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1. Introduction

In this thesis, we consider two loosely related topics. First, we study the volume of
intersection of convex bodies. The motivation came from studying quantitative Helly
theorem by Bárány, Katchalski, Pach, [BKP82, BKP84].

In [Sch70], Schneider generalized the difference body in the following way.

Dn(K) =

{
(x1, x2, . . . , xn−1) | (C1 + x1) ∩ (C2 + x2) ∩ ... ∩ (Cn−1 + xn−1) ∩ Cn ̸= ∅

}
,

which, for n = 2 is clearly the set C2 − C1.
Here, we introduce a quantitative variant, where instead of requiring the intersection

to be non-empty, we require it to have a certain volume.

Definition 1.0.0.1. (K set) Let C1, C2, . . . , Cn ∈ Rd be convex bodies, x1, x2, . . . , xn ∈
Rd we define the K-set by,

K(C1, C2, . . . , Cn) =

{
(x1, x2, . . . , xn−1) | λ((C1+x1)∩(C2+x2)∩...∩(Cn−1+xn−1)∩Cn) ≥ 1

}
,

where λ denotes the Lebesgue measure.

The first section is about this set and the properties of the set. The main result is
that this set is convex. This result is not from the literature.

It is a natural isoperimetric type problem to find the maximum of λ(K(C1, C2)) for
all pairs of convex bodies C1, C2 ⊂ R2 where λ(C1) = λ(C2) = a ∈ R+. We show that
surprisingly, this maximum is not the disk for a > 5.83. The question for values of a
close to 1 remains open. We use analytic tools to solve these questions.

Second, we discuss a classical open question, the inscribed square problem.
Let C be a Jordan curve. A polygon P is inscribed in C, if all vertices of P belong

to C.
2



Problem 1.0.1. Is there an inscribed square in every Jordan curve in R2?

The problem was proposed by Otto Toeplitz in 1911. The question for an arbitrary
curve is still open. Nevertheless, it is solved for many curves with special properties,
for example piecewise analytic curves, locally monotone curves, and Lipschitz graphs.
The problem with the general answer is that the sequence of squares can converge to a
one-point quadrilateral. The special properties are needed to avoid this scenario. Here
we will present the solution of the problem for locally monotone curves by Stromquist.
[Str89]

The structure of the thesis is the following. In Chapter 2 we discuss the properties of
the K set and show some examples and remarks. In Chapter 3, we talk about homology
based on László Fehér’s lecture notes [Feh24] to be able to present the proof of the
inscribed square problem for locally monotone curves. Chapter 4 contains this proof
for the inscribed square problem.
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2. The K set

In this section, we study the K set.

Definition 2.0.0.1. (Convex set) Let C be a set in Rn, C is convex, if for every
x, y ∈ C and λ ∈ [0, 1], we have that λx+ (1− λ)y ∈ C

Definition 2.0.0.2 (K function). Let C1, C2, . . . , Cn ⊂ Rd be convex bodies, f1 = χC1,
f2 = χC2 , . . . fn = χCn. We define the function K : Rd×(n−1) −→ R. as

K(x1, x2, . . . , xn−1) =

∫
Rd

f1(x1 − y)f2(x2 − y) . . . fn(y)dy,

where χ denotes the characteristic function of a set. We note that

K(x1, x2, . . . , xn−1) = λ(C1 + x1 ∩ C2 + x2 ∩ ... ∩ Cn−1 + xn−1 ∩ Cn).

The K-set of C1, . . . , Cn is

K(C1, C2, . . . , Cn) = {(x1, x2, . . . , xn−1) ∈ (Rd)n−1 : K(x1, x2, . . . , xn−1) ≥ 1} ⊂ (Rd)n−1,

which is a superlevel of the K function.

Theorem 2.0.1. (The K set is convex.)
For any C1, C2, ..., Cn ⊂ Rn convex bodies K(C1, C2, ..., Cn) is convex.

