−1,0)B(0,1,−1,0)T =−2 < 0.

Important types of quantum channels on single-qubit systems are the flip channels, which can

be described with the help of the Pauli matrices and which play an important role for instance in

quantum error correction.
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Definition 3.16 (Bit flip channel). The bit flip channel is defined as Φ(ρ) = (1− p)ρ + pXρX, so

its Kraus representation is K1 =
√

1− pI,K2 =
√

pX. The name bit flip originates from the fact

that it flips the states |0⟩ and |1⟩ with probability p.

Indeed, X |0⟩= |1⟩ and X |1⟩= |0⟩.

Definition 3.17 (Phase flip channel). The phase flip channel is defined as Φ(ρ)= (1− p)ρ+ pZρZ,

so its Kraus representation is K1 =
√

1− pI,K2 =
√

pZ. The name of the channel is phase flip

because it switches the phase of the state |1⟩ with probability p.

Indeed, Z |0⟩= |0⟩ ,Z |1⟩=−|1⟩.

Definition 3.18 (Bit-phase flip channel). The bit-phase flip channel is defined as Φ(ρ) = (1−

p)ρ + pY ρY , so its Kraus representation is K1 =
√

1− pI,K2 =
√

pY . The bit-flip channel is the

combination of the previous two channels because Y = iXZ, so it flips both the basis states and

their phases.

Indeed, Y |0⟩= iXZ |0⟩= iX |0⟩= i |1⟩ and Y |1⟩= iXZ |1⟩= iX(−|1⟩) =−i |0⟩.

3.3 Optimal transport with quantum channels

In classical optimal transport theory, the transference plans π can be viewed as Markov kernels,

because the mapping B → π(x0,B) describes the amount transported from x0 to B ⊆ Y , and hence

defines a probability measure on Y for all x0 ∈ X .

In quantum optimal transport theory, quantum channels play the roles of Markov kernels: the

complete positivity of quantum channels corresponds to the nonnegativity of probability measures

and the trace-preserving property corresponds to the normalization condition π(X ×Y ) = 1.

Definition 3.19 (Quantum optimal transport plan). A quantum optimal transport plan Φ from a

state ρ ∈ S (H1) to a state ω ∈ S (H2) is a quantum channel from T1(H1) to T1(H2) such that

Φ(ρ) = ω.

The following important theorem claims that any state on a Hilbert space can be represented as

a partial trace of a pure state on a larger Hilbert space.
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Theorem 3.20 (Purification of a state). Let H be a finite-dimensional Hilbert space. For any

ρ ∈ S (H ) there is a quantum system K and a pure state |ψ⟩⟨ψ| ∈ S (H ⊗K ) such that

trK [|ψ⟩⟨ψ|] = ρ.

Proof. Every state ρ ∈ S (H ) can be written as ρ = ∑i pi |ψi⟩⟨ψi| where (|ψi⟩)i ⊂ H is an

orthonormal set, pi ≥ 0,∑i pi = 1. By choosing K = H ∗ and

|Ψ⟩ := ∑i
√

pi |ψi⟩⊗⟨ψi| ∈ H ⊗H ∗ we have

|Ψ⟩⟨Ψ|= ∑i, j
√pi p j(|ψi⟩⊗⟨ψi|)(⟨ψ j|⊗ |ψ j⟩), and hence

trH ∗[|Ψ⟩⟨Ψ|] = ∑i pi |ψi⟩⟨ψi|= ρ.

The vector |Ψ⟩ we constructed in the proof is called the canonical purification of the state ρ

and is denoted as ||ϕ⟩⟩.

The density operator associated to a quantum optimal transport plan Φ from ρ to σ is

πΦ = (Φ⊗1L (H ∗))(|Ψ⟩⟨Ψ|) ∈S (H ⊗H ∗), where |Ψ⟩= ||ρ⟩⟩. From this definition we obtain

trH [πΦ] = ρT and trH ∗[πΦ] = Φ(ρ) = σ .

Definition 3.21 (Quantum coupling). A quantum coupling between the states ρ,σ ∈ S (H ) is a

state π ∈ S (H ⊗H ∗) such that trH [π] = ρT and trH ∗[π] = σ . The set of quantum couplings

between ρ and σ is denoted as C(ρ,σ).

The cost operator is given via a set of observables A = {A1, . . . ,An}. In this thesis, we focus

exclusively on quadratic costs, which are defined as

CA =
n

∑
j=1

(A j ⊗ IT − I ⊗AT
j )

2.

