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Chapter 1

Introduction

Fuel consumption prediction is a well-known problem in scientific literature, becom-

ing increasingly pronounced in recent years, when, due to environmental regulations and

economic pressure, the imperative for enhanced fuel efficiency is on the rise. Since the

transportation sector accounts for almost two thirds of all the oil used worldwide [1] and

is responsible for 14% of global greenhouse gas emissions [2], accurately predicting a

vehicle’s fuel consumption is a necessity both for the consumers and the industry. It pro-

vides helpful data for optimizing vehicle design, aiding consumer purchase decisions,

and shaping transportation policies. Accordingly, some of the most important areas tak-

ing advantage of accurate fuel consumption prediction are the transportation sector [3]

and heavy-duty vehicles [4], both of which are well represented in the literature.

One of the areas that has a smaller significance factor, but utilizes fuel consumption

prediction even more is competitive racing, where even slight inaccuracies can have sig-

nificant ramifications for race strategy and overall performance. For instance, in Formula

1, consuming just one more deciliter of fuel than the predicted amount could result in

the disqualification of the whole team for that event [5]. In endurance racing series, the

time to refuel and the trade-off between carrying sufficient fuel to finish the race and

minimizing vehicle weight for optimal speed is a constant strategic consideration. These

topics are mostly researched by in house researchers of racing teams, but it is a popular

topic in the academic literature as well [6]. Earlier literature addressed the problem using

well-known tools from optimization and control theory, while more recent studies tend to

exploit statistical models and machine learning.

This thesis focuses on a relatively unexplored area of study: forecasting total fuel con-

sumption over a complete driving session using multivariate time series data measured

3



1. Introduction

Figure 1.1: BME Motorsport Formula Student Racing Team’s 2024 car

by various sensors of a racing car provided by the BME Motorsport Formula Student

Racing Team. This is a team made up entirely of university students, including the main

author of this thesis, competing in the international Formula Student Racing Series trav-

eling to competitions all across Europe. The team members design, manufacture, test and

race a combustion engine formula type racing car every year. The project is funded by

various sponsors, university level supporters and the team members themselves. The car

is completely built and engineered by the students, this includes the engine, the electri-

cal telemetry system, the chassis, and all of the aerodynamic parts. Figure 1.1 shows a

picture of the team’s car built last year.

Based on the properties of the data available for us and motivated by the lack of work

published in this area, our approach focuses on end-to-end prediction of total consump-

tion for a given run or time segment, while the existing literature emphasizes instanta-

neous usage estimation. While it is not widely researched yet, in practice predicting total

consumption of a given run is especially valuable for simulating realistic race conditions

and strategic planning.

Motivated by both academic curiosity and the practical needs of the BME Motorsport

Formula Student Racing Team, this thesis aims to explore and apply deep State-Space

Models (SSMs) to fuel consumption prediction. Deep SSMs are hierarchical models,

composed of building blocks of dynamical systems and neural networks. In particular,

we investigate two recent SSM architectures, LRU (Linear Recurrent Unit) and Mamba,

which have shown state-of-the-art performance on long-range sequence modeling tasks,

but have not yet been applied to fuel consumption forecasting. To benchmark perfor-

mance, we also compare these SSMs with a Transformer-based model of similar com-

plexity, trained on the same dataset.

After systematically evaluating the models’ performance on the dataset, our findings

show that deep SSM architectures often outperform the considered Transformer model,
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1. Introduction

while requiring much less computational resources. Furthermore, the results suggest that

the best performing models have a strong potential for practical applicability as they

showed promising performance on unseen data.

Based on the promising results these stable parametrization models achieved, the

question rises whether or not stability of the underlying dynamical systems can signif-

icantly impact model performance. After discussing the necessary mathematical prereq-

uisites and introducing the model structures used in this thesis, we explore this question

in more detail, as it is a prominent topic in the machine learning literature, with deep and

interesting mathematical foundations.
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Chapter 2

Related work

In this chapter we briefly summarize the academic literature on fuel consumption

prediction focusing on its relevance, significance and similar use cases.

2.1 Relevance in competitive racing

Fuel consumption prediction of any kind can provide helpful data for consumers, rac-

ing drivers and the industry, therefore it is a hot topic in academic literature as well.

Accordingly, it is best represented in the transportation sector [3], heavy-duty vehicles [4]

and competitive racing [6].

Predicting fuel usage in competitive racing is a highly specialized and niche area of

study, where even the smallest variables can significantly impact the outcome. According

to an article published on the official NASCAR website [7], factors such as time of the day,

temperature, driving style, track type, and condition, among numerous others all influence

overall fuel consumption. This complexity results in the necessity for racing teams to en-

gage in long practice sessions to collect as much data as possible. Various methods and

tools are employed in competitive racing to optimize fuel strategy. It is common knowl-

edge in the industry, that in practice, race fuel calculators are employed by race engineers

to estimate the total fuel required for a run, based on factors such as race length, lap times,

and fuel consumption rates. Top of the field racing teams tend to develop such tools but

there are also publicly available versions, for example [8]. These tools assist teams in

determining the minimum safe fuel load and establishing lap-by-lap targets for fuel con-

sumption and energy usage, particularly in hybrid engines. Such optimization methods are

the subject of extensive research both within racing teams and in academic settings. For
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2. Related work

instance, [9] developed an optimization framework for hybrid-electric Formula 1 power

units, aiming to minimize race time via optimal energy allocation strategies. Additionally,

[10] proposed a stochastic lap strategy optimization algorithm that accounts for competi-

tor behavior, enhancing energy management in hybrid race vehicles.

Top-tier racing teams rely heavily on real-time telemetry data and future consump-

tion prediction in order to make real-time decisions based on the car’s performance and

the race situation. In the racing industry, it is folklore that in order to stay competitive,

teams also must use a simulation software to simulate not just the vehicle dynamics of

the car, but also its fuel consumption. There is a general consensus among professionals

in the field that fuel consumption prediction algorithms are used to address this problem.

However, the specific tools or models each team employs are considered trade secrets, in

order to maintain their competitive edge.

2.2 Earlier literature

The earliest attempts to predict fuel consumption were firmly rooted in the princi-

ples of classical physics, using the driving resistance forces [11]. This approach involved

developing mathematical models that accounted for factors such as aerodynamic drag,

rolling resistance between the tires and the road, the force of inertia resisting changes in

motion, and the impact of road gradient. The underlying idea is trying to understand the

forces acting upon a moving vehicle and to quantify their effect and the energy it takes to

overcome them. They also estimate the kinetic energy required for episodic accelerations,

and based on these two factors they can get a prediction for the energy (and therefore fuel)

consumption of the vehicle [12]. Another often used method of estimating fuel consump-

tion that also roots in physics is via the usage of engine performance maps or fuel maps.

These maps, often represented as two-dimensional lookup tables, detail the fuel consump-

tion rate of an engine across a range of operating conditions, specifically engine speed

and torque. The fuel map can be used to interpolate fuel consumption from torque and

engine speed, also resulting in some form of fuel consumption prediction [13]. Despite

the progress offered by analytical models and engine performance mapping, these early

approaches faced significant limitations, particularly in their ability to accurately account

for the dynamic and often unpredictable nature of real-world driving.

The application of control theory to the problem of fuel efficiency marked a signifi-

cant step in moving beyond purely analytical predictions towards actively managing and
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2. Related work

optimizing fuel consumption. Early control strategies involved relatively basic feedback

mechanisms designed to maintain optimal engine operating parameters to ensure efficient

combustion with the help of engine maps mentioned earlier. An important aspect of these

studies is developing mathematical algorithms to optimize the engine output and fuel

consumption of vehicles. For instance [14] and [15] both propose control methods based

on mathematical models that automatically adjust the air-fuel ratio or the timing of igni-

tion, in order to optimize efficiency and minimize consumption. Moving down the road

of using automation to improve efficiency, the so-called look-ahead control systems were

invented [16]. These systems utilized information about the road ahead, calculated predic-

tions and then automatically adjusted the vehicle’s speed and power delivery to minimize

fuel consumption [17].

2.3 Machine learning approaches

While fuel consumption prediction is heavily researched, it can be very vague, rang-

ing from ships and airplanes to racing cars, resulting in a wide spectrum of studies, each

with their unique type of data and approach. Even if we focus on the academic literature

regarding racing cars, every team tends to use its own in-house developed data collection

mechanisms resulting in different types of datasets for every study, therefore no exist-

ing article perfectly matches the structure or content of our data. We work with multi-

dimensional, long time series and aim to predict a scalar outcome. In contrast, much of

the academic literature on fuel consumption either focuses on predicting consumption at

a specific data point, or relies on more categorical data rather than continuous time series.

Recent papers on this topic tend to use statistical models and machine learning algo-

rithms. Some of the most popular methods to predict instantaneous fuel consumption in-

clude regression models like random forest, linear regression, gradient boosting or neural

networks. For example, according to [18], working on a similar problem the random forest

(RF) technique produces a more accurate prediction compared to both gradient boosting

and neural networks in their specific setup. In [19], SVM model is used on on-board sen-

sor data to predict city bus fuel consumption resulting in a 0.95 R2 value, where the R2

is the coefficient of determination widely used in statistics. [20] also used SVM mod-

els to predict aircraft fuel consumption, showing promising results. Also, a Multi-Layer

Perceptron (MLP) model achieves R2 values around 0.94 in certain cases, according to

[21]. Convolutional neural networks are also popular for this problem, as in [22] a one-
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2. Related work

dimensional convolutional neural network is used to estimate fuel consumption of light-

duty vehicles with an R2 value of 0.99. In addition, papers [23] and [24] tackle related

time-series problems, and they suggest the use of Long Short-Term Memory (LSTM) neu-

ral networks. Another article, working with CAN bus data very similar to ours, applies a

transformer-based model — specifically, the Fast-Gated Attention (FGA) Transformer —

and reports promising results [25]. For additional works considering different scenarios

and problems, the survey paper [26] offers a comprehensive overview on fuel consump-

tion prediction, showcasing different approaches such as the ones already mentioned or

additional ones like RNN.

The usage of deep SSMs like the LRU or Mamba is not common in the academic

literature, as we could not find a single article using any of the mentioned models in com-

petitive racing, but there are some use cases for related problems in the transportation

sector. Take for instance [27] which applies the deep SSM architecture S5 for fuel con-

sumption prediction of marine vessels, and suggests the usage of the Mamba model class

for further research.
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Chapter 3

Preliminaries

In this chapter we, introduce the concept of a learning problem and discuss the mathe-

matical background required to understand the deep SSM architectures used in this thesis.

3.1 Learning problem

In the following subchapter, we present the idea of a learning problem and the related

mathematical and machine learning definitions, based on the framework and notation of

[28].

Definition 3.1.1 ([28]). Let X be the set of inputs (in our case X ⊂ Rm), and Y be the set

of labels (typically Y ⊂R). A dataset is a set S ⊆ X ×Y that is an i.i.d. sample drawn from

an unknown probability distribution D. In a supervised learning problem the goal is to

find an f : X → Y function that describes the connection between X and Y (ideally with

f (x) = y,∀(x,y) ∈ S). If Y = R or an interval on R we call the problem regression and if

Y = {1,2, . . . ,k} for some k ∈ N we call it classification.

We assume there exists a probability space (X ,B(X),PD) over the Borel σ algebra

generated by X . Unless stated otherwise the notations PS,ES,E(x,y) are understood w.r.t.

PD. The distribution D is also understood over this probability space. Intuitively, PS and

ES mean the probability and expectation over the choice of the random sample S.

In practice, the ideal representation f (x) = y for all (x,y) ∈ S does not necessarily

exist, or it may not be possible to find it, so in order to train the model and compare the

results we measure the success of a model with a loss function.

Definition 3.1.2. The element-wise loss function: ℓ : Y ×Y → R measures the discrep-

ancy between two outputs or between an output and the corresponding label.
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3. Preliminaries

The goal of the learning problem we defined in Definition 3.1.1 is formally called the

learning objective. The learning objective of a supervised learning problem is to find

an f : X → Y function that minimizes the true error: L( f ) := E(x,y)[ℓ( f (x),y)]. Since in

general D is unknown, in practice, instead we minimize the empirical error: LS( f ) :=
1
|S| ∑

(x,y)∈S
ℓ( f (x),y). We call the difference of these two errors the generalization error:

L( f )−LS( f ).