Proof. First, we introduce the following notation.
For x = (x1, x2, . . . , xn) ∈ (Rd)n, y ∈ Rn, F (x, y) = f1(x1 − y)f2(x2 − y) . . . fn(y).
Observe that

K(x1, x2, . . . , xn) =

∫
Rd

F (x, y)dy

It is sufficient to show that, K(x1, x2, . . . , xn) is logarithmically concave. That is because
K is the superlevel of the function. Suppose that (x1, y1), (x2, y2) ∈ Rd×(n−1) × Rd
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x1 = (x1,1, x1,2, . . . , x1,n), x2 = (x2,1, x2,2, . . . , x2,n)

We need to prove that F (x, y) is logarithmically concave. The value of the function is
either 0 or 1. We need to show that: For any λ ∈ [0, 1]

F ((1− λ)(x1, y1) + λ(x2, y2)) ≥ F (x1, y1)
1−λF (x2, y2)

λ

When the right side is equal to 0, the inequality is trivial so, we need to check the
case, when the right side is 1. We have to prove that the left side will always be 1,
if the right is 1. Assume that the 0 vector is in every Ci. Then x1, y1 ∈ Ci + x1i and
x2, y2 ∈ Ci + x2i In that case for every λ, (1 − λ)y1 + λy2 is in the intersection of the
convex bodies. We know that:

y1 ∈ Ci + x2,i,

and
y1 ∈ Ci + x1,i.

After multiplying the first formula with (1 − λ) and the second formula with λ and
adding them together we get

(1− λ)y1 + λy2 ∈ (1− λ)Ci + λCi + (1− λ)x1,i + λx2,i

which is exactly what we wanted, because for every convex set C we know that

(1− λ)Ci + λCi = Ci

So the final form is

(1− λ)y1 + λy2 ∈ Ci + (1− λ)x1,i + λx2,i.

So we proved that F (x, y) is logarithmically concave. By the Prékopa-Leindler inequal-
ity ([AAGM15] Chapter 1, Theorem 1.4.1),

∫
Rd F (x, y) is also logarithmically concave.

Using the property of log-concave functions, the K set is convex, completing the proof
of Theorem 2.0.1. □

Lemma 2.0.2. (Every convex set can be obtained as a K set)
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Let A be an arbitrary convex set in Rd, then there exist two convex sets B,C ⊂ (Rn)

such that K(B,C) = A.

Proof. First take an arbitrary convex set B of measure 1 . We claim that, K(B,A+B) =

A. With the choice of B, we have that A ∩ (B +A) must equal to B, so B rolls freely
in A+B and thus, K(B,A+B) = A.

□

Remark 2.0.2.1. Let A,B,C,D be sets in Rd, where {A,B} ≠ {C,D}. We show that
K(A,B) may be equal to K(C,D).

We will show continuum many pairs of sets with the same K. Consider a rectangle
in R2 of measure 1. Let A be the convex hull of that rectangle and its translation by
the standard basis vector e1. Let B be the same rectangle, just with a translation by
e2 . It is easy to see that K(A,B) is a unit square, and choosing different rectangles
will not affect the set. There are continuum different rectangles of measure 1, so we
showed that many pair of convex sets with the same K set.

Remark 2.0.2.2. If C is a convex body in R2, then K(C,C) is not necessarily strictly
convex.

Indeed, let C be a trapezoid. As one can see in the figure, when we shift the first
trapezoid vertically as much as we can the intersection will be another trapezoid of
measure 1. As we shift the trapezoid horizontally, the intersection remains the same,
so the boundary of K(C,C) is a line segment, so the set is not strictly convex.

This example can be extended to any dimensions.
Indeed, take the same trapezoid in Rn, which is in the span of e1 and e2, let C be

the Minkowski sum of the trapezoid and li = {p = αei , 0 ≤ α ≤ 1} for i = {3, 4, .., n},
then λ(C) is 1, and K(C,C) has that same line segment in its boundary as the 2
dimensional trapezoids.
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Definition 2.0.2.1. (Inscribed square)
A square is inscribed in a curve ω ⊂ R2, if all of its vertices lie on ω.