The quantum Wasserstein distance is defined analogously to the classical optimal transport

case.

Definition 3.22 (Quantum Wasserstein distance[8]). The quantum Wasserstein distance corre-

sponding to the cost operator generated by the set of observables A is

D2
A (ρ,σ) = inf

π∈C(ρ,σ)
(trH ⊗H ∗[πCA ]) .
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4 Quantum Wasserstein isometries

4.1 Summary of known results

As in the case of basic quantum mechanical concepts, it is again convenient to create a table which

compares the definitions of the classical and the quantum formulation of the transport problem. In

the classical formulation we take the case X =Y . The following pairs of concepts are equivalents of

each other in the two formulations: probability measures and density operators, marginal measures

and partial traces of density operators, integrals and traces. The correspondence between more

subtle concepts is described in the table below.

concept classical notation quantum notation

quadratic

transport cost

c(x,y) = d2(x,y), where

d(x,y) is a

metric on X ×X

for an A = {A1, . . . ,An} set of

observables the generated cost is

CA = ∑
n
j=1(A j ⊗ IT − I ⊗AT

j )
2

transport plans

set of transference plans

Π(µ,ν):

π : X ×X → [0,1]

probability measure with

π[A×X ] = µ(A) and

π[X ×B] = ν(B)

set of couplings

C(ρ,σ):

π ∈ S (H ⊗H ∗) :

trH ∗[π] = σ , trH [π] = ρT

quadratic

Wasserstein

distance

W 2
2 (µ,ν) =

inf
π∈Π(µ,ν)

(∫
X×X d2(x,y)dπ(x,y)

)
with the given set A

of observables:

D2
A (ρ,σ) =

inf
π∈C(ρ,σ)

(trH ⊗H ∗[πCA ])

An important difference between the classical and the quantum Wasserstein distance is that

while the classical Wasserstein distance is a proper metric, the quantum Wasserstein distance is

not. In fact, the distance of a state of itself can be greater than zero. In order to avoid this problem,
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the Wasserstein divergence was introduced.

Definition 4.1 (Wasserstein divergence). The Wasserstein divergence generated by a set A of

observables is defined as

dA (ρ,σ) :=

√
D2

A (ρ,σ)− 1
2
(D2

A (ρ,ρ)+D2
A (σ ,σ)).

Now it is trivial that for all states ρ the divergence is dA (ρ,ρ) = 0. Moreover, it was recently

proved that under certain further conditions it is a proper metric [3]. We have some results about the

isometries in the special case C2. A we have seen before, the state ρ ∈ S (C2) can be represented

as ρ = 1
2(I + xσx + yσy + zσz), where b⃗ρ = (x,y,z) ∈ R3, ||⃗bρ || ≤ 1 is the Bloch vector of ρ .

Claim 6. For a state ρ ∈ S (C2) we have b⃗ρ = (tr(σxρ), tr(σyρ), tr(σzρ)).

Proof. The set {I,σx,σy,σz} is orthonormal and hence σxρ = 1
2σx(I + xσx + yσy + zσz) =

1
2xI,

therefore tr(σxρ) = tr(1
2xI) = x. From similar calculations we get tr(σyρ) = y and tr(σzρ) = z.

Let us consider the cost operator Csym generated by the set of Pauli matrices A = {σx,σy,σz},

which is referred to as “symmetric”, because it is constructed using all three matrices in a symmet-

ric manner.

Claim 7. Csym =


4 0 0 −4

0 8 0 0

0 0 8 0

−4 0 0 4

.

Proof. By definition, Csym = (σx ⊗ IT − I ⊗ σT
x )

2 + (σy ⊗ IT − I ⊗ σT
y )

2 + (σz ⊗ IT − I ⊗ σT
z )

2.

Computing the three terms of the sum we obtain the matrix above.

Let us introduce the following notations: for A = {σx,σy,σz} the corresponding Wasserstein

distance is D2
sym(ρ,ξ ) = D2

A (ρ,ξ ) and the Wasserstein divergence is dsym(ρ,ξ ) = dA (ρ,ξ ). The

set of pure states is P1(C2) := {ρ ∈ S (C2) : ρ = |ψ⟩⟨ψ| , |ψ⟩ ∈ C2}.
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Definition 4.2 (Wasserstein isometry). A map Φ : S (H )→S (H ) is an isometry of the quantum

Wasserstein divergence dA corresponding to the cost operator CA , if dA (Φ(ρ),Φ(ξ ))= dA (ρ,ξ )

for all ρ,ξ ∈ S (H ).

