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Introduction

Over the past few decades, tools from probability theory and differential equations
have become essential in modern economic modeling. In particular, Brownian motion,
a concept originally developed in physics to describe random particle movement, has
found important applications in economics and finance. It helps us model unpredictable
changes over time, such as how stock prices fluctuate or how individuals face uncertain
income in the future. When we build models based on this kind of randomness, we often
use stochastic differential equations, which combine both randomness and deterministic
change in a precise mathematical form.

A key idea in economic modeling is that individuals or firms are not the same. In reality,
people differ in many ways: how productive they are, how much they save, or how they
allocate their money. To better capture these differences, economists use heterogeneous
agent models, where each agent (a person, a firm, or some other decision maker) follows
their own path, which leads to more complex but more realistic models. For example, to
understand how knowledge spreads through an economy or how inequality evolves over
time, we use partial differential equations.

Another type of heterogeneous agent models focuses on problems that are about making
the best possible decisions over time whether it is a household deciding how much to
consume and save, or a government choosing the right economic policy. These types of
problems are studied using the tools of optimal control theory. At the heart of this field
lies the Hamilton—Jacobi—Bellman equation, which helps find the best decision-making
strategy in uncertain and dynamic environments.

The thesis explores these themes in three main parts: First, we introduce stochastic
calculus and its connections to finance through the famous Black—Scholes model. Next,
we study a model of knowledge diffusion in the economy, based on a PDE inspired by
biological population models. Finally, we turn to optimal control problems in economics,
including an example model of individual decision-making under uncertainty.

The models presented in the thesis are selected from Achdou et al.: Partial Differential
Equations in Macroeconomics [1]. Some aspects of the models are not discussed in detail
in the original work, so we aim to elaborate on those points by refining its mathematical
context and presenting further numerical results where relevant.
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Chapter 1

Stochastic calculus in economics

This chapter deals with stochastic calculus in economics, starting with stochastic differ-
ential equations and their connection to PDEs. We then discuss their implications for the
Black—Scholes model.

Notation 1.1. Let M ⊆ Rn × Rm be an open set, where n,m ∈ Z+. If the function
f : M → R is i times continuously differentiable in its first variable, and j times in the
second, we denote it as f ∈ Ci,j.

Notation 1.2. Let A ∈ Rn×m be a matrix. We denote by ∥A∥F the Frobenius norm of
A, i.e.:

∥A∥F =

√√√√ n∑
i=1

m∑
j=1

|ai,j|2.

1.1 Stochastic differential equations

Economic systems are inherently subject to uncertainty, driven by unpredictable shocks,
policy changes, and external influences, therefore, capturing this randomness in differential
equations is essential. In this chapter, we cover some basic concepts of stochastic calculus,
which are essential for understanding the later developments in the thesis. The primary
references for this topic are Michael Steele’s Stochastic Calculus and Financial Applica-
tions [8] and Anne Carlstein’s Stochastic Calculus: Understanding Brownian Motion and
Quadratic Variation [9].

Definition 1.3. Let (S,A) be a measurable space. A stochastic process is a set of random
variables {X(t)}t∈T defined on a probability space (Ω,F ,P), where T ̸= ∅, such that for
each t ∈ T, X(t) : Ω → S is (F ,A)-measurable.
For each ω ∈ Ω, the trajectory corresponding to the realization ω of X(t) is the function
t 7→ Xω(t).

Assumption 1.4. In this thesis, we deal with continuous-time stochastic processes, so
we assume T = [0,∞) or T = [0, T ] where T > 0. Furthermore, we assume that S = R,
and that it is equipped with the Borel sigma-algebra.
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Assumption 1.5. From now on, we assume the probability space (Ω,F ,P), with the
increasing filtration (Ft)t≥0, such that Ft ⊆ F for all t ≥ 0, and satisfying the following
conditions:

(i) (Ft)t≥0 is right-continuous, i.e., for all t ∈ T , we have Ft =
⋂
s≥t

Fs, and

(ii) (Ft)t≥0 is complete, i.e., for all A ⊆ Ω for which there exists a set B ∈ F , such that
A ⊆ B and P(B) = 0, we have A ∈ F0.

Assumption 1.5 means that under such a filtration, no new information can appear
abruptly and events that do not change the outcome are accounted for in the initial
knowledge.

Definition 1.6. A stochastic process {B(t)}t≥0 = {(B1(t), . . . , Bd(t)}t≥0 is called a d-
dimensional Brownian motion (or Wiener process) if it satisfies the following properties:

(i) B(0) = 0 almost surely,

(ii) t 7→ B(t) is continuous almost surely,

(iii) The increments of {B(t)}t≥0 are normally distributed: for any t ≥ 0 and s > 0, the
increment B(t+ s)−B(t) follows a d-dimensional normal distribution with mean 0
and covariance matrix sId, i.e.,

B(t+ s)−B(t) ∼ N (0, sId),

(iv) The increments of {B(t)}t≥0 are independent: for any t ≥ 0 and s > 0, the increment
B(t + s) − B(t) is independent of the sigma-algebra σ(B(u) : 0 ≤ u ≤ t) which is
the filtration generated by the process up to time t.

In one dimension, Brownian motion can be understood as the continuous-time parameteri-
zation of a symmetric random walk, describing the asymptotic behavior of its trajectories.
It serves as a fundamental stochastic process and has widespread applications, particularly
in finance and economics.

Proposition 1.7. For any t ∈ T, the trajectories of Brownian motion are not differen-
tiable at t almost surely.

Proof. Let h > 0. Since we know that B(t + h) − B(t) ∼
√
hN (0, 1), we can write the

difference quotient as:

B(t+ h)−B(t)

h
∼

√
hN (0, 1)

h
=

N (0, 1)√
h

.

Since N (0, 1) is nonzero almost surely, as h → 0, the difference quotient diverges with
probability 1, therefore, the derivative does not exist almost surely.

As we observed, Brownian motion is nowhere differentiable almost surely. However, calcu-
lus with Brownian motion can still be developed through Itô’s framework. Since the full
theoretical formulation of Itô integrals is beyond the scope of this thesis, we will instead
use an equivalent, more practical definition based on a Riemann sum-like representation.
For a detailed treatment of the formal construction, we recommend Chapters 6–7 of J.
Michael Steele’s book [8].
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Definition 1.8. We say that a stochastic process {X(t)}t∈T is
(i) adapted if for every t ∈ T, the random variable X(t) is Ft-measurable,

(ii) càdlàg, if for each fixed ω, the trajectory t 7→ Xω(t) is everywhere right-continuous
and has left limits everywhere,

(iii) progressively measurable, if for any t ∈ T, the function defined by (s, ω) → Xω(s)
is measurable with respect to B([0, t])⊗Ft on T× Ω.

Adapted means that the process can only depend on the information up to time t and
not on future values, while the càdlàg property ensures that X(t) is well-behaved.
Progressively measurable stochastic processes are of key importance to us. For those
unfamiliar with them, we present a theorem that provides an easier way to think about
such processes.

Proposition 1.9. If a stochastic process is càdlàg and adapted, it is progressively mea-
surable.

When dealing with stochastic processes, the classical Riemann or Lebesgue integral is no
longer adequate. As a result, a new kind of integral is required, which in our case is the
Itô integral.

Definition 1.10. Let t > 0. We say that the random variable denoted by
∫ t

0
H(s) dB(s) is

the Itô integral of a progressively measurable stochastic process {H(s)}s∈[0,t] with respect
to a Brownian motion {B(s)}s∈[0,t], if

P
(∫ t

0

H2(s) ds <∞
)

= 1,

and for the partition ti = it/n, where 0 ≤ i ≤ n, we have

P

(∣∣∣∣∣
n∑

i=1

H(ti−1)
(
B(ti)−B(ti−1)

)
−
∫ t

0

H(s) dB(s)

∣∣∣∣∣ > ε

)
→ 0 as n→ ∞,

for all ε > 0.

Remark 1.11. If the process {H(s)}s≥0 satisfies
∫∞
0
H2(s) ds < ∞ almost surely, then

we can define the Itô integral on an infinite time horizon as:∫ ∞

0

H(s) dB(s) := lim
t→∞

∫ t

0

H(s) dB(s).

It is easy to see that the Itô integral is not monotonous, however, it has other great
properties, some of which we present below.

Proposition 1.12. If E
[∫ ∞

0

H2(s) ds

]
<∞, then E

[∫ ∞

0

H(s) dB(s)

]
= 0.

Proposition 1.13. Let a, b ∈ R. If the Itô integrals
∫∞
0
H1(s) dB(s) and

∫∞
0
H2(s) dB(s)

exist, then so does
∫∞
0

(
aH1(s) + bH2(s)

)
dB(s), and∫ ∞

0

(
aH1(s) + bH2(s)

)
dB(s) = a

∫ ∞

0

H1(s) dB(s) + b

∫ ∞

0

H2(s) dB(s).
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To model systems influenced by both deterministic trends and random noise, we work with
special types of stochastic processes. In financial mathematics, for example, asset prices
often evolve with some predictable drift while being constantly affected by unpredictable
market shocks, modeled as noise via Brownian motion. For this reason, we define the
so-called Itô process.

Definition 1.14. Let {B(t)}t∈T = {(B1(t), . . . , Bd(t))}t∈T be a d-dimensional Brownian
motion. We say that the {X(t)}t∈T = {(X1(t), . . . , Xn(t))}t∈T process is an n-dimensional
Itô process driven by a d-dimensional Brownian motion, if for almost every ω ∈ Ω, we
have for all 1 ≤ i ≤ n, t ∈ T:

X i(t) = X i(0) +

∫ t

0

µi (s,X(s)) ds+
d∑

j=1

∫ t

0

σi,j (s,X(s)) dBj(s), (1.1)

which we also write as:

X(t) = X(0) +

∫ t

0

µ (s,X(s)) ds+

∫ t

0

σ (s,X(s)) dB(s),

where X(0) is F0-measurable, µi : T × Rn → R, σi,j : T × Rn → R are progres-
sively measurable for all 1 ≤ i ≤ n, 1 ≤ j ≤ d, and µ = (µ1, . . . , µn) ∈ Rn,
σ = (σi,j)1≤i≤n,1≤j≤d ∈ Rn×d, satisfying∫ t

0

∥∥µ(s,X(s)
)∥∥ ds <∞, and

∫ t

0

∥∥σ(s,X(s)
)∥∥2

F
ds <∞

almost surely, for all t ∈ T.

