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Introduction

The spread of diseases has been studied for centuries but the recent pandemic has
brought the topic to the forefront of public attention. The mathematical modeling of
epidemics has been a key tool in understanding the spread of diseases and in developing
strategies to control them. As research in machine learning and deep learning continues
to rise in popularity, more and more applications are being developed in fields which
previously have not been associated with these technologies.

In this thesis, we will focus on the modeling, solving and predicting of epidemic spreads
using various types of neural networks.

In the first chapter, we define some key concepts of the fields of differential equations and
epidemic models. Then, in the second chapter, we provide an introduction to the theory
of neural networks, with particular emphasis on their relationship to differential equations
and their capability to approximate the solutions of such systems. In the third chapter,
we introduce different models and neural network architectures to test them on synthetic
and real datasets in the fourth chapter.
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Chapter 1

Differential Equations in Epidemiology

1.1 Differential Equations

Differential equations are equations that describe a connection between an unknown
function and its derivatives. They are natural tools for modeling the behavior of
systems in physics, biology, economics, and many other fields. We will focus on ordinary
differential equations (ODEs), which are used to describe the evolution of phenomena
such as epidemics over time, using what are known as compartmental models.

Let d ∈ N, I ⊂ R be an open interval, Ω ⊂ I × Rd the domain, f ∈ C(Ω,Rd).

Definition 1.1. Given initial t0 ∈ I and x0 ∈ Rd values such that (t0,x0) ∈ Ω, we can
consider the following ODE with an initial condition (IC) called an initial value problem
(IVP) for the unknown function x ∈ C1(I,Rd):{

x′(t) = f
(
t,x(t)

)
,

x(t0) = x0.
(1.1)

Definition 1.2. A function x ∈ C1(I,Rd) is called a solution of the IVP (1.1) if the
following conditions hold:

(i) {(t,x(t)) : t ∈ I} ⊂ Ω,

(ii) x′(t) = f
(
t,x(t)

)
, ∀t ∈ I,

(iii) t0 ∈ I and x(t0) = x0.

If our goal is to approximate the solution of the IVP (1.1), we should first verify that the
problem has a solution and that the solution is unique. Early results show that a unique
solution exists for all ICs, provided the function f satisfies certain conditions (see the
details in [1] and [2]).

Definition 1.3. A function f : Ω → Rd is called Lipschitz continuous in its second
variable if there exists a constant L > 0 such that

∥f(t,x)− f(t,y)∥ ≤ L∥x− y∥, ∀(t,x), (t,y) ∈ Ω.
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Theorem 1.4. (Picard-Lindelöf) Let f : Ω → Rd be a continuous function that is
Lipschitz continuous in its second variable. Then the IVP (1.1) has a unique solution in
a neighborhood of t0.

For data generation, we will use numerical methods to solve an IVP (1.1). One of the
most popular methods is the classical four-stage Runge-Kutta method (RK4) as it is easy
to implement and provides good results for most problems (for further details see [3]).

First, we formulate the general form of one-step methods on the equidistant grid on the
interval [a, b] with step size h:

ωh = {ti = a+ ih | i = 0, 1, . . . , n; h = (b− a)/n}. (1.2)

We consider the numerical method on this grid defined by a given Φ function of the form

yi+1 = yi + hΦ(h, ti,yi,yi+1); (i = 0, 1, . . . , n− 1). (1.3)

Let h > 0 be the step size, ωh the equidistant grid (1.2), we aim for yi ≈ x(ti) for every
ti ∈ ωh. The RK4 method has the form

k1 = hf(ti,yi),

k2 = hf

(
ti +

h

2
,yi +

k1

2

)
,

k3 = hf

(
ti +

h

2
,yi +

k2

2

)
,

k4 = hf (ti + h,yi + k3) ,

yi+1 = yi +
k1 + 2k2 + 2k3 + k4

6
, (i = 0, 1, . . . , n− 1).

(1.4)

This is an explicit method since yi+1 uses only the previous yi value. In order to analyze
the quality of the numerical solution, we need to define some key notions related to the
method’s error.

Definition 1.5. A numerical method Φ is called consistent of order p > 0 if its local
error satisfies ∣∣∣∣∣∣∣∣x(ti + h)−

(
x(ti) + hΦ

(
h, ti,x(ti),x(ti + h)

))∣∣∣∣∣∣∣∣ = O(hp+1)

for any ti ∈ ωh. This means that the error introduced in a single step of the method
decreases proportionally to hp+1 as h→ 0.

Definition 1.6. A numerical method Φ is called convergent of order p > 0 at the fixed
point t⋆ ∈ [a, b] if its global error satisfies∣∣∣∣yi − x(t⋆)

∣∣∣∣ = O(hp).

The numerical method Φ is said to be convergent of order p > 0 if it is convergent at every
point t⋆ ∈ [a, b]. This ensures that the numerical solution approaches the exact solution
as the step size h decreases, at a rate proportional to hp as h→ 0.
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We now state the convergence theorem for one-step methods, including the RK4 method
(1.4), as it can be written in the form of the general method (1.3). For further details see
[4].