Similarly, Φ is an isometry of the quantum Wasserstein distance corresponding to CA , if

DA (Φ(ρ),Φ(ξ )) = DA (ρ,ξ ) for all ρ,ξ ∈ S (H ) .

According to Theorem 2.18., in the space of bounded linear operators on a finite-dimensional

Hilbert space H unitary operators are exactly those which preserve the inner product, i.e. for

all x,y ∈ H we have ⟨Ux|Uy⟩ = ⟨x|y⟩. This definition gives meaning to the introduction of anti-

unitary operators in the following way.

Definition 4.3 (Anti-unitary operator). On a finite-dimensional Hilbert space H the bounded

linear operator U is anti-unitary if for all x,y ∈ H we have ⟨Ux|Uy⟩= ⟨x|y⟩= ⟨y|x⟩ .

The following theorem by Richárd Simon and Dániel Virosztek gives a characterisation of

isometries of the quantum Wasserstein divergence dsym [18].

Theorem 4.4. (i) Let Φ : S (C2) → S (C2) be an isometry of dsym such that Φ maps pure

states to pure states. Then Φ is a conjugation by a unitary or anti-unitary operator, i.e.

Φ(ρ) =UρU† for all ρ ∈ S (C2) , where U is a unitary or an anti-unitary operator on C2.

(ii) Unitary and anti-unitary conjugations are dsym-isometries which map pure states to pure

states.

Now let us consider the cost operator Cz generated by the singleton set A = {σz}.

Claim 8. Cz =


0 0 0 0

0 4 0 0

0 0 4 0

0 0 0 0.

 .
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Proof.

Cz = (σz ⊗ IT − I ⊗σ
T
z )

2 =

1 0

0 −1

⊗

1 0

0 1

−

1 0

0 1

⊗

1 0

0 −1

2

=




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

−


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1





2

=


0 0 0 0

0 2 0 0

0 0 −2 0

0 0 0 0



2

=


0 0 0 0

0 4 0 0

0 0 4 0

0 0 0 0

 .

With Dz denoting the Wasserstein distance corresponding to the cost operator Cz and bρ denot-

ing the Bloch vector of the state ρ ∈ S (C2), we have the following equivalent conditions in the

qubit state space [18].

Theorem 4.5. Let Φ : S (C2)→ S (C2) be a map. The following two conditions are equivalent.

(i) Φ is a quantum Wasserstein isometry with respect to the Wasserstein distance Dz.

(ii) For all ρ ∈ S (C2) states |bΦ(ρ)| = |bρ |, and either (bΦ(ρ))3 = (bρ)3 for all states or

(bΦ(ρ))3 =−(bρ)3 for all states.

4.2 New results

The aim of current research is to generalise the previous results to other quantum systems and to

other cost generating sets of operators.

Theorem 4.6. Let H be a finite-dimensional Hilbert space with dimH = n and let

A = A† ∈ O(H ) be an observable.

(i) Let Φ : S (H )→ S (H ) be defined as Φ(ρ) = eitρ Aρe−itρ A,

where tρ ∈ R for all ρ ∈ S (H ) and ρ 7→ tρ is an arbitrary map from S (H ) to R.

Then Φ is a quantum Wasserstein isometry, i.e. for all states ρ,ω ∈ S (H ) we have

D2
{A}(Φ(ρ),Φ(ω)) = D2

{A}(ρ,ω).
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(ii) If Φ : S (H )→S (H ) is a D{A}-isometry and both the largest and the smallest eigenvalues

of the operator A have multiplicity 1, then

(a) Either trH [Φ(ρ)(A2 −2λ1A)] = trH [ρ(A2 −2λ1A)] for all ρ ∈ S (H ),

where λ1 is the largest eigenvalue of A, or

trH [Φ(ρ)(A2 −2λnA)]+λ 2
n = trH [ρ(A2 −2λ1A)]+λ 2

1 for all ρ ∈ S (H ),

where λ1 is the largest and λn is the smallest eigenvalue of A.

(b) Moreover, ∑ j,k(λ j −λk)
2| ⟨ϕ j|

√
Φ(ρ)|ϕk⟩ |2 = ∑ j,k(λ j −λk)

2| ⟨ϕ j|
√

ρ|ϕk⟩ |2,

where λk are the eigenvalues of A with the corresponding eigenvectors ϕk.