Remark 1.15. For a shorter notation, we formally write (1.1) in the differential form:

dX(t) = µ
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dB(t). (SDE)

The functions µ and σ are usually referred to as drift and volatility, respectively. These
names come from finance, where drift represents the expected return of an asset, and
volatility represents the variance of the log-returns. We also call equation (SDE) a stochas-
tic differential equation and X(t) a solution of (SDE).

Remark 1.16. We dissect (SDE) into two important categories:
(i) The functions µ and σ are not deterministic, i.e., µ(t, x) = µ(t, x, ω) and σ(t, x) =

σ(t, x, ω). We will not tackle this case in the thesis.

(ii) The functions µ and σ are in the form µ̃(t, x, αω(t)) and σ̃(t, x, αω(t)), where µ̃ and
σ̃ are deterministic functions, and αω is progressively measurable function called a
control. This case will be elaborated on in Chapter 3.

Proposition 1.17. If µ and σ are Lipschitz continuous in their second variable, and
satisfy the so-called “growth condition”, i.e., there exists a constant L > 0, such that

∥µ(t, x)∥2 + ∥σ(t, x)∥2F ≤ L
(
1 + ∥x∥2

)
, for all t ∈ T, x ∈ Rn,

then (SDE) has a unique solution.
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Remark 1.18. If a solution of (SDE) exists, then it is continuous almost surely.

Itô’s lemma is one of the fundamental tools in stochastic calculus. It plays a similar role to
the Taylor expansion in classical calculus. The version below applies to one-dimensional
Itô processes.

Lemma 1.19. (Itô’s lemma for Itô processes, one dimension)
For a given function f : T × R → R, f ∈ C1,2, and an {X(t)}t∈T 1-dimensional Itô
process, the following holds:

f(t,X(t)) = f(0, X(0)) +

∫ t

0

∂xf(s,X(s)) · µ(s,X(s)) ds

+

∫ t

0

∂tf(s,X(s)) ds+
1

2

∫ t

0

∂xxf(s,X(s)) · σ2(s,X(s)) ds

+

∫ t

0

∂xf(s,X(s)) · σ(s,X(s)) dB(s).

Using the short notation, we can write it as

df =

(
∂tf + ∂xf µ+

1

2
∂xxf σ

2

)
dt+ ∂xf σ dB(t).

Itô’s lemma 1.19 can be generalized in higher dimensions as well.

Lemma 1.20. (Itô’s lemma for Itô processes, higher dimensions)
For a given function f : T × Rn → R, f ∈ C1,2, and an {X(t)}t∈T, n-dimensional Itô
process driven by a d-dimensional Brownian motion, the following holds:

f(t,X(t)) = f(0,X(0)) +

∫ t

0

∂tf(s,X(s)) ds+
n∑

i=1

∫ t

0

∂xi
f(s,X(s)) · µi(s,X(s)) ds

+
1

2

n∑
i,j=1

∫ t

0

∂xixj
f(s,X(s)) ·

d∑
k=1

(
σi,k(s,X(s))

) (
σj,k(s,X(s))

)
ds

+
n∑

i=1

d∑
k=1

∫ t

0

∂xi
f(s,X(s)) · σi,k(s,X(s)) dBk(s).

Using the short notation, we can write it as

df =

(
∂tf +∇f⊤µ+

1

2
Tr
[
σσ⊤∇2f

])
dt+∇f⊤σ dB(t). (1.2)

Remark 1.21. We may use Lemma 1.20 on a function f that does not depend on t
explicitly, only through X(t), in which case the ∂tf term in (1.2) is not present and only
f ∈ C2 needs to be assumed. Similarly, if f does not depend on X(t), only on t, we get
the fundamental theorem of calculus (Newton–Leibniz formula) back.

The final version of Itô’s lemma we use in the thesis applies to functions of two Itô
processes. This form is important to us mostly because it leads to a widely used result
known as Itô’s product rule.
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Lemma 1.22. (Itô’s lemma for two Itô processes)
For a given function f : R×R → R, f ∈ C2,2, and the {X(t)}t∈T, {Y (t)}t∈T Itô processes
driven by the same Brownian motion {B(t)}t∈T, with drifts µX , µY and volatilities σX , σY
respectively, we have

f(X(t), Y (t)) = f(X(0), Y (0)) +

∫ t

0

∂xf(X(s), Y (s))µX(s,X(s)) ds

+

∫ t

0

∂yf(X(s), Y (s))µY (s, Y (s)) ds+

∫ t

0

∂xf(X(s), Y (s))σX(s,X(s)) dB(s)

+

∫ t

0

∂yf(X(s), Y (s))σY (s, Y (s)) dB(s) +
1

2

∫ t

0

∂xxf(X(s), Y (s))σ2
X(s,X(s)) ds

+
1

2

∫ t

0

∂yyf(X(s), Y (s))σ2
Y (s, Y (s)) ds

+

∫ t

0

∂xyf(X(s), Y (s))σX(s,X(s))σY (s, Y (s)) ds.

Or using the short notation:

df =

(
∂xfµX + ∂yfµY +

1

2
∂xxfσ

2
X +

1

2
∂yyfσ

2
Y + ∂xyfσXσY

)
dt+

+

(
∂xfσX + ∂yfσY

)
dB(t).

Consequence 1.23. By choosing f(x, y) = xy, we get a generalization of the formula
for Leibniz’s integration by parts, which we call Itô’s product rule:

X(t)Y (t) = X(0)Y (0) +

∫ t

0

Y (s)µX(s,X(s)) ds

+

∫ t

0

X(s)µY (s, Y (s)) ds+

∫ t

0

Y (s)σX(s,X(s)) dB(s)

+

∫ t

0

X(s)σY (s, Y (s)) dB(s)

+

∫ t

0

σX(s,X(s))σY (s, Y (s)) ds.

Or using the short notation:

d(XY ) =

(
Y µX +XµY + σXσY

)
dt+

(
Y σX +XσY

)
dB(t).

1.2 Geometric Brownian motion
We now show a well-known example of (SDE) in one dimension, the so-called geometric
Brownian motion (GBM for short), which we can explicitly solve using Itô’s lemma. It
describes the evolution of a variable whose logarithm follows a Brownian motion with
drift. We will see an example of this in the following section, and also in Chapter 2.
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Definition 1.24. We say that the stochastic process {X(t)}t∈T follows a geometric Brow-
nian motion if it satisfies the following stochastic differential equation:

dX(t) = µX(t) dt+ σX(t) dB(t), where µ, σ ∈ R, σ > 0. (GBM)

Theorem 1.25. There exists a unique solution to (GBM) in the following form:

X(t) = X(0) exp

((
µ− σ2

2

)
t+ σB(t)

)
.

Proof. The existence and uniqueness of the solution follow directly from the assumptions
and Proposition 1.17. Let {Y (t)}t∈T such that:

Y (t) =

(
µ− σ2

2

)
t+ σB(t),

and let X(t) = X(0) exp (Y (t)). We can easily see that Y (t) satisfies the following stochas-
tic differential equation:

dY (t) =

(
µ− σ2

2

)
dt+ σdB(t)

By applying Itô’s lemma to f(y) = X(0) exp (y) ∈ C2, we get:

d
(
f(Y (t))

)
= d

(
X(0) exp (Y (t))

)
= X(0) exp (Y (t))

(
µ dt+ σ dB(t)

)
.

Since f(Y (t)) = X(t), we have:

dX(t) = µX(t) dt+ σX(t) dB(t),

which means that X(t) satisfies (GBM) and this is the only solution.

Since not all stochastic differential equations have closed-form solutions, numerical
methods are widely used. Such a method is the Euler–Maruyama scheme, which is a
stochastic extension of the classical Euler method for ODE-s. We show an example of
this, by solving Equation (GBM), then comparing the numerical result to the analytical
solution in Theorem 1.25.

The numerical solution can be obtained by partitioning the interval [0, T ] into J intervals
of width ∆t = T/J . Therefore, we have the partition 0 = t0 < t1 < · · · < tJ = T , where
tn = n∆t.

We simulate Brownian motion with independent normal increments, i.e, for every
n = 0, 1, . . . , J−1, we define ∆Bn = B(tn+1)−B(tn), which satisfies ∆Bn ∼ N (0,∆t) in-
dependently for each n. We denote the approximations by X(tn) ≈ Xn for n = 0, 1, . . . , J .

The update rule of the numerical scheme is:

Xn+1 = Xn + µXn∆t+ σXn∆Bn.
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The sequence of points (tn, Xn) for n = 0, 1, . . . , J represents the numerical approximation
of the solution at the discrete time points. These points can be plotted to visualize a
simulated path of the stochastic process X(t). Figure 1 illustrates a few simulated paths
of the geometric Brownian motion using the Euler–Maruyama method. Figure 1 shows
that the simulated paths are very similar to the analytical solution, which suggests that
the numerical method gives a good approximation of the geometric Brownian motion.

Figure 1: Analytical and numerical solution of (GBM) with initial condition X(0) = 1, drift µ = 0.1,
volatility σ = 0.2, T = 1 and J = 1000.

1.3 Connection to parabolic PDEs
Here we give some insight into how stochastic differential equations are related to
parabolic differential equations by Itô’s lemma. This section is based on Chapter 15 of J.
Michael Steele’s Stochastic Calculus and Financial Applications [8].

In order to simplify the proof while keeping it insightful, we omit a technical step that
involves showing that Itô integrals can be considered as “local martingales”. We also skip
the argument that bounded local martingales are martingales. This is summarized in the
lemma below.

Lemma 1.26. Let t > 0 be fixed, and suppose that {H(s)}0≤s≤t is a bounded, progressively
measurable stochastic process. If the Itô integral

∫ τ

0
H(s) dB(s) exists for all τ ∈ [0, t] in

the sense of Definition 1.10, then the following process is a martingale:

M(τ) :=

∫ τ

0

H(s) dB(s), 0 ≤ τ ≤ t.
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Theorem 1.27. (Feynman–Kac formula)
Let f : R → R, q : R → R, u : [0,∞) × R → R be bounded functions, where u ∈ C1,2.
Furthermore, let µ : R → R, σ : R → R be Lipschitz continuous functions that satisfy

µ2(x) + σ2(x) ≤ K0(1 + x2), x ∈ R (1.3)

for some K0 > 0 constant. If u(t, x) is the unique solution to the PDE

∂tu(t, x) =
1

2
σ2(x)∂xxu(t, x) + µ(x)∂xu(t, x) + q(x)u(t, x), (1.4)

with the initial condition u(0, x) = f(x), then u(t, x) can be expressed as

u(t, x) = E
[
f
(
x+X(t)

)
exp

(∫ t

0

q
(
x+X(s)

)
ds

)]
,

where {X(t)}t≥0 is the unique solution to

dX(t) = µ
(
X(t)

)
dt+ σ

(
X(t)

)
dB(t), X(0) = 0. (1.5)

Proof. We introduce the stochastic process {M(s)}0≤s≤t such that:

M(s) = u
(
t− s,Xx(s)

)
exp

(∫ s

0

q
(
Xx(v)

)
dv

)
:= U(s) · V (s),

where Xx(t) = x+X(t), given that {X(t)}t≥0 is the unique solution to (1.5), which exists
due to condition (1.3). Note that, due to Remark 1.18, X is continuous and so is Xx.
Therefore, U and V are continuous as well.
Using Itô’s lemma (Lemma 1.19) for U , we get:

dU(s) = du
(
t− s,Xx(s)

)
=

(
∂xu(t− s,Xx(s)) · µ(Xx(s))−

− ∂tu(t− s,Xx(s)) +
1

2
∂xxu(t− s,Xx(s)) · σ2(Xx(s))

)
ds

+ ∂xu(t− s,Xx(s)) · σ(Xx(s)) dB(s).