Lemma 2.0.3. For every bounded convex set C ∈ R2,if there is an inscribed square
in it ,then there exists a similarity transformation, S such that dim(K(S(C), Q)) ≤ 1,
where Q denotes the unit square.

Note that the converse does not hold. Indeed, consider the convex hull of the unit
square and a point outside of the square that is, C= conv([−1

2
, 1
2
]2 ∪ (1, 1)). The unit

square just fits in but it cannot move. So, the K set will be a singleton, but it is not
an inscribed square.

The following isoperimetric question is natural. For which C1, C2 convex sets on
the plane is the area of K(C1, C2) maximal? One natural candidate is if C1 = C2 = D,
where D is the unit disk. However, this is not true as shown by the following example.

Example 2.0.1. Fix 0 < a ∈ R, let C1, C2 be convex sets of measure a and Da be the
disk of measure a in R2. We discuss the possible values of λ(K(C1, C2)).

When a ≤ 1, then trivially λ(K(C1, C2)) = 0 for every C1, C2, because the set cannot
be other than the empty set or just one point when C1 = C2 and a = 1.

When a > 1, then the minimal measure of K(C1, C2) is always 0, because if we take
a thin rectangle of measure a and the other set is the same rectangle rotated with 90
degrees, then the intersection cannot be measure 1.
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Thus, the interesting question is the maximum of K(C1, C2) over all pairs of pla-
nar convex bodies of area a. We show that for a>5.83, this maximum is larger than
K(Da, Da), where Da denotes the disk of measure a. First we consider two disks of
measure a and a 1× a rectangle and its rotated copy as the figure shows. The measure
of the K set of the rectangles is (a − 1)2. As for the disks, we approximate the K set
with the disk with two times bigger radius. This is bigger than the real K of the disk,
because when we shift the disk in any direction by the diameter,the intersection is just
a point. The measure of this approximation is 4a. so the question is:

4a < (a− 1)2

From this we get:
a ≥ 5.83

Note that by computing the area of K(Da, Da) more precisely, we would obtain a better
bound for a.

Question 2.0.1. Let ϵ > 0, is there C1, C2 convex sets of measure a for every ϵ, such
that λ(K(Da, Da)) ≤ λ(K(C1, C2))?
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3. Homology

In this section we discuss the basics of homology. The main part is to understand the
definition of homology groups and some of its properties.

3.1 Simplicial homology

Definition 3.1.0.1. (Simplex)
We call the convex hull of n+1 points in Rn an n-dimensional simplex. Let t0, ..., tn ∈

Rn be vectors.

∆n =

{ n∑
i=0

αiti , 0 ≤ αi ≤ 1,
n∑

i=0

αi = 1

}
When ti = ei then the simplex is called standard n-simplex

Definition 3.1.0.2. (Abstract simplicial complex)
Let Λ be a non-empty finite set. Then a family Λ of subsets of V is an abstract

simplicial complex if for every A ∈ Λ and B ⊂ A we have B ∈ Λ.

Definition 3.1.0.3. (Simplicial complex) Let X be a topological space. Then a simpli-
cial complex on X is the following. We take an abstract simplicial complex Λ and for
every A ∈ Λ, we fix an injective, continuous map ηA : ∆n −→ X, where |n| = |A| − 1

such that if B ⊂ A then ηB = ηA|B, where ηA|B denotes the restriction of the map ηA

to B.

We can think of simplicial complexes as just simplexes glued together. We define
∆n, the n faces of the simplicial complex Λ

∆n := {A ∈ Λ : |A| = n+ 1}

.
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Definition 3.1.0.4. (Realization of a simplicial complex)
Let Λ be an abstract simplicial complex, then the realization of Λ, R(Λ) is⋃

A∈Λ
Im(ηA).

Exercise 3.1.1. Give a homeomorphism between R(Λ) and Sn, where R(Λ) is the
triangulation of Sn, which is basically the faces of the n+1 simplex.