Definition 3.1.3 ([28]). The largest gap between the true error and the empirical error of

a function f is called the representativeness of S with respect to F .

RepD(F ,S) = sup
f∈F

(L( f )−LS( f ))

In later chapters we mention model classes/architectures/families of models. By these

we always mean the following definition.

Definition 3.1.4. A model family (or hypothesis class) F is a set of f : X → Y func-

tions, which maps elements of the input set to elements of the labels set, as defined in

Definition 3.1.1.

The learning objective basically means selecting the best f ∈ F , the one that mini-

mizes the empirical error.

In order to make sure that model families achieve great results on unseen data, we

introduce the idea of generalization bounds. Intuitively a generalization bound is a the-

oretical upper bound on the generalization error L( f )−LS( f ) (or its absolute value). In

practice we often use PAC bounds, which are a special form of generalization bounds.

Definition 3.1.5 ([28]). The general shape of a Probably Approximately Correct (PAC)

generalization bound for a hypothesis class F is the following:

PS

[
∀ f ∈ F : L( f )−LS( f ) ≤ ε(N,δ ,F)

]
≥ 1−δ ,

where N = |S| is the number of i.i.d. training examples, δ ∈ (0,1) is the confidence pa-

rameter, and ε(N,δ ,F) is a complexity term that decreases in N and δ , and increases in

the “size” or capacity of F .

In Chapter 4.4 we discuss a special case of this PAC bound definition introduced in

[29].
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3. Preliminaries

Another metric measuring the "richness" or complexity of a function class (or model

family) is called Rademacher complexity, with the usage of Rademacher variables.

Definition 3.1.6 ([28]). If for some σi variables it is true that i ∈ [N] P(σi = 1) = P(σi =

−1) = 0.5, then we call them Rademacher variables.

In Definition 3.1.3 we introduced the concept of representativeness. Although it ap-

pears to be a valuable metric, its practical computation requires access to the true loss,

which poses a challenge since the underlying distribution D is typically unknown. To

address this issue and estimate the representativeness of a sample S using only S, we

introduce the metric of Rademacher complexity.

The intuitive motivation behind Rademacher complexity is partitioning the sample S

into two disjoint subsets S1 and S2, each containing an equal number of elements, then

estimating the representativeness of S by evaluating

sup
f∈F

(LS1( f )−LS2( f )) .

From this starting point, the formal definition of Rademacher complexity builds on the use

of Rademacher variables and computes the expected value with respect to these variables.

The formal definition is presented below.

Definition 3.1.7 ([28]). The empirical Rademacher complexity of an A ⊂ RN set of

vectors is

R(A) =
1
N
Eσ

[
sup
a∈A

N

∑
i=1

σiai

]
(3.1)

where ai is the i-th coordinate of the a vector

A special form of this for a function class F with respect to an S =

{(x1,y1),(x2,y2), . . . ,(xN ,yN)} dataset drawn from the probability distribution D is when

A = {( f (x1), f (x2), . . . , f (xN)) | f ∈ F}.

RS(F) =
1
N
Eσ

[
sup
f∈F

N

∑
i=1

σi f (xi)

]
(3.2)

where Eσ means expected value over σ Rademacher variables.

We can bound the representativeness of S by the Rademacher complexity with the

following lemma.

Lemma 3.1.1 ([28]).
ES[RepD(F ,S)]≤ 2 ·ES[RS(F)] (3.3)

12
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Proof [28]. Let S ̸= S′ = {(x′1,y′1),(x′2,y′2), . . . ,(x′N ,y′N)} be an i.i.d. sample drawn from

D. Since L( f ) is the true loss, it is true that for all f ∈ F : L( f ) = ES′[LS′( f )], from this

we obtain the following for the generalization error.

L( f )−LS( f ) = ES′[LS′( f )]−LS( f ) = ES′[LS′( f )−LS( f )]. (3.4)

After taking supremum over f ∈ F and utilizing the fact that the expected value of the

supremum is an overestimation of the supremum of the expected value we obtain the

following

sup
f∈F

(L( f )−LS( f ))≤ ES′

[
sup
f∈F

(LS′( f )−LS( f ))

]
(3.5)

Now taking expected value over S on both sides and applying the definition of empirical

loss we obtain

ES

[
sup
f∈F

(L( f )−LS( f ))

]
≤ 1

N
ES,S′

[
sup
f∈F

N

∑
i=1

( f (x′i)− f (xi))

]
(3.6)

Now, we use that x j and x′j are i.i.d. variables, and the definition of Rademacher

variables (denoted σi) to note that

ES,S′

[
sup
f∈F

N

∑
i=1

( f (x′i)− f (xi))

]
= ES,S′

[
sup
f∈F

(
( f (x′j)− f (x j))+∑

i ̸= j
( f (x′i)− f (xi))

)]
=

= ES,S′

[
sup
f∈F

(
( f (x j)− f (x′j))+∑

i ̸= j
( f (x′i)− f (xi))

)]
=

= ES,S′

[
sup
f∈F

(
σ j( f (x j)− f (x′j))+∑

i̸= j
( f (x′i)− f (xi))

)]

Repeating the last step for all j we obtain

ES,S′

[
sup
f∈F

N

∑
i=1

( f (x′i)− f (xi))

]
= ES,S′,σ

[
sup
f∈F

N

∑
i=1

σi( f (x′i)− f (xi))

]
(3.7)

Now back to Equation (3.6) using Equation (3.7), the definition of representativeness

and the properties of sup and σ we get

13
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ES [RepD(F ,S)]≤ ES,S′,σ

[
sup
f∈F

N

∑
i=1

σi( f (x′i)− f (xi))

]

≤ ES,S′,σ

[
sup
f∈F

N

∑
i=1

σi f (x′i)+ sup
f∈F

N

∑
i=1

σi f (xi)

] (3.8)

Finally we just use the definition of Rademacher complexity and after simplification

and combination we obtain (3.3).

While measuring the Rademacher complexity, of our function class F can be useful,

the intuition of the definition is to use it for a new set of functions, denoted ℓ ◦ F =

{gℓ : (x,y)→ ℓ( f (x),y) | f ∈ F}. With the help of our previous lemma and Rademacher

complexity we can get a PAC bound for the generalization error with ℓ◦F as the following

theorem states.

Theorem 3.1.2 ([28]). Let S = {(x1,y1),(x2,y2), . . . ,(xN ,yN)} be an i.i.d. sample drawn

from the probability distribution D. Assume that there exists a c∈R, that for all (xi,yi)∈ S

and f ∈ F it is true that |ℓ( f (xi),yi)| ≤ c. Then, with probability at least 1− δ , for all

f ∈ F :

L( f )−LS( f )≤ 2 ·RS(ℓ◦F)+4c

√
2ln(4/δ )

N

Proof sketch. Let us assume that the following inequality is true if our previous assump-

tions hold.

L( f )−LS( f )≤ 2ES′ RS′(ℓ◦F)+ c

√
2ln(2/δ )

N
. (3.9)

Now with utilizing the following property of the union: D(A∪B) ≤ D(A)+D(B) after

using McDiarmid’s Inequality (Lemma 26.4 from [28]) and Inequality (3.9), we obtain

L( f )−LS( f )≤ 2 ·RS(ℓ◦F)+4c

√
2ln(4/δ )

N

The proof of Inequality (3.9) is a consequence of McDiarmid’s Inequality, Lemma 3.3

and Definition 3.1.3. For the full proof and McDiarmid’s Inequality see [28].

3.2 Dynamical systems

The two model families used in this work are built on dynamical systems, more pre-

cisely linear dynamical systems, so, in the following subchapter, we outline the related

14
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mathematical definitions and theorems.

3.2.1 Introduction into dynamical systems

In this section, we adopt the notation and closely follow the definitions and theoretical

framework presented in [30]. Full proofs and further details can be found in the original

source.

Consider the general form of an ordinary autonomous differential equation, where

x :R→Rn is the unknown function and f :Rn →Rn is a given continuously differentiable

function.

x′(t) = f (x(t))

This form of differential equations are called autonomous, because f only depends

explicitly on x and not on the time. If a differential equation is given of the form

x′(t) = f (t,x(t))

it is a non-autonomous differential equation. Dynamical systems are based on autonomous

differential equations. Dynamical systems can be defined in either continuous-time or

discrete-time. The definition of the former is as follows.

Definition 3.2.1 ([30]). A ϕ : R×Rn →Rn continuously differentiable function is called

a continuous-time dynamical system if it fulfills the following two conditions:

• ∀p ∈ Rn : ϕ(0, p) = p

• ∀p ∈ Rn and t,s ∈ R, it must be true that: ϕ(t,ϕ(s, p)) = ϕ(t + s, p)

A continuous-time dynamical system can be understood as a model of a deterministic

process, where ϕ(t, p) represents the state of the system after time t, starting from state p.

If in 3.2.1 we limit the time dimension to the set of whole numbers instead of real numbers

and we drop the requirement of differentiability for the function we get the discrete-time

definition.

Definition 3.2.2 ([30]). A ϕ : Z×Rn → Rn continuous function is called a discrete-time

dynamical system if it fulfills the following two conditions:

• ∀p ∈ Rn,ϕ(0, p) = p
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• ∀p ∈ Rn and k,m ∈ Z it must be true that: ϕ(k,ϕ(m, p)) = ϕ(k+m, p)

We often call a continuous-time dynamical system a flow, and a discrete-time dynam-

ical system a mapping. Many times we just give the time set as T which could be R, Z or

other mathematical rings or fields.

3.2.2 Stability in dynamical systems

In this section, we explore some basic definitions and results on stability, following the

notation and theoretical exposition of [31] and [32]. Detailed proofs and further discus-

sions can be found in the original sources. Before we introduce the definition of stability,

we need to define different types of norms. First we define the norm of a vector.

Definition 3.2.3 ([31]). The norm ∥x∥ of a vector x is a real valued function with the

following properties:

(i) ∥x∥ ≥ 0 with ∥x∥= 0 if and only if x = 0.

(ii) ∥αx∥= |α|∥x∥ for any scalar α .

(iii) ∥x+y∥ ≤ ∥x∥+∥y∥ (triangle inequality).

Intuitively, the norm of a vector can be interpreted as the length of the vector and

∥x−y∥ is the distance between two vectors.

Now we can define the induced norm of a matrix as follows.

Definition 3.2.4 ([31]). Let ∥·∥ be a given vector norm. For each matrix A ∈ Rm×n, the

quantity ∥A∥ is called the induced norm of A corresponding to the vector norm ∥·∥ and

is defined by

∥A∥ := sup
x̸=0

x∈Rn

∥Ax∥
∥x∥

= sup
∥x∥≤1

∥Ax∥= sup
∥x∥=1

∥Ax∥

Intuitively, the induced norm of a matrix corresponding to a given vector norm rep-

resents the maximum stretching effect the matrix has on any vector in the given norm.

There are also norms of matrices which are not induced by any vector, these are just

called matrix or operator norms. Some of the most common vector and operator norms

are summarized in Table 3.1.

We can also define corresponding norms for functions of time.
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3. Preliminaries

Table 3.1: Commonly used norms

Norms on Rn Matrix norms on Rm×n

∥x∥
∞
= maxi |xi| (infinity norm) ∥A∥F =

√
∑i ∑ j |ai, j|2 (Frobenius norm)

∥x∥1 = ∑i |xi| ∥A∥1 = max j ∑i |ai j| (column sum)

∥x∥2 =
(
∑i |xi|2

)1/2 (Euclidean
norm)

∥A∥2 =
√

λmax
(
AT A

)
(where λmax(M) is the

biggest absolute value eigenvalue of M)

Definition 3.2.5 ([31]). We define the Lp(Rm) norm for an f : R→ Rm function of time

as

∥ f∥Lp(Rm) =

(∫
∞

0
∥ f (τ)∥p

2dτ

)1/p

for p ∈ [1,∞) and as a special case ∥ f∥L∞(Rm) = sup
t≥0

∥ f (t)∥∞. We also define Lp(Rm) =

{ f : R→ Rm | ∥ f∥L∞(Rm) < ∞}.