Since u is the unique solution to (1.4), we have:

du
(
t− s,Xx(s)

)
= −q(Xx(s))u(t− s,Xx(s)) ds+ ∂xu(t− s,Xx(s)) · σ(Xx(s)) dB(s).

Furthermore, for V , we may also use Itô’s lemma:

dV (s) = d

(
exp

(∫ s

0

q
(
Xx(v)

)
dv

))
= exp

(∫ s

0

q
(
Xx(v)

)
dv

)
q
(
Xx(s)

)
ds =

= V (s)q (Xx(s)) ds.

We now use Consequence 1.23, Itô’s product rule:

dM(s) = d
(
U(s)V (s)

)
= V (s)(−q(Xx(s))u(t− s,Xx(s))) ds+

+ U(s)V (s)q(Xx(s)) ds+ V (s)∂xu(t− s,Xx(s))σ(Xx(s)) dB(s)

= V (s)∂xu(t− s,Xx(s))σ(Xx(s)) dB(s).
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From our assumptions, we have:

sup
0≤s≤t

|M(s)| ≤ ∥u∥∞ exp (t∥q∥∞) = K1, where K1 ∈ R.

Lemma 1.26 implies that M(s) is a martingale. The martingale property means that for
any 0 ≤ s ≤ t, we have:

E [M(t)|Fs] =M(s).

Therefore, E[M(t)] = E[M(0)] also holds, which means that:

u(t, x) = E
[
M(0)

]
= E

[
M(t)

]
= E

[
f
(
x+X(t)

)
exp

(∫ t

0

q(x+X(s)) ds

)]
.

This completes the proof.

To further illustrate how impactful Theorem 1.27 is, let us consider the case when µ(t, x) ≡
q(x) ≡ 0 and σ(t, x) ≡ 2D, where D > 0. In this case, (1.4) becomes the heat equation

∂tu(t, x) = D · ∂xxu(t, x), (1.6)

with dX(t) = D · dB(t), which in the integral form is:

X(t) = X(0) +D

∫ t

0

1 dB(t) = DB(t).

Therefore, the solution to the heat equation (1.6) becomes:

u(t, x) = E
[
f
(
x+DB(t)

)]
,

which means that the solution of the heat equation can be thought of as the expected
value of the initial condition evaluated along random paths generated by the Brownian
motion, scaled by the diffusion parameter D. In other words, solving the heat equation
corresponds to averaging the initial profile f over all the possible places a particle could
diffuse to after time t, starting from position x.

The methods used in the proof of Theorem 1.27 open the door to deriving a variety of
representation theorems of similar form. We show an example of this for arguably the
most well-known problem in finance, i.e., option pricing.

1.4 Implications for the Black–Scholes model

The goal is to determine a fair price for a financial asset called an option. We will focus
on a specific type of option, called a European call option, which gives the purchaser
the right to buy an underlying asset from the seller at a fixed price K > 0 at a specific
expiration time T > 0.
We assume that the stock price S(t) follows a geometric Brownian motion, while the
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bond price B(t) evolves deterministically in the following manner, where σ, µ, r ≥ 0 are
constants:

dS(t) = µS(t) dt+ σS(t) dB(t), dB(t) = rB(t) dt, t ∈ [0, T ]. (1.7)

To determine the fair price of the option, we define a function u(t, x) as:

u(t, x) :=
{
the fair price at time t of a European call option, assuming S(t) = x

}
.

Theorem 1.28. Let h(x) and u(t, x) be bounded functions, where u(t, x) is the unique
solution to the below terminal value problem, called the Black–Scholes equation:∂tu(t, x) = −1

2
σ2∂xxu(t, x)− rx∂xu(t, x) + ru(t, x),

u(T, x) = max {x−K, 0} ,
(1.8)

and let {Xt,x(s)}s∈[0,T ] be a stochastic process, defined as:

Xt,x(s) =

{
x if s ∈ [0, t],

the solution of (1.9) if s ∈ [t, T ],

with

dXt,x(s) = rXt,x(s) ds+ σ dBs, Xt,x(t) = x. (1.9)

Then, u(t, x) can be expressed as:

u(t, x) = exp
(
− r(T − t)

)
E
[
max

{
Xt,x(T )−K, 0

}]
. (1.10)

In other words, the value of the option today is the average amount we expect it to pay
at maturity, assuming the stock evolves under risk-neutral dynamics.

The proof is analogous to the proof of Theorem 1.27. Theorem 1.28 is of key significance,
as the expected value in (1.10) can be calculated explicitly, giving us an analytical
solution to (1.8). Furthermore, if we generalize the underlying processes in (1.7) with
µ
(
t,S(t)

)
, σ
(
t, (S(t)

)
and r

(
t,S(t)

)
, we can easily prove analogous representation

theorems for this case, opening the door for simulations, even if the calculation of the
expected value is not feasible.

Note that the drift coefficient µ does not appear in the Black–Scholes equation (1.8). This
is a direct consequence of using a change of measure to move from the real-world prob-
ability measure to a theoretical risk-neutral measure. Throughout the thesis, we assume
such a measure for convenience purposes. For more insight, see the relevant literature on
Girsanov’s theorem, in Chapter 13 of Stochastic Calculus and Financial Applications [8]
for example.
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Chapter 2

The Lucas–Alvarez model

In this chapter, our goal is to analyze one of the models presented in the paper by Achdou
et al. [1], and gain a deeper understanding about the special type of parabolic differential
equation introduced in this model.

2.1 The Fisher–KPP equation
This section explores the origins of reaction-diffusion equations and clarifies the termi-
nology associated with them. The primary references are the papers by Fisher [4] and
Kolmogorov et al. [5].

Definition 2.1. We say that a parabolic differential equation is a reaction-diffusion equa-
tion, if it is of the form

∂tu = D ·∆u+ f(v) (2.1)

where Ω ⊆ Rn, u : [0,∞)× Ω → Rm is the unknown function, f : Rm → Rm, f ∈ C1 and
D ∈ Rm×m is a diagonal matrix with positive entries only.

To fully define the problem, the equation is typically accompanied by the initial condition

u(0, x) = u0(x), x ∈ R

where u0 : Ω → Rm is a given initial state, as well as suitable boundary conditions, which
depend on the specific problem and domain.

Remark 2.2. In this chapter, we investigate the one-space-dimensional case (n = m = 1).

Reaction-diffusion equations describe how diffusion spreads substances while reactions
change their concentrations. These equations originally emerged in chemistry, where they
were used to model the interplay between chemical reactions and diffusion processes.
One of the earliest and most influential examples is the Fisher–KPP equation, intro-
duced in population genetics to describe the spread of advantageous traits in a population.

In 1937, slightly different forms of the equation were independently studied by Fisher [4]
and by Kolmogorov, Petrovsky, and Piskunov (hence the name KPP) [5] in their respective
works.
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Definition 2.3. Let r > 0. We say that equation (2.1) is called a KPP equation if the
function f satisfies the following properties:

(i) f(0) = f(1) = 0,

(ii) f(u) > 0 for 0 < u < 1,

(iii) f ′(0) = r,

(iv) f ′(u) < r for 0 < u ≤ 1.

Definition 2.4. Let r > 0, K > 0. We say that (2.1) is a Fisher equation if it is in the
form

∂tu = D∂xxu+ ru
(
1− u

K

)
, (2.2)

that is, f(u) = ru

(
1− u

K

)
.

Remark 2.5. By choosing

t̃ = rt, x̃ = x

√
r

D
, ũ(t̃, x̃) =

u(t, x)

K
,

we get:

∂tu(t, x) = Kr∂t̃ũ(t̃, x̃), ∂xxu(t, x) = K
r

D
∂x̃x̃ũ(t̃, x̃). (2.3)

After substituting (2.3) into (2.2) and dividing both sides of the equation by Kr ̸= 0, we
end up with

∂t̃ũ = ∂x̃x̃ũ+ ũ(1− ũ). (2.4)

Remark 2.6. Since the transformed Fisher equation (2.4) satisfies the KPP constraints,
we usually refer to (2.2) as the Fisher–KPP equation.

In the original formulations the function u represents a population density ratio, so it is
naturally assumed to take values in the interval [0, 1]. Within our model in this chapter,
it will represent the proportion of individuals below a given productivity level.

2.2 The model’s setup
An important category of heterogeneous agent models focuses on the dynamics of the
distribution of knowledge and productivity. The Lucas–Alvarez model falls into this
category, describing how knowledge spreads across a population of individuals with
different initial levels of productivity. In this model, the evolution of the knowledge
distribution follows a Fisher–KPP-type equation, capturing how learning and innovation
shape long-term economic growth.

We assume that we have a population that consists of a continuum of people

P = {i : i ∈ R}.
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We track the productivity for every individual i with the stochastic process {Zi(t)}t≥0,
where

Zi(t) : [0,∞) → [0,∞).

We can describe the economy’s strength with a cumulative distribution function G :
[0,∞)× R → [0, 1], defined by

G(t, z) = P(Zi(t) ≤ z).

From now on, we are going to consider Xi(t) = ln (Zi(t)) and F̃ : [0,∞)×R → [0, 1] with
F̃ (t, x) = P(Xi(t) ≤ x) and assume that F̃ is once differentiable in its first variable and
twice in its second.
The changes in knowledge of a given individual can occur in multiple ways, presented in
the following.

Innovation

We introduce a θ > 0 parameter, which we will refer to as the innovation parameter, and
it represents the rate at which every individual’s knowledge increases. We can write this
as:

Xi(t)−Xi(0) =

∫ t

0

θ ds = θt
(
or formally: dXi(t) = θ dt

)
.