Proof. Place R(Λ) inside Sn and take a point inside the convex hull of R(Λ). From
that point project R(Λ) to Sn. The projection is continuous and is a bijection because
R(Λ) in this exercise is convex. □

Definition 3.1.0.5. (n-chaines)
An n-chain is a free abelian group generated from the n-faces of a simplicial complex

Λ:
Cn :=

{∑
f∈Λn

nffy : nn ∈ Z
}

Definition 3.1.0.6. (Boundary homomorphism)

∂n : Cn(Λ) → Cn−1(Λ)

∂n[v0, ..., vn] :=
n∑

i=0

(−1)i[v0, ..., v̂i, ..., vn],

where v̂i means that vi is left out of the vertices.

Lemma 3.1.1. ∂n∂n−1 = 0.

Proof. We expand ∂n∂n−1

∂n∂n−1[v0, ..., vn] =
∑
i<j

(−1)i(−1)j[v0, ..., v̂i, ..., v̂j, ..., vn]+

∑
i>j

(−1)i(−1)j−1[v0, ..., v̂j, ..., v̂i, ..., vn]

If we switch i and j, it is easy to see that the result is the negative of the first, so they
cancel out each other. □
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Definition 3.1.1.1. (Homology group) Let C1, . . . , Cn be Abelian groups and ∂n : Cn →
Cn−1 homeomorphism for every n ∈ Z. We say that C = (Cn, ∂n) is a chain-complex,
if ∂n∂n−1 = 0 for every n ∈ Z

... Cn+1 Cn Cn−1 ... C1 C0 0
∂n+1 ∂n ∂1 ∂0

We define Hn(C) = Ker(∂n)/Im(∂n+1) as the nth homology group of C.

Definition 3.1.1.2. (Betti number)
The rank of the Hn(C(X)) group is called the nth Betti number of X.

3.2 Singular homology

Definition 3.2.0.1. (Singular n-chains)
Let X be a topological space, σ : ∆n → X, a continuous function is an n-simplex.

We define Cn(X) as a free Abelian group generated by the n-simplexes. An element of
Cn(X) is an n-chain.

The boundary homomorphism is the following function

∂n(σ) :=
n∑

i=0

(−1)iσ|[v0, ..., v̂i, ..., vn].

C(X) = (Cn(X), ∂n) is a chain-complex and Hn(x) = Hn(C(X)) is the nth singular
homology group of X.

In the definition below, if we change Z to an arbitrary Abelian group G, Hn(X;G)

is called the homology with coefficient G. We will use this later, when G = Z2 in the
proof of the inscribed square problem for locally monotone curves.

Exercise 3.2.1. Prove that H0(X) ∼= Zk, where k is the number of path connected
components of X.

Proof. Recall that H0(X) = Ker∂0
Im∂1

. It is obvious that Ker(∂0) = C0 because ∂0 goes
from C1 to 0 and it is a homomorphism. From the definition Im∂1 is vi − vj. After we
have quotient out every vertex in the simplicial complex, two vertices is equivalent if
there is a path from one to the other. This is exactly the definition of a path connected
component. □
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3.3 Properties of homology

Definition 3.3.0.1. (Chain map)
Let f : X → Y be a continuous map between the two topological space X and Y . f

will induce the homomorphism f♯ : Cn(X) → Cn(Y ).

f♯(
∑
i

niσi) =
∑
i

nif♯(σi) =
∑
i

nifσi.

Observe that,

f♯∂(σ) = f♯(
∑
i

(−1)iσ|[v0, ..., v̂i, ..., vn]) =
∑
i

(−1)ifσ|[v0, ..., v̂i, ..., vn]) = ∂f♯(σ).

This shows us that the diagram below is commutative, because every composition of
maps from a point in the diagram to another is equal.

... Cn+1(X) Cn(X) Cn−1(X) ...

... Cn+1(Y ) Cn(Y ) Cn−1(Y ) ...