The corresponding discrete time version can be defined as follows.

Definition 3.2.6. The ℓp norm of an x : N→ Rm function is

∥x∥ℓp(Rm) =

(
∑
k∈N

∥x(k)∥p
2

) 1
p

for p ∈ [1,∞) and as a special case ∥x∥ℓ∞(Rm) = sup
k∈N

∥x(k)∥
∞

. We also define ℓp(Rm) =

{x : N→ Rm | ∥x∥ℓp(Rm) < ∞}.

Now that we defined basic norms we can discuss the stability of a dynamical system.

Consider the following linear autonomous system:

x′(t) = Ax(t), where A ∈ Rn×n (3.10)

Definition 3.2.7 ([32]). A linear system shaped like (3.10) is called stable if all solution

trajectories x are bounded for positive time: x(t) for t > 0 are bounded.

Definition 3.2.8 ([32]). Similarly a linear system shaped like (3.10) is called asymptot-

ically stable if all solution trajectories go to zero as time tends to infinity: x(t) → 0 as

t → ∞.

In practice we check stability in a different way, using the following theorem:

Theorem 3.2.1 ([32]). The autonomous dynamical system (3.10) is
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• asymptotically stable if and only if all eigenvalues of A have negative real parts.

An A matrix like this is called Hurwitz,

• stable if and only if all eigenvalues of A have non-positive real parts, and, in addi-

tion, all pure imaginary eigenvalues have multiplicity of one.

Proof will be provided for the discrete time version only, discussed later in the chapter.

Now we take a look at the definition of Ljapunov stability [31]. For this we shift our

attention to dynamical systems described by ordinary differential equations:

x′(t) = f (t,x(t)), x(t0) = x0 (3.11)

where x ∈Rn, f : [t0,∞)×B(r) 7→R, and B(r) = {x ∈Rn | ∥x∥< r}. We assume that

f is of such nature that for every x0 ∈ B(r) and every t0 ∈ R+, (3.11) possesses one and

only one solution x(t; t0,x0).

In order to define Ljapunov stability we need to know what an equilibrium state of a

dynamical system is:

Definition 3.2.9 ([31]). A state xe ∈ Rn is said to be an equilibrium state of the system

described by (3.11) if:

f (t,xe) = 0 ∀ t ≥ t0

Definition 3.2.10 ([31]). An equilibrium state xe defined in Definition 3.2.9 is said to be

Ljapunov stable if for arbitrary t0 and ε > 0 there exists a δ (ε, t0) such that ∥x0 −xe∥<

δ (ε, t0) implies ∥x(t; t0,x0)−xe∥< ε for all t ≥ t0.

Definition 3.2.11 ([31]). An equilibrium state xe is said to be uniformly stable (u.s.) if

it is stable and if δ (ε, t0) in Definition 3.2.10 does not depend on t0.

Similarly general asymptotical stability in Definition 3.2.8 can be defined for an equi-

librium state as follows:

Definition 3.2.12 ([31]). An equilibrium state xe is said to be asymptotically stable if it is

stable and there exists a δ (t0) such that ∥x0 −xe∥< δ (t0) implies lim
t→∞

∥x(t; t0,x0)−xe∥=

0.
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The models used in practice generally use stable parametrization, but the effects of

stability on model performance are heavily researched. The models used in this study are

based on stable discrete time systems, hence now we turn our attention to a special case

of discrete-time dynamical systems, defined in Definition 3.2.2. The discrete-time version

of the linear system stated in (3.10) is as follows:

x(t +1) = Ax(t), A ∈ Rn×n (3.12)

A special form of dynamical systems are called input-output systems, more specifi-

cally discrete-time linear time-invariant (LTI) systems, where the system Σ can be identi-

fied by its parameters, namely by the tuple of matrices (A,B,C,D) and

Σ : x(k+1) = Ax(k)+Bu(k), y(k) = Cx(k)+Du(k) (3.13)

The analogue continuous-time version:

Σ : x′(t) = Ax(t)+Bu(t), y(t) = Cx(t)+Du(t) (3.14)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, while n is the state, m is the input

and p is the output dimension. From now on x(0) = 0 everywhere, unless explicitly stated

otherwise.

LTI systems also have input-output (convolution) representation [32]: y = h∗u, where

h : R→Rp×m is the impulse response which, for discrete-time systems, takes the follow-

ing shape.

h(k) =


CAk−1B, k > 0,
D, k = 0,
0, k < 0.

(3.15)

The integral of the impulse response is called the transfer function, and can be defined

as follows.

H(k) = C(kI−A)−1B+D, (3.16)

Intuitively this also means that LTI systems can map every input sequence

u(1), . . . ,u(T ) to the output sequence y(1), . . . ,y(T ), where T is the length of the time

series, with a linear operator we call the input-output map.

Definition 3.2.13 ([29]). Let u ∈ U and y ∈ Y , where U and Y are Banach spaces. For
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a Σ LTI system there exists a SΣ,T : U → Y linear map called the input-output map of Σ,

such that SΣ,T (u)(t) = y(t) for all 1 ≤ t ≤ T .

We can also define a type of stability for these input-output systems:

Definition 3.2.14 ([32]). An LTI system defined in equation (3.13) is called internally

stable if u(k) = 0 ∀k > 0 implies x(k)→ 0, for k → ∞ ∀x(0).

Definition 3.2.15 ([32]). A discrete-time dynamical system defined in definition 3.2.2 is

called:

• Stable if the absolute value of the eigenvalues of A are not greater than 1 and any

eigenvalue on the unit circle must have a multiplicity of 1: |λ (A)| ≤ 1

• Asymptotically stable if the absolute values of all the eigenvalues of A are smaller

than 1: |λ (A)|< 1 which means the matrix is Schur.

Theorem 3.2.2. Internal stability of an LTI system defined in Definition 3.2.14 is equiv-

alent to the underlying A matrix being Schur.

Proof. We are proving the following equivalency.

An LTI system is internally stable ⇐⇒ the corresponding A matrix is Schur.

=⇒ :

Internal stability means that if u(k) = 0 ∀k > 0, then x(k)→ 0, for k → ∞,∀x(0). If

u(k) = 0 ∀k > 0 then x(k+1) = Ax(k). In this case x(k)→ 0 only holds if lim
k→∞

Akx(0) =

0,∀x(0) which means that all eigenvalues of A are strictly less than 1, otherwise there

exists an initial condition along the corresponding eigenvector such that x(t) does not

converge to 0.

⇐= :

If we know that A is Schur then all of its eigenvalues are strictly less than 1. Now let us

indirectly assume that u(k) = 0 ∀k > 0 does not imply x(k)→ 0, for k → ∞,∀x(0). In this

case x(k+1) = Ax(k) but lim
k→∞

Akx(0) ̸= 0,∀x(0) which contradicts A being Schur.

There are other types of stability, like ℓp input-output stability, defined as follows.

Definition 3.2.16 ([32]). An LTI system defined in Equation (3.13) is called ℓp input-

output stable if any ℓp bounded input u∈ ℓp(R) results in an ℓp bounded output y∈ ℓp(R)

u ∈ ℓp(Rm) =⇒ y ∈ ℓp(Rp)
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In the literature, the term stability usually refers to the ℓp input-output stability for

some p. The case of p = ∞ is sometimes called bounded-input, bounded-output (BIBO)

stability. This intuitively means that perturbing the input of the system results in only a

small difference in the output.

Other than stability norms can also be defined for systems. One of the most important

ones is the H2 norm:

Definition 3.2.17 ([32]). The H2 norm of a Σ system is defined as follows

∥Σ∥H2
=

√
∞

∑
k=0

∥h(k)∥2
F

For an LTI Σ system, defined in (3.13) the H2 norm takes the following shape [29].

∥Σ∥H2
:=

√
∥D∥2

F +
∞

∑
k=0

∥∥CAkB
∥∥2

F (3.17)

Intuitively the H2 norm of a system is the maximum amplitude of the output which

results from finite energy input signals.

Another useful system norm is the ℓ1 norm [33], which takes the following form for

discrete-time LTI systems [29].

∥Σ∥ℓ1
:= max

1≤i≤p

[
∥Di∥1 +

∞

∑
k=0

∥∥∥CiAkB
∥∥∥

1

]
(3.18)

where Di and Ci denotes the i-th row of the corresponding matrix.

Theorem 3.2.3 ([32]). The internal stability of a Σ LTI system implies the BIBO stability

of the system.

Proof. If an LTI system is internally stable that implies that the corresponding A matrix

is Schur as proven before. BIBO stability means that

u ∈ ℓ∞(Rm) =⇒ y ∈ ℓ∞(Rp)

Let us assume then that A is Schur and u ∈ ℓ∞(Rm) =⇒ ∥u∥
∞
≤ M < ∞. If from here we

obtain that ∥y(k)∥
∞
< ∞, the proof is completed. We know that y = h ∗u and from here
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we get y(k) =
k

∑
i=0

h(i)u(k− i). Now we take the ∥·∥
∞

of y and use the definition of h.

∥y(k)∥
∞
≤

k

∑
i=0

∥h(i)∥
∞
∥u(k− i)∥

∞

≤
k

∑
i=0

∥∥CAiB
∥∥

∞
∥u(k− i)∥

∞

≤ M ∥C∥
∞
∥B∥

∞

k

∑
i=0

∥∥Ai∥∥
∞

≤ M ∥C∥
∞
∥B∥

∞

∞

∑
i=0

∥∥Ai∥∥
∞

(3.19)

According to Gelfand’s formula ρ(A) = lim
k→0

∥∥∥Ak
∥∥∥1/k

for any ∥·∥ matrix norm, where

ρ(A) is the spectral radius of A. We know that A is Schur, which means that ρ(A) < 1,

hence there exists an α such that ρ(A)< α < 1. This implies that ∃N : ∀k′ > N it is true

that
∥∥∥Ak′

∥∥∥1/k′

< α < 1. After taking power of k′ we obtain
∥∥∥Ak′

∥∥∥< αk′ < 1. Let K be the

maximum of the first N values of the sequence K := {∥A∥ ,
∥∥A2

∥∥1/2
, . . .
∥∥AN

∥∥1/N}. From

here we note that

∞

∑
i=0

∥∥Ai∥∥= N

∑
i=0

∥∥Ai∥∥+ ∞

∑
i=N+1

∥∥Ai∥∥≤ NK +
∞

∑
i=N+1

α
i ≤ NK +

1
1−α

< ∞ (3.20)

concluding the proof.

Theorem 3.2.4 ([32]). For a discrete time LTI system Σ given in Equation (3.13), internal

stability implies ∥Σ∥ℓ1 < ∞ and ∥Σ∥H2 < ∞.

Proof. The proof follows from an analogue calculation to Equation (3.19) of the previous

proof as Gelfand’s formula holds for any matrix norm, thus for the Frobenius and the

1-norm as well.

Theorem 3.2.5 ([32]). If A is Schur, then for all Q ∈Rn×n there exists a unique P ∈Rn×n

that satisfies:
AT PA+P = Q (3.21)

See the corresponding references in [32] for the proof.

We remark that the converse of the last two theorems also hold under additional, mild

assumption. This means that for LTI systems, the various definitions capturing stability

are roughly equivalent. Note that for nonlinear systems, this is not the case in general.
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Chapter 4

Deep SSM models

In this chapter we show a general overview of SSMs, present the architectures used

in this thesis and discuss the question of stability and the PAC bound introduced in [29]

following their framework and notation.

4.1 Deep SSM architectures and the question of stability

A State-Space Model (SSM) is a discrete-time linear dynamical system of the form

defined in equation (3.13) where x(t),y(t) and u(t) are the state, output and input signals

respectively, with the initial state: x(0) = 0. For a visual representation see Figure 4.1. In

the academic literature, the acronym SSM sometimes can refer to the LTI system, to the

Recurrent Neural Network (RNN) defined below, or even to the whole architecture but in

this work it refers to the discrete-time linear dynamical system stated in equation (3.13).

