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Chapter 1

Introduction

The main motivation of this work is as follows. Let A be an infinite structure with
a finite relational language. We say that A has the finite model property iff each first
order formula true in A is also true in a finite substructure of A. One important
example for such a structure is the Rado graph (countably infinite random graph).
As it is well known, the finite model property of the Rado graph can be proved
by a probabilistic argument (for further details we refer to the beginning of section
4.1 of the present work which is based on Lemma 7.4.6 of [2]). Further, because
of its simplicity, it is natural to try to adapt the probabilistic argument to a more
general setting and establish the finite model property for other structures, or other
classes of structures - even for structures that don’t have any direct link to probabil-
ity theory. To carry out such a plan one has to handle the difficulties (A) and (B) below:

Difficulty (A): If we have a first order structure A, then how could we find a well
behaved probability measure on the underlying set A of A?

For (A) we note that there is a great tradition of studying probability measures
on first order structures. Such investigations can be traced back at least to the related
work of Keisler (carried out in the 1960’s). Studying probability measures on first order
structures received reneved impetus in the last few years when in their celebrated paper
[3] Hrusovski, Krupiński and Pillay constructed automorphism invariant measures on
the automorphism group Aut(A) of A, on the Stone spaces of A and on the underlying
set A of A. Their intention was different from the finite model property and they
used a rather abstract setting. Therefore, in the present work we will follow a different
approach. If the automorphism group Aut(A) of A is large, then (by the results of e.g.
[5]) there exist automorphism invariant probability measures on (some dense subgroups
of) Aut(A), which can be transferred to the underlying set A of A by known methods.
The idea behind the construction of such measures on Aut(A) is somewhat similar to
the construction of Haar measures. Firstly, there is a natural way to make Aut(A) to
a topological group. However, the topology thus obtained is not locally compact in
general, so the technical details of constructing Haar measures and invariant measures
on Aut(A) are different.

The so obtained measures µ on A are finitely additive only. However, the original
probabilistic argument establishing the finite model property of the Rado graph
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intensively uses the measure theoretic products (powers) of µ in order to measure
certain subsets of direct powers of A. Further, products of finitely additive measures
are not so well behaved: as they are described in [4], the usual product operation of
finitely additive measures is not associative.

Difficulty (B): How to form product (power) measures of finitely additive measures
for more than two factors?

This work is devoted to manage these difficulties. In Chapter 2 we recall the product
construction of finitely additive measures from [4]. The main result of this section is
an example exhibiting that the product operation proposed and studyed in [4] is not
associative. Let n ∈ N. In Section 2.2 we introduce the notion of “operation schemes”
which can be used to describe all the ways a product measure can be formed by applying
the non-associative product operation to obtain an n-factor product. In Chapter 3 we
isolate a large enough family of subsets of nA whose measures are the same with
respect to all product measures (regardless which operation scheme we used). The
main results of Chapter 3 are Theorem 3.13 and Corollary 3.16. Finally, in Chapter
4 we apply the machinery developed in Chapter 3 for products of finitely additive
probability measures, and study the finite model property in a fairly general setting.
The main result of Section 4 is Corollary 4.13, which is the finitely additive analogue
of Theorem 6.2 of [6] (which applies to countably additive measures).

The results obtained in this work are summarized in the manuscript [7] which we
intend to publish in a research journal.

We close this Chapter by summing up our system of notation and presenting further
preliminaries we need in later sections of this work.

1.1 Notation
Throughout this work N denotes the set of natural numbers and for every n ∈ N we
have n = {0, 1, ..., n− 1}. In addition, R and R+ denote the set of real numbers and
the set of non-negative real numbers, respectively.

Let A and B be sets. Then AB denotes the set of functions whose domain is A
and whose range is a subset of B. Moreover, for an ordinal α, <αA is defined to be
<αA = ∪

β<α

βA. Similarly, for a cardinal α, [A]α denotes the set of subsets of A which

are of cardinality α. In addition, |A| denotes the cardinality of A and P (A) denotes
the power set of A, that is, P (A) consists of all subsets of A.

We use the delimeter ⟨·⟩ for (finite or infinite) sequences. Occasionally, as an abuse
of notation, by a finite tuple x̄ ∈ X we mean a tuple that comprises of elements of X.

We use function composition in such a way that the rightmost factor acts first.
That is, for functions f, g we define f ◦ g(x) = f(g(x)). If f : A→ B is a function and
X ⊆ nA for some n ∈ N, then we define

f [X] = {⟨f(x0), ..., f(xn−1)⟩ : ⟨x0, ..., xn−1⟩ ∈ X}.

Further, IdA denotes the identity function on A and if C ⊆ A then f |C denotes the
restriction of f to C.
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For any non-empty set A, Sym(A) denotes the symmetric group of A (the group
of all permutations of A). If G is a group or semigroup (with underlying set G) and
f0, ..., fn−1 ∈ G then ⟨f0, ..., fn−1⟩ denotes the subgroup (or subsemigroup) of G gener-
ated by {f0, ..., fn−1}. We warn the reader that sometimes, as in the previous paragraph,
⟨f0, ..., fn−1⟩ simply denotes the sequence with terms f0, ..., fn−1. It will always be clear
from the context if we mean the substructure generated by the fi.