∂n+1

f♯

∂n

f♯ f♯

∂n+1 ∂n

Lemma 3.3.1. Let X, Y, Z be topological spaces and f : X → Y, g : Y → Z

be continuous maps. A basic property of induced homomorphism is: (fg)∗ = f∗g∗

X Y Z
f g the claim comes from the associativity of the compositions.

∆n X Y Zσ f g

Theorem 3.3.2. If two maps f, g : X → Y are homotopic, then they induce the same
homomorphism f∗ = g∗ : Hn(X) → Hn(Y )

The proof is written in Alan Hatcher’s book ([Hat02], Chapter 2, Theorem 2.10).
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4. Inscribed square problem for locally
monotone curves

Problem 4.0.1. Let C be a Jordan curve. A polygon P is inscribed in C, if all vertices
of P belong to C. Is there an inscribed square for every Jordan curve in R2.

This question is still open; we do not know the answer for every Jordan curve.
There are results for specific curves, for example: Piecewise analytic curves, Locally
monotone curves, Lipschitz graphs. Here, I will represent the inscribed square problem
for locally monotone curves the proof was made by Walter Stromquist in 1989 .

4.1 Inscribed rhombuses

Definition 4.1.0.1. (simple closed curve)
A simple closed curve is a continuous function ω : R → Rn which satisfies ω(x) =

ω(y) if, and only if x − y is an integer. Here we will talk about curves with domain
[0, 1], and we call it closed if ω(0) = ω(1).

Definition 4.1.0.2. (Inscribed quadrilateral)
A quadrilateral is inscribed in ω if all of its vertices lie on ω. In R2 quadrilaterals

can be inscribed despite having points outside the curve.

Definition 4.1.0.3. We want to talk about quadrilaterals so let Q denote the set of
quadrilaterals in ω.

Q = {(x1, x2, x3, x4) ∈ R4|0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1}

13



Q is a four simplex with vertices

v0 = (1, 1, 1, 1), v1 = (0, 1, 1, 1)

v2 = (0, 0, 1, 1), v3 = (0, 0, 0, 1), v4 = (0, 0, 0, 0)

and faces F0, ..., F4 where every Fi is opposite vi.

Every point x ∈ Q represents a quadrilateral with vertices
(ω(x1), ω(x2), ω(x3), ω(x4)). This is not a one-to-one representation, because multiple
point in Q can represent the same quadrilateral. For example every point in F1 has
it’s pair in F4.

(0, ω(x), ω(y), ω(z)) ∼ (ω(x), ω(y), ω(z), 1)

They are the same, all they differ is the numbering of the vertices. Some of them may
be just one point or have sides with zero length. Note that all of vi is the same one
point quadrilateral. Now to make sure that we get the wanted quadrilateral we need
to define a few more tools.
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Definition 4.1.0.4. For each i = (1, 2, 3, 4) define:

si(x) = ∥ω(xi+1)− ω(xi)∥

(When talking about ω(xi+1) when i = 4 then it we mean ω(x1)). This is the i-th side
if the quadrilateral. This is a continuous function on Q. For each i let Qi be:

Qi = {x ∈ int(Q) | si(x) = max sj(x), j = 1, 2, 3, 4}

Where int(Q) is the interior of Q.

Now Qi is the set of quadrilaterals whose i-th side is the longest. A quadrilateral
in ∂Q is in Qi if it is the limit of quadrilaterals in int(Q) with the same property.
By this each Qi is closed and

⋃
Qi = Q. We defined it this way to avoid one point

quadrilaterals being in every Qi

Lemma 4.1.1. If ω is a smooth curve, then each one-point quadrilateral is contained
in only one set Qi. In particular, vi ∈ Qi for i = 1, 2, 3 and x ∈ Q4 for each x on the
edge connecting v0 and v4

There will be a stronger statement, that will prove this special case as well. There,
smoothness will not be neccessary.