For the models used in this study we will focus on stable SSMs (Definition 3.2.7) for

which A is Schur as defined in Definition 3.2.15. Intuitively, an SSM block takes an input

u, feeds it through the SSM (LTI system), applies the same non-linear, time invariant

g : Rp → Rm function at every timestamp to the output y and then adds the input u to

the result to complete the residual connection. More formally an SSM block maps the

u(t),1 ≤ t ≤ T, t ∈ Z input sequence to the f DT B(u)(t) = g(SΣ,T (u)(t))+αu(t), where

α ∈R is the residual weight and SΣ,T is the input-output map defined in Definition 3.2.13.

Please note that here u refers to the input of the SSM block, and y refers to the output of

the LTI system, not the deep SSM architecture. For a visual representation see Figure 4.3.

An artificial neural network is a model of computation inspired by the structure of

neural networks in the brain. These neural networks can be understood as a directed graph,
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Figure 4.1: (Left) State Space Models (SSMs), defined by matrices A,B,C,D, transform
an input sequence u(t) into an output sequence y(t) through a latent state x(t). (Center)
Recent advances in continuous-time memory modeling have identified specific forms of

the A matrix that enable SSMs to effectively model long-range dependencies both
theoretically and in practice. (Right) These models can be implemented either using a
recurrence formulation (left) or through convolution (right). However, realizing these

perspectives computationally often involves switching between distinct
parameterizations (e.g., red, blue, green), which can be computationally costly. Figure

and description as in [34]

where the nodes represent the neurons and the edges are the connections between them. In

the network each neuron (or node) receives the weighted sum of the outputs of the nodes,

which are linked to their incoming edges. For a visual representation see Figure 4.2 If

the graph does not contain cycles the network is called a feed-forward neural network,

formally defined as follows.

Definition 4.1.1 ([28]). A feed-forward neural network or Multilayer perceptron

(MLP) is a function f : RP ×Rm → Rp s.t.

f (θ ,x) = WLσ(WL−1 . . .σ(W1x+b1) · · ·+bL−1)+bL

where θ = [W1,b1, . . . ,WL,bL], L is the number of layers with dimensions n1, . . . ,nL, m

is the input dimension, p is the output dimension and the dimension of θ is P = n · n1 +

n1 +n1n2 +n2 + · · ·+nL · p.

Some model families displayed in this work use an MLP layer. An MLP layer is a

feed-forward neural network applied to the input time series at every time step.

A Recurrent Neural Network (RNN) block [36] operates similarly to an SSM block in

that it maps an input sequence u(t) ∈Rm to an output sequence y(t) ∈Rp by maintaining

a hidden state x(t) ∈ Rn at each time step t. The update rules for the hidden and output

states are given by the recurrence:
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Figure 4.2: a Structure of biological neurons.b Mathematical process of artificial
neurons in multi-layer perceptron. c Multi-layer perceptron feed-forward neural

network. Figure and caption as in [35]

x(k+1) = σ(Ax(k)+Bu(k)),
y(k) = Cx(k)+Du(k)

(4.1)

where A ∈Rn×n,B ∈Rn×m,C ∈Rp×n, and D ∈Rp×m are learnable parameters. Note

that the second equation defining y(k) can also be non-linear. The initial hidden state is set

to x(0)= 0. The function σ is a non-linear activation function. If σ is the identity function,

the RNN block is said to be linear. Note that RNN with a linear activation function results

in an LTI system, stated in equation (3.13).

Definition 4.1.2 ([29]). In general a deep SSM model is a composition of an encoder,

several SSM blocks, a time-pooling layer and a decoder.

f = f Dec ◦ f Pool ◦ f BL ◦ · · · ◦ f B1 ◦ f Enc,

where ◦ represents the composition of functions, f Bi is the input-output map of the i-th

SSM block, f Dec and f Enc are linear, time invariant functions applied to the sequence

at every timestamp, and f Pool in our case is average pooling that averages over time,

intuitively resulting in the elimination of time.
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Figure 4.3: Structure of the LRU architecture as in [36]

The first architecture that showed that deep SSMs can address long-range dependen-

cies well was the Linear State Space Layer (LSSL) introduced in [37], however in practice

it was unusable because of memory requirements. This was improved in the paper [34],

which introduced the Structured State Space (S4) architecture that is a special form of our

definition of deep SSMs stated in Definition 4.1.2. This paper used a special parametriza-

tion of the A matrix and defined the g function as an activation function σ to reduce

memory usage, resulting in a model class showing promising results in practice. They

used a parametrization called Normal Plus Low-Rank that relied on the HiPPO Matrices

introduced in [37]. The most important matrix in this class is called the HiPPO matrix

and is defined as follows.

(HiPPO Matrix) An,k =−


√

(2n+1)(2k+1) if n > k,
n+1 if n = k,
0 if n < k.

(4.2)

The layers between the SSM blocks are often MLP or GLU layers. The first one

defined earlier and the latter one as follows.

Definition 4.1.3 ([29]). A Gated Linear Unit (GLU) [38] layer is a function parameterized

by a matrix W such that

f (u)[k] = GELU(u[k])⊙σ (W ·GELU(u[k])) ,

where σ is the sigmoid function and GELU is the Gaussian Error Linear Unit [39].
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4.2 The LRU architecture

The LRU (Linear Recurrent Unit) architecture, introduced by [36], is a special form of

our deep SSM Definition 4.1.2 where the g function is a neural network, also using addi-

tional normalizing layers between the SSM blocks and a special exponential parametriza-

tion of the A matrix as follows:

λ j = exp
(
−exp

(
ν j
))︸ ︷︷ ︸

magnitude

+i exp
(
θ j
)︸ ︷︷ ︸

phase

,

where ν j and θy are learnable parameters, and λ j is the j-th element of the diagonal A

matrix. As a result of this parametrization, A is Schur which results in internal stability as

proven earlier.

The LRU model, similarly to the S4, also uses special type of matrices. The paper [36]

uses several other tricks and enhancements to improve model performance. For a visual

representation see Figure 4.3 and for a more detailed explanation see the original paper.

The key point of the LRU paper is that if you train a time-mixing, non-linear model, you

can do it by separating the time-mixing layer and the non-linearity. Basically this means

that a time-mixing, linear architecture combined with a time invariant non-linear function

can learn a time-mixing, non-linear model well.

In conclusion, according to [36] the LRU model outperforms SSMs of similar com-

plexity, such as the S4, while using even less resources, hence the reason we use this

structure for our thesis. For more information on the LRU architecture, see [36].

4.3 The Mamba model family

In order to understand the Mamba architecture from [40] we first introduce the

concept of discretization. The discretization of a continuous LTI system defined by

Equation (3.14) yields the following system.

x(k+1) = Ax(k)+Bu(k), y(k) = Cx(k)+Du(k) (4.3)

Where A, B, C and D are the discretized transition matrices. For example the S4 or

LRU architecture use the zero-order hold (ZOH) discretization. As defined in [27], this

means that the system samples the latent state based on an input and maintains this value

until the next input is received, which then updates the latent state. As a result, the system
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Figure 4.4: The usage of the selection mechanism in Mamba, figure as in [40]

produces continuous output and undergoes an exact discretization within the time domain

of the state-space. The transition matrices for this discretization with step size ∆ ∈ R are

given by:

A = eA∆, B = A−1(A− I)B, C = C, D = D (4.4)

In case of a non-invertible A, the input matrix instead takes the form

B =

(∫
∆t

τ=0
eτA dτ

)
B.

Probably the most important difference between the Mamba and a regular deep SSM

is the discretization method the Mamba uses. The idea is that the Mamba architecture uses

a discretization ∆(u(t), t) that depends on the input series u(t) and the current timestamp

t. This yields the following discretization of the continuous LTI system from 3.14.

x(k+1) = A(∆(u(k),k)x(k)+B(∆(u(k),k)u(k),
y(k) = C(∆(u(k),k)x(k)+Du(k)

(4.5)

This is done using the help of a selection mechanism. These are usually learnable

linear transformations. In essence, the selection mechanism acts as a dynamic gate that

decides how much of the past state to retain and how much new input to incorporate. For

the details of the selection mechanism used in the Mamba model class see [40]. For a

visual representation of this see Figure 4.4 and for the overall structure of the Mamba see

Figure 4.5.

We mentioned earlier that we use models with stable parametrization in this thesis.

For the LRU model class it is easy to show that for the discrete-time version, but with the

special discretization method used in the Mamba it is not that evident. With the Mamba

model we need the original continuous-time system to be stable. If that holds then the
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discretized version can be written as a discrete-time LPV system, defined in [41], however

the discussion of LPV systems and their stability is out of the scope of this thesis.

Figure 4.5: The structure of the Mamba architecture as in [40]

Figure 4.6: The difference between the sequential and parallel Mamba block as in [42]

Although we did not use this in our work, we have to point out the Mamba-2 archi-

tecture proposed in [42]. This model class is a refinement of the original Mamba, that

is better suited for the usual computational setup which is tailored for transformer archi-

tectures, resulting in a model class that is faster, while continuing to be competitive with

Transformers on language modeling. The paper [42] refines their selection mechanism

based on their framework called State-Space Duality that the Mamba-2 utilizes as the in-

ner SSM layer, together with a modified parallel Mamba block instead of the sequential

one. Since other than more efficient computational resource usage and implementation of
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parallel computing, there are no significant theoretical differences between the Mamba

and Mamba-2, intuitively, it is not justified to test the latter one as we only utilized one

GPU at a time. For the detailed structure of the Mamba-2 see Figure 4.6 and [42].

4.4 Length independent generalization bounds for deep

SSM architectures

Paper [36] introduced the LRU model that had stable parametrization and achieved

significantly better results on long-range dependencies than previous architectures such

as the S4 [34] or LSSL [37], hence, the question rises whether or not stability of the

underlying LTI systems has an effect on model performance. Intuitively it is clear that

stable models can learn stable systems better but there were no mathematical proof on

the effect of stability. The paper [29] explores this idea and introduces a PAC bound

(Definition 3.1.5) for the generalization error of deep SSMs but in order to understand

their main theorem we introduce the definition of Rademacher contraction.

Definition 4.4.1 ([29]). Let u ∈ (U ,∥·∥U) and y ∈ (Y,∥·∥Y), where U and Y are Banach

spaces with their corresponding norms, and let µ ≥ 0 and c ≥ 0. A set of functions F =

{ f : U →Y} is said to be (µ,c)-Rademacher Contraction, if for all N ∈N and U ⊆UN

we have

Eσ

[
sup
f∈F

sup
{ui}N

i=1∈U

∥∥∥∥∥ 1
N

N

∑
i=1

σi f (ui)

∥∥∥∥∥
Y

]
≤ µEσ

[
sup

{ui}N
i=1∈U

∥∥∥∥∥ 1
N

N

∑
i=1

σiui

∥∥∥∥∥
U

]
+

c√
N
, (4.6)

where σi are independent Rademacher variables (from Definition 3.1.6), and in this case

Eσ means just a notation, emphasizing that the only random variable is the σ .

Now we present a simplified version of the length independent PAC bound introduced

in [29].

Theorem 4.4.1 ([29]). Let F be a family of L deep, deep SSMs with the structure

defined in Definition 4.1.2 with a scalar output and an Ll-Lipschitz continuous (i.e.,

|ℓ(y1,y′1)−ℓ(y2,y′2)| ≤ Ll(|y1−y2|+ |y′1−y′2|),∀y1,y2,y′1,y
′
2 ∈R) element-wise loss func-

tion. Furthermore we assume that the following bounds exist for all the Σ LTI components

in the whole architecture

∥u∥ℓ2,2 ≤ Ku, |y| ≤ Ky,∥Σ∥ℓ1
≤ K1,∥Σ∥H2

≤ K2.
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(where ∥u∥ℓ2,2 =
T

∑
k=1

∥u(k)∥2
2 for a sequence length T ). We also assume that the encoder,

decoder and non-linear layers’ weight matrices have bounded operator norms. If all the

assumptions hold, then

PS

(
∀ f ∈ F : L( f )−LS( f )≤ µKuLl + cLl√

N
+Kl

√
2log(4/δ )

N

)
≥ 1−δ (4.7)

where N is the size of the random sample S, µ and c are constant scalar values, depending

on the bounds K1,K2,Ku,Ky and the bounds on the encoder, decoder and nonlinear blocks.