If G is a group acting on a set X and a ∈ X, then OG(a) denotes the orbit of a with
respect to the action of G.

If A and B are structures, then A ≤ B denotes the fact that A is a substructure of
B. Structures will be denoted by calligraphic letters and their underlying sets will be
denoted by the corresponding latin letter (in the case of groups usually we don’t make
such a strict distinction between the group itself and its underlying set and simply
denote both by latin letters). In addition, Aut(A) denotes the automorphism group of
A.

Crucially, throughout this work by “measure” we mean a finitely additive bounded
measure unless otherwise specified. That is, a bounded function µ : A → R+ is a
measure given that all the below stipulations are satisfied:

• A is a Boolean set algebra over a set X,

• µ(∅) = 0,

• µ is finitely additive, meaning that for all disjoint E,F ∈ A we have
µ(E ∪ F ) = µ(E) + µ(F ).

Throughout this work, our notion of an integral is the same as in [4]. That is, the
“usual” one, e.g. defined in Section III.2.2 of [1]. We will slightly elaborate on this in
Chapter 2.
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Chapter 2

The finitely additive product measure

In this chapter we will recall some notions from [4] which will play a central role in our
investigations throughout this work. In the later parts of this chapter, we will confront
with a technical difficulty which we will resolve in Section 3.2. More concretely, we will
present the product measure of finitely additive measures studied in [4]. In Section 2.1
we will see that this construction does not yield an associative operation. In Corollary
2.16 this will be illustrated with a simple counterexample, which is the main result of
this chapter. In Section 2.2 we will give a formal framework for describing the order
of operations through which we can construct these product measures. This will be a
useful notion throughout the rest of this work. After this, we will show that all of these
product measures do behave nicely for at least the family of measurable rectangles.

Notation 2.1. Throughout this Chapter and Chapter 3, we will refer to sections of a
function in the way below. Let f : X × Y → Z. Then, for fixed x ∈ X we define the
x-section fx of f as usual:

fx : Y → Z;

fx(y) = f(x, y).

Symmetrically, for fixed y ∈ Y we have fy(x) = f(x, y).

Now we recall some definitions and results from [4].

Definition 2.2. Let X, Y be sets. A function f : X ×Y → R is defined to be a DLC
function if for any ⟨xi ∈ X : i ∈ N⟩ and ⟨yj ∈ Y : j ∈ N⟩ if both

lim
j→∞

lim
i→∞

f(xi, yj) and lim
i→∞

lim
j→∞

f(xi, yj)

exist, then they are equal.

Definition 2.3. Let A be a Boolean set algebra over X. A is an SP algebra if it
“separates points”: for any x ̸= y ∈ X there are E,F ∈ A so that x ∈ E, y ∈ F and
E ∩ F = ∅.

Definition 2.4. Let A be a Boolean set algebra over X. A real-valued function f on
X is A-continuous if for all ε > 0 there exists a finite partition ⟨Ei : i < N⟩ of X such
that for all i < N we have Ei ∈ A and |f(x)− f(y)| < ε holds for all x, y ∈ Ei.
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Definition 2.5. Let A and B be SP algebras over X and Y . A bounded function
f : X × Y → R is defined to be a Stone space function (S-function) with respect to
A and B, if

1. fy is A-continuous for all y ∈ Y ;

2. fx is B-continuous for all x ∈ X;

3. f is a DLC function.

We recall the notion of the integral with respect to the measure µ. Here, we give
simplified reminders of the definitions of the notions needed.

Definition 2.6. Let A be an SP-algebra on a set X and let µ : A→ R be a measure.
A function f : X → R is a simple A-measurable function, if it is of form

f(x) =
∑
i∈n

ai · χEi
,

where for all i ∈ n we have ai ∈ R and Ei ∈ A are pairwise disjoint sets. The µ-integral
of a function of this form is as below:∫

X

f dµ =
∑
i∈n

ai · µ(Ei).

A function f is µ-integrable provided there exists a sequence ⟨fi : i ∈ N⟩ of simple
A-measurable functions which converges uniformly to f . Then the µ-integral of f is
defined as∫

X

f dµ =

∫
X

lim
i→∞

fi dµ = lim
i→∞

∫
X

fi dµ.

We note that this result does not depend on the choice of the uniformly converging
sequence.

Definition 2.7. Let A and B be SP algebras over X and Y . Let µ and ν be measures
on A and B respectively.
The limit product algebra of A and B (denoted by A ∗B) is

A ∗B = {E ⊂ X × Y : χE is an S-function with respect to A and B}.

The finitely additive product measure of µ and ν on A ∗ B (denoted by µ ∗ ν) is
defined as

µ ∗ ν(E) =
∫
X

∫
Y

χE dν dµ, for all E ∈ A ∗B.

Theorem 2.8. According to Theorem 5.4 of [4], A∗B is indeed a Boolean set algebra,
and µ ∗ ν is indeed a measure on it.