Theorem 1.7. (Theorem 2.3.5, [4]) Assume that the numerical method Φ has the fol-
lowing properties:

• it is consistent of order p,

• the function Φ satisfies the Lipschitz condition with respect to its third and fourth
variables, i.e. there exist constants L3 ≥ 0 and L4 ≥ 0 such that for any s1, s2,p1,p2

and for all ti ∈ ωh and h > 0, the following inequality holds:

∥Φ(h, ti, s1,p1)−Φ(h, ti, s2,p2)∥ ≤ L3 ∥s1 − s2∥+ L4 ∥p1 − p2∥ .

Then the numerical method Φ is convergent of order p on the interval [a, b].

Corollary 1.8. The RK4 method (1.4) is consistent and convergent of order 4.

The Theorem 1.7 provides great precision even for relatively large step sizes.

1.2 Epidemic Models

In 1927, William Ogilvy Kermack and Anderson Gray McKendrick proposed a new model
for describing the spread of infectious diseases, which became the most influential and
widely recognized ODE-based epidemic model, known as the SIR model [5]. The model
divides the population into three compartments: susceptible (S), infectious (I), and re-
covered (R). It is assumed that the total population size (N) remains constant and that
the disease is transmitted from infectious to susceptible individuals.

Definition 1.9. Under the SIR model, we understand the following system of ordinary
differential equations: 

dS

dt
= − β

N
SI,

dI

dt
=

β

N
SI − γI,

dR

dt
= γI,

(1.5)

where β > 0 is the transmission rate, γ > 0 the recovery rate, and N ∈ Z+ the total
population size.

The Figures 1.1a and 1.1b show a numerical solution of the SIR model to illustrate the
dynamics of the compartments.

It is easy to see that
dS

dt
+

dI

dt
+

dR

dt
= 0,
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(a) Plot of a solution of the SIR model. (b) Phase space of the SIR model.

which means that the total population indeed remains constant, i.e.

S(t) + I(t) +R(t) = S(0) + I(0) +R(0) = N, ∀t ∈ R+.

The parameter β represents the rate at which susceptible individuals become infected upon
contact with infectious individuals. Similarly, γ represents the rate at which infectious
individuals recover and move to the recovered compartment.
An important quantity derived from these parameters is the basic reproduction number,
R0, which is defined as R0 =

β
γ
. It represents the average number of secondary infections

produced by a single infectious individual in a completely susceptible environment. If
R0 > 1, the infection will spread in the population, while if R0 < 1, it will gradually
disappear.

Although the model is nonlinear, nearly analytical solutions can be found by evaluating
non-elementary integrals [6]. However, in practice, it is more common to use numerical
methods (such as (1.4)) to solve the system.

There are many variations of compartmental models which use different compartments
and different rules for transitions between them. One could create a new model by adding
or removing compartments, or even combining multiple models to create a new one.

The SIS model is similar to the SIR model, but it does not have a recovered compartment,
meaning that individuals return to the susceptible compartment after recovery.

Definition 1.10. Under the SIS model, we understand the following system of ODEs:
dS

dt
= − β

N
SI + γI,

dI

dt
=

β

N
SI − γI,

where β > 0 is the transmission rate, γ > 0 the recovery rate, and N ∈ Z+ the total
population size.

The SEIRVD model is an extension of the SIR model where a new compartment is added
for exposed, deceased and vaccinated individuals. The exposed compartment represents
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individuals who have been infected but are not yet infectious. The deceased compartment
represents individuals who have died from the disease. The vaccinated compartment rep-
resents individuals who have been vaccinated against the disease.

Definition 1.11. Under the SEIRVD model, we understand the following system of
ODEs: 

dS

dt
= − β

N
SI − νS,

dE

dt
=

β

N
SI − σE,

dI

dt
= σE − γI − δI,

dR

dt
= γI,

dV

dt
= νS,

dD

dt
= δI,

where β > 0 is the transmission rate, σ > 0 the incubation rate, γ > 0 the recovery rate,
ν > 0 the vaccination rate, δ > 0 the disease-induced mortality rate, and N ∈ Z+ the
total population size.

In practice, the parameters of the models are not known exactly, and they can vary over
time, making them difficult to predict. Neural networks are often used to estimate and
learn these parameters from data.
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Chapter 2

Neural Networks

2.1 Introduction to Neural Networks
A neural network is a parameterized function is inspired by the way biological neural
networks in the human brain work. Its greatest advantage is that it can learn from data;
as the algorithm adjusts its parameters, it refines its predictions over time during a
process called training.

We will remain within the framework of supervised learning, thus our training data con-
sists of pairs of elements from the input X ⊂ Rn and the output Y ⊂ Rm spaces:

D = {(x1,y1), (x2,y2), . . . , (xN ,yN)} (xi ∈ X , yi ∈ Y , i = 1, . . . , N).