Intuitively Theorem 4.4.1 means that with the help of Rademacher complexity and

Rademacher contraction, we can give an upper bound for the generalization error of

deep SSMs, with some constants. More specifically, if we take a stable parametriza-

tion meaning that the corresponding A matrix is Schur according to Theorem 3.2.2, then

the system norms ∥Σ∥ℓ1
and ∥Σ∥H2

are finite according to Theorem 3.2.4. According to

Theorem 4.4.1, given that ∥Σ∥ℓ1
≤ K1 and ∥Σ∥H2

≤ K2, it is possible to provide a gener-

alization bound - stated in Equation 4.7 - that depends on (among other constants) K1 and

K2 and does not depend on the length T of the input time series. An intuitive consequence

of this is that architectures with stable parameterizations may generalize better.

Sketch of the proof [29]. For the sketch of the proof we first need to interpret the meaning

of a (µ,c)-Rademacher contraction (RC). The intuition behind Definition 4.4.1 is that for

a function class F we can bound its Rademacher complexity with the µ and c constants

and the Rademacher complexity of its input u. The key of the proof is to prove that

every layer of our deep SSM is a (µi,ci)-RC, from there, we can prove that the whole

architecture is a (µ,c)-RC with the following lemma.

Lemma 4.4.2 ([29]). Let Φ1 = {ϕ1 : X1 → X2} be (µ1,c1)-RC and Φ2 = {ϕ2 : X2 → X3}

be (µ2,c2)-RC. Then the set of compositions Φ2 ◦Φ1 := {ϕ2 ◦ϕ1 | ϕ1 ∈ Φ1,ϕ2 ∈ Φ2} is

(µ1µ2,µ2c1 + c2)-RC.

Proof [29]. Let the Banach spaces which contain Xi be denoted by Xi for i = 1,2,3. Let

Z ⊆ XN
1 and

Z̃ =
{
{ϕ1(ui)}N

i=1 | ϕ1 ∈ Φ1

}
.
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We have

Eσ

 sup
ϕ2∈Φ2

sup
ϕ1∈Φ1

sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N

∑
i=1

σiϕ2(ϕ1(ui))

∥∥∥∥∥
X3



= Eσ

 sup
ϕ2∈Φ2

sup
{vi}N

i=1∈Z̃

∥∥∥∥∥ 1
N

N

∑
i=1

σiϕ2(vi)

∥∥∥∥∥
X3



≤ µ2Eσ

 sup
{ϕ1∈Φ1}

sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N

∑
i=1

σiϕ1(ui)

∥∥∥∥∥
X2

+ c2√
N

≤ µ2µ1Eσ

 sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N

∑
i=1

σiui

∥∥∥∥∥
X1

+µ2
c1√
N
+

c2√
N
.

From here, the full proof proves that every layer in the deep SSM is a (µ,c)-RC, but

here we only show a proof sketch for the inner SSM blocks, so basically the corresponding

LTI systems. The full proof for the other layers can be found in [29].

Lemma 4.4.3 (RC bound for a family of LTI maps). Let S be a collection of LTI systems Σ,

each of which induces a linear input–output operator between the Banach spaces (U ,∥·∥U)

and (Y,∥·∥Y) as defined in Definition 3.2.13.

SΣ,T : U −→ Y,
(
SΣ,T (u)

)
(t) = y(t) (1 ≤ k ≤ T ).

Assume that for every Σ ∈ S one has

∥SΣ,T∥op = sup
∥u∥U=1

∥∥SΣ,T (u)
∥∥
Y ≤ KS.

If Z ⊆ UN and {ui} := {ui}N
i=1 ∈ Z, then

Eσ

[
sup
Σ∈S

sup
{ui}∈Z

∥∥∥ 1
N

N

∑
i=1

σi SΣ,T (ui)
∥∥∥
Y

]
≤ KS Eσ

[
sup

{ui}∈Z

∥∥∥ 1
N

N

∑
i=1

σi ui

∥∥∥
Y

]
,

where {σi}N
i=1 are i.i.d. Rademacher random variables. In particular, the function class

F =
{

u 7→ SΣ,T (u)
∣∣ Σ ∈ S

}
is (KS,0)-RC.
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Proof. Since each SΣ,T is a linear operator, then for any fixed choice of Rademacher signs

{σi}N
i=1 and any inputs {ui} ∈ Z, we have

1
N

N

∑
i=1

σi SΣ,T (ui) = SΣ,T

(
1
N

N

∑
i=1

σi ui

)
.

Therefore,

sup
Σ∈S

∥∥∥ 1
N

N

∑
i=1

σi SΣ,T (ui)
∥∥∥
Y
= sup

Σ∈S

∥∥∥SΣ,T

(
1
N

N

∑
i=1

σi ui

)∥∥∥
Y

≤ sup
Σ∈S

∥SΣ,T∥op ·
∥∥∥ 1

N

N

∑
i=1

σi ui

∥∥∥
U

≤ KS

∥∥∥ 1
N

N

∑
i=1

σi ui

∥∥∥
U
.

Taking expectation over the Rademacher variables and then the supremum over all choices

{ui} ∈ Z, we obtain

Eσ

[
sup
Σ∈S

sup
{ui}∈Z

∥∥∥ 1
N

N

∑
i=1

σi SΣ,T (ui)
∥∥∥
Y

]
≤ KS Eσ

[
sup

{ui}∈Z

∥∥∥ 1
N

N

∑
i=1

σi ui

∥∥∥
U

]
.

By definition of Rademacher complexity, this shows that F is (KS,0)-RC.

Combining this with the previous lemma and the intuition we gave for the definition

of RC we obtain that the Rademacher complexity of the whole deep SSM can be bounded

by the Rademacher complexity of its input and the µ,c ≥ 0 constants. From here we use

the general definition of a PAC bound, given in Definition 3.1.5 and Theorem 3.1.2 to

obtain (4.7).
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Chapter 5

Implementation and experiments

In this chapter we discuss the handling of the data in more detail, describe the im-

plementations of the architectures, and present the different experiments we ran and the

results we obtained.

5.1 Data preparation

5.1.1 The data

Developing any machine learning algorithm requires extensively pre-processed and

well-prepared data. For this study, a database provided by the BME Motorsport Formula

Student Racing Team (which the author is a member of) is utilized. In this thesis, we

analyze the testing data collected from the racing cars built by this team. The data was

collected over a three-year period from different cars, tracks and conditions improving

variability, reducing the risks of overfitting a track or weather specific bias. The data we re-

ceived was originally provided in an engine management environment, called MaxxECU

and contained data from more than 20 different tracks and by four different drivers. In

order to validate the data, real-world tests have been conducted in cooperation with the

racing team, where we measured the fuel consumption of the car manually and compared

it to the virtual fuel tank data recorded by a sensor on the car. During these tests, first we

reset the virtual fuel tank data to the real size of our tank, filled up the full tank, and after

the run was completed we compared the logged level of the fuel tank to the measured re-

sults. After these tests it was clear that the logged fuel consumption data was accurate up

to the precision of deciliters and could thus be used in this study as the label. The engine

control unit on the car also calculates instantaneous consumption but the real life tests
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confirmed that this data is not reliable and therefore it should not be used as labels. The

inaccuracies in this data also indicated that while naive, physics-based approaches can be

used to estimate fuel consumption, they heavily rely on exact measurements, supporting

the usage of deep learning methods. We further explore and implement a naive, physics

based method in Chapter 5.2, and compare it to our models in Chapter 5.3.

The dataset contained various modalities of data, many of which were unusable and

had to be removed. Initially, we categorized the data into two main groups: full laps and

samples. In the full laps group we collected data from different tracks where the car made

at least one full lap around the given track, and the data where the car was running, but

not on a particular track, rather just a few meters in random shapes for testing, were

categorized in the samples group. The latter can be used by the learning algorithm, but

some full lap data is required to truly validate the functionality of the model. Following

the data cleaning and preparation process, full lap data from 15 different tracks were

collected, with each track containing at least two completed laps. Additionally, over 30

sample datasets were available, with lengths ranging from several thousand to nearly one

hundred thousand time frames.

5.1.2 Data cleaning, sampling and labeling

Our task involved extracting the data from the given environment into manageable

CSV files, followed by data preprocessing steps such as cleaning, removal of irrelevant

features, and performing final sampling and dataset partitioning. The feature selection

was done with the help of BME Motorsport. The students who designed the engine used

in the car, specialized in combustion engines, gave us insights into what features can

significantly impact fuel consumption and based on their input and data availability we

settled with the 16 dimensions displayed in Table 5.1. This selection of features pro-

vides a robust dataset that implicitly captures ambient weather conditions (e.g., Intake Air

Temperature, Fuel Temperature), driver behavior and engine characteristics (e.g., Throttle

Position, Front Left Wheel Speed), as well as indicators influencing fuel usage (Fuel Pulse

Primary, Fuel Angle, etc). Please note that some of the features are hard to simulate and

according to the intuition of engineers, some of them influence fuel consumption more

than others, so in Chapter 5.3 we also explore models trained without the Fuel Duty

Primary, Fuel Load Primary and Fuel Pulse Primary sequences, and models trained with

those features but tested without them.
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Feature Description

Oil Temperature
Temperature of the engine oil, affecting lubrication
and engine efficiency.

Fuel Temperature
Temperature of the fuel, influencing combustion be-
havior and density.

Oil Pressure
Pressure of the engine oil, critical for the engine
proper functions and component lubrication.

Fuel Pressure
Pressure at which fuel is delivered to the injectors,
impacts fuel delivery accuracy.

Coolant Temperature
Engine coolant temperature, a key indicator of engine
thermal state.

Lambda
Oxygen sensor value indicating air-fuel mixture (λ =
1 is stoichiometric).

Intake Air Temperature
Temperature of air entering the engine, affects air den-
sity and combustion.

RPM
Engine speed in revolutions per minute, directly re-
lated to power output.

Throttle Position
Position of the throttle valve, indicating driver power
demand.

Acceleration Enrichment
Additional fuel added during throttle changes to pre-
vent hesitation.

Fuel Angle
Crank angle at which fuel injection begins, impacting
combustion efficiency and engine performance.

Fuel Duty Primary
Injector duty cycle, representing fuel injection dura-
tion as a percentage.

Fuel Load Primary
Fuel load is the fuel amount required by the engine
influencing fuel injection and ignition.

Fuel Pulse Primary
Duration of fuel injection pulses, controlling fuel vol-
ume delivered.

Total Fuel Trim
Correction applied to base fuel map to achieve desired
air-fuel ratio.

Wheelspeed Front Left
Rotational speed of the front left wheel, used for ve-
hicle dynamics control.

Table 5.1: Selected engine and vehicle parameters used as features in the fuel
consumption analysis

Additionally, since all features within one time series, originate from the same vehicle and

physical system, they all influence one another in some way. For a detailed overview of

their correlations, refer to Figure 5.1. After the feature selection process, we had a set of

time series with various length and some of them even containing more than one lap worth

of data. In order to separate these time series into smaller ones containing the data for only

one lap, a periodicity detection algorithm was implemented, discussed in more detail in

Chapter 5.2.1. Please note however that for the robustness of the dataset we intentionally

left some of these multi lap data untouched for more varied data samples.
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Figure 5.1: Correlation of the selected features

After the above mentioned steps we were left with separate time series varying hugely

in length. In order to obtain a dataset consisting of sequences with the same length, the

main author implemented a data sampling process. After experimenting with different

lengths we settled with 1300 timestamp long time series in order to have a semi-optimal

distribution of the labels. The graphs displaying the distribution of labels for different

lengths of time series’ can be seen in Figure 5.2.

After performing all the steps explained earlier we obtained a dataset tailored to our

needs. For a concrete, stratified, 80-20 split we obtained a dataset containing 175 time

series in our test set and 698 in the train set. In our case stratified split means maintaining

the same distribution of labels in the train and test set with the distribution of labels for

length of 1300 displayed on Figure 5.2.
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(a) Length = 130 (b) Length = 500

(c) Length = 1000 (d) Length = 1300

Figure 5.2: Distribution of fuel consumption labels for different input sequence lengths.

5.2 Implementation

5.2.1 Periodicity detection

Suppose that we have a given feature and its values over time collected into a time

series. Let T be the series and T (i) the corresponding value of the feature at time-stamp i.