Proof. (i): The Wasserstein distance induced by A is

D2
{A}(ρ,ω) = inf

π∈C(ρ,ω)

(
trH ⊗H ∗[π(A⊗ IT − I ⊗AT )2]

)
,

so π ∈ S (H ⊗H ∗), trH ∗[π] = ω, trH [π] = ρT .

Let us use the notation t := tω ,s := tρ ,UA(x) = eixA,

hence Φ(ρ) =UA(s)ρU†
A(s),Φ(ω) =UA(t)ωU†

A(t).

Any coupling π ∈ S (H ⊗H ∗) has the form π = ∑k αk ⊗β T
k , where αk,βk ∈ L (H ).

UA(t,s) :=UA(t)⊗ (U†
A(s))

T is a unitary operator on H ⊗H ∗.

We are going to show that if π ∈C(ρ,ω), then UA(t,s)πU†
A(t,s) ∈C(Φ(ρ),Φ(ω)).

Indeed,

trH ∗[UA(t,s)πU†
A(t,s)]

= ∑
k

trH ∗

[
(UA(t)⊗ (U†

A(s))
T )(αk ⊗β

T
k )(U†

A(t)⊗UT
A (s))

]
= ∑

k
trH ∗

[
(UA(t)αkU

†
A(t))⊗ ((U†

A(s))
T

β
T
k UT

A (s))
]

= ∑
k

UA(t)αkU
†
A(t) · trH ∗

[
(U†

A(s))
T

β
T
k UT

A (s)
]

=UA(t)

(
∑
k

αk · trH ∗

[
(U†

A(s))
T

β
T
k UT

A (s)
])

U†
A(t).
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Using the cyclic property of the trace we have

trH ∗

[
(U†

A(s))
T β T

k UT
A (s)

]
= trH ∗

[
β T

k UT
A (s)(U†

A(s))
T
]
= trH ∗

[
β T

k

]
, and hence

UA(t)

(
∑
k

αk · trH ∗

[
(U†

A(s))
T

β
T
k UT

A (s)
])

U†
A(t)

=UA(t)

(
∑
k

αktrH ∗[β T
k ]

)
U†

A(t)

=UA(t)trH ∗

[
∑
k

αk ⊗β
T
k

]
U†

A(t)

=UA(t)trH ∗[π]U†
A(t)

=UA(t)ωU†
A(t) = Φ(ω).

We could show with similar computation that

trH [UA(t,s)πU†
A(t,s)] = (UA(s)ρU†

A(s))
T = Φ(ρ)T .

The operator UA(t,s) is invertible and therefore with the same reasing we can show that if UA(t,s)πU†
A(t,s)∈

C(Φ(ρ),Φ(ω)), then π ∈C(ρ,ω).

Now we only need to show that π and UA(t,s)πU†
A(t,s) generate the same transport cost. The

trace is linear, so it is sufficient to check this for couplings π = α ⊗β T , where α,β ∈ L (H ).

The operator eitA commutes with both A and I and therefore U†
A(t,s)(A⊗ IT − I ⊗AT ) = (e−itA ⊗

(eisA)T )(A⊗ IT − I ⊗AT ) = (A⊗ IT − I ⊗AT )U†
A(t,s). Using this and the cyclic property of the

trace we have

trH ⊗H ∗

[
(UA(t,s)πU†

A(t,s))(A⊗ IT − I ⊗AT )2
]

= trH ⊗H ∗

[
UA(t,s)π(A⊗ IT − I ⊗AT )2U†

A(t,s)
]

= trH ⊗H ∗

[
U†

A(t,s)UA(t,s)π(A⊗ IT − I ⊗AT )2
]

= trH ⊗H ∗
[
π(A⊗ IT − I ⊗AT )2] .