Since this source of productivity change is homogeneous among the population, our in-
tuition suggests that it will not be significant when describing inequality and knowledge
distributions. This observation will be verified in Remark 2.7.

Meetings between people

In this model, there are encounters between individuals that occur in the form of a Poisson
process with parameter α > 0. This means that for each individual i, the number of
meetings Ni in the time interval [0, τ ] follows a Poisson distribution:

P (Ni(τ) = k) =
(ατ)ke−ατ

k!
.

Accordingly, the expected number of meetings for individual i over this interval is
E [Ni(τ)] = ατ . When an encounter occurs between two people, with productivity lev-
els Xi(t) and Xj(t), both update their productivity to the higher of the two, that is,
max{Xi(t), Xj(t)}. To capture this idea, we can formally represent it with the below
equation:

dXi(t) = ∆i(t) dNi(t).

where ∆i(t) is the gain in productivity from a meeting at time t, which as established,
occurs if the individual i meets someone with higher productivity.
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Research

An individual’s knowledge evolves not only through innovation or interactions, but also
through research. This model treats research as an unpredictable source of knowledge,
therefore, its effect can be described by a stochastic differential equation, defined in Chap-
ter 1:

dXi(t) = σ dBi(t),

where σ > 0 is a constant. Note that this preserves the non-negativity of Zi(t).

2.3 Combined effect
We may consider a general version of the model, where all three of the above effects
influence the productivity levels, i.e.:

dXi(t) = θ dt+∆i(t) dNi(t) + σ dBi(t).

As a combination of these effects, we can model the idea flow with the following equation:

∂tF̃ (t, x) = −θ∂xF̃ (t, x) +
σ2

2
∂xxF̃ (t, x)− αF̃ (t, x)

(
1− F̃ (t, x)

)
. (2.5)

Remark 2.7. By choosing F (t, x) = F̃ (t, x+ θt), we get:

∂tF (t, x) = ∂tF̃ (t, x+ θt) + θ∂xF̃ (t, x+ θt), ∂xxF (t, x) = ∂xxF̃ (t, x+ θt). (2.6)

After substituting (2.6) into (2.5), we end up with a de-trended version of the equation,
which will be in the center of our attention for this chapter:

∂tF (t, x) =
σ2

2
∂xxF (t, x)− αF (t, x)

(
1− F (t, x)

)
. (LA)

Equation (LA) is accompanied by initial and asymptotic boundary conditions:

F0(x) = F (0, x), (2.7)
lim

x→−∞
F (t, x) = 0, (2.8)

lim
x→∞

F (t, x) = 1, (2.9)

where F0(x) is the initial cumulative distribution function. We refer to equation (LA)
as such, following Lucas and Alvarez, who first introduced the model. Note that (LA)
is structurally similar to the Fisher–KPP equation. The reaction term −αF (1− F ) cap-
tures the effect of the individuals’ interactions with each other, and the diffusion term
(σ2/2) ∂xxF comes from research. But there is a crucial difference: the reaction term con-
tains a negative coefficient, making it a “reverse” Fisher–KPP equation. This difference
arises because ideas diffuse but do not self-replicate in the same manner as biological
populations, therefore, not leading to exponential increase.
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2.4 Traveling wave solutions
Although traveling wave solutions are typically associated with hyperbolic partial differ-
ential equations, it is interesting to note that some parabolic equations, such as (LA), can
also admit such solutions.

Theorem 2.8. Let F (t, x) ∈ C1,2 be a solution to (LA) with asymptotic boundary condi-
tions (2.8)-(2.9). Then for any wave speed c ≥ σ

√
2α, there exists a unique, monotonically

increasing function ϕ : R → [0, 1], ϕ ∈ C2, such that F (t, x) = ϕ(x− ct), lim
ξ→−∞

ϕ(ξ) = 0,
and lim

ξ→∞
ϕ(ξ) = 1.

Proof. We seek a traveling wave solution of the form

F (t, x) = ϕ(x− ct).

We compute the following partial derivatives:

∂tF (t, x) = −cϕ′(x− ct), ∂xxF (t, x) = ϕ′′(x− ct).

Substituting these into (LA), and writing ξ = x− ct we get

−cϕ′(ξ) =
σ2

2
ϕ′′(ξ)− αϕ(ξ) (1− ϕ(ξ)) . (2.10)

We can write this second-order ordinary differential equation as a nonlinear, autonomous
system of two first-order ordinary differential equations:ϕ

′(ξ) = ψ(ξ),

ψ′(ξ) =
2

σ2
αϕ(ξ)

(
1− ϕ(ξ)

)
− 2

σ2
cψ(ξ).

(2.11)

We now examine the phase plane of (2.11). The equilibrium points can be found by solving
the following system of equations:

0 = ψ(ξ),

0 =
2

σ2
αϕ(ξ)

(
1− ϕ(ξ)

)
− 2

σ2
cψ(ξ).

From this, we get:
2

σ2
αϕ(ξ)

(
1− ϕ(ξ)

)
= 0 for all ξ ∈ R.

Therefore, the two equilibrium points of (2.11) are: E1 = (0, 0), and E2 = (1, 0).
The Jacobian matrix corresponding to system (2.11) is

J(ϕ, ψ) =

[
0 1

(2/σ2)α(1− 2ϕ) −(2/σ2)c

]
.

To compute the eigenvalues at each equilibrium, we need to find the roots of

det
(
J(0, 0)− λI

)
=

∣∣∣∣ −λ 1
(2/σ2)α −(2/σ2)c− λ

∣∣∣∣ = λ2 +
2c

σ2
λ− 2α

σ2
, and (2.12)

det
(
J(1, 0)− λI

)
=

∣∣∣∣ −λ 1
−(2/σ2)α −(2/σ2)c− λ

∣∣∣∣ = λ2 +
2c

σ2
λ+

2α

σ2
. (2.13)
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The roots of (2.12) and (2.13) are:

λ1,2 = −c±
√
c2 + 2σ2α

σ2
, λ3,4 = −c±

√
c2 − 2σ2α

σ2
respectively. (2.14)

We can easily see that λ1 and λ2 are real numbers and of opposite sign, therefore, E1 is
a saddle point. Since we assumed c2 ≥ 2σ2α, λ3 and λ4 are both negative real numbers,
therefore, E2 is a stable node. If we had c2 − 2σ2α < 0, then E2 would be a stable spiral.
This could result in ϕ > 1, and ϕ′ < 0 which would contradict our assumptions.
To prove the existence of a traveling wave solution, we need to find a trajectory from the
saddle point E1 to the stable node E2 on the phase plane (ϕ, ϕ′). If exists, it corresponds
to a ϕ(ξ), ψ(ξ) pair, with the following properties:

lim
ξ→−∞

ϕ(ξ) → 0, lim
ξ→∞

ϕ(ξ) = 1 and lim
ξ→−∞

ψ(ξ) = lim
ξ→∞

ψ(ξ) = 0.

Finding the nullclines are of interest to us, as they are the curves where the derivative of
one of the variables is zero. The two nullclines of (2.11) are:

ψ = 0 and ψ = −α
c
ϕ2 +

α

c
ϕ.

To make our argument more visible, we sketch the phase plane of (2.11), which can be
seen below in Figure 1.

Figure 1: The (ϕ, ϕ′) phase plane with nullclines, eigenvectors and some trajectories.

The directions of eigenvectors corresponding to eigenvalues (2.14) are also plotted on
Figure 1. From our assumptions that ϕ ∈ [0, 1] and ϕ is monotonically increasing, we
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know that the trajectory can only be in the first quadrant. We can see that if we start
at some ε > 0 vicinity of E1 in this quadrant along the eigenvector associated with the
positive eigenvector λ1, the trajectory will eventually approach the equilibrium point E2.
This trajectory is the unique traveling wave solution we are looking for.

Consequence 2.9. Let F (t, x) be a solution of (LA) with the initial value condition (2.7)
and the boundary conditions (2.8)-(2.9), where F0(x) ∈ C2. Then, there exists some c ≥
σ
√
2α, for which the unique solution to (LA) with initial value and boundary conditions

(2.7)-(2.9) is F (t, x) = F0(x− ct).

The existence of a traveling wave solution means that under some appropriate initial
distributions, productivity grows at a constant rate which is directly proportional to the
rate at which people meet each other and do research.
While Theorem 2.8 guarantees that the traveling wave solution of (LA) exists, it does not
provide a practical formula for computing it. For this, we use the so-called perturbation
method.

The perturbation method

Perturbation methods are analytical techniques used to approximate solutions for
problems that are difficult or impossible to solve exactly.
These methods are especially useful when the system contains a small parameter, which
introduces a deviation from simpler, well-understood solution. This section is motivated
by J. David Logan’s book [6] on nonlinear partial differential equations.

A perturbation series of an unknown function g is an expansion in powers of a parameter
ε0. The series is typically written as

g(s) = g0(s) + ε0g1(s) + ε20g2(s) + . . . . (2.15)

In this series, g0 is the unperturbated solution, while the higher-order terms εn0gn represent
corrections to the solution of O(εn0 ). From a numerical perspective, this means that the
exact solution can be well-approximated, given a desired accuracy.
Since (2.10) is autonomous, we can assume that ϕ(0) = 1/2. Let ε > 0, given by ε = 1/c2.
We persist with the assumption that c2 ≥ 2ασ2, therefore, ε ≤ 1/(2ασ2). We can write
(2.10) as:

0 =
σ2

2

√
εϕ′′(ξ) + ϕ′(ξ)− α

√
εϕ(ξ)

(
1− ϕ(ξ)

)
. (2.16)

By introducing η = ξ
√
ε and Θ(η) = ϕ(ξ/

√
ε), we can rewrite (2.16) as:

0 =
σ2

2
εΘ′′(η) + Θ′(η)− αΘ(η)

(
1−Θ(η)

)
, (2.17)

with the conditions

lim
η→−∞

Θ(η) = 0, lim
η→∞

Θ(η) = 1, Θ(0) =
1

2
. (2.18)
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By expressing Θ as a perturbation series, i.e., in the form (2.15), we can write (2.17) as:

0 =
σ2

2
ε
(
Θ′′

0 + εΘ′′
1 + ε2Θ′′

2 + . . .
)
+
(
Θ′

0 + εΘ′
1 + ε2Θ′

2 + . . .
)

− α
(
Θ0 + εΘ1 + ε2Θ2 + . . .

) (
1−

(
Θ0 + εΘ1 + ε2Θ2 + . . .

))
.