It is possible to define periodicity in multiple ways but in this study we will use segment

periodicity as it is the one relatable to our data. The idea behind segment periodicity is that

it focuses on the entire time series’ correlation with itself, delayed by different numbers

of lags [43]. An intuitive definition for segment periodicity is a pattern in a time series

that occurs at regular time intervals [44]

Definition 5.2.1 ([43]). Let S be a similarity measure, specifically in our case:

H(u,v) = ∑
m−1
j=0

1 if u j ̸= v j

0 if u j = v j

, S(u,v) = 1 − H(u,v)/m, where H is the Hamming

distance. Then if a time series T of length n can be sliced into equal-length seg-

ments T0,T1, . . . ,Ti, . . . ,TN , each of length p, where Ti = eip, . . . ,eip+p−1, N = ⌊n/p⌋−1,
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S(Ti,Tj)≥ τ ∀i, j = 0,1, . . . ,N, and 0 ≤ τ ≤ 1, then T is said to be periodic with a period

p with respect to periodicity threshold τ .

There are several ways to find periodicity in a time series, like the Fourier transform

[44], but we used the autocorrelation method because it is easier to implement and intu-

itively a better fit for our case.

Correlation is a concept used mostly in probability theory and statistics. The definition

of the correlation between two variables X and Y is defined as follows.

Definition 5.2.2 ([45]). The correlation of two random variables X and Y is defined as

Corr(X ,Y ) =
Cov(X ,Y )

Sd(X)Sd(Y )
=

Cov(X ,Y )√
Var(X)Var(Y )

,

provided 0 < Var(X)< ∞ and 0 < Var(Y )< ∞.

Where,

• Cov(X ,Y ) = E [(X −E(X))(Y −E(Y ))] is the covariance of X and Y ;

• Sd(X) =
√

Var(X) is the standard deviation of X ;

• Var(X) = E
[
(X −E(X))2] is the variance of X .

In our case, the autocorrelation function is the normalized correlation of the time series

with a delayed copy of itself. Let T be a time series of length n, and define T as the mean

of the series and Var(T ) its variance. The autocorrelation at lag k is computed by the

formula:

ACF(k) =
1

(n− k) ·Var(T )

n−k−1

∑
i=0

(T (i)−T )(T (i+ k)−T )

To ensure stability and convergence of the autocorrelation values toward zero as the

lag increases, we adjusted the denominator in the last 10% of the lag values by fixing the

effective length to a constant. The implementation is summarized in the following steps:

1. Shift the series by subtracting its mean: x− x̄.

2. Compute the autocorrelation of the normalized series with itself.

3. Retain the non-negative lags: k ∈ [0,n).

4. Scale the result using the variance and a lag-dependent length factor to normalize

the autocorrelation values.
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This process was implemented using NumPy [46] as shown on Code 5.1:

1 def autocorr(x: np.ndarray) -> np.ndarray:

2

3 """ Calculates the autocorrelation of the input array."""

4

5 n = x.size # size of the array

6 norm = (x - np.mean(x)) # normalizing the array by subtracting

the mean

7 result = np.correlate(norm , norm , mode=’full’) # finding the

correlation of the array with itself

8 lengths = np.concatenate ((np.arange(n, round(n*0.1), -1), np.

ones(round(n*0.1), dtype=int)*round(n*0.1))) # setting the

last 10% of the array to a constant value so the

autocorrelation is converging to 0

9 acorr = result[n-1: 2*n] / (x.var() * lengths) # calculating

the autocorrelation

10 return acorr

Code 5.1: Autocorrelation function used to detect periodicity based on [47]

As an example of the autocorrelation function used to detect periodicity in real-world

data, Figure 5.3a displays the measured speed data of our car during the completion of 10

laps.

To the human eye, it is clear that there is some periodicity in the data. Using the

autocorrelation function on this data produces the plot shown in Figure 5.3b.

If the autocorrelation value is close to 1 for a certain lag, it means shifting the data

by that many indices is very similar to the original data, meaning that the local maxima

on the autocorrelation plot are the beginnings of the different laps. To find these local

maxima we used a shifting window method.

5.2.2 The models

As mentioned above we implemented three different architectures, the LRU, the

Mamba, and a simple Transformer. For the LRU and Mamba architectures we used open-

source implementations available online in [48] and [49] with a few tweaks. Naturally

we needed to incorporate our dataset into the frameworks of the model. For this we used

PyTorch’s [50] Dataset class, modified to our needs and extended with different kinds of

normalization. We also implemented a BootstrapDataset class from scratch so the mod-
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(a) Speed data over time

(b) Autocorrelation of the speed data

Figure 5.3: Speed data and its autocorrelation. Periodicity in the data becomes clearer in
the autocorrelation plot.

els could learn underrepresented classes as well. For the codes of the upper mentioned

datasets see Code A.2 and Code A.3 in Appendix A.

The LRU implementation we used originally only contained a classification model, so

in order to use it for our regression task we implemented a regression model based on their

classification one, displayed on Code A.4 in Appendix A. In addition, we implemented

both L1 and L2 loss functions for the regression model, modifying the training and vali-

dation procedures accordingly. We also introduced an optional ReLU activation in place

of the original GLU activation within the SequenceLayer class of the model. Furthermore,

as the original code-base did not include functionality for saving model states, this feature

was manually implemented. For definitions of L1/L2 loss, ReLU, GLU, and other related

terms, definitions used in this chapter, please refer to Appendix B.

The Mamba codes also lacked some key features that we had to implement. The most

important of these is the addition of support for stacking multiple layers, with residual
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connections and layer normalizations applied between layers, fully developed by the main

author and shown in Code A.1 in Appendix A. Furthermore, we applied learning rate

schedulers and optimizers. We also implemented a framework that facilitates logging and

enables seamless hyperparameter optimization.

The transformer model was implemented from scratch by the main author, with the

usage of PyTorch and its built in layer classes. We built the model to work both for re-

gression and classification tasks, using L1, L2 or cross-entropy losses accordingly. The

class defining the model structure can be seen in Code A.5. Similarly to the Mamba

model, we incorporated learning rate schedulers, optimizers, normalization, and pooling

into our implementation, fitting it all in a framework designed to support comprehensive

logging of model results and hyper-parameters. For more information on the structure of

the Transformer architecture see [51].

As mentioned above we did experiments with both regression and classification mod-

els because of the special nature of our labels. Strictly speaking we are dealing with a

regression task, however because of measurement limitations, our validation method re-

sulted in labels that are in liter ranging between 0 and 0.05. In order to ensure numerical

stability of the learning process, we multiplied the labels by 100, leaving us with labels

that are integers in centiliters, making it possible to address the problem as a classification

task. In the classification models the measurement of model performance was evidently

in accuracy, while in the regression models we used both Mean Absolute Error (MAE)

and a special form of accuracy to compare the performance of different models. In the

regression tasks we defined a prediction "accurate", if it, rounded to the nearest integer,

matched the label assigned to that sequence in centiliters. Accuracy of a given epoch was

then simply calculated by dividing the number of correct predictions by the number of

all predictions made. Occasionally, a model locally under- or overestimates the consump-

tion, which means that instead of a simple rounding, an adaptive threshold method may

achieve higher accuracy, which can be an interesting area of future research.

In order to compare the performance of the models to a physics based, naive approach,

we also calculated the total fuel consumed over a lap by integrating the instantaneous in-

jector flow rate. The calculations are presented in more detail in Appendix B. In Chapter

5.4 we evaluate the results of this calculations and compare it with the outputs of our mod-

els. The problem with this method is that it relies heavily on exact sensor measurements

which are often not available or noisy. It is possible for our models to simply learn the

physics based integration method we just described, so for the best architecture, chosen
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based on the experiments described in the next chapter, we ran some additional training

cycles, either just without the Fuel Pulse Primary sequence or also without all of the

features heavily correlating with it (Fuel Duty Primary, Fuel Load Primary). Since the

failure or unavailability of a given sensor is not a rare sight and some features are im-

possible to predict in a simulation environment, it adds to the robustness and practical

usability of the model to exclude some of them.

5.3 Experiments

In order to find the optimal hyperparameters for each model, grid searches were done.

We conducted many runs for each model class, using both regression and classification

methods, experimenting with scaling, number of layers, initialization, initial learning rate,

the type of learning rate scheduler, different loss functions, etc. We also did some ex-

periments with bootstrapping the underrepresented labels with the help of our Bootstrap

Dataset class displayed on Code A.3. After evaluating the results of the different experi-

ments, we found that the regression model outperforms the classification model for each

architecture. Taking into account the information gathered from more than 350 runs we

ended up with a model structure for each architecture that seemed the most consistent

and generally performed the best. For the LRU we found that the following hyperparam-

eters performed the best overall. A regression model trained with L2 loss function, with 3

layers and batch normalization, initialized with He normal initialization, using ReLU acti-

vation, with 0.01 initial learning rate, scheduled by cosine annealing and using the Adam

optimizer. The state dimension was 256, i.e. the state dimension of each LTI component

of each SSM block. We used mean pooling and interestingly enough no normalization of

any kind for the input data. The model has around 70 000 learnable parameters.

The Mamba model we chose had very similar complexity with around 105 000 pa-

rameters, but it consisted of 4 layers connected by residual connections and layer normal-

izations. For every model from now on we used an input scaling, dividing every single

value in the whole dataset by the biggest absolute value of the train dataset, namely 12

437. Additionally the optimal Mamba model had a local convolution width of 4, state

dimension of 256, block expansion factor of 2, that is a scalar value roughly equivalent

to a scaling factor of the state space dimension, and used mean pooling with 0.01 initial

learning rate, scheduled with cosine annealing and optimized by Adam. Here local con-
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volution width is the size of the finite convolutional kernel that’s applied locally, before

or after the state-space update.

Naturally, the Transformer model had the biggest complexity, with more than 3 200

000 learnable parameters, accordingly using the most computational resources out of

the three architectures. The best performing transformer model on our data had only 1

layer, 16 attention heads and 256 model dimension what is simply the dimension of the

Transformer’s internal vector space. We also experimented with larger models however

they were struggling, indicating that we did not have enough data to properly train big-

ger transformers. This relatively small transformer already had more than 30 times the

amount of parameters used by the other two models, while providing comparable results,

showing us that the usage of bigger models may not be beneficial even if more data were

available for us. The training process for the Transformer model, just like the Mamba,

used the L2 loss function, a base learning rate of 0.01, a cosine anneal scheduler and the

Adam optimizer.

5.4 Evaluation

After choosing a generally best model for each architecture, we evaluated and com-

pared them with each other. For this we created 10 independent stratified train-test splits

and trained and tested the chosen model structure from each model class, to see and com-

pare the results of these models refer to Figure 5.4.

On Figure 5.4 we can see that generally the Mamba performs the best as it has the

highest median accuracy, while also being more consistent than the Transformer architec-

ture, as its box is smaller, indicating less variance between the accuracies. Based on the

diagram the LRU performs the worst, but it still achieves a median accuracy of around

67% while also being consistent as it has the smallest box. This box supports our claim

that deep SSMs can at least match the performance of Transformer models, with some

specific architectures even outperforming them.
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Figure 5.4: Boxplot of the accuracies achieved by the best performing models for the 10
independent train-test split

For further evaluation we took 10 laps worth of data, distinct from the train and test

datasets of any previously performed experiments, each consisting of five to eight, 1300

long segments and predicted the overall consumption of each lap by predicting the con-

sumptions on the time segments and summing them. We refer to this set of 10 laps as

the evaluation set. The 10 laps were recorded at three different tracks, by three different

drivers and in varying weather conditions, providing us a robust evaluation set without

any clear bias. The predictions of the models, the MAEs and the standard deviations (Std.

Dev) compared to each other and the naive method (described in Appendix B) are all

displayed in Table 5.2.