(ii): (a): First let us consider the case when one of the states ρ,ω ∈ S (H ) is pure. In this

case the only coupling is the trivial coupling π = ω ⊗ρT .
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D2
{A}(ρ,ω)

= trH ⊗H ∗
[
(ω ⊗ρ

T )(A⊗ IT − I ⊗AT )2]
= trH ⊗H ∗

[
(ω ⊗ρ

T )(A2 ⊗ IT −2A⊗AT + I ⊗ (AT )2]
= trH ⊗H ∗

[
ωA2 ⊗ρ

T ]−2trH ⊗H ∗
[
ωA⊗ρ

T AT ]+ trH ⊗H ∗
[
ω ⊗ρ

T (AT )2] .
Using trH [ρ] = trH [ω] = 1 and the identity

trH ⊗H ∗
[
X ⊗Y T ]= trH [X ] · trH ∗

[
Y T ]= trH [X ] · trH [Y ], we have

trH ⊗H ∗
[
ωA2 ⊗ρ

T ]−2trH ⊗H ∗
[
ωA⊗ρ

T AT ]+ trH ⊗H ∗
[
ω ⊗ρ

T (AT )2]
= trH

[
ωA2] · trH [ρ]−2trH [ωA] · trH [ρA]+ trH [ω] · trH

[
ρA2]

= trH
[
ωA2]−2trH [ωA] · trH [ρA]+ trH

[
ρA2] .

Any self-adjoint operator A can be written in the form A = ∑
n
j=1 λ j p j, where λ1 ≥ ·· · ≥ λn are the

eigenvalues of A with corresponding eigenvectors |ϕ j⟩ and eigenprojections p j = |ϕ j⟩⟨ϕ j|.

Using the fact that

trH [p1A] = trH [|ϕ1⟩⟨ϕ1|A] = trH [⟨ϕ1|A |ϕ1⟩] = ⟨ϕ1|A|ϕ1⟩= λ1

and

trH
[
p1A2]= trH

[
|ϕ1⟩⟨ϕ1|A2]= trH

[
⟨ϕ1|A2 |ϕ1⟩

]
= ⟨ϕ1|A2|ϕ1⟩= λ

2
1 ,

we have that for an arbitrary ρ ∈ S (H ):

D2
{A}(p1,ρ)

= trH
[
ρA2]−2trH [ρA] · trH [p1A]+ trH

[
p1A2]

= trH
[
ρA2]−2λ1trH [ρA]+λ

2
1 .

Rearranging the terms we obtain trH
[
ρ(A2 −2λ1A)

]
= D2

{A}(p1,ρ)−λ 2
1 , and with similar com-

putations we get trH [ρ(A2 −2λnA)] = D2
{A}(pn, p)−λ 2

n .

Using the decomposition A = ∑
n
j=1 λ j |ϕ j⟩⟨ϕ j| and the fact that

I = ∑
n
j=1 |ϕ j⟩⟨ϕ j| we obtain
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(A⊗ IT − I ⊗AT )2

=

( n

∑
j=1

λ j |ϕ j⟩⟨ϕ j|

)
⊗

(
n

∑
k=1

|ϕk⟩⟨ϕk|

)T

−

(
n

∑
j=1

|ϕ j⟩⟨ϕ j|

)
⊗

(
n

∑
k=1

λk |ϕk⟩⟨ϕk|

)T
2

=

(
n

∑
j=1

n

∑
k=1

λ j |ϕ j⟩⟨ϕ j|⊗ (|ϕk⟩⟨ϕk|)T −
n

∑
j=1

n

∑
k=1

λk |ϕ j⟩⟨ϕ j|⊗ (|ϕk⟩⟨ϕk|)T

)2

=

(
n

∑
j=1

n

∑
k=1

(λ j −λk) |ϕ j⟩⟨ϕ j|⊗ (|ϕk⟩⟨ϕk|)T

)2

.

With {ϕ̃ j}n
j=1 denoting the dual basis of {ϕ j}n

j=1 we have

(
n

∑
j=1

n

∑
k=1

(λ j −λk) |ϕ j⟩⟨ϕ j|⊗ (|ϕk⟩⟨ϕk|)T

)2

=

(
n

∑
j,k=1

(λ j −λk) |ϕ j ⊗ ϕ̃k⟩⟨ϕ j ⊗ ϕ̃k|

)2

=
n

∑
j,k=1

(λ j −λk)
2 |ϕ j ⊗ ϕ̃k⟩⟨ϕ j ⊗ ϕ̃k| .

We can write A with the eigenprojections p j = |ϕ j⟩⟨ϕ j| as A = ∑
n
j=1 λ j p j, therefore

(A⊗ IT − I ⊗AT )2 =
n

∑
j,k=1

(λ j −λk)
2 |ϕ j ⊗ ϕ̃k⟩⟨ϕ j ⊗ ϕ̃k|=

n

∑
j,k=1

(λ j −λk)
2 p j ⊗ pT

k .