After rearranging for powers of ε, and keeping only the zero- and first-order terms, we
get:

0 =
(
Θ′

0 − αΘ0 + αΘ2
0

)
+

(
σ2

2
Θ′′

0 +Θ′
1 − αΘ1 + 2Θ0Θ1

)
ε+O

(
ε2
)
. (2.19)

We do the same procedure for conditions (2.18). After matching the coefficients of the
polynomials in (2.19), we get the following ordinary differential equations:

Θ′
0 − αΘ0 + αΘ2

0 = 0, lim
η→−∞

Θ0 = 0, lim
η→∞

Θ0 = 1, Θ0(0) =
1

2
; (2.20)

σ2

2
Θ′′

0 +Θ′
1 − αΘ1 + 2αΘ0Θ1 = 0, lim

η→−∞
Θ1 = lim

η→∞
Θ1 = Θ1(0) = 0. (2.21)

The conditions in (2.21) make sense, as the boundary and midpoint values for Θ are the
sum of those of Θ0,Θ1, and so on.
In Chapter 5.4 of An Introduction to Nonlinear Partial Differential Equations by J. David
Logan [6], there seems to be a mistake in the rearrangement of terms, resulting in a
different ODE for what in our case is Θ1. Although the source’s original equation is
slightly different, we suggest a correction below, solving the correct differential equation.
We start by solving (2.20). Since (2.20) is a separable ordinary differential equation, we
can solve it easily:

Θ′
0(η)− αΘ0(η) + αΘ2

0(η) = 0

Θ′
0(η)

Θ0(η)−Θ2
0(η)

= α(
ln

(
Θ0(η)

1−Θ0(η)

))′

= α

ln

(
Θ0(η)

1−Θ0(η)

)
= αη + C1

Θ0(η)

1−Θ0(η)
= exp (αη + C1)

Θ0(η) =
exp (αη + C1)

1 + exp (αη + C1)
.

From (2.20), we have

Θ0(0) =
exp (C1)

1 + exp (C1)
=

1

2
⇒ C1 = 0,

thus, for Θ0, we get:

Θ0(η) =
exp (αη)

1 + exp (αη)
. (2.22)
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The boundary conditions indeed hold:

lim
η→−∞

Θ0(η) = lim
η→−∞

exp (αη)

1 + exp (αη)
= 0, lim

η→∞
Θ0(η) = lim

η→∞

1

1 + exp (−αη)
= 1.

We now turn to (2.21). The derivatives of Θ0 are:

(
Θ0(η)

)′
=
α exp (αη)

(
1 + exp (αη)

)
− α exp (2αη)(

1 + exp (αη)
)2 =

α exp (αη)

(1 + exp (αη))2
,

(Θ0(η))
′′ =

α2 exp (αη)
(
1 + exp (αη)

)2 − 2α2 exp (2αη)
(
1 + exp (αη)

)(
1 + exp (αη)

)4 =

=
α2 exp (αη)

(
1− exp (αη)

)(
1 + exp (αη)

)3 .

(2.23)

Substituting (2.22) and (2.23) into (2.21), we get the following ordinary differential equa-
tion:

σ2α2

2

exp (αη)
(
1− exp (αη)

)(
1 + exp (αη)

)3 +Θ′
1(η)− αΘ1(η) + 2α

exp (αη)

1 + exp (αη)
Θ1(η) = 0,

which can be written as a first-order linear ODE:

Θ′
1(η) = a(η)Θ1(η) + b(η), where (2.24)

a(η) = α− 2α
exp (αη)

1 + exp (αη)
, b(η) =

σ2α2

2

exp (αη)
(
1− exp (αη)

)(
1 + exp (αη)

)3 .

We compute
∫
a(η) dη:∫

a(η) dη =

∫ (
α− 2α

exp (αη)

1 + exp (αη)

)
dη = αη − 2 ln(exp (αη) + 1) + C2.

By multiplying both sides of (2.24) by exp
(
− αη + 2 ln(exp (αη) + 1)

)
, we get:

Θ1(η) =
exp (αη)(

1 + exp (αη)
)2 ∫ b(η)

(
exp (αη) + 1

)2
exp (αη)

dη. (2.25)

We can compute the integral in (2.25):∫
b(η)

(
1 + exp (αη)

)2
exp (αη)

dη =
σ2α2

2

∫
1− exp (αη)

1 + exp (αη)
dη =

=
σ2α2

2

(
η −

2 ln
(
1 + exp (αη)

)
α

+ C3

)
.
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Therefore, we get:

Θ1(η) =
exp (αη)(

1 + exp (αη)
)2 σ2α2

2

(
η −

2 ln
(
1 + exp (αη)

)
α

+ C3

)
.

Since we know that

Θ1(0) =
σ2α2

8

(
− 2 ln(2)

α
+ C3

)
= 0,

therefore, C3 =
2 ln(2)

α
.

We end up with:

Θ1(η) =
exp (αη)(

1 + exp (αη)
)2 σ2α2

2

(
η −

2 ln
(
1 + exp (αη)

)
α

+
2 ln(2)

α

)
.

We need to show that Θ1 also satisfies the boundary conditions in (2.21):

lim
η→±∞

σ2α2

2

(
η exp (αη)

(1 + exp (αη))2
− 2 ln(exp (αη) + 1) exp (αη)

(1 + exp (αη))2α
+

2 ln (2) exp (αη)

(1 + exp (αη))2α

)
=

=
σ2α2

2

(
lim

η→±∞

η exp (αη)

(1 + exp (αη))2
− 2

α
lim

η→±∞

ln(1 + exp (αη)) exp (αη)

(1 + exp (αη))2
+

+
2 ln (2)

α
lim

η→±∞

exp (αη)

(1 + exp (αη))2

)
For the second limit, we use L’Hôpital’s rule when η → +∞:

lim
η→∞

ln(1 + exp (αη)) exp (αη)

(1 + exp (αη))2
= lim

η→∞

ln(1 + exp (αη))

exp (αη) + 2 + exp (−αη)
=

= lim
η→∞

(α exp (αη))/(1 + exp (αη))

α exp (αη)− α exp (−αη)
= lim

η→∞

1

(1− exp (−2αη))(1 + exp (αη))
=

= lim
η→∞

1

exp (αη) + 1− exp (−αη)− exp (−2αη)
= 0.

It is easy to see that the rest of the limits are also equal to zero. Writing the solution
using the original variables, we get the final form of our approximation:

ϕ(ξ) =
exp

(
αξc−1

)
1 + exp

(
αξc−1

) + 1

c2
exp

(
αξc−1

)(
exp

(
αξc−1

)
+ 1
)2 σ2α2

2
·

·

(
ξ

c
−

2 ln
(
exp

(
αξc−1

)
+ 1
)

α
+

2 ln(2)

α

)
+O

(
1

c4

)
.

We obtained an approximation to the solution of (LA). Conversely, we also described
the initial distributions for which (LA) admits traveling wave solutions. We show some
examples of such cumulative distribution functions in Figure 2, where cmin = σ

√
2α is the

minimal theoretical wave speed.
To further investigate the problem, we seek answers to the following questions in the next
section.
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Figure 2: Possible initial conditions for different c values.

(i) Does (LA) admit traveling wave solutions with different initial conditions?

(ii) What do we know about the traveling wave’s speed in those cases?

2.5 Solving the PDE numerically
In many complex systems, exact solutions to differential equations are often difficult or
impossible to obtain due to their nonlinearity, high dimensionality, or other factors. In
such cases, we can use numerical methods to approximate the solutions. These methods
involve discretizing the equations and solving them iteratively, allowing for the analysis
of complex problems where analytical solutions are not feasible. Below, we present and
apply two methods to numerically solve equation (LA).

Finite difference method

The first approach to solving (LA) is to use a finite difference method. We solve (LA) on
a discretized grid. The space interval [−L,L] is discretized as follows:

xj = x0 + jh, j = 0, 1, . . . , N,

where h > 0 is the spatial step size given by h = 2L/N . Similarly, the time domain [0, T ]
is discretized as

tn = t0 + nτ, n = 0, 1, . . . , J,

where τ is the time step given by τ = T/J . From now on, ynj ≈ F (tn, xj) denotes the
approximate solution at tn and xj. We initialize the solution with the initial condition:

y0j = F0(xj), for j = 0, 1, . . . , N.
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We approximate the derivatives as follows:

∂tF (tn, xj) ≈
yn+1
j − ynj

τ
, and

∂xxF (tn, xj) ≈
ynj+1 − 2ynj + ynj−1

h2
.

Substituting these approximations into (LA), we get the update rule:

yn+1
j = τ

(σ2

2

ynj+1 − 2ynj + ynj−1

h2
− αynj (1− ynj )

)
+ ynj ,

for n = 0, 1, . . . J − 1 and j = 1, 2, . . . N − 1. In this implementation, we use Dirichlet
boundary conditions, setting the values at the boundaries as follows:

yn0 = 0, ynN = 1 for all n ∈ {0, 1, . . . J},

imitating the original boundary conditions (2.8)-(2.9). We note that this gives us a reliable
approximation if L is large enough.

Operator splitting

As for the second numerical approach, we use operator splitting, a method in which we
divide (LA) into two subproblems. The advantage of using this method in this case is that
the exact solution is known for both subproblems.
Using the same discretization as in the finite difference method, we consider the two initial
value problems at each time step k = 1, 2, . . . , J , we have: ∂ty

(k)
1 (t, x) =

σ2

2
∂xxy

(k)
1 (t, x), t ∈

(
(k − 1)τ, kτ

]
y
(k)
1

(
(k − 1)τ, x

)
= y

(k−1)
2

(
(k − 1)τ, x

)
.

(2.26)

{
∂ty

(k)
2 (t, x) = −αy(k)2 (t, x)

(
1− y

(k)
2 (t, x)

)
, t ∈

(
(k − 1)τ, kτ

]
y
(k)
2

(
(k − 1)τ, x

)
= y

(k)
1 (kτ, x).

(2.27)

In order to initialize the method, we set y(0)2 (0, x) = F0(x). To solve the initial value
problem (2.26) we impose the following boundary conditions:

y
(k)
1 (t,−L) = 0, y

(k)
1 (t, L) = 1, (2.28)

which are consistent with the Dirichlet boundary conditions used in the finite difference
method. However, this introduces some errors to our numerical solution, but this will not
jeopardize our approach. We can solve (2.26) with the boundary conditions (2.28) by a
Fourier series expansion. Due to the inhomogeneous boundary conditions, we first perform
a homogenization step. To this end, let ζ : [−L,L] → R, ζ(x) := (x + L)/(2L). We are
looking for a solution in the following form:

y
(k)
1 (t, x) = u(t, x) + ζ(x), (2.29)
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where u : [0, T ] × [−L,L] → R. Substituting (2.29) into (2.26), we get the following
initial-boundary value problem:

∂tu(t, x) =
σ2

2
∂xxu(t, x),

u(t,−L) = 0, u(t, L) = 0,

u(0, x) = y
(k−1)
2

(
(k − 1)τ, x

)
− ζ(x).