Every neural network naturally can be represented as a graph, where the nodes are called
neurons. These neurons are organized into layers, the “zeroth one“ is called the input
layer, the last one is the output layer, and in between them lay the hidden layers. The
number of neurons in a layer is referred to as the width of that layer. The neurons in the
input layer receive the input data, and the output of the network is in the output layer.
The Figure 2.1 shows a simple neural network with 4 layers.

In the most common case, this graph is a directed acyclic graph (DAG), and the network
is known as a feedforward neural network. We will assume this structure throughout,
unless stated otherwise.

The way the input data is transformed into the output data is called the forward
pass. Each layer can be thought of as a function that takes the output of the previous
layer as its input. Then, each neuron calculates a weighted sum of the neurons of the
previous layer it is connected to, with the weights corresponding to the edges of the
graph. The whole layer’s step can be represented as a linear transformation, i.e. a
matrix multiplication. Then, a bias term is added to the weighted sum, and a nonlinear
activation function is applied to the result. These weights and biases are the learnable
parameters of the network, meaning they are adjusted during training.

In a fully connected layer, the neurons of the previous layer are connected to all neurons
of the next layer.
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Input Layer Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3 Output Layer

Figure 2.1: A neural network with 4 layers.

Definition 2.1. A fully connected (FC) layer is a function FC : Rd1 → Rd2 of the form

FC(x) = ϕ(Wx+ b),

where x ∈ Rd1 is the input vector, W ∈ Rd2×d1 is called the weight matrix, b ∈ Rd2 is the
bias vector, and ϕ : Rd2 → Rd2 is the activation function.

As we will see later, it is beneficial to use almost everywhere differentiable, non-linear
activation functions. We list below the most common ones. A visual comparison can be
found in Figure 2.2.

• The sigmoid activation function is defined as

σ(x) =
1

1 + e−x
.

• The hyperbolic tangent activation function is defined as

tanh(x) =
ex − e−x

ex + e−x
.

• The rectified linear unit (ReLU) activation function is defined as

ReLU(x) = max(0, x).

A simple yet still effective network is just the composition of multiple fully connected
layers called a Multilayer Perceptron (MLP), which is described in detail in Section 3.2.

Now let us focus on how neural networks are trained. The goal of training is to find
optimal parameters of the network, which minimize a chosen error function called the loss
function.

10



Figure 2.2: Plot of the most common activation functions.

Definition 2.2. A loss function L : Y×Y → R is a function which measures the difference
between the predicted and desired output of the network.

Let y be the desired output, and ŷ the predicted output. We list below the most common
loss functions used in practice.

• The Squared Error (SE) loss function is defined as

LSE(y, ŷ) = ∥y − ŷ∥22 .

• The Absolute Error (AE) loss function is defined as:

LAE(y, ŷ) = ∥y − ŷ∥1 .

• The Cross-Entropy loss function is defined as

LCE(y, ŷ) = −
m∑
j=1

(yj log(ŷj) + (1− yj) log(1− ŷj)) .

Let Nθ be a neural network with parameters θ. Now, our task is to minimize this loss
in the parameter space (θ ∈ Rd for some large d ∈ N), with respect to the underlying
distribution of the data P . We are faced with the following optimization problem:

min
θ

E
(x,y)∼P

[L (y,Nθ(x))] =

∫
X×Y

L (y,Nθ(x)) dP(x,y).

Since the true data distribution P is generally unknown, we cannot evaluate the expected
loss directly. Instead, we approximate it using the empirical distribution defined by the
training dataset. This leads to the empirical risk minimization (ERM) principle, where
the expected loss is replaced by the average loss over the observed samples. Thus, we can
rewrite the optimization problem as

11



min
θ

1

N

N∑
i=1

L (yi,Nθ(xi)) .

This process is usually done by iteratively updating the parameters using an algorithm
called an optimizer. When the model has processed all the training data once, we say
it has finished an epoch. Models are usually trained for multiple epochs, and in the case
of small datasets, the optimizer steps after each completed epoch. Among the various
optimization algorithms, gradient descent is the most fundamental, performing updates
along the direction of the negative gradient, which corresponds to the steepest descent
direction of the loss function in parameter space.

Definition 2.3. A gradient descent step updates the parameters of the network (θ) the
following way:

θ ← θ − η∇θL(y, ŷ),
where η > 0 is the learning rate, y is the desired output, ŷ is the predicted output, and
∇θL(y, ŷ) is the gradient of the loss function with respect to the parameters.

The learning rate η controls the size of the steps taken toward a minimum of the loss
function. It is a hyperparameter, meaning that it is not learned during training, but
rather set beforehand.

The Adam (for "Adaptive Moment Estimation") method became a popular option for op-
timizers after the paper [7], as it combines the ideas and advantages of previous optimizers,
thus often performs better than other options in practice.

Definition 2.4. The Adam optimizer updates the parameters of the network as:

θ ← θ − η
m̂√
v̂ + ϵ

,

where m̂ and v̂ are the bias-corrected first and second moment estimates, respectively,
ϵ > 0 is a small constant to prevent division by zero, and all operations are understood
elementwise.