From this decomposition we can see that the operator norm of (A⊗ IT − I ⊗AT )2 is its largest

eigenvalue (λ1−λn)
2, i.e. ||(A⊗ IT − I⊗AT )2||∞ = (λ1−λn)

2. By definition, for any π ∈C(ρ,ω)

we have ||π||1 = trH ⊗H ∗[π] = trH [trH ∗ [π]] = trH [ω] = 1.

We can apply the Hölder inequality |tr(XY )| ≤ ||X ||1 · ||Y ||∞ for X = π,Y = (A⊗ IT − I⊗AT )2

to get

tr[π(A⊗ IT − I ⊗AT )2]≤ ||π||1 · ||(A⊗ IT − I ⊗AT ||∞ = (λ1 −λn)
2.

Therefore D2
{A}(ρ,ω)≤ (λ1 −λn)

2 and for ρ = p1,ω = pn the equality holds, because

D2
{A}(p1, pn) = tr

[
(pn ⊗ pT

1 )(
n

∑
j,k=1

(λ j −λk)
2 p j ⊗ pT

k )

]
= (λn −λ1)

2.
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For the following calculations we use that λ1 and λn are eigenvalues with multiplicity one. We

want to show that D2
{A}(ρ,ω) = (λ1 −λn)

2 can only hold if {ρ,ω}= {p1, pn}.

Indeed,

D2
{A}(ρ,ω)

≤ trH ⊗H ∗
[
(ω ⊗ρ

T )(A⊗ IT − I ⊗AT )2]
=

n

∑
j,k=1

(λ j −λk)
2trH ⊗H ∗

[
(ω ⊗ρ

T )(p j ⊗ pT
k )
]

=
n

∑
j,k=1

(λ j −λk)
2trH ⊗H ∗

[
ω p j ⊗ρ

T pT
k
]

=
n

∑
j,k=1

(λ j −λk)
2trH

[
ω p j

]
· trH [ρ pk]

≤
n

∑
j,k=1

(λ1 −λn)
2trH

[
ω p j

]
· trH [ρ pk]

≤ (λ1 −λn)
2,

where the last inequality holds because the terms trH
[
ω p j

]
· trH [ρ pk] form a convex combination

of the values (λ j −λk)
2. Combining this with our assumption that λ1 and λn have multiplicity one,

equality can only hold if all the terms trH
[
ω p j

]
· trH [ρ pk] are zero except when { j,k}= {1,n}.

In that case, ω = α p1 +(1−α)pn,ρ = β p1 +(1−β )pn and

(λ1 −λ1)
2
αβ +(λ1 −λn)

2
α(1−β )+(λn −λ1)

2(1−α)β +(λn −λn)
2(1−α)(1−β ) =

= (λ1 −λn)
2(α +β −2αβ ) = (λ1 −λn)

2(α −β )2 = (λ1 −λn)
2,

and therefore either ω = p1 and ρ = pn or ω = pn and ρ = p1.

As a corollary, if Φ is a quantum Wasserstein isometry, then either Φ(p1) = p1 and Φ(pn) = pn

or Φ(p1) = pn and Φ(pn) = p1.

If Φ(p1) = p1 and Φ(pn) = pn, then D2
{A}(p1,ρ) = D2

{A}(Φ(p1),Φ(ρ)) = D2
{A}(p1,Φ(ρ)) for

all states ρ ∈ S (H ), and therefore

trH [Φ(ρ)(A2 −2λ1A)] = D2
{A}(p1,Φ(ρ))−λ

2
1 = D2

{A}(p1,ρ)−λ
2
1 = trH [ρ(A2 −2λ1A)].

If If Φ(p1) = pn and Φ(pn) = p1, then
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trH [Φ(ρ)(A2 −2λnA)]+λ
2
n

= D2
{A}(pn,Φ(ρ)) = D2

{A}(Φ(p1),Φ(ρ)) = D2
{A}(p1,ρ)

= trH [ρ(A2 −2λ1A)]+λ
2
1 .

(b): For an arbitrary state ρ ∈ S (H ) according to Corollary 1 in [5] the equality

D2
{A}(ρ,ρ) = trH ⊗H ∗

[
||
√

ρ⟩⟩⟨⟨
√

ρ||(A⊗ IT − I ⊗AT )2]
holds.