(2.30)

We know that the Fourier-series expansion of the solution of (2.30) is:

u(t, x) =
∞∑
n=1

bn exp

(
−σ

2

2

(nπ
2L

)2
(t− (k − 1)τ)

)
sin

(
nπ(x+ L)

2L

)
,

where the coefficients bn are given by

bn =
1

L

∫ L

−L

(
y
(k−1)
2

(
(k − 1)τ, x

)
− ζ(x)

)
sin

(
nπ(x+ L)

2L

)
dx.

Therefore, the solution of (2.26) with boundary conditions (2.28) takes the following form:

y
(k)
1 (t, x) = ζ(x) +

∞∑
n=1

bn exp

(
−σ

2

2

(nπ
2L

)2
(t− (k − 1)τ)

)
sin

(
nπ(x+ L)

2L

)
.

As for the reaction step (2.27), we can solve it explicitly since it is a separable ordinary
differential equation, which yields:

y
(k)
2 (t, x) =

y
(k)
1 (kτ, x)

y
(k)
1 (kτ, x) +

(
1− y

(k)
1 (kτ, x)

)
exp

(
α(t− (k − 1)τ)

) .
After completing the J-th step, we stop the iteration. The numerical solution obtained at
this stage serves as an approximation of y at time T :

y(T, x) ≈ y
(J)
2 (T, x).

2.6 Implementation and comparison
Section 2.4 provided an analytical approximation of the traveling wave solutions of (LA)
with initial conditions that resemble the sigmoid function. In this section, we analyze the
numerical solutions obtained by using the finite difference method and operator splitting.
The numerical methods in Section 2.5 were implemented in Python. The parameters of
(LA) were set to α = 1 and σ = 1 throughout this section.

In Section 2.4 we expressed the traveling wave solution of (LA) as a series in powers of
c−2. Therefore, a natural candidate for the initial cumulative distribution function would
be:

F0(x) =
exp

(
αxc−1

)
1 + exp

(
αxc−1

) ,
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as it is the leading-order term in the approximation obtained in Section 2.4. The results are
plotted in Figure 3, shown over the interval x ∈ [−40, 40] for clarity. The exact solution of
(LA) was implemented simply as a shift of the initial condition. To respect the boundary
conditions, in the implementation, (LA) was solved in a slightly larger domain, the central
portion already illustrates the behavior of the solution well.

Figure 3: Traveling wave solution of (LA) with F0(x) = exp
(
(
√
2/4)x

)
/
(
1 + exp

(
(
√
2/4)x

))
and wave

speed c∗ = 2
√
2, using L = 50, T = 15, h = 0.1, and τ = 0.01.

We can see that our approximation obtained by the perturbation method in Section 2.4
is very accurate even for small c values. As we showed earlier, the solution of (LA) is a
traveling wave.

We may also try to experiment with different initial distributions. First, we consider an
initial condition, for which we did not prove the existence of a traveling wave solution.
The results for the KPP equation in the paper of Kolmogorov et al. [5] suggest that if the
initial knowledge distribution is the Dirac delta, there exists a traveling wave solution,
and the wave speed is equal to the minimal wave speed, i.e., c∗ = cmin = σ

√
2α in our

case. Although equation (LA) is slightly different from the KPP equation, we can still
check if the numerical result yields a traveling wave. Since we are testing for the Dirac
delta as the initial distribution, the corresponding cumulative distribution function is:

F0(x) = 1x≥0.
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The true wave speed in question is c∗ ?
=

√
2. The results of the two numerical methods

are presented in Figure 4, again using a slightly smaller interval than [−L,L].

Figure 4: Traveling wave solution of (LA) with F0(x) = 1x≥0 and wave speed c∗ =
√
2, using L = 30,

T = 15, h = 0.1, and τ = 0.01.

As we can see, the numerical solutions are traveling wave solutions and they indeed
follow the shifted initial condition. Note that the wave profiles of the numerical solutions
differ from those of the exact solution, because these numerical methods tend to smooth
out sharp discontinuities over the iteration steps. This is because of the errors that arise
from discretizing both the space and time variables.

Lastly, we show an example of another initial distribution that seems to be a viable
initial condition to (LA) for traveling wave solutions, i.e., the exponential distribution.
The results can be seen in Figure 5. Although we do not give a definitive proof to this ob-
servation, but the traveling wave speed seems to be cmin under this initial condition as well.
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Figure 5: Traveling wave solution of (LA) with F0(x) being the cumulative distribution function of the
exponential distribution, and wave speed c∗ =

√
2, using L = 50, T = 15, h = 0.1, and τ = 0.01.

Note that these results need to be taken with a grain of salt, regardless of how convincing
they may appear. Our goal is not to prove the validity of our hypotheses on the value of
c∗, but to give us a hint as to whether our assumptions are true or not. Additionally, it
gives us an opportunity to compare the numerical methods themselves against each other.
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Chapter 3

Optimal control problems

This chapter can be thought of as an enhancement of the foundation we built in Chapter
1. Optimal control theory provides a mathematical framework for solving decision-making
problems over time. These methods are crucial in economics and finance, as people face de-
cisions about their purchases every day. What makes this problem particularly intriguing
is that, in most cases, we face evolving constraints that are often difficult to predict.

3.1 Preliminaries
The definitions presented in this section are primarily based on Lawrence C. Evans’s
work [10], and on Chapters 1-3 of Huyên Pham’s book [11] on stochastic optimization.

In the context of optimal control theory, space (and time) variables are typically accompa-
nied by control variables that represent the decision-making processes of the agents within
the system. To motivate the mathematical setup for these equations, we first introduce
the concept of controls.

Definition 3.1. Let A ⊂ Rm, be a non-empty bounded set called the control set. The
stochastic process {α(s)}s≥0 is called a control (or control process) if α : [0,∞) → A is
progressively measurable. We denote the set of all controls by A0.

We consider the following controlled stochastic differential equation on Rn:{
dX(s) = µ(X(s), α(s)) ds+ σ

(
X(s), α(s)

)
dB(s),

X(t) = x,
(CSDE)

where x ∈ Rn, t ∈ [0, s] and the functions µ : Rn × A → Rn, σ : Rn × A → Rn×d are
measurable functions that are Lipschitz continuous in their first variable. Note that we
could define µ and σ such that they depend on s as well, however, since our focus is on
the case of an infinite time horizon, we do not extend our setup in this direction.

Proposition 3.2. If there exists a constant L > 0, such that

∥µ (x, a)∥2 + ∥σ (x, a)∥2F ≤ L
(
1 + ∥x∥2

)
for all x ∈ Rn, a ∈ A, (3.1)

then (CSDE) has a unique solution, which we denote by {Xx(s)}s≥0. From now on, con-
dition (3.1) will be assumed.
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Assumption 3.3. From now on, we consider controls in the form α(s) = A(Xx(s)),
where A : [0,∞)×Rn → A is a measurable function. This means that the actions we take
only depend on the current state.

Note that for finite-horizon problems, the control would also explicitly depend on time
as well, meaning that we would have controls in the form α(s) = A(s,Xx(s)).

The next step of our setup is to define a payoff function Px : A0 → R that describes how
“good” a control is if we start from the state x. In order to align with our models in this
chapter, we define it as:

Px(α) := E
[∫ ∞

0

exp (−qs)f
(
Xx(s), α(s)

)
ds

]
for all x ∈ Rn,

where q > 0 and f : Rn × A→ R is a given measurable function.

Definition 3.4. We say that the control α ∈ A0 is admissible if the following holds:

E
[∫ ∞

0

exp (−qs)
∣∣f(Xx(s), α(s)

)∣∣ ds] <∞.

We denote the set of admissible controls as Ax.

Assumption 3.5. We assume a quadratic growth condition for the function f , i.e., there
exists a constant K > 0, such that:

|f(z, a)| ≤ K
(
1 + ∥z∥2

)
for all z ∈ Rn, a ∈ A.

Proposition 3.6. Under Assumption 3.5, every control in A0 is admissible.

Definition 3.7. We say that the control αopt ∈ Ax is optimal if for any admissible control
α ∈ Ax, we have

Px(αopt) ≥ Px(α).

This is of great importance for optimization, as αopt determines the best course of action
for the agent, given the dynamics and uncertainties in the model. This motivates us to
define a special function, called the value function v : Rn → R, which tells us what the
best possible payoff starting from state x is, defined as:

v(x) = sup
α∈Ax

{Px(α)} .

From now, we assume that v is sufficiently smooth, i.e., v ∈ C2.
We now introduce a concept within controlled differential equations that is essential for
the later developments in this chapter: the dynamic programming principle. The basic
idea is to separate a difficult problem into subproblems that are easier to solve. This is
one of the reasons we keep track of the initial states in our notation. Intuitively, we expect
an optimal strategy to have the property that, no matter the initial state and time, the
remaining decisions must be optimal as well. The dynamic programming principle is a
rigorous formulation of this idea.
The proof of the following theorem is based on Huyen̂’s work in [11], with the modification
that we now consider an infinite time horizon.
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Theorem 3.8. Let x ∈ Rn, and T be a set of stopping times on [0,∞). Then the value
function v satisfies the following:

v(x) = sup
α∈Ax

{
sup
τ∈T

{
E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)v(Xx(τ))

]}}
=

= sup
α∈Ax

{
inf
τ∈T

{
E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)v(Xx(τ))

]}}
,

with exp (−qθ(ω)) = 0 if θ(ω) = ∞.

Proof. Let α ∈ Ax, and τ ∈ T be fixed.
Observe that for all τ ∈ T , we have the Markov property Xx(s) = XXx(τ)(s− τ) if s ≥ τ .
This means that if we stop at some time t, and we continue from that state up to time s,
we end up in the same state as if we had gone to Xx(s) directly, under the same control.
We split the integral into two parts, then we use the tower rule:

Px(α) = E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+

∫ ∞

τ

exp (−qs)f
(
Xx(s), α(s)

)
ds

]
=

= E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds

]
+

+ E
[
E
[∫ ∞

τ

exp (−qs)f
(
Xx(s), α(s)

)
ds

∣∣∣∣Fτ

]]
.