Based on Table 5.2 we can further emphasize that in general the Mamba model per-

forms the best, even on our evaluation set. While in some special cases (on Track B in

our case) the Transformer can outperform the Mamba architecture, even then it has higher

standard deviation, indicating a less consistent model. In general the LRU lags behind the

other 2 models but it still achieves assessable results with relatively small deviation. The

naive, physics based method also achieves results close to our models’ but other than a

few exceptional cases it is in general worse than our best performing model.
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Table 5.2: Results of the models across all tracks of our validation set

(a) Track A

Model Metric Lap 1 Lap 2 Lap 3 Lap 4
True Label 28 30 30 28

Mamba
Rounded Pred 28.3 29.5 30.6 27.9
Pred ± Std 28.579 ± 0.683 29.684 ± 0.848 29.878 ± 0.646 28.148 ± 0.261
MAE ± Std(MAE) 0.791 ± 0.421 0.703 ± 0.569 0.470 ± 0.460 0.226 ± 0.198

Transformer
Rounded Pred 27.7 27.8 29.3 28.6
Pred ± Std 27.837 ± 0.646 28.036 ± 0.978 29.019 ± 1.063 28.627 ± 0.890
MAE ± Std(MAE) 0.583 ± 0.323 1.971 ± 0.964 1.072 ± 0.971 0.869 ± 0.656

LRU
Rounded Pred 27.3 25.7 28.6 26.7
Pred ± Std 26.844 ± 1.306 25.248 ± 1.479 28.713 ± 1.635 26.704 ± 1.724
MAE ± Std(MAE) 1.335 ± 1.122 4.752 ± 1.479 1.731 ± 1.154 1.879 ± 1.058

Naive method Pred 27.770 28.244 28.782 27.866
Error –0.230 –1.756 –1.218 –0.134

(b) Track B

Model Metric Lap 5 Lap 6 Lap 7
True Label 23 22 21

Mamba
Rounded Pred 25.5 24.2 22.7
Pred ± Std 25.507 ± 0.621 24.246 ± 0.527 22.740 ± 0.357
MAE ± Std(MAE) 2.507 ± 0.621 2.246 ± 0.527 1.740 ± 0.357

Transformer
Rounded Pred 24.5 22.6 22.6
Pred ± Std 25.039 ± 0.847 22.864 ± 1.985 22.503 ± 0.969
MAE ± Std(MAE) 2.039 ± 0.847 1.768 ± 1.250 1.544 ± 0.901

LRU
Rounded Pred 24.7 23.7 23.5
Pred ± Std 24.924 ± 1.683 23.579 ± 1.372 23.981 ± 1.731
MAE ± Std(MAE) 2.237 ± 1.238 1.879 ± 0.921 3.152 ± 1.395

Naive method Pred 23.911 23.384 22.443
Error 0.911 1.384 1.443

(c) Track C

Model Metric Lap 8 Lap 9 Lap 10
True Label 11 8 9

Mamba
Rounded Pred 12.4 9.9 9.3
Pred ± Std 12.319 ± 0.571 9.289 ± 0.530 9.202 ± 0.429
MAE ± Std(MAE) 1.319 ± 0.571 1.289 ± 0.530 0.365 ± 0.302

Transformer
Rounded Pred 13.9 10.6 10.5
Pred ± Std 14.323 ± 0.799 10.856 ± 2.283 10.589 ± 0.354
MAE ± Std(MAE) 3.323 ± 0.799 3.619 ± 0.519 1.589 ± 0.354

LRU
Rounded Pred 13.9 10.9 10.1
Pred ± Std 13.937 ± 0.428 11.412 ± 0.550 10.797 ± 0.213
MAE ± Std(MAE) 2.937 ± 0.428 3.412 ± 0.550 1.797 ± 0.213

Naive method Pred 12.721 9.976 10.061
Error 1.721 1.976 1.061
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Figure 5.5: Boxplot of the accuracies of the different Mamba variants for the 10 train-test
splits

The superiority of our best-performing model over the physics-based approach can

be seen from the analysis of the error terms in Table 5.2. Specifically, the physics-based

model consistently underestimates fuel consumption on Track A, while it tends to over-

estimate it on Tracks B and C. This is likely attributable to variations in ambient envi-

ronmental conditions that can affect the sensor’s measurement accuracy. In contrast, our

machine learning models are capable of learning these environmental perturbations and

integrating them into their predictions, thereby delivering more reliable and accurate esti-

mates.

For further evaluation, we conducted more experiments with our best performing

Mamba architecture. In the following Table and Figure, Mamba omit FPP means our

best performing Mamba model evaluated with the Fuel Pulse Primary feature replaced

with 0-s, while Mamba trained omit FPP and Mamba trained omit all fuel respectively

means training our best model class either only without the Fuel Pulse Primary or also

without the Fuel Load Primary and Fuel Duty Primary features. The comparison be-

tween the Mamba model and its above mentioned variants are summarized in Table 5.3

for our evaluation set, and for the accuracies of the 10 independent train-test splits refer

to Figure 5.5.

As one would assume, we can see on Figure 5.5 that the removal of all features,

strongly correlated with fuel injection, results in a generally worse, yet still well-
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performing model. Interestingly enough from Figure 5.5 we can also obtain that on our

test set on average the Mamba model trained without Fuel Pulse Primary performs the

best. One possible reason for that can be the noise coming from the sensor or the learning

process avoiding getting stuck in a local maximum.

Table 5.3 shows us an even more interesting picture that is kind of contrary to the

one obtained from Figure 5.5, as here the Mamba model trained without all fuel features

often outperforms everything else, in some cases even the Transformer model or the naive

method. Another interesting phenomenon is the relatively bad performance of the Mamba

model trained without Fuel Pulse Primary, as on our test set it performed the best, as

displayed on Figure 5.5. One key takeaway from Table 5.3 is the great performance of

the Mamba omit FPP model, promising great practical usability as according to this the

model can handle missing data pretty well.

An important aspect of any machine learning model is computational cost. In

Chapter 2, we claimed that deep SSMs often outperform transformers while consum-

ing less computational resources. On our hardware (CPU: AMD EPYC 7F72, 48 cores

(96 threads), 3.2 Ghz / core; GPU: Nvidia A100 40GB), one epoch for the Mamba model

took 1.986s ± 0.08s averaging over 50 epoch, while one epoch for the transformer took

4.852s ± 0.113s averaging over 50 epoch. The GPU usage of the Mamba model was 2566

MB, while for the Transformer it was 4837 MB, both for the same batch size, further sup-

porting our claim.
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Table 5.3: Comparison of the mamba models

(a) Track A

Model Metric Lap 1 Lap 2 Lap 3 Lap 4
True Label 28 30 30 28

Mamba
Rounded Pred 28.3 29.5 30.6 27.9
Pred ± Std 28.579 ± 0.683 29.684 ± 0.848 29.878 ± 0.646 28.148 ± 0.261
MAE ± Std(MAE) 0.791 ± 0.421 0.703 ± 0.569 0.470 ± 0.460 0.226 ± 0.198

Mamba omit FPP
Rounded Pred 28.1 28.8 29.7 27.9
Pred ± Std 28.187 ± 0.641 29.344 ± 0.778 29.513 ± 0.596 27.768 ± 0.236
MAE ± Std(MAE) 0.519 ± 0.420 0.716 ± 0.723 0.591 ± 0.493 0.279 ± 0.176

Mamba trained omit FPP
Rounded Pred 33.9 34.0 34.6 33.2
Pred ± Std 33.552 ± 3.757 33.637 ± 4.409 34.796 ± 3.030 33.501 ± 3.052
MAE ± Std(MAE) 5.560 ± 3.745 4.726 ± 3.214 4.936 ± 2.796 5.501 ± 3.052

Mamba trained omit all fuel
Rounded Pred 26.7 27.7 28.9 27.5
Pred ± Std 27.266 ± 0.627 28.185 ± 0.720 28.547 ± 0.368 27.471 ± 0.482
MAE ± Std(MAE) 0.794 ± 0.548 1.815 ± 0.720 1.453 ± 0.368 0.675 ± 0.237

(b) Track B

Model Metric Lap 5 Lap 6 Lap 7
True Label 23 22 21

Mamba
Rounded Pred 25.5 24.2 22.7
Pred ± Std 25.507 ± 0.621 24.246 ± 0.527 22.740 ± 0.357
MAE ± Std(MAE) 2.507 ± 0.621 2.246 ± 0.527 1.740 ± 0.357

Mamba omit FPP
Rounded Pred 25.2 24.1 22.6
Pred ± Std 25.161 ± 0.584 23.930 ± 0.478 22.398 ± 0.345
MAE ± Std(MAE) 2.161 ± 0.584 1.930 ± 0.478 1.398 ± 0.345

Mamba trained omit FPP
Rounded Pred 29.2 28.1 26.8
Pred ± Std 29.198 ± 3.707 28.218 ± 3.191 26.687 ± 2.910
MAE ± Std(MAE) 6.278 ± 3.570 6.218 ± 3.191 5.687 ± 2.910

Mamba trained omit all fuel
Rounded Pred 23.0 22.5 21.4
Pred ± Std 23.357 ± 0.848 22.684 ± 0.486 21.445 ± 0.595
MAE ± Std(MAE) 0.737 ± 0.550 0.690 ± 0.478 0.602 ± 0.436

(c) Track C

Model Metric Lap 8 Lap 9 Lap 10
True Label 11 8 9

Mamba
Rounded Pred 12.4 9.9 9.3
Pred ± Std 12.319 ± 0.571 9.289 ± 0.530 9.202 ± 0.429
MAE ± Std(MAE) 1.319 ± 0.571 1.289 ± 0.530 0.365 ± 0.302

Mamba omit FPP
Rounded Pred 12.2 9.8 9.3
Pred ± Std 12.132 ± 0.619 9.192 ± 0.549 9.083 ± 0.438
MAE ± Std(MAE) 1.134 ± 0.616 1.192 ± 0.549 0.347 ± 0.280

Mamba trained omit FPP
Rounded Pred 16.1 10.6 12.0
Pred ± Std 16.114 ± 0.544 11.218 ± 0.848 11.733 ± 0.489
MAE ± Std(MAE) 5.114 ± 0.544 3.218 ± 0.848 2.733 ± 0.489

Mamba trained omit all fuel
Rounded Pred 12.7 9.6 9.7
Pred ± Std 12.661 ± 1.066 9.172 ± 0.854 9.378 ± 0.626
MAE ± Std(MAE) 1.661 ± 1.066 1.226 ± 0.774 0.550 ± 0.481
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Chapter 6

Conclusion and further research

Based on the systematic evaluation of the models, described in the previous, chap-

ter our work supports the claim that deep SSMs can match and often outperform

Transformers in predicting long range sequences while using much less computational

power. Based on our results we can also say that deep learning models mostly outperform

naive, physics based calculations based on noisy sensors, and they have the potential to be

applied in practice for fuel consumption prediction. Another interesting remark is that the

models we used are all built on stable parametrization, yet they performed really well on

our unique, and noisy data, further emphasizing our claim that stability of the underlying

dynamical systems can significantly impact the model performance.

An interesting future research idea is predicting other sequence length data for more

general usability and to remove the bias the current length has on the model. However

implementing it could be tricky because of uneven label distribution. Further research

may include setting random features to zero for random time series in our train set for

robustness and for better handling of occasional faulty sensor data. Also we are planning

to integrate the models into the simulation environments used by BME Motorsport for

better race strategy optimization.
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Appendix A

Additional code snippets

Code snippets we used in our work that were referenced in the main text are displayed

here.