For every Qi , i = 1, 2, 3 vi /∈ Qi and Fi∩Qi = ∅ and for Q4 it includes the segment
from v0 to v4 and Q4 ∩ (F4 ∩ F0) = ∅, R =

⋂
i Qi, every point x ∈ R is a rhombus, an

inscribed quadrilateral which sides are equal and nonzero.

d13(x) = ∥ω(x3)− ω(x1)∥

and
d24(x) = ∥ω(x4)− ω(x2)∥

A rhombus is called a square-like quadrilateral, if it satisfies the following property:

d13(x) = d24(x)

So it has sides with equal length and diagonals with equal length. A rhombus is called
thin, if d13 ≥ d24 for its diagonals and is called fat, if d13 ≤ d24. We will denote the
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set of thin and fat rhombuses by RTHIN and RFAT . From the definition we get that
R = RTHIN

⋃
RFAT . Another smaller statement is that if x ∈ F0 is a fat rhombus then

h(x) is a thin rhombus and vice versa. In the next section we want to understand the
rhombuses on F0 and F4 deeper and take a look at the degrees of the set of thin and
fat rhombuses.

4.2 Degree of a set

This part of the proof we will define the degree of a set. We will use homology groups
over Z2.This will denote the "parity" of the set. First of all we have to define a helpful
function on a simplex. Let A be an n-simplex with vi vertices, Fi faces. Closed subsets
Ai i = 0, ..., n a cover of A where for every i vi ∈ Ai andFi ∩ Ai = ∅ . Let Ai be a
cover and K ⊂

⋂
Ai which is both open and closed. There exist such sets because

K = ∅, K =
⋂

Ai are both open and closed in
⋂
Ai Now we can define the function

mentioned above, it is a reversing map for the cover Ai:

f : (A \
⋂

Ai) −→ ∂A

f(x) =
∑
i

d(x,Ai)∑
j d(x,Aj)

vi

where d(x,Ai) is the distance from x to Ai. This is a convex combination of the vertices
and one vertex will always have weight one because Ai is a cover so every x is in at
least one Ai. From this fact we know the image will be on ∂A cause it is the convex
combination of n vertices. We had to exclude

⋂
Ai from the domain because there∑

j d(x,Aj) = 0. Here every reversing map is equivalent up to homotopy. Every x ∈ A

is in at least in one Ai and that x point goes to the intersection of Fi for the same i’s
and we have to give a homotopy on the ∂A. Now let L =

⋂
Ai \K. L is obviously both

open and closed in
⋂

Ai. Because K has the same properties, so L and K are both just
the union of a few connected component.

Take a triangulation of
⋂

Ai. We can refine the triangulation so that there exists a
union of simplexes that covers K and none of them touches L. This covers boundary
separates K from L. This boundary represents a homology class γ ∈ H(A \

⋂
Ai). We
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will call it γk. Also the induced map:

f∗ : Hn(A \
⋂

Ai) → Hn(∂A)

Now everything is given to define the degree of Ai around K. The degree of Ai around
K is the image of f(γk) in Hn(∂A) and f is any reversing map for Ai. It does not matter
which reversing map we choose because all of them are equivalent for homotopy. We
want the homology group to be Z2 so every homology group will be over it. It’s value
is not dependent on the choices we made before. From now on the cover Ai is fixed
so it will be denoted as degK. Moreover it can be defined on any B simplex with an
f : (A \

⋂
Ai) −→ ∂B which sends every Ai to different faces of B. Then the degree

can be defined the same way f∗(γk) in Hn(∂B), because there is an isomorphism g

from B to A. where gf is a reversing map and (gf)∗(γk) = f∗(γk)

Lemma 4.2.1. deg∅ = 0

Proof. When K is the emptyset then the cover can be anything that does not touch⋂
Ai and it is equivalent to the trivial class. □

Lemma 4.2.2. If K = K1 ∪K2 then degK = degK1 + degK2

Lemma 4.2.3. deg
⋂

Ai = 1

Proof. Let Sn−1 be the n-1 dimensional sphere and g a continuous map without fixed
points, from the sphere to itself. This will be homotopic to the antipodal map and
also a homeomorphism. From this g∗ : Hn−1(S

n−1) → Hn−1(S
n−1) is the identity. In

this case ∂A is homeomorphic to Sn−1 . f restricted to ∂A is a function from ∂A to
itself without fixed points, so it induces the identity map. But ∂A is surrounds

⋂
Ai,

so f∗(γ⋂Ai) = 1. □

Theorem 4.2.4. If ω is a smooth curve, then ω has an inscribed quadrilateral with
equal sides and equal diagonals in it.