Remark 2.9. Going forward, in this work, unless otherwise specified, any algebra over
a set X will be the full poweset algebra P (X), and any measure not obtained from a
product measure will be defined on all subsets of X.

6



2.1 The non-associativity of the construction
In this section we will exhibit through an example that the product measure construc-
tion presented in 2.7 is not associative, even in simple cases.

A ternary function f : A × B × C → R can be considered as a binary function in
multiple ways. For example, f can be regarded as a function over (A×B)×C (in this
case, its first variable ranges over A × B). Similarly, f can be regarded as a function
over A× (B × C) (in this case, its second variable ranges over B × C ).

Next, we will define the characteristic function of a set X. When being considered as
a binary function in one way, this function will be an S-function. When being considered
as a binary function in another way, it will not be an S-function.

Proposition 2.10. Based on the partition of its variables, the set X which has the
function f below as its characteristic function, can be measurable or not measurable in
the appropriate limit product algebras.

f : N3 → {0, 1},

f(x, y, z) =

{
0, if x = y and z < x;

1, otherwise.

Lemma 2.11. Consider f as a function of form f : N2 × N → {0, 1}. Then f is not
a DLC function, therefore X is not measurable with respect to P (N2) ∗ P (N).

Proof. Let (xi, yi) = (i, i) for all i ∈ N, and let zj = j for all j ∈ N.

Then lim
j→∞

lim
i→∞

f(xi, yi, zj) = lim
j→∞

0 = 0 ̸= 1 = lim
i→∞

1 = lim
i→∞

lim
j→∞

f(xi, yi, zj).

Consider f as a function of form f : N× N2 → {0, 1}. In the next Lemmas we will
show that this way f is an S-function.

Lemma 2.12. For any x0 ∈ N, the section fx0 is P (N2)-continuous.

Proof. For any ε > 0, the sets

E1 = {(y, z) ∈ N2 : y = x0, z < x0} and E2 = N2 \ E1

form a good partition. To see this, observe that for all (y, z) ∈ E1 we have f(x0, y, z) = 0
and for all (y, z) ∈ E2 we have f(x0, y, z) = 1.

Lemma 2.13. For any (y0, z0) ∈ N2, the section f(y0,z0) is P (N)-continuous.

Proof. Similarly, if z0 < y0, then

E1 = {x ∈ N : x = z0} and E2 = N \ E1

form a good partition for any ε > 0. Otherwise E1 = N is a good choice.

Lemma 2.14. f : N× N2 → {0, 1} is a DLC function.

7



Proof. Assume, seeking a contradiction, that f is not a DLC function. Then there exist
sequences

⟨xi ∈ N : i ∈ N⟩ and ⟨(yj, zj) ∈ N2 : j ∈ N⟩

such that both

lim
i→∞

lim
j→∞

f(xi, yj, zj) and lim
j→∞

lim
i→∞

f(xi, yj, zj)

converge, one of them to 1, the other to 0.

For any fixed x, lim
j→∞

f(x, yj, zj) =

{
0, if ∃N such that ∀j > N (yj = x and zj < x),

1, if ∃N such that ∀j > N (yj ̸= x or zj ≥ x).

lim
i→∞

lim
j→∞

f(xi, yj, zj) =

{
0, if ∃N such that ∀i > N (limj→∞ f(xi, yj, zj) = 0),

1, if ∃N such that ∀i > N (limj→∞ f(xi, yj, zj) = 1).

Similarly, for fixed (y, z) we have

lim
i→∞

f(xi, y, z) =

{
0, if ∃N such that ∀i > N (xi = y and z < xi),

1, if ∃N such that ∀i > N (xi ̸= y or z ≥ xi).

lim
j→∞

lim
i→∞

f(xi, yj, zj) =

{
0, if ∃N such that ∀j > N (limi→∞ f(xi, yj, zj) = 0),

1, if ∃N such that ∀j > N (limi→∞ f(xi, yj, zj) = 1).

By symmetry , we may assume that

(1) lim
j→∞

lim
i→∞

f(xi, yj, zj) = 0 and (2) lim
i→∞

lim
j→∞

f(xi, yj, zj) = 1.

From (1) we obtain

∃N1 ∀j > N1 ∃N1,j ∀i > N1,j we have xi = yj and zj < xi. (3)

Similarly, from (2) we obtain

∃N2 ∀i > N2 ∃N2,i ∀j > N2,i we have xi ̸= yj or zj ≥ xi. (4)

For large enough i and j this is contradictory. In more detail, for a moment fix j > N1

arbitrarily. Then, on one hand, by (3),

for large enough i, we have xi = yj and zj < xi. (⋆)

In particular, there exists x such that for all large enough i we have xi = x because of
the following: choosing j := N1 + 1 and x := yN1+1, from (⋆) we obtain that for large
enough i we have xi = yN1+1 = x. In addition, (⋆) also implies that zj < x holds for
j > N1. Further, as (⋆) holds for arbitrary j > N1, we get that for large enough j we
also have yj = x.