By the definition of Px and the Markov behavior we observed earlier, we have

E
[ ∫ ∞

τ

exp (−qs)f
(
Xx(s), α(s)

)
ds

∣∣∣∣Fτ

]
= exp (−qτ)PXx(τ)(α),

therefore, we can express Px as:

Px(α) = E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)PXx(τ)(α)

]
Since α is an arbitrary control, we get the following inequality:

Px(α) ≤ E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)v

(
Xx(τ)

)]
,

for all τ ∈ T . Therefore, can write:

Px(α) ≤ inf
τ∈T

{
E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)v

(
Xx(τ)

)]}
. (3.2)

Furthermore, we know that for all ε > 0, there is an αε control, that is suboptimal only
by ε, i.e.:

v
(
Xx(τ)

)
− ε ≤ PXx(τ)(αε). (3.3)

We now define the following process:

α∗(s) =

{
α(s) if s ∈ [0, τ ],

αε(s) if s ∈ [τ,∞).
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An important detail for the correctness of this proof is that α∗(s) is also an admissible
control. This technicality will not be proved here, but for those interested in this lemma,
we recommend Chapter 7 of Continuous-time Stochastic Control and Optimization with
Financial Applications [11].

With a similar argument as before and using (3.3), for all τ we get:

Px(α
∗) = E

[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)PXx(τ)(αε)

]
≥

≥ E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)v(Xx(τ))

]
− ε.

Since this holds for every τ ∈ T , we get the following:

Px(α) ≥ sup
τ∈T

{
E
[∫ τ

0

exp (−qs)f
(
Xx(s), α(s)

)
ds+ exp (−qτ)v

(
Xx(τ)

)]}
. (3.4)

If we take the supremum over all α ∈ Ax in equations (3.2) and (3.4), we end up with the
desired result.

3.2 The Hamilton–Jacobi–Bellman equation

Our aim is to leverage some of the results in Chapter 1 in the context of controlled
stochastic differential equations (CSDE). Namely, we are going to see another application
of Itô’s lemma (Lemma 1.20), as it helps us to derive a nonlinear partial differential
equation for the value function v.

The following steps are analogous to those in Chapter 3 of Huyên’s book [11], however,
similarly as we did at the dynamic programming principle, we provide a proof for the
infinite time horizon case.

Assumption 3.9. For every t ∈ T, we assume∫ t

0

∥exp (−qs)∇v(Xx(s))σ(Xx(s), a)∥2 ds <∞.

Let v ∈ C2 be the value function. Let us fix some t ≥ 0, h > 0 and a constant control
a ∈ A on [t, t+ h]. From the dynamic programming principle, Theorem 3.8 we have:

v(x) ≥ E
[∫ t+h

t

exp (−qs)f(Xx(s), a) ds+ exp (−q(t+ h))v(Xx(t+ h))

]
. (3.5)

Using Itô’s lemma (Lemma 1.20) to exp (−qs)v(Xx(s)) on the interval [t, t+ h] according
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to (CSDE), and multiplying both sides by exp (−qt), we get:

exp (−qh)v(Xx(t+ h)) = v(x) +

∫ t+h

t

exp (−qs)(−q)v(Xx(s)) ds+

+

∫ t+h

t

exp (−qs)∇v(Xx(s))σ(Xx(s), a) dB(s)+

+

∫ t+h

t

exp (−qs)∇v(Xx(s))µ(Xx(s), a) ds+

+

∫ t+h

t

1

2
Tr
[
σ(Xx(s), a)σ

⊤(Xx(s), a) exp (−qs)∇2v(Xx(s))
]
ds.

We take the expected value on both sides. Because of Proposition 1.12 and Assumption
3.9, the Itô integral term vanishes, leaving us with:

E [exp (−q(t+ h))v(Xx(t+ h))] = v(x) + E
[∫ t+h

t

exp (−qs)(−q)v(Xx(s)) ds

]
+

+ E
[∫ t+h

t

exp (−qs)∇v
(
Xx(s)

)
µ(Xx(s), a) ds

]
+

+ E
[∫ t+h

t

1

2
Tr
[
σ(Xx(s), a)σ

⊤(Xx(s), a) exp (−qs)∇2v
(
Xx(s)

)]
ds

]
.

By substituting exp (−q(t+ h))E [v(Xx(t+ h))] into (3.5) and subtracting v(x) form both
sides, we get:

0 ≥ E
[ ∫ t+h

t

exp (−qs)f(Xx(s), a) ds

]
+ E

[∫ t+h

t

exp (−qs)(−q)v(Xx(s)) ds

]
+

+ E
[ ∫ t+h

t

exp (−qs)∇v
(
Xx(s)

)
µ(Xx(s), a) ds

]
+

+ E
[ ∫ t+h

t

1

2
Tr
[
σ(Xx(s), a)σ

⊤(Xx(s), a) exp (−qs)∇2v(Xx(s))
]
ds

]
.

By dividing both sides of the inequality by h, and taking the limit as h → 0, we end up
with:

0 ≥ f(x, a)− qv(x) +∇v
(
x
)
µ(x, a) +

1

2
Tr
[
σ(x, a)σ⊤(x, a)∇2v(x)

]
.

Note that a was arbitrary in A, therefore, we can take the supremum over all a ∈ A and
we get:

qv(x)− sup
a∈A

{
f(x, a) +∇v

(
x
)
µ(x, a) +

1

2
Tr
[
σ(x, a)σ⊤(x, a)∇2v(x)

]}
≥ 0. (3.6)

Since the optimal control α∗
t satisfies (3.5) with equality, we can use the same steps as

above to get:

qv(x)−
(
f(x, α∗

t ) +∇v
(
x
)
µ(x, α∗

t ) +
1

2
Tr
[
σ(x, α∗

t )σ
⊤(x, α∗

t )∇2v(x)
])

= 0. (3.7)
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Equations (3.6) and (3.7) together imply that the inequality in (3.6) must hold with
equality when the optimal control α∗

t is applied. In other words, the supremum in (3.6)
is attained by choosing the optimal control, in which case the value function v satisfies
(3.7). This motivates the definition of the Hamilton–Jacobi–Bellman equation.

Definition 3.10. Let x ∈ Rn, and v ∈ C2 be the value function. The nonlinear elliptic
partial differential equation below is called the Hamilton–Jacobi–Bellman equation:

qv(x)− sup
a∈A

{
f(x, a) +∇v(x)µ(x, a) + 1

2
Tr
[
σ(x, a)σ⊤(x, a)∇2v(x)

]}
= 0. (HJB)

Remark 3.11. Throughout this section, we considered the infinite time horizon case,
which gave us the time-independent equation (HJB). However, we could also work through
the same steps in the finite time horizon setup, which would yield a similar version of
(HJB).

3.3 Verification step

Our next goal is to provide sufficient conditions under which a solution to (HJB) coincides
with the value function v. These conditions are given by the so-called verification theorem.

Theorem 3.12. Let w : Rn → R, w ∈ C2, such that there exists some K > 0, for which
|w(x)| ≤ K(1 + ∥x∥2) for all x ∈ Rn. If for all x ∈ Rn, w satisfies the conditions below:

(i) qw(x)− sup
a∈A

{
f(x, a) +∇w(x)µ(x, a) + 1

2
Tr
[
σ(x, a)σ⊤(x, a)∇2w(x)

]}
≥ 0, and

(ii) lim sup
T→∞

{
exp (−qT )E

[
w
(
Xx(T )

)]}
≥ 0,

then, we have w ≥ v.
Furthermore, if there exists a measurable function α̂(x) : Rn → A that satisfies the below
conditions for all x ∈ Rn:

(iii) 0 = qw(x)− sup
a∈A

{
f(x, a) +∇w(x)µ(x, a) + 1

2
Tr
[
σ(x, a)σ⊤(x, a)∇2w(x)

]}
=

= qw(x)− f(x, α̂(x)) +∇w(x)µ(x, α̂(x)) + 1

2
Tr
[
σ(x, α̂(x))σ⊤(x, α̂(x))∇2w(x)

]
,

(iv) the stochastic differential equation{
dX(s) = µ(X(s), α̂(X(s)) ds+ σ(X(s), α̂(X(s)) dB(s),

X(0) = x,

has a unique solution denoted by X̂x(s),

(v) lim inf
T→∞

{
exp (−qT )E

[
w(X̂x(T ))

]}
≤ 0,

(vi)
{
α̂(X̂x(s))

}
s≥0

∈ Ax,

then, we have w = v.
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We do not prove Theorem 3.12 here, but the steps are similar to those of the earlier
proofs. We need to use Itô’s lemma for exp (−qt)w(Xx(t)) on a growing set of finite
intervals, then use the dominated convergence theorem. Theorem 3.12 is a powerful tool
to check whether a candidate control is optimal or not.

Theorem 3.12 can also be thought of as an infinite horizon version of the Feynman–Kac
formula introduced in Section 1.3. This analogy would be more apparent if we had a finite
time horizon, as in that case, the HJB equation would be a parabolic PDE. Nonetheless,
this scenario is also worth exploring.

Remark 3.13. Let A = {a0}, w ∈ C2, such that there exists some K > 0, for which
|w(z)| ≤ K(1 + ∥z∥2) for all z ∈ Rn. If w is the solution to the linear elliptic partial
differential equation

qw(x)−
(
f(x, a0) +∇w(x)µ(x, a0) +

1

2
Tr
[
σ(x, a0)σ

⊤(x, a0)∇2w(x)
])

= 0, x ∈ Rn,

with the condition that exp (−qT )E[w(Xx(T )] → 0 as T → ∞, then w has the following
representation:

w(x) = E
[∫ ∞

0

exp (−qt)f
(
Xx(t), a0

)
dt

]
,

where Xx(t) is the unique solution to (CSDE) with α(s) = a0.

3.4 Aiyagari–Bewley–Huggett model
This section offers a more detailed and in-depth extension of the material presented in
Chapter 2 of Partial Differential Equations in Macroeconomics [1].

In this model, agents optimize consumption and savings dynamically in response to
stochastic income fluctuations. Our goal is to examine the model’s long-run, steady-state
behavior, i.e., when quantities and distributions do not change over time. This will lead
to a system where a time-independent HJB equation governs individual choices and a
so-called Fokker–Planck equation describes wealth distribution in equilibrium.

We can define a consumption function ci(t) : [0,∞) → [0,∞) for each individual i in our
economy, which gives us the agent’s consumption at time t.
Each agent has different preferences, risk tolerance, and consumption needs, which is why
we use a utility function U : [0,∞) → R to represent their individual satisfaction gained
from a purchase. A commonly used utility function is the CRRA (Constant Relative Risk
Aversion), given by

U(x) =

{
x1−γ

1−γ
, if γ ∈ (0,∞) \ {1},

ln (x), if γ = 1.