Proof. Firstly we suppose that there is no intersection of RTHIN and RFAT which
means that R can be written as the disjoint union of the two. The face F0 is a simplex,
it has a cover F0 ∩Qi. It is a cover because Qi was a cover of Q. The rhombuses on F0

can be written as:
F0 ∩R = (F0 ∩RTHIN) ⊔ (F0 ∩RFAT )
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From this and lemma 3 and 4 we get:

1 = deg(F0 ∩R) = deg(F0 ∩RTHIN) + deg(F0 ∩RFAT )

because here ∩Ai is R.

deg(F0 ∩RTHIN) ̸= deg(F0 ∩RFAT )

After this we will show that both side is equal to deg(F4 ∩ RTHIN). The map h from
F0 to F4 is a homeomorphism and also an isomorphism between the covers {F0 ∩Qi}
and {F4 ∩ Qi}. When we switch the coordinates then the length of the sides do not
change, just the numbering shifts. When a quadrilaterals X first side was the longest
then h(X)’s fourth side will be the longest. Therefore

deg{F0∩Qi}(F0 ∩RFAT ) = deg{F4∩Qi}(h(F0 ∩RFAT )) = deg{F0∩Qi}(F4 ∩RTHIN)

Now the other side. Let f : (Q−R) → ∂F :

f(x) =
4∑

i=1

d(x,Qi)∑4
j=1 d(x,Qj)

vi

Where d(x,Qi) is the distance from x to Qi. f restricted to F0 is a reversing map
for the cover F0 ∩ Qi and is a reversing map when restricted to F4. We assumed that
RTHIN and RFAT is disjoint so we can triangulate Q finely enough to be able to take
a ∆ 4-chain of simplices that separate RTHIN from RFAT . ∂∆ is a 3-chain in (Q−R).
From this take the simplices which are not is F0 or F4. This is a "tube" from F0 to
F4. □

The smoothness was required in lemma 1, but we can give a weaker statement that
is sufficient for this lemma. This will be called "Condition A".

Definition 4.2.4.1. A curve ω satisfies Condition A if each point ω(y) of the curve
had a neighbourhood U(y) in Rn such that no two chords in U(y) are perpendicular.

This definition has a few equivalent form. For example geometrically it means that
every point in the curve has a neighbourhood that every chord differ less than 90
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degrees. Also it can be said precisely formulated: ω satisfies Condition A, if every
y ∈ ω,∃µ such that ∀x1, x2, x3, x4,∈ (y − µ, y + µ):

(ω(x2))− ω(x1)) · (ω(x4)ω(x3)) > 0

Because of the periodically of ω , µ can be chosen independently of y.

Lemma 4.2.5. If ω satisfies Condition A, then each one-point quadrilateral in Q is
contained in exactly one set Qi. vi ∈ Qi for i = 1, 2, 3 and y ∈ Q4 for every y on the
edge connecting v0 and v4.

Proof. Let us take a one point quadrilateral y from the edge connecting v0 and v4

and check that it is in exactly one Qi. The goal is to show that every point in it has a
neighbourhood such that all x in that neighbourhood and also in int(Q) the fourth side
of x is the unique longest side. Now consider an element from the neighbourhood of y
and in int(Q). Let z1, z2, z3, z4 represent the vectors of the sides of the quadrilateral x.
zi = ω(xi+1) − ω(xi). We have to show that z4 is the longest side. For example show
that z4 > z2. We know the following:

z4 = z1 + z2 + z3

Take the dot product with z2.

z4 · z2 = z1 · z2 + z2 · z2 + z3 · z2

But from this z4 would have a bigger component in the direction of z2 than z2 itself,
this means that z4 > z2. One can do the same for each zi. This means that each x

sufficiently near to y is in Q4, so y also is in Q4. □

4.3 Inscribed quadrilaterals

Theorem 4.3.1. If ω satisfies Condition A, then ω admits a an inscribed quadrilateral
with equal sides and equal diagonals.