On the other hand, for large enough i > N2 we have xi = x and for large enough
j > N2,i we have zj < x and yj = x. Specifically, xi = x = yj and zj < x = xi.

However, from (4) we get xi ̸= yj or zj ≥ xi. This contradiction completes the
proof.
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Corollary 2.15. f : N×N2 → {0, 1} is an S-function, therefore X is measurable with
respect to P (N) ∗ P (N2).

Corollary 2.16. The ∗ operation of forming product measures is not associative.

2.2 Rectangles
For our purposes, it is desirable to study only sets that are measurable irrespective
to the order of operations through which we have constructed the underlying product
algebra. That is, sets whose characteristic functions are S-functions regardless of which
way we partition their variables. The next definition gives a precise notation for this
order of operations.

Definition 2.17. We define binary operation schemes recursively.
For i ∈ I, i is a binary operation scheme and ρ(i) = {i} is the set of indices it ranges
over.
If τ1, τ2 are binary operation schemes and ρ(τ1)∩ρ(τ2) = ∅, then ⟨τ1, τ2⟩ is an operation
scheme. Further, ρ(⟨τ1, τ2⟩) = ρ(τ1) ∪ ρ(τ2).
For an operation scheme τ and sets Xi for i ∈ ρ(τ) let

∏
τ

Xi =

Xi, if τ = i;∏
τ1

Xi ×
∏
τ2

Xi, if τ = ⟨τ1, τ2⟩.

For an operation scheme τ and SP algebras Ai let

∏
τ

Ai =

Ai, if τ = i;∏
τ1

Ai ∗
∏
τ2

Ai, if τ = ⟨τ1, τ2⟩.

For an operation scheme τ and SP algebras Ai, let µi be measures on them respectively.
Then we define the measure µτ :

∏
τ

A→ R as

µτ (x) =

{
µi(x), if τ = i;

(µτ1 ∗ µτ2)(x), if τ = ⟨τ1, τ2⟩.

Example 2.18. For example, (A0 ∗ A1) ∗ A2 and A0 ∗ (A1 ∗ A2) can be described
by the schemes ⟨⟨0, 1⟩, 2⟩ and ⟨0, ⟨1, 2⟩⟩ respectively. For a more complex example, let
τ = ⟨⟨1, ⟨2, 3⟩⟩, ⟨4, 5⟩⟩. Then∏

τ

N = (N× (N× N))× (N× N).

Intuitively one can regard these operation schemes as “the skeletons” of strictly binary
trees with finite depths. Borrowing from the language of computer science, they can
be considered as fold operations, as they condense a list of objects into a single object
by repeatedly using a binary operation. For example, the above defined τ could be
represented as the tree of Figure 2.1.
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Figure 2.1: τ

Remark 2.19. The symbol
∏
τ

will be used both for the direct product of sets and for

the limit product (∗) of algebras over the scheme τ . This should cause no confusion.

We will now show that the product measure defined in 2.7 behaves well when applied
to the measurable rectangles.

Lemma 2.20. Let n ∈ N and Xi be sets for all i ∈ n. Let Ai be SP algebras on Xi

respectively. If for all i ∈ n the sets Ui ⊂ Xi are measurable (that is, Ui ∈ Ai), then∏
τ

Ui is measurable (
∏
τ

Ui ∈
∏
τ

Ai) for any operation scheme τ where ρ(τ) = n.

For any such τ , µτ (
∏
τ

Ui) =
∏
i∈n
µi(Ui).

Proof. We apply induction on n.
First assume n = 1. Then U is measurable by assumption.
Turning to the inductive step, let τ = ⟨τ1, τ2⟩. Then |ρ(τi)| < n. By induction

∏
τ1

Ui and∏
τ2

Ui are measurable. As
∏
τ1

Ui ×
∏
τ2

Ui is a rectangle, by 5.4 of [4] it is measurable.

Similarly,

(µτ1i ∗ µτ2i )(
∏
τ1

Ui ×
∏
τ2

Ui)
5.4 of [4]

= µτ1i (
∏
τ1

Ui) · µτ2i (
∏
τ2

Ui)
induction

=
∏
i∈n

µi(Ui).

Remark 2.21. The measurable rectangles of finite dimensions are measurable regard-
less of the order of operations with which they were constructed, that is, regardless
of the operation scheme used to construct the product space. Their measures are the
same in all of these spaces. In Section 3.2 we will exhibit a considerably larger family
of sets with the above property.

10



Chapter 3

Solving the associativity problem

Let’s assume we have a set X and a measure µ on it. Our aim in this chapter is to
investigate the possibilities of deriving a measure µn on Xn. For any operation scheme
τ for which ρ(τ) = n, we have a construction for µτ . By only investigating sets that
are measurable when looked at through the lense of all of these schemes, we get one
step closer to this ideal measure µn. However, by assuring that a set is measurable
“from any direction”, we cannot simply assume that its measure is the same in any of
these spaces. Our goal is to give sufficient conditions for some sets to have the same
measure, regardless of which operation scheme was used in creating them. A family
of sets that have this property is the set of measurable rectangles, as seen in Lemma
2.20.