Using the definition of canonical purification, the cyclic property of the trace and the identity

X ⊗Y T ||Z⟩⟩= ||XZY ⟩⟩, we have

trH ⊗H ∗
[
||
√

ρ⟩⟩⟨⟨
√

ρ||(A⊗ IT − I ⊗AT )2]
= trH ⊗H ∗

[
||
√

ρ⟩⟩⟨⟨
√

ρ||(A2 ⊗ IT )
]
+ trH ⊗H ∗

[
||
√

ρ⟩⟩⟨⟨
√

ρ||(I ⊗ (AT )2)
]

−2trH ⊗H ∗
[
||
√

ρ⟩⟩⟨⟨
√

ρ||(A⊗AT )
]

= trH
[
trH ∗ [||

√
ρ⟩⟩⟨⟨

√
ρ||]A2]+ trH ∗

[
trH [||

√
ρ⟩⟩⟨⟨

√
ρ||] (AT )2]

−2⟨⟨
√

ρ||A⊗AT ||
√

ρ⟩⟩

= trH
[
ρA2]+ trH ∗

[
ρ

T (AT )2]−2⟨⟨
√

ρ||AqrtρA⟩⟩

= trH
[
ρA2]+ trH ∗

[
ρ

T (AT )2]−2trH
[
(
√

ρ)†A
√

ρA
]

= trH
[
ρA2]+ trH

[
ρA2]−2trH

[
(
√

ρA)2] .
We obtained that for all ρ ∈ S (H ) the equality D2

{A}(ρ,ρ) = 2
(
trH

[
ρA2]− trH

[
(
√

ρA)2])
holds.

Decomposing the state ρ as

ρ =
n

∑
j,k=1

⟨ϕ j|ρ|ϕk⟩ |ϕ j⟩⟨ϕk|=
n

∑
j,k=1

⟨ϕ j|ρ|ϕk⟩ϕ j ⊗ ϕ̃k

and its square root
√

ρ as

√
ρ =

n

∑
j,k=1

⟨ϕ j|
√

ρ|ϕk⟩ |ϕ j⟩⟨ϕk|=
n

∑
j,k=1

⟨ϕ j|
√

ρ|ϕk⟩ϕ j ⊗ ϕ̃k
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and putting our results together we have

D2
{A}(ρ,ρ)

= trH ⊗H ∗
[
||
√

ρ⟩⟩⟨⟨
√

ρ||(A⊗ IT − I ⊗AT )2]
= trH ⊗H ∗

[
⟨⟨
√

ρ||(A⊗ IT − I ⊗AT )2 ||
√

ρ⟩⟩
]

=

〈〈
n

∑
j,k=1

⟨ϕ j|
√

ρ|ϕk⟩ϕ j ⊗ ϕ̃k

∣∣∣∣∣
∣∣∣∣∣ n

∑
l,m=1

(λl −λm)
2 |ϕl ⊗ ϕ̃m⟩⟨ϕl ⊗ ϕ̃m|

∣∣∣∣∣
∣∣∣∣∣ n

∑
r,s=1

⟨ϕr|
√

ρ|ϕs⟩ϕr ⊗ ϕ̃s

〉〉

=
n

∑
j,k=1

n

∑
l,m=1

n

∑
r,s=1

⟨ϕ j|
√

ρ|ϕk⟩⟨ϕr|
√

ρ|ϕs⟩(λl −λm)
2 〈〈

ϕ j ⊗ ϕ̃k
∣∣∣∣ϕk ⊗ ϕ̃m

〉〉
⟨⟨ϕl ⊗ ϕ̃m||ϕr ⊗ ϕ̃s⟩⟩

=
n

∑
j,k=1

n

∑
l,m=1

n

∑
r,s=1

⟨ϕ j|
√

ρ|ϕk⟩⟨ϕr|
√

ρ|ϕs⟩(λl −λm)
2 ·δ jl ·δkm ·δlr ·δms

=
n

∑
j,k=1

(λ j −λk)
2| ⟨ϕ j|

√
ρ|ϕk⟩ |2.

We know that D2
{A}(Φ(ρ),Φ(ρ)) = D2

{A}(ρ,ρ), and computing D2
{A}(Φ(ρ),Φ(ρ)) similarly

yields
n

∑
j,k=1

(λ j −λk)
2| ⟨ϕ j|

√
ρ|ϕk⟩ |2 =

n

∑
j,k=1

(λ j −λk)
2| ⟨ϕ j|

√
Φ(ρ)|ϕk⟩ |2.
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