We call γ the risk-aversion parameter, which quantifies the agent’s preference toward risk
and uncertainty in decision-making. Since we assume that all investors are risk-averse, we
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choose γ > 0 in order to ensure that the utility function is strictly increasing and concave.
A consumer makes decisions about consumption ci(t) over time, which only depends on
the current time and state. Here, the process {ci(t)}t≥0 is a control introduced in Section
3.1. The goal of each agent is to maximize their lifetime utility, which can be expressed
as:

max
ci

E
[∫ ∞

0

exp (−ρt)U
(
ci(t)

)
dt

]
,

where exp (−ρt) is the discount factor with the discount rate ρ, reflecting the agent’s
preference for current consumption over future consumption.
Similarly to the Lucas–Alvarez model introduced in Chapter 2, we measure one’s produc-
tivity with Zi(t) ≥ 0 at time t ≥ 0. We denote the value of the individual’s assets by
Ai(t). For Zi(t) amount of work, the individual gets a wage of Wi(t).
The value of the agent’s assets increases with its labor income Wi(t)Zi(t). They also earn a
return on these assets with a rate of r(t). Meanwhile, the agent consumes for ci(t) amount,
reducing their wealth. As a result, the agent’s wealth dynamics follow:

Ai(t)− Ai(0) =

∫ t

0

(
Zi(s) + r(t)Ai(s)− ci(s)

)
ds,

formally written as:

dAi(t) =
(
Wi(t)Zi(t) + r(t)Ai(t)− ci(t)

)
dt+ 0 · dBi(t).

Furthermore, the agent’s productivity evolves stochastically over time, improving due to
skill accumulation, but is also subject to “random shocks” such as technological changes
or layoffs:

Zi(t)− Zi(t) =

∫ t

0

µ
(
Zi(s)

)
ds+

∫ t

0

σ
(
Zi(s)

)
dBi(s),

formally written as:

dZi(t) = µ
(
Zi(t)

)
dt+ σ

(
Zi(t)

)
dB(t).

We also impose a lower bound on the agents’ wealth:

amin ≤ Ai(t), for all t ≥ 0,where amin ∈ (−∞, 0].

If the constraint is set at amin = 0, the agent is not allowed to borrow and must always
maintain non-negative wealth. When amin < 0, limited borrowing is allowed, but only up
to a specified debt ceiling. This restriction prevents agents from accumulating unbounded
liabilities. While our theoretical setup does not impose explicit upper bounds on Ai(t) or
Zi(t), in a numerical implementation these variables would necessarily be bounded.

To describe the distribution of households by their wealth a and productivity z, we intro-
duce the probability density function g(a, z), meaning that it satisfies:∫ ∞

amin

∫ ∞

−∞
g(a, z) dz da = 1, and g(a, z) ≥ 0 for all a ∈ [amin,∞), z ∈ R. (3.8)
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Furthermore, we set the following constraint on g:∫ ∞

amin

∫ ∞

−∞
a · g(a, z) dz da = 0. (3.9)

Equation (3.9) means that the total amount of wealth held by agents with positive assets
exactly offsets the total debt of those with negative assets.

As workers decide how much to consume and save, the overall distribution of their wealth
and work productivity changes over time. This process can be described using two time-
dependent partial differential equations: an (HJB) equation, which gives us the best con-
sumption path, and a Fokker–Planck equation, which explains how the distribution of
wealth and productivity changes. Since our focus is on the long-run behavior of the sys-
tem, we analyze the time-independent versions of these equations, which represent the
stationary equilibrium of the Aiyagari–Bewley–Huggett economy.

Definition 3.14. Let {X(t)}t≥0 be an n-dimensional Itô process driven by a d-
dimensional Brownian motion, and let p(x) be the probability density function of the
random variable X(t). Then, the equation

−
n∑

i=1

∂xi

[
µi(x)p(x)

]
+

n∑
i=1

n∑
j=1

∂xixj

[
p(x)

1

2

d∑
k=1

σi,k(x)σj,k(x)

]
= 0

is called a (stationary) Fokker–Planck equation.

Remark 3.15. The Fokker–Planck equation is also called the Kolmogorov forward equa-
tion, as it determines the future wealth distribution, given the current state and deci-
sions. On the other hand, equation (HJB) operates backward in time, as it considers
how a worker values assets and productivity tomorrow and works backward to determine
optimal consumption decisions in the present.

Remark 3.16. Similarly to Remark 3.11, we note that we could consider a time-
dependent probability density function p∗(t, x), for which we could define the time-
dependent Fokker–Planck equation as:

−
n∑

i=1

∂xi

[
µi(t, x)p∗(t, x)

]
+

n∑
i=1

n∑
j=1

∂xixj

[
p∗(t, x)

1

2

d∑
k=1

σi,k(t, x)σj,k(t, x)

]
= ∂tp

∗(t, x).

Analogously to the value function defined in Section 3.1, we now define the value function
as the best attainable expected lifetime utility, if the agent’s initial asset value is a, and
the initial productivity is z:

v(a, z) = sup
ci≥0

E
[∫ ∞

0

exp (−ρt)U
(
ci(t)

)
dt

]
.

Note that due to Assumption 3.3, the value function v(a, z) and the optimal consumption
policy c(a, z) only depend on the agent’s state variables, so it no longer is necessary to
keep neither the agent’s index nor the time variable.
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Definition 3.17. We say that the constants r, w > 0 and functions g(a, z), v(a, z) describe
a stationary equilibrium if they satisfy conditions (3.8)-(3.9) and the following HJB and
Fokker–Planck equations:

ρv(a, z)−
(
1

2
σ2(z)∂zzv(a, z) + µ(z)∂zv(a, z) + (wz + ra)∂av(a, z)+ (3.10)

+max
c≥0

{(−∂av(a, z)) · c(a, z) + U (c(a, z))}
)

= 0,

−∂a
[
s(a, z)g(a, z)

]
− ∂z [µ(z)g(a, z)] +

1

2
∂zz
[
σ2(z)g(a, z)

]
= 0, (3.11)

where s(a, z) = wz+ra−c∗(a, z) represents how much the agent saves given their current
state (a, z), and c∗ is the optimal control given by c∗ = (U ′)−1∂av.

Remark 3.18. The optimal consumption policy c∗(a, z) is obtained by maximizing the
term −∂av · c + U(c) with respect to c ≥ 0. The first-order condition yields U ′(c∗) =
∂av(a, z), because U is strictly concave and differentiable. Hence, the optimal control is
given by

c∗(a, z) = (U ′)−1
(
∂av(a, z)

)
.

Remark 3.19. Equation (3.10) and more generally equation (HJB) do not always have
smooth solutions. Furthermore, it is not guaranteed that there is only one solution to
(HJB) either. In such cases, the weak solution that corresponds to a given optimization
problem is called the “viscosity solution”. For a detailed treatment of the viscosity solutions
of the HJB equation, we recommend Chapter 4 of Huyen̂ Pham’s book [11].

In Heterogeneous Agent Models in Continuous Time [2], Achdou et al. give a sufficient
condition for the existence of a stationary equilibrium, which we present below.

Proposition 3.20. If for all z ∈ R we have 0 < σ(z) < ∞, there exists a stationary
equilibrium, i.e., a solution to equations (3.8)-(3.11).

Furthermore, Achdou et al. [2] suggest important theorems regarding the characterization
of stationary equilibria in their economic model.

Proposition 3.21. For a stationary equilibrium, if r < ρ, the following statements hold:
(i) There exists a so-called “cutoff productivity level” denoted by ẑ, for which

s(amin, z) = 0, if z ≤ ẑ,

s(amin, z) > 0, if z > ẑ.

(ii) If an agent i has a constant productivity zconst ≤ ẑ, then Ai(t) → amin as t→ ∞.

(iii) If zconst ≤ ẑ, then ∂a
(
wz + ra− c∗(a, z)

)
= r − ∂ac

∗(a, z) → −∞ as a→ amin.

Proposition 3.21 has deep implications. It assumes that individuals discount future
consumption more heavily than the rate at which their savings can grow through
interest, making them consume in the present rather than save for the future. Under this
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assumption, individuals with productivity at or below the threshold ẑ have zero savings
at the borrowing limit amin. Furthermore, the wealth of agents below the threshold
eventually ends up near amin. Even a tiny increase in their wealth near the limit would
be met with a very large increase in consumption, quickly driving them back down.

Conversely, those with higher productivity than ẑ will have positive savings even at the
borrowing limit, allowing them to accumulate wealth. These dynamics collectively lead
to a mass of agents accumulating exactly at the borrowing limit, thus segregating the
individuals in the economy based on their productivity.
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Summary

In this thesis, we explored a broad range of phenomena within economics and finance.
We began by developing a foundational understanding of Brownian motion and its
role in modeling uncertainty in economic systems. Building on this, we studied Itô
calculus, and highlighted the usefulness of Itô’s lemma through concrete examples. We
solved the geometric Brownian motion model and illustrated how the Feynman—Kac
formula provides a bridge between stochastic differential equations and partial differential
equations, most notably in the heat equation and in context of the Black—Scholes option
pricing model.

We then turned our attention to knowledge diffusion in macroeconomics. Using the
Fisher–KPP equation, we introduced an abstract model of how knowledge spreads across
an economy, based on the Lucas–Alvarez framework. We showed the existence of traveling
wave solutions and applied a perturbation method to approximate the initial conditions.
We implemented both a finite difference scheme and an operator splitting technique to
estimate wave speeds and observe the model with different initial distributions.

In the final chapter, we investigated optimal control problems through the theory of
controlled stochastic differential equations. We introduced the concepts of a payoff
function and value function, and proved the dynamic programming principle. By using
Itô’s lemma we derived the Hamilton–Jacobi–Bellman equation, then presented the
verification theorem. As an application, we examined the Aiyagari–Bewley–Huggett
model, which describes individual saving behavior. We also introduced Fokker–Planck
equations, which together with the HJB equation, describe the optimal individual
behavior and the population distribution in a stationary equilibrium.

Overall, we established deep connections between stochastic processes, partial differential
equations and control theory, and showed how these tools can be applied to understand
complex economic dynamics. Through both analytical results and numerical experiments,
we provided insight into the mathematical structure of decision-making, financial
markets, and knowledge diffusion.

All Python codes for this thesis, including the numerical implementations in Sections 1.2
and 2.6 and the phase plane illustration in Section 2.4, can be found on the following
GitHub site: github.com/PappAron/thesis_2025 .
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