In Section 3.1 we will introduce a family of functions that includes the character-
istic functions of sets that are measurable with respect to every appropriate operation
scheme. In Section 3.2 we will combine characteristics of these functions and a Fubini-
style theorem from [4] to prove that these functions are well behaved with respect to
integration (Theorem 3.13). Using this, we will define and prove the associativity of a
(finite dimensional) product measure in Definition 3.17 and Corollary 3.16 respectively.
In Chapter 3.3 we will introduce a way of transferring measures from groups to sets
they act on, and vice versa. As an aside, we will show a different strategy for computing
the measures of certain sets in Theorem 3.34.

3.1 Hereditary S-functions
In this section we will introduce a class of functions that will play a significant role.
We start by recalling some results from [4] on which we will build.

Fact 3.1. (Part of Lemma 4.2. of [4].) Let A be a Boolean set algebra on the set X.
Let f be a real-valued function on X. Then the following are equivalent:

• f is A-continuous;

• if µ is a measure on A, then f is µ-integrable;

• f is a uniform limit of simple, A-measurable functions.
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Fact 3.2. (Part of Theorem 4.4. of [4].) Let A and B be SP algebras on the sets X
and Y respectively. Let µ and ν be measures on A and B respectively. Let f be an
S-function on X × Y . Then the function

Ψ(y) =

∫
X

fy dµ

is B-continuous. Similarly, the function Φ(x) =

∫
Y

fx dν is A-continuous.

Fact 3.3. (Lemma 5.2.(C) of [4].) Let A and B be SP algebras on the sets X and Y
respectively. If ⟨fn : n ∈ N⟩ is a sequence of S-functions on X × Y which converges
uniformly to a function f , then f is an S-function.

Definition 3.4. For all operation schemes τ with range ρ(τ) and sets Xi for i ∈ ρ(τ)
we define the function cτ :

∏
τ

Xi →
∏
ρ(τ)

Xi by recursion, as follows. With the aid of

these functions we can naturally convert a “bracketed” expression into its usual direct
product version.

If τ = i, then cτ (x)(i) = x.
If τ = ⟨τ1, τ2⟩, then cτ = cτ1 ∪ cτ2 .

Remark 3.5. In order to make our text more reader-friendly, we will often use the
following notation. If τ = ⟨τ1, τ2⟩, then

cτ (x1, x2) = (cτ1(x1), cτ2(x2)).

Definition 3.6. Let τ be an operation scheme with range ρ(τ). For all i ∈ ρ(τ) let
Xi be a set endowed with the SP algebra Ai. We define a function f :

∏
τ

Xi → R as a

hereditary S-function (with respect to
∏
τ

Ai) recursively based on τ .

If τ = i, f is a hereditary S-function if it is Ai-continuous.
If τ = ⟨τ1, τ2⟩, f is a hereditary S-function if the stipulations below are satisfied:

• f is
∏
τ

Ai-continuous;

• f is an S-function with respect to
∏
τ1

Ai and
∏
τ2

Ai;

• for all x ∈
∏
τ1

Xi, the x-section fx of f is a hereditary S-function (with respect to∏
τ2

Ai);

• for all y ∈
∏
τ2

Xi, the y-section fy of f is a hereditary S-function (with respect to∏
τ2

Ai).

12



Remark 3.7. The condition of
∏
τ

Ai-continuity is to ensure integrability, in reference

to Fact 3.1. Throughout the rest of this work, we will work with the full powerset as
the underlying algebra A = P (X). In this case, any bounded one variable function
is a hereditary S-function. The following propositions are likely true for arbitrary SP
algebras A, but for brevity’s sake, we will only prove them with respect to P (X), as
that is sufficient for this work.

Proposition 3.8. Let n ≥ 2. For all i ∈ n, let Xi be a set endowed with the SP algebra
P (Xi). Let f be a real-valued function on

∏
n

Xi such that for all operation schemes τ

with range ρ(τ) = n the function f ◦ cτ :
∏
τ

Xi → R is an S-function.

Then for all τ = ⟨τ1, τ2⟩ with τ2 = ⟨η1, η2⟩ and for all x ∈
∏
τ1

Xi, the x-section

g := (f ◦ cτ )x :
∏
τ2

Xi → R is an S-function with respect to
∏
η1

P (Xi) and
∏
η2

P (Xi).

Symmetrically, the same is true for g′ := (f ◦ cτ )y :
∏
τ1

Xi → R.

Proof. We have to prove the following three assertions for g to be an S-function:

1. gy is
∏
η2

P (Xi)-continuous for all y ∈
∏
η1

Xi;

2. gz is
∏
η1

P (Xi)-continuous for all z ∈
∏
η2

Xi;

3. g is a DLC function.

1. Let τ ′ = ⟨⟨τ1, η1⟩, η2⟩. We claim that gy = (f ◦ cτ ′)⟨x,y⟩. To see this, let z ∈
∏
η2

Xi.