The first moment estimate m and the second moment estimate v are updated as:

m← β1m+ (1− β1)∇θL(y, ŷ),
v ← β2v + (1− β2)∇θL(y, ŷ)2,

where β1, β2 ∈ (0, 1) are exponential decay rates. Then the bias-corrected estimates in the
t-th iteration are

m̂ =
m

1− βt
1

,

v̂ =
v

1− βt
2

.

The gradient ∇θL is usually calculated with an algorithm called backpropagation, which
uses the chain rule during what is called the backward pass.
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2.2 Universal Approximation Theorem
To show the power of neural networks, researchers have developed theorems called
Universal Approximation Theorems (UATs), which state that a neural network with a
particular architecture can approximate any continuous function arbitrarily well. We will
use this universal function approximator property to approximate the solution of the SIR
model.

Cybenko was among the first ones to prove such a theorem in 1989 [8]. His theorems state
that a feedforward neural network with a single hidden layer containing a finite number
of neurons can approximate continuous functions arbitrarily well on the unit cube of Rn,
under mild assumptions on the activation function.

We define two important properties of activation functions to state the theorem.

Let In = [0, 1]n denote the n-dimensional unit cube, C(In,R) the space of continuous
real-valued functions on In, and M(In) the space of finite signed Borel measures on In.

Definition 2.5. A function σ : R→ R is called sigmoidal if

σ(t)→

{
1, as t→ +∞,

0, as t→ −∞.

Definition 2.6. A function σ : R→ R is called discriminatory if for a µ ∈M(In)∫
In

σ(wTx+ b) dµ(x) = 0

for all w ∈ Rn and b ∈ R implies that µ = 0.

Theorem 2.7. (UAT, [8]) Suppose σ is a continuous sigmoidal function. Then, for any
f ∈ C(In,R) and any ε > 0, there exists a sum of the form

F (x) =
N∑
i=1

αiσ(w
T
i x+ bi), (2.1)

where αi ∈ R, wi ∈ Rn, and bi ∈ R, such that

sup
x∈In
|f(x)− F (x)| < ε.

In other words, the sums of the form F (x) are dense in C(In,R).

Note that this is an existence theorem, meaning that it does not guarantee that an
algorithm such as backpropagation actually finds the weights and biases of the network.

For the proof, we will use two classical results from the field of functional analysis. The
theorems are stated in a form suitable for our purposes rather than in the most general
form possible. The proof for these can be found in any advanced textbook on the subject,
such as [9].

Firstly, a consequence of the Hahn-Banach theorem is that the closure of a linear subspace
can be characterized using continuous linear functionals.
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Theorem 2.8. (Corollary of the Hahn-Banach Theorem [10]) Let V be a normed linear
space, U a subspace of V , and a ∈ V . Let U denote the closure of U , and V ′ the space of
bounded/continuous linear functionals on V . Then

a ∈ U if and only if there does not exist L ∈ V ′ : L(u) = 0 ∀u ∈ U and L(a) ̸= 0.

Secondly, Riesz’s representation theorem connects bounded linear functionals to measure
theory.

Theorem 2.9. (Riesz Representation [11] [12]) Let L : C(In,R)→ R be a bounded linear
functional. Then there exists a unique µ on In such that

L(f) =

∫
In

f(x) dµ(x), ∀f ∈ C(In,R).

Moreover, we will need the following lemma from Cybenko’s original paper [8].

Lemma 2.10. Any bounded, measurable, sigmoidal function is discriminatory.

Now we’re ready to prove the Approximation Theorem 2.7.

Proof. Let S ⊂ C(In,R) be the set of functions of the form F (x) in (2.1). Naturally, S is a
subset of C(In,R). Let R = S be the closure of S in the supremum norm. If R = C(In,R),
then S is dense in C(In,R), and we are done.
Assume that R ̸= C(In,R). Then, by the corollary of the Hahn-Banach Theorem 2.8, there
exists a nonzero L ∈ C(In,R)′ that vanishes on R. By the Riesz Representation Theorem
2.9, we know that

L(f) =

∫
In

f(x) dµ(x), ∀f ∈ C(In,R)

for some µ ∈M(In). Now, for every w ∈ Rn, and b ∈ R, the function

F (x) = σ(wTx+ b)

is in R, and therefore L(F ) = 0. By setting f = F in the representation formula, we get

0 = L(F ) =

∫
In

F (x) dµ(x) =

∫
In

σ(wTx+ b) dµ(x).

As a continuous sigmoidal function is measurable and bounded, by the Lemma 2.10, it is
also discriminatory. Therefore by Definition 2.6 µ = 0, which contradicts the assumption
that L ̸= 0.

As of today, several types of approximation theorems exist for different activations,
assumptions and architectures. Cybenko’s theorem is called the bounded depth or
arbitrary width case, as it fixes the depth of the network to two, but has no regulations
for the width of the hidden layer. Thanks to Maiorov and Pinkus [13], we even have
results for the case of bounded depth and width.