1 class DeepMamba(nn.Module):

2

3 def __init__(self , d_model , d_state , d_conv , expand , pooling ,

num_layers , n_classes , use_residual=True):

4 super(DeepMamba , self).__init__ ()

5 layers = []

6 # First Mamba layer (no residual connection needed)

7 layers.append(Mamba(d_model , d_state , d_conv , expand))

8 self.layer_norm = nn.LayerNorm(d_model)

9 # Add remaining layers with optional residual connections

10 for _ in range(num_layers - 1):

11 block = []

12 block.append(nn.LayerNorm(d_model))

13 block.append(Mamba(d_model , d_state , d_conv , expand))

14 layers.append(nn.Sequential (*block))

15 self.mamba_layers = nn.Sequential (* layers)

16 self.pooling = Pooling(pooling) # Pooling Layer

17 self.fc = nn.Linear(d_model , n_classes) # FC Output Layer

18

19 def forward(self , x, use_residual=True):

20 # Apply Mamba layers

21 for layer in self.mamba_layers:

22 residual = x # Store input as residual

23 if use_residual == "normed":

24 residual = self.layer_norm(residual) #normalizing
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25 if use_residual or use_residual == "normed" or

use_residual == "True":

26 x = x + residual # Add residual connection

27 x = self.pooling(x)

28 x = self.fc(x)

29 return x

Code A.1: Implementation of the multilayer Mamba model in Python

1

2 class FuelDataset(Dataset):

3 _name_ = "fuel"

4 scaler = None # Class -level scaler shared across instances

5

6 def __init__(self , data_dir , type , scale=None , omit_fpp=False):

7 assert type in [’train ’, ’test’, ’validation ’],

8 csv_file = f’{data_dir }/{ type}.csv’

9 self.df = pd.read_csv(csv_file)

10 if omit_fuel:

11 #remove the fuel columns from the dataset

12 self.df = self.df.drop(columns =[’Fuel load primary

[273]’])

13 self.df = self.df.drop(columns =[’Fuel duty primary [64]

’])

14 self.df = self.df.drop(columns =[’Fuel pulse primary

[63]’])

15 # Initialize tensors for data and labels

16 self.data = torch.empty ((self.__len__ (), self.__seq_len__ ()

, self.__d_input__ ()))

17 self.labels = torch.empty ((self.__len__ (), 1))

18 # Populate data and labels tensors

19 for i, id in enumerate(self.df[’id’]. unique ()):

20 self.data[i] = torch.tensor(self.df[self.df[’id’] == id

].iloc[:, 2:]. values , dtype=torch.float32)

21 self.labels[i] = torch.tensor(self.df[self.df[’id’] ==

id].iloc[0, 1], dtype=torch.float32)

22 # Handle scaling

23 if scale is not None and scale != ’None’:

24 if FuelDataset.scaler is None:

25 if scale == ’MinMaxScaler ’:

26 FuelDataset.scaler = MinMaxScaler ()
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27 elif scale == ’StandardScaler ’:

28 FuelDataset.scaler = StandardScaler ()

29 elif scale == ’RobustScaler ’:

30 FuelDataset.scaler = RobustScaler ()

31 elif scale == ’MAX’:

32 pass

33 elif scale == ’max’:

34 pass

35 else:

36 raise ValueError("Invalid scaler type")

37 if scale == ’MAX’:

38 #divide every data point by the maximum value

39 for i in range(self.__len__ ()):

40 for j in range(self.__d_input__ ()):

41 self.data[i][:, j] = self.data[i][:, j] /

12437

42 elif scale == ’max’:

43 # Divide every data point by the max value of that

dimension

44 for i in range(self.__len__ ()):

45 for j in range(self.__d_input__ ()):

46 max_val = torch.max(self.data[i][:, j])

47 if max_val != 0:

48 self.data[i][:, j] = self.data[i][:, j]

/ max_val

49 else:

50 if type == ’train ’:

51 # Fit and transform train data

52 for i in range(self.__len__ ()):

53 for j in range(self.__d_input__ ()):

54 self.data[i][:, j] = torch.tensor(

55 FuelDataset.scaler.fit_transform(

self.data[i][:, j]. reshape(-1,

1)).reshape (-1)

56 )

57 elif type == ’test’:

58 # Transform test data using the scaler fitted

on train data

59 print(f"Scaling test data using {FuelDataset.

scaler}")

60 if not FuelDataset.scaler:
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61 raise ValueError("Scaler is not fitted yet.

Fit the scaler with the train dataset

first.")

62 for i in range(self.__len__ ()):

63 for j in range(self.__d_input__ ()):

64 self.data[i][:, j] = torch.tensor(

65 FuelDataset.scaler.transform(self.

data[i][:, j]. reshape(-1, 1)).

reshape (-1)

66 )

67 # Dataset properties

68 self.seq_len = self.__seq_len__ ()

69 self.d_output = self.__d_output__ ()

70 self.d_input = self.__d_input__ ()

71

72 def __getitem__(self , index):

73 sample = self.data[index], self.labels[index]

74 return sample

75

76 def __len__(self):

77 # Number of unique IDs in the dataset

78 return len(self.df[’id’]. unique ())

79

80 def __d_input__(self):

81 # Number of columns excluding the ID and label

82 return self.df.shape [1] - 2

83

84 def __d_output__(self):

85 # Number of output dimensions classification is used

86 return 6

87

88 def __seq_len__(self):

89 # Maximum sequence length per unique ID

90 return self.df[’id’]. value_counts ().max()

Code A.2: The implementation of our dataset in Python

1

2 class BootstrapDataset(Dataset):

3 def __init__(self , dataset , target_labels):

4 """
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5 Args:

6 dataset: The original dataset to wrap.

7 target_labels: List of labels to use for bootstrapping.

8 """

9 self.dataset = dataset

10 self.target_labels = set(float(x) for x in target_labels)

11 self.label_to_indices = self._create_label_index_map ()

12

13 def _create_label_index_map(self):

14 """

15 Create a map of label to indices for fast lookup.

16 """

17 label_to_indices = {}

18 for idx in range(len(self.dataset)):

19 _, label = self.dataset[idx]

20 key = label.item() if isinstance(label , torch.Tensor)

else float(label)

21 if key not in label_to_indices:

22 label_to_indices[key] = []

23 label_to_indices[key]. append(idx)

24 return label_to_indices

25

26 def _get_random_sample_by_label(self , label):

27 """

28 Fetch a random sample index with the specified label.

29 """

30 return random.choice(self.label_to_indices[label ])

31

32 def __getitem__(self , index):

33 """

34 Get the item at index. If index exceeds dataset length ,

return a bootstrap sample.

35 """

36 if index < len(self.dataset):

37 return self.dataset[index]

38 # Generate a bootstrap sample , select a random target label

39 label = random.choice(list(self.target_labels)

40 sample_index = self._get_random_sample_by_label(label)

41 return self.dataset[sample_index]

42

43 def __len__(self):
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44 """

45 Extended length to include original + bootstrap samples.

46 """

47 return len(self.dataset) * 2 # Example: double the data

size by adding bootstrap samples

Code A.3: The implementation of our dataset in Python

1

2 class RegressionModel(nn.Module):

3 """ Stacked encoder with pooling and softmax """

4

5 lru: nn.Module

6 d_output: int # output dimension of the last decoder

7 d_model: int # output dimension of the initial encoder

8 n_layers: int

9 dropout: float = 0.0

10 training: bool = True

11 norm: str = "batch" # type of normaliztion

12 multidim: int = 1 # number of outputs

13 use_decoder: bool = True

14 use_encoder: bool = True

15 use_pooling: bool = True

16

17 def setup(self):

18 self.encoder = StackedEncoderModel(

19 lru=self.lru ,

20 d_model=self.d_model , #output dimension of the initial

encoder

21 n_layers=self.n_layers ,

22 dropout=self.dropout ,

23 training=self.training ,

24 norm=self.norm ,

25 )

26 self.decoder = None

27 if self.use_decoder:

28 self.decoder = nn.Dense(self.d_output ,

29 use_bias=False)

30

31 def __call__(self , x):

32 x = self.encoder(x)
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33 if self.use_decoder:

34 x = self.decoder(x)

35 if self.use_pooling:

36 x = jnp.mean(x, axis =0) # mean pooling across time

37 return x

Code A.4: The regression model for the LRU architecture in Python

1

2 class TransformerModel(nn.Module):

3 def __init__(self , input_dim , model_dim , num_heads , num_layers ,

num_classes =1):

4 super(TransformerModel , self).__init__ ()

5 self.encoder = nn.Linear(input_dim , model_dim)

6 encoder_layer = nn.TransformerEncoderLayer(

7 d_model=model_dim ,

8 nhead=num_heads ,

9 dim_feedforward =2048 ,

10 dropout =0.1,

11 activation=’relu’,

12 batch_first=True

13 )

14 self.transformer_encoder = nn.TransformerEncoder(

encoder_layer , num_layers=num_layers , norm=nn.LayerNorm(

model_dim))

15 self.pooling = Pooling("mean")

16 self.fc1 = nn.Linear(model_dim , 128)

17 self.fc2 = nn.Linear (128, num_classes)

18

19 def forward(self , x):

20 x = self.encoder(x)

21 x = self.transformer_encoder(x)

22 x = self.pooling(x)

23 x = F.relu(self.fc1(x))

24 x = self.fc2(x)

25 return x

Code A.5: The Transformer model used in the paper, implemented in Python
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Additional definitions

B.1 Physics based naive approach

First, for each time step i we read from the CSV file the commanded injector pulse

width τi in milliseconds and the engine speed RPMi. We convert the pulse width to sec-

onds,

τi =
Fuel pulse primary [63]i

1000

and compute the number of injection events per second for a four-stroke engine as

Ei = Ninj ×
RPMi

120
,

where Ninj is the number of injectors (4 in our case). The instantaneous fuel flow rate (in

cm3/s) is then

V̇i = τi ×
(Rinj

60

)
× Ei,

where Rinj is the injector’s calibrated flow rate in cm3/min (240 for our engine). Finally,

we sum the fuel delivered over all time steps by multiplying by the fixed time increment

∆t (in seconds) and convert cubic centimeters to liters:

Vtotal = ∑
i

(
V̇i ∆t

)
=⇒ Vtotal (L) =

1
1000 ∑

i

(
V̇i ∆t

)
.

This yields the total fuel consumed in liters for the lap.

65



B. Additional definitions

B.2 L1/L2 loss

L1 Loss (Mean Absolute Error). The L1 loss, also known as mean absolute error

(MAE), measures the average absolute difference between predicted values ŷi and true

values yi over a dataset of size N:

L1 =
1
N

N

∑
i=1

|yi − ŷi|.

This loss is less sensitive to outliers than L2 loss and encourages sparse residuals.

L2 Loss (Mean Squared Error). The L2 loss, or mean squared error (MSE), computes

the average of the squared differences between ŷi and yi:

L2 =
1
N

N

∑
i=1

(yi − ŷi)
2.

L2 penalizes larger errors more heavily.

B.3 ReLU

The Rectified Linear Unit (ReLU) activation function is defined element-wise as:

ReLU(x) = max(0,x).

It introduces non-linearity while mitigating vanishing gradients by allowing unbounded

positive outputs and zeroing negatives.

B.4 Learning Rate, Scheduler and Optimizer

Learning Rate The learning rate η controls the step size at each iteration of optimiza-

tion when updating model parameters.

Scheduler A learning-rate scheduler automatically adjusts η during training according

to a predefined policy (e.g., step decay, cosine annealing) to improve convergence and

avoid local minima.
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Optimizers The Optimizer we used is the Adam optimizer [52]. This maintains adap-

tive estimates of first (mt) and second (vt) moments of gradients to compute parameter

updates:
mt = β1mt−1 +(1−β1)gt , vt = β2vt−1 +(1−β2)g2

t ,

m̂t = mt/(1−β
t
1), v̂t = vt/(1−β

t
2),

θt+1 = θt −η
m̂t√
v̂t + ε

.

B.5 Cross-Entropy Loss

For classification with C classes and true one-hot label y and predicted probability

distribution p̂, the cross-entropy loss is:

LCE =−
C

∑
i=1

yi log(p̂i).

In binary classification, this reduces to:

LBCE =−
(
y log(p̂)+(1− y) log(1− p̂)

)
.

Cross-entropy encourages the model to assign high probability to the correct class.

B.6 He Initialization

He normal initialization [53] sets each weight w in a layer with nin inputs by drawing

w ∼N
(
0, 2

nin

)
.

This preserves variance through ReLU layers.

B.7 Cosine Annealing Scheduler

A cosine annealing learning-rate schedule introduced in [54] decays the learning rate

η from an initial η0 toward zero over T epochs according to

η(t) =
η0

2

(
1+ cos

π t
T

)
, t = 0,1, . . . ,T.

67



B. Additional definitions

B.8 Batch Normalization

Batch normalization [55] normalizes each layer’s pre-activation batchwise to zero

mean and unit variance, then applies learnable scale and shift:

x̂i =
xi −µbatch√

σ2
batch + ε

, yi = γ x̂i +β .

B.9 Mean Pooling

Mean pooling aggregates a sequence (y1, . . . ,yT ) into a fixed-size vector by

ȳ =
1
T

T

∑
t=1

yt .

We use it to collapse time-dependent features before the final regression head.
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