Then we have

gy(z) = ((f ◦ cτ )x)y (z) = (f ◦ cτ )x(y, z) = f ◦ cτ (x, ⟨y, z⟩) = f (cτ1(x), cτ2(y, z)) =

= f (cτ1(x), cη1(y), cη2(z)) = f ◦ cτ ′(⟨x, y⟩, z) = (f ◦ cτ ′)⟨x,y⟩(z).

As f ◦ cτ ′ is an S-function by our assumption, for any (x, y) ∈
∏

⟨τ1,η1⟩
Xi the section

(f ◦ cτ ′)⟨x,y⟩ is
∏
η2

P (Xi)-continuous. Thus gy is
∏
η2

P (Xi)-continuous as well.

2. Similarly to 1., this is easily verified with the choice of τ ′ = ⟨⟨τ1, η2⟩, η1⟩.
3. Let’s assume that for the sequences ⟨ak ∈

∏
η1

Xi : k ∈ N⟩ and ⟨bj ∈
∏
η2

Xi : j ∈ N⟩

both of the double limits

lim
k→∞

lim
j→∞

g(ak, bj) and lim
j→∞

lim
k→∞

g(ak, bj) exist.

Then we need to prove their equality. As in 1., let τ ′ = ⟨⟨τ1, η1⟩, η2⟩. Then we have

lim
k→∞

lim
j→∞

g(ak, bj) = lim
k→∞

lim
j→∞

(f ◦ cτ )x(ak, bj) = lim
k→∞

lim
j→∞

f ◦ cτ (x, ⟨ak, bj⟩) =

= lim
k→∞

lim
j→∞

f(cτ1(x), cη1(ak), cη2(bj)) = lim
k→∞

lim
j→∞

f ◦ cτ ′(⟨x, ak⟩, bj).
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Similarly, we have

lim
j→∞

lim
k→∞

g(ak, bj) = lim
j→∞

lim
k→∞

f ◦ cτ ′(⟨x, ak⟩, bj).

By our assumption f ◦ cτ ′ is an S-function, so it is a DLC function. Thus

lim
k→∞

lim
j→∞

f ◦ cτ ′(⟨x, ak⟩, bj) = lim
j→∞

lim
k→∞

f ◦ cτ ′(⟨x, ak⟩, bj).

From this it follows that

lim
k→∞

lim
j→∞

g(ak, bj) = lim
j→∞

lim
k→∞

g(ak, bj),

and thus g is a DLC function.

Proposition 3.9. Let n ∈ N. For all i ∈ n let Xi be a set endowed with the SP algebra
P (Xi). Let f be a real-valued bounded function on

∏
n

Xi such that for all operation

schemes τ with range ρ(τ) = n the function f ◦ cτ :
∏
τ

Xi → R is a
∏
τ

P (Xi)-continuous

S-function. Then for all such τ , the function f ◦ cτ is a hereditary S-function.

Proof. We apply induction on n. First assume n=1. By definition any bounded function
is a hereditary S-function with respect to P (Xi).
Turning to the inductive step, let τ = ⟨τ1, τ2⟩. We have to prove the following assertions
for f ◦ cτ to be a hereditary S-function:

1. f ◦ cτ is
∏
τ

P (Xi)-continuous;

2. f ◦ cτ is an S-function;

3. (f ◦ cτ )x is a hereditary S-function for all x ∈
∏
τ1

Xi;

4. (f ◦ cτ )y is a hereditary S-function for all y ∈
∏
τ2

Xi.

1. and 2. are true by our assumptions. 3. and 4. are symmetrical, thus it is sufficient
to prove 3.
If |ρ(τ2)| = 1, since f is bounded, so is (f ◦ cτ )x, thus it is a hereditary S-function with
respect to P (Xi).
If |ρ(τ2)| ≥ 2, by induction it is sufficient to prove that g := (f ◦ cτ )x ◦ c−1

τ2
:
∏
ρ(τ2)

Xi → R

is a function which meets the conditions of this theorem. More precisely, we want to
prove that for all operation schemes η for which ρ(η) = ρ(τ2), the function g ◦ cη is∏
η

P (Xi)-continuous and an S-function. Let τ ′ = ⟨τ1, η⟩. We claim that g◦cη = (f ◦cτ ′)x.

To see this, let y ∈
∏
η

Xi. Then we have

(g◦cη)(y) = ((f◦cτ )x◦c−1
τ2
◦cη)(y) = (f◦cτ )(x, c−1

τ2
(cη(y))) = f(cτ1(x), cτ2(c

−1
τ2
(cη(y)))) =

= f(cτ1(x), cη(y)) = (f ◦ cτ ′)(x, y) = (f ◦ cτ ′)x(y).
Since f satisfies the conditions of Proposition 3.8, (f ◦ cτ ′)x is an S-function, and thus
so is g ◦ cη. Similarly, (f ◦ cτ ′) is an S-function by our assumption, therefore (f ◦ cτ ′)x
is
∏
η

P (Xi)-continuous.