We state Cybenko’s and Hornik’s further work on the bounded depth case, characterizing
the activation function σ ([8], [15] and [16]).
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Theorem 2.11. (UAT, Bounded Depth) Let σ ∈ C(R,R), and let σ(x) denote σ applied
to each coordinate of x. Then σ is not polynomial if and only if for all n,m ∈ N, compact
K ⊂ Rn,f ∈ C(Rn,Rm) and ε > 0, there exists a function

F (x) = W2 · σ(W1x+ b),

where k ∈ N,W1 ∈ Rk×n, b ∈ Rk,W2 ∈ Rm×k, such that

sup
x∈K
∥f(x)− F (x)∥ < ε.

As an outlook, let us also mention a fresh and completely different approach to neural
networks. Kolmogorov-Arnold Networks (KANs) are based on the Kolmogorov-Arnold
representation theorem, which states that any multivariate continuous function can be
represented as a finite composition of univariate functions and additions. KANs have no
linear weights at all, every weight parameter is replaced by parametrized univariate func-
tions, making them more interpretable. In theory and practice, KANs seem to outperform
MLPs in many cases, as they tend to achieve better accuracy on small-scale tasks and have
faster scaling properties. For further details about this new and promising alternative, see
[14].

2.3 Physics Informed Neural Networks

Physics informed neural networks (PINNs) were first introduced by Raissi et al. in 2019
[17] for solving ordinary and partial differential equations. They are neural networks that
incorporate physical laws and constraints into the training process. This is achieved by
designing a loss function that typically includes multiple terms.

Recall the form of an ODE with an initial condition from (1.1). Suppose we have a dataset
of N observed pairs of values (ti,xi), where ti is the time and xi is the observed value of the
solution at that time. We would like to train the neural network N as an approximation
of the solution x. Then the PINN loss function can be defined as a weighted sum of the
following terms:

• the data loss, which measures the difference between the predicted and observed
values:

Ldata =
1

N

N∑
i=1

ℓdata
(
xi,N (ti)

)
;

• the residual/physics/ODE loss, which measures how well the predictions satisfy the
underlying differential equations locally:

Lres =
1

N

N∑
i=1

ℓres

(
N ′(ti),f

(
ti,N (ti)

))
;
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• the initial loss, which measures how well the predictions satisfy the initial conditions:

Linit = ℓinit
(
x0,N (t0)

)
;

where ℓdata, ℓres and ℓinit are loss functions (e.g. SE, AE, etc.) for the data, residual
and initial loss, respectively.

The total loss function is

Ltotal = ωdataLdata + ωresLres + ωinitLinit, (2.2)

where ωdata, ωres, ωinit ∈ R+ are the weights.

This is a powerful tool for solving differential equations, as it allows us to incorporate prior
knowledge about the system into the training process. In a non-rigorous sense, the data
loss "fits the model to the data", and the residual loss "tells the model how to interpolate
between the data points".

Of course, an optimal loss function can change drastically from task to task, as it depends
on the gathered data, the dynamics of the system and the constraints and conditions.
In the case of PDEs, it can be extended to include additional terms, such as boundary
conditions or other constraints like conservation laws.

Example 2.12. A MLP with only residual loss is trained to solve the simple IVP:{
x′(t) = x(t),

x(0) = 1.
(2.3)

With only 2 hidden layers, the model easily learns the solution in 100 epochs and less
than a second.

The Figures 2.3 and 2.4 show the initialized and the trained network’s predictions
compared to the function x(t) = et, the true solution of the IVP (2.3). The change of the
value of the loss function during training is shown in Figure 2.5.

Figure 2.3: Initial predictions of the network.
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Figure 2.4: The trained network’s predictions.

Figure 2.5: The change of loss during training.

In our case, we will use PINNs to fit the SIR model (1.5) to our data and potentially
predict the progression of the epidemic over the next few days.
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Chapter 3

Models

In this chapter, we define different models and neural network architectures in detail,
which we will use in the next chapter to train, test and compare on different datasets.

Before we dive into neural network-based modeling, let us take a look at a more classical
modeling method.

3.1 SINDy
SINDy (Sparse Identification of Nonlinear Dynamical Systems) is a classical machine
learning method for identifying the governing equations of a system from data [18]. It
works by constructing a library of candidate functions, and then using sparse regression
techniques to select the most relevant terms to describe the dynamics of the system.
Consider an autonomous system of ODEs of the form:

ẋ = f(x(t)),

where x ∈ Rn is the state vector, and f : Rn → Rn describes the motion of the system.
Let X ∈ Rm×n be the matrix of m measured state vectors, and let Ẋ ∈ Rm×n be the
corresponding matrix of time derivatives. If measurements for the derivatives are not
available, then numerical approximations may be used instead. Our data is then given by
the matrices

X =


x⊤(t1)
x⊤(t2)

...
x⊤(tm)

 and Ẋ =


ẋ⊤(t1)
ẋ⊤(t2)

...
ẋ⊤(tm)

 .

We define a nonlinear feature library

Θ(X) =
[
θ1(X) θ2(X) · · · θp(X)

]
∈ Rm×p.