In this section we will talk about curves in R2. There we will define a weaker smooth-
ness statement and prove that these kinds of curves admit an inscribed quadrilateral.
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Smooth curves, polygons, convex curves, etc. satisfy this condition.

Definition 4.3.1.1. (Segment of a curve) A segment of a curve is the image of an
interval in the parameter space. To be precise, we identify the two endpoints of the full
interval in the parameter space, so basically the parameter space is S1. The length of
this segment is (b− a) measured in the parameter space. It is monotone in direction u

if the function f = ω(x) · u where x ∈ (a, b) is an increasing function.

Definition 4.3.1.2. (Locally monotone curve) The curve ω is locally monotone if, for
every y ∈ R there is an interval (y − µ, y + µ) and a direction u(y), such that the
segment (y − µ, y + µ) is monotone in the direction u(y).

When µ is satisfies this property then the periodicity allows us to choose µ as a
constant. So every segment with maximum length 2µ is monotone in some direction.
This is called locally monotone with constant µ. An intuition is looking at this definition
geometrically. This means that we take a point from the curve y and a direction n(y),
the curve is locally monotone, if for every y there is a neighbourhood and a direction
such that there is no chord perpendicular with n(y).

Theorem 4.3.2. If µ is locally monotone curve in R2, then ω admints an inscribed
square.

Proof. Assume that ω is a locally monotone with constant µ. We will approximate ω

with smooth curves ωϵ which contain an inscribed square, what we know from the first
theorem. This way we will make a subsequence of inscribed square which will converge
to an inscribed square in ω. The main part is to show that the limit square is not a
one point quadrilateral. Firstly we will show that ωϵ is locally monotone with constant
at least 1

2
µ, that will establish a lower bound for the size of square in ωϵ.

Let ∥x∥ define the minimum length of an interval (in the parameter space) which
covers all four vertices ω(x1), ω(x2), ω(x3), ω(x4). This can be written as the minimum
of : (x4−x1), ((1+x3)−x4), ((1+x2)−x3), ((1+x1)−x2). Meg lehetne magyarazni!!!!

Let ϵ > 0, and δ > 0 such that |x − y| < δ implies that ∥ω(x) − ω(y)∥ < ϵ In any
case choose δ < 1

2
µ.
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Define ωϵ : R → R2 by:

ωϵ(x) =
1

δ

∫ δ

t=0

ω(x+ t)dt

By choosing ωϵ this way we got ∥ωϵ(x)− ω(x)∥ < ϵ for all x.

ω′
ϵ =

1

δ
(ω(x+ δ)− ω(x)

We apply the first theorem to find the inscribed square in the Sϵ in ωϵ.
Now we have to show that ωϵ is locally monotone with constant 1

2
µ . We can show

it by writing down ωϵ using ω. So take y ∈ R and u(y) is the direction in which ω is
locally monotone with constant µ. Let x1, x2 be two points in (y − 1

2
µ, y + 1

2
µ where

x1 < x2.

(ωϵ(x2)− ωϵ(x1)) · u(y) =
1

δ

∫ δ

t=0

(ω(x2 + t)− ω(x1 + t)) > 0

The monotonicity provides that the integrand is strictly positive. So the chords cannot
be perpendicular to u(y) which is exactly what we needed. So the inscribed square
cannot have sides less than µ because then it’s vertices would be in an interval with
length µ and there ω is monotone. From this we get that the series of squares have to
converge to another square which is not a one point square.

□
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