14



Proposition 3.10. Let n ∈ N. For all i ∈ n let Xi be a set endowed with the SP
algebra P (Xi). Let µi be measures on P (Xi) respectively. Let f be a real-valued bounded
function on

∏
n

Xi such that for all operation schemes τ with range ρ(τ) = n the function

f ◦ cτ :
∏
τ

Xi → R is a
∏
τ

P (Xi)-continuous S-function. Then for any such τ with

τ = ⟨τ1, τ2⟩ the function Ψ(y) =

∫
∏
τ1

Xi

(f ◦ cτ )y dµτ1 :
∏
τ2

Xi → R is a hereditary S-

function.

Symmetrically, the same is true for Ψ′(x) =

∫
∏
τ2

Xi

(f ◦ cτ )x dµτ2 :
∏
τ1

Xi → R .

Proof. The function f meets the conditions of Proposition 3.9, thus f◦cτ is a hereditary
S-function. If |ρ(τ2)| = 1, Ψ is bounded and thus a hereditary S-function. If |ρ(τ2)| ≥ 2,
because of Proposition 3.9, it is sufficient to prove that for all operation schemes η for
which ρ(η) = ρ(τ2), the function Ψ ◦ c−1

τ2
◦ cη is a

∏
η

P (Xi)-continuous S-function. Let

τ ′ = ⟨τ1, η⟩ and let y ∈
∏
η

Xi. We have

Ψ ◦ c−1
τ2

◦ cη(y) = Ψ(c−1
τ2
(cη(y))) =

∫
∏
τ1

Xi

(f ◦ cτ )c−1
τ2

(cη(y))
dµτ1 =

∫
∏
τ1

Xi

fcτ2 (c
−1
τ2

(cη(y)))
◦ cτ1 dµτ1 =

∫
∏
τ1

Xi

fcη(y) ◦ cτ1 dµτ1 =
∫

∏
τ1

Xi

(f ◦ cτ ′)y dµτ1 .

By our assumption, f ◦ cτ ′ is an S-function. Thus, by Fact 3.2,
∫

∏
τ1

Xi

(f ◦ cτ ′)y dµτ1 is

∏
η

P (Xi)-continuous. Combining this with Fact 3.1, it follows that it is the uniform

limit of simple
∏
η

P (Xi)-measurable functions. As these simple functions are clearly

S-functions as well, Ψ ◦ c−1
τ2

◦ cη is the uniform limit of S-functions, and therefore by
Fact 3.3 it is an S-function.

3.2 Finite dimensional canonical products of finitely
additive measures

In this section we will prove that under some conditions, some type of sets have
the same measure irrespective of which operation scheme was used in creating the
space. More precisely, we will show that functions that are hereditary S-functions
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with respect to every appropriate operation scheme are well behaved with respect to
integration. Therefore sets that have such functions as characteristic functions have
the same measures in all the appropriate limit product algebras. Using such sets
we will present measures that can act as construction independent multidimensional
products of finitely additive measures. We will call these canonical product measures.

We recall a Fubini-style theorem from [4] that will be crucial in our proof.

Fact 3.11. (A “Fubini” Theorem, 6.1 of [4].) Let A and B be SP-algebras over the sets
X and Y . Let µ and ν be measures on A and B respectively. Let f be a real-valued
bounded function on X × Y . If f is the uniform limit of simple A ∗ B-measurable
functions, then∫

X

∫
Y

f dµ dν =

∫
Y

∫
X

f dν dµ =

∫
X×Y

f d(µ ∗ ν).

Remark 3.12. If f is a hereditary S-function, it is by definition A ∗ B-continuous.
Then, by 3.1 it is the uniform limit of simple measurable functions, and thus 3.11
applies to it.

Theorem 3.13. Let n ∈ N and for all i ∈ n let Xi be sets. Let µi : P (Xi) → R be
(bounded, finitely additive) measures. Let f be a real-valued bounded function on

∏
n

Xi

such that for all operation schemes τ with range ρ(τ) = n the function f ◦cτ :
∏
τ

Xi → R

is a hereditary S-function. Then for all such operation schemes τ we have∫
∏
τ

Xi

f ◦ cτ dµτ =
∫
X0

...

∫
Xn−1

f dµn−1... dµ0.

We note that the order of these integrals can be changed without impacting this value.

Proof. We apply induction on n. For n = 1 the hypotesis clearly holds, as by definition∏
τ

Xi = X0 and µτ = µ0.

Turning to the inductive step, let τ = ⟨τ1, τ2⟩. Starting on the left side of the equation,
we have∫

∏
τ

Xi

f ◦ cτ dµτ =
∫

∏
τ1

Xi ×
∏
τ2

Xi

f ◦ cτ d(µτ1 ∗ µτ2).