Each column of Θ corresponds to a candidate basis function evaluated at all measured
states. This usually includes polynomial terms, trigonometric functions, and other non-
linear functions of the state variables.
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We then seek a sparse coefficient matrix Ξ =
[
ξ1 ξ2 · · · ξn

]
∈ Rp×n such that

Ẋ ≈ Θ(X)Ξ.

Since we are looking for a sparse representation, the solution is usually obtained by LASSO
(Least Absolute Shrinkage and Selection Operator) regression. It is also known as regres-
sion with L1 regularization, because it penalizes the number of non-zero coefficients in
Ξ in the L1 norm. Thus, we want to solve the following optimization problem for each
column ξk of Ξ:

ξk = argmin
ξ′k

∥∥∥Ẋk −Θ(X)ξ′k

∥∥∥2

2
+ λ ∥ξ′k∥1 ,

where λ > 0 is the hyperparameter of the strength of the regularization, that controls the
sparsity of the solution.

Due to the non-differentiability of the L1 term, the solution is typically computed using
iterative optimization algorithms, such as subgradient methods.

3.2 MLP
As mentioned in Section 2.1, the simplest neural network architecture is the multilayer
perceptron.

Definition 3.1. A multilayer perceptron (MLP) is a function MLP : X → Y of the form

MLP(x) = FCℓ ◦ FCℓ−1 ◦ . . . ◦ FC1(x), i = 1, . . . , ℓ,

where ℓ is the number of layers, also called the depth of the network, and each FCi is a
fully connected layer.

MLPs are capable of achieving high accuracy on the MNIST dataset. For instance, a well-
configured MLP can reach a test accuracy of 98.1% [19], meaning that it can correctly
classify 98.1% of the handwritten digits in an unseen test set.

3.3 ResNet
A Residual Network (ResNet) is a type of neural network architecture that uses skip/resid-
ual connections, or shortcuts, to jump over some layers. This architecture was introduced
by He et al. in 2015 [20] to address the vanishing gradient problem in deep networks,
allowing for the training of very deep networks with hundreds or even thousands of layers.
Residual connections were developed for computer vision, in the context of convolutional
neural networks (CNNs), but they can be applied to any type of neural network, making
the training process more efficient and stable.

A residual block is the building block of a ResNet, which consists of two or more layers
with a skip connection that bypasses one or more layers.
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Definition 3.2. A residual block is a function R : Rd1 → Rd2 of the form

R(x) = f(x) + Px,

where x ∈ Rd1 is the input vector, f is a shallow neural network, P ∈ Rd2×d1 is a learnable
linear projection matrix.

Remark 3.3. The learnable matrix P is used to match the dimensions of the input and
output, in the case of d1 = d2 it is fixed and chosen to be the identity matrix most of the
time.

Around the same time, another technique was developed to improve the stability of
training of deep networks, called normalization. First introduced by Ioffe and Szegedy in
2015 [21], batch normalization (BN) is a technique that normalizes the inputs across the
batch dimension.

Following that, another normalization method called layer normalization (LN) was intro-
duced by Ba et al. in 2016 [22], which normalizes the inputs across the feature dimension.
We now define layer normalization formally, because it will be the normalization method
used in our ResNet model, as it is more suitable for our task than batch normalization.

Definition 3.4. Layer normalization is a function LN : Rd1 → Rd1 defined as

LN(x) = γ · x− µ√
σ2 + ϵ

+ β,

where x ∈ Rd1 is the input vector,

µ =
1

d1

d1∑
i=1

xi

is the mean of the input,

σ2 =
1

d1

d1∑
i=1

(xi − µ)2

is the variance, ϵ > 0 is a small constant added for numerical stability, and γ,β ∈ Rd1 are
learnable scaling and shifting parameters. All operations are understood elementwise.

The architecture of a ResNet model later used in this thesis, visualized with the ONNX
(Open Neural Network Exchange) package, is shown in Figure 3.1.

3.4 RNN
Recurrent Neural Networks (RNNs) are a class of neural networks designed to handle
sequential data, where the output at each time step depends on the previous time steps,
meaning that it is not a feedforward network. They have a hidden state that is updated
at each time step, functioning as a memory of previous time steps. Therefore RNNs are
particularly useful for tasks such as time series prediction, natural language processing,
and speech recognition, where the order of the data matters.
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Figure 3.1: ResNet model architecture.

Definition 3.5. A recurrent neural network (RNN) is a function RNN : X×Rk → Y×Rk

of the form
RNN(xt,ht) = (yt,ht+1),

where xt ∈ X is the input at time t; yt ∈ Y is the output at time t; ht and ht+1 ∈ Rk

are the hidden states at time t and t+1, respectively; and k is the size of the hidden state.

A consequence of the definition is that if we take the appropriate computational graph
of the RNN model, it is easy to notice that an RNN is not a DAG anymore, because it
has a directed cycle in it, therefore backpropagation cannot be used directly. However, we
can still use the backpropagation algorithm by unfolding the RNN through time, which
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means that we treat the RNN as a feedforward network with a number of layers equal to
the number of time steps. This method, called backpropagation through time (BPTT), is
illustrated in Figure 3.2.

Figure 3.2: Unfolding an RNN through time. Source: [23].

The first RNN architecture which became widely used in practice was the Long Short-
Term Memory (LSTM) network, which was introduced by Hochreiter and Schmidhuber
in 1997 [24].

An LSTM cell consists of three main components: an input gate, a forget gate, and an
output gate, and several variables, which make up these gates. The cell’s update rules are
defined by the following equations:

it = σ(Wixt +Uiht−1 + bi),

ft = σ(Wfxt +Ufht−1 + bf ),

ot = σ(Woxt +Uoht−1 + bo),

c̃t = tanh(Wcxt +Ucht−1 + bc),

ct = it ∗ c̃t + ft ∗ ct−1,

ht = ot ∗ tanh(ct),
yt = f(ht),

where Wi,Wf ,Wo,Wc ∈ Rk×n are the input weights, Ui,Uf ,Uo,Uc ∈ Rk×k are the
recurrent weights, bi, bf , bo, bc ∈ Rk are the biases, it,ft,ot, ct,ht ∈ Rk are the input,
forget, output, cell and hidden states, respectively, f is an activation function, usually
tanh or ReLU and ∗ denotes elementwise multiplication.

In Figure 3.3 we can see a visualization of a LSTM cell.

GRUs (Gated Recurrent Units) are a simpler version of LSTMs, which were introduced
by Cho et al. in 2014 [26]. They have only two gates, an update gate and a reset gate,
and a single hidden state, resulting in fewer parameters and often faster training than
LSTMs.
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Figure 3.3: The architecture of an LSTM cell. Source: [25].

The update rules of a GRU cell are defined by the following equations:

zt = σ(Wzxt +Uzht−1 + bz),

rt = σ(Wrxt +Urht−1 + br),

h̃t = tanh(Whxt +Uh(rt ∗ ht−1) + bh),

ht = (1− zt) ∗ h̃t + zt ∗ ht−1,

yt = f(ht),

where Wz,Wr,Wh ∈ Rk×n are the input weights, Uz,Ur,Uh ∈ Rk×k are the recurrent
weights, bz, br, bh ∈ Rk are the biases, zt, rt ∈ Rk are the update and reset gates,
respectively, ht ∈ Rk is the hidden state, f is an activation function, usually tanh or
ReLU, and ∗ denotes elementwise multiplication.

In Figure 3.4 we can see a visualization of a GRU cell.

Figure 3.4: The architecture of a GRU cell. Source: [27].
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Chapter 4

Results

In this chapter, we present the results of our models on two different datasets. We compare
their performance based on accuracy and their ability to generalize by predicting future
values.

4.1 Datasets
We use two different datasets to train and test our models. Both of them are based on
the SIR model (1.5), and they contain the population fraction of the susceptible, infected
and recovered individuals, respectively. One unit of time corresponds to one day.

The first one is a synthetic dataset generated via the RK4 method (1.4) solving the SIR
model numerically with time step h = 1, and with added noise from a normal distribution
with mean 0 and standard deviation 0.005. The dataset depicts a large-scale epidemic
with a total of 80 days, where the first 40 days are used for training and the last 40 days
for testing.

In Figure 4.1 we can see the plot of the synthetic dataset.

Figure 4.1: Plot of the synthetic RK4 dataset.
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The second one is a real dataset from the Covid-19 pandemic, made available by the Our
World in Data [28] project. It contains the daily number of confirmed cases, deaths and
vaccinations in the United States over the period of one wave of the epidemic, from which
the population fractions of the S, I and R compartments are calculated. The period from
December 2021 to March 2022 is covered, using the first 45 days for training and the last
45 days for testing.

Figure 4.2: Plot of the real Covid-19 dataset.

4.2 Models
The models defined in Chapter 3 are trained and tested on both datasets with the following
specifications:

• The SINDy model with a library of candidate functions Θ of polynomial terms up
to degree two, as the SIR model is a polynomial system of degree two.

• A MLP with four hidden layers, each with 64 neurons, and ReLU activation function.

• A Residual Network with two residual blocks, each with two hidden 64-neuron layers
and layer normalization, as shown in Figure 3.1.

• A LSTM cell with hidden size 64 followed by a linear layer transforming to the
output size.

• A GRU cell with hidden size 64 followed by a linear layer transforming to the output
size.

4.3 Methodology
Each model is trained and tested on both datasets. The predictions are compared on a
shorter 10 day period, and the whole 40-45 day test set as well.
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The following settings and considerations were applied during the training of the neural
networks:

• Every neural network is trained with the PINN-style loss function (2.2), with all of
the parts weighted being Mean Squared Error (MSE) functions, e.g. Squared Error
functions averaged out on the training dataset.

• The β and γ parameters of the SIR model (1.5) are not known initially, they are
learnable parameters of the network as well.

• The parameters of the models are initialized randomly from different normal and
uniform distributions according to PyTorch’s default initialization methods, except
for the ResNet model, where the weights of layers are initialized from a normal
distribution with mean 0 and standard deviation 0.01, and the biases are initialized
to zero.

• The hyperparameters of the models were optimized manually, the best performing
ones are presented in the results.

• As the training data consists of at most 45 days, there was no need to divide the
data into batches during training, therefore the number of epochs might be relatively
high.

• The Adam optimizer in Definition 2.4. was used in all cases with the help of a
learning rate scheduler, which reduces the learning rate gradually during training.

• Early stopping was used to prevent overfitting.

Every line of code was written in Python 3.11.12 in a Google Colaboratory Jupyter Note-
book, utilizing the T4 GPU for faster computing capacity. The models were built using
the PySINDy and PyTorch frameworks. The code is publicly available at GitHub [29].

4.4 Results on the synthetic dataset
Firstly, we present the results of the models on the synthetic dataset.

As we can see in Figure 4.3a, the SINDy model fitted the training data very well, but
it failed to generalize to the test data, as the test predictions are not close to the true
values, and the equations of the SIR model are not present.

Following that, we can see the results of the MLP model in Figure 4.3b. It also fitted the
training data well, but was not capable of generalizing to the test data, resulting in test
predictions that were essentially a line. Interestingly, that line’s slope was not equal to
the derivative at the last training data point, as it might have been expected.

The ResNet model, shown in Figure 4.3c, performed even better at fitting the training
data. It managed to capture the dynamics of the susceptible compartment, but not the
infected and recovered compartments, falsely predicting the infected compartment to
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increase instead of decreasing.

The two recurrent models, LSTM and GRU, performed similarly, as shown in Figures
4.3d and 4.3e. They fitted the first 30 days well, but then steered away from the solution,
causing large test error.

The MSE values for the training, test and 10-day test sets can be found in Table 4.1.

In conclusion, the ResNet model performed clearly best, but still with a significant error.

(a) SINDy (b) MLP

(c) ResNet (d) LSTM

(e) GRU

Figure 4.3: Results of models on the synthetic dataset.
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Model Train MSE Test MSE 10-day Test MSE
SINDy 0.00028695 0.02764623 0.00484633
MLP 0.00020275 0.01446716 0.00283157
ResNet 0.00018742 0.01876398 0.00459437
LSTM 0.04872668 0.15723560 0.15723560
GRU 0.01134293 0.04872668 0.04872668

Table 4.1: MSE of different models on the synthetic dataset.

4.5 Results on the Covid-19 dataset
Secondly, we present the results on the real Covid-19 dataset.

The SINDy model in Figure 4.4a did not manage to fit the training data, predicting
constantly zero for the infected compartment and incorrect functions for the other two.

The MLP in Figure 4.4b performed quite nicely, correctly predicting the recovered
compartment’s nonlinear jump, and closely predicting the infected population fraction.

Following that, the ResNet model shown in Figure 4.4c improved upon the MLP’s
performance, giving precise predictions for all three compartments.

The recurrent networks in Figures 4.4d and 4.4e did not do that well in summary.

The Table 4.2 shows the MSE values for the training, test and 10-day test sets.

To sum up, the ResNet model has completed the task of successfully predicting the
progress of the epidemic.

Model Train MSE Test MSE 10-day Test MSE
SINDy 0.00251505 0.03143052 0.00594847
MLP 0.00011404 0.00252494 0.00009680
ResNet 0.00011276 0.00013843 0.00010866
LSTM 0.00044755 0.00141054 0.00032160
GRU 0.00044197 0.00410682 0.00158534

Table 4.2: MSE of different models on the Covid-19 dataset.
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(a) SINDy (b) MLP

(c) ResNet (d) LSTM

(e) GRU

Figure 4.4: Results of models on the Covid-19 dataset.
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Conclusions

To sum up, in this thesis, we built up and presented several models for the task of
predicting an epidemic based on only the previous days’ data with the tools of neural
network-based modeling.

In the final chapter, we assume that the Covid-19 pandemic can be modeled using the
SIR framework. While this represents a simplification, since professionals typically rely
on significantly more complex compartmental models to capture the full dynamics of
the epidemic, it serves as a reasonable approximation for our purposes, especially when
focusing on just a single wave of the pandemic.

From the performance of the different models, we can see that the architecture of the
network has a significant impact on the model’s effectiveness. In the future, it would
be interesting to investigate this task with more training data from different epidemics,
perhaps RNNs and transformers could solve the problem more effectively than anything
before.
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I, Ákos Soós, hereby declare that during the preparation of my thesis, I used the AI-based
tools listed below to perform the following tasks:

Task Tool
Used

Used For Note

LATEX syntax assistance GPT-4o - Preamble settings and
figure layout

Data import GPT-4o Section 4.1 Loading the data into
a Jupyter Notebook

Grammar and spell check Grammarly Complete thesis -
Statement of AI usage table GPT-4o Page 34 Creating this table

Apart from the ones listed above, I did not use any other AI-based tools.
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