As f ◦ cτ is a hereditary S-function, Fact 3.11 aplies, thus we have∫
∏
τ1

Xi ×
∏
τ2

Xi

f ◦ cτ d(µτ1 ∗ µτ2) =
∫

∏
τ1

Xi

∫
∏
τ2

Xi

f ◦ cτ dµτ2 dµτ1 .
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Let g :
∏
τ1

Xi → R be the function for which g(x) :=
∫

∏
τ2

Xi

(f ◦ cτ )x dµτ2 . By Proposition

3.10, g is a hereditary S-function. Similarly, for any operation scheme η with range
ρ(η) = ρ(τ1), the function g ◦ c−1

τ1
◦ cη :

∏
η

Xi → R is a hereditary S-function. Combined

with the fact that ρ(τ1) ⊊ ρ(τ), it is clear that we can apply the inductive hypothesis
for g ◦ c−1

τ1
. Thus we have∫

∏
τ1

Xi

∫
∏
τ2

Xi

f ◦cτ dµτ2 dµτ1 =
∫

∏
τ1

Xi

g◦c−1
τ1

◦cτ1 dµτ1 =
induction

∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ1)

g◦c−1
τ1

dµi... dµi︸ ︷︷ ︸
i∈ρ(τ1)

. (⋆)

Observe that by induction the order of these repeated integrals can be changed.

By definition, all sections of a hereditary S-function are hereditary S-functions as
well. Thus for all x ∈

∏
τ1

Xi, the functions hx = (f ◦ cτ )x :
∏
τ2

Xi → R are hereditary

S-functions. Similarly, for any operation scheme ξ with range ρ(ξ) = ρ(τ2) we have
hx ◦ c−1

τ2
◦ cξ = (f ◦ cτ ′)x where τ ′ = ⟨τ1, ξ⟩. Since f ◦ cτ ′ is a hereditary S-function by

our assumption, so is (f ◦ cτ ′)x and thus hx ◦ c−1
τ2

◦ cξ is one as well. Combined with
the fact that ρ(τ2) ⊊ ρ(τ), this means that we can apply the inductive hypothesis for
hx ◦ c−1

τ2
. Thus we have∫

∏
τ2

Xi

(f ◦ cτ )x dµτ2 =
∫

∏
τ2

Xi

hx ◦ c−1
τ2

◦ cτ2 dµτ2 =
induction

∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ2)

hx ◦ c−1
τ2

dµi... dµi︸ ︷︷ ︸
i∈ρ(τ2)

=

=

∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ2)

(f ◦ cτ )x ◦ c−1
τ2

dµi... dµi︸ ︷︷ ︸
i∈ρ(τ2)

.

We may notice that this means that

g ◦ c−1
τ1
(x) =

∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ2)

(f ◦ cτ )c−1
τ1

(x) ◦ c
−1
τ2

dµi... dµi︸ ︷︷ ︸
i∈ρ(τ2)

=

∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ2)

fx dµi... dµi︸ ︷︷ ︸
i∈ρ(τ2)

.

Combining this with (⋆), we get∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ1)

g◦c−1
τ1

dµi... dµi︸ ︷︷ ︸
i∈ρ(τ1)

=

∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ1)

∫
Xi

...

∫
Xi︸ ︷︷ ︸

i∈ρ(τ2)

f dµi... dµi︸ ︷︷ ︸
i∈ρ(τ2)

dµi... dµi︸ ︷︷ ︸
i∈ρ(τ1)

=

∫
X0

...

∫
Xn−1

f dµn−1... dµ0.

Without specifics we note that the order of these integrals can be changed. The idea
behind this is twofold. First, by the above induction, for any two operation schemes that
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“have their indices in the same order” these integrals are the same (e.g. for ⟨0, ⟨1, 2⟩⟩
and ⟨⟨0, 1⟩, 2⟩). Second, by Fact 3.11, switching the order of two operation schemes in
the recursive definition of a scheme τ does not change these integrals (e.g. in the case
of ⟨0, ⟨1, 2⟩⟩ and ⟨0, ⟨2, 1⟩⟩). Combining these repeatedly produces any permutation of
these integrals.

Definition 3.14. Let n ∈ N. For all i ∈ n let Xi be sets endowed with the SP-algebras
P (Xi). The canonical product algebra of Xi is defined to be

Cn(Xi) = {Y ∈ P (
∏
n

Xi) : χY ◦ cτ is an S-function for all operation schemes

τ with range ρ(τ) = n}.
Similarly, if for all i ∈ n the sets Xi = X, then we call Cn(X) the canonical power
algebra of X.

Remark 3.15. It is easy to see that

Cn(Xi) =
⋂

τ : ρ(τ) = n

{cτ (Y ) : Y ∈
∏
τ

P (Xi)}.

Corollary 3.16. Let n ∈ N. For all i ∈ n let Xi be a set and let µi be a measure on
P (Xi). Let Y ∈ Cn(Xi) be arbitrary. Then, for each operation scheme τ with range
ρ(τ) = n we have

µτ (c−1
τ (Y )) =

∫
X0

...

∫
Xn−1

χY dµn−1... dµ0.

In particular, µτ (c−1
τ (Y )) does not depend on τ .

Proof. Clearly χY ◦ cτ is the characteristic function of c−1
τ (Y ). If the function χY ◦ cτ is

an S-function, then by Definition 2.7, c−1
τ (Y ) ∈

∏
τ

P (Xi). Thus χY ◦ cτ is
∏
τ

P (Xi)-

measurable. Since for all appropriate operation schemes τ the function χY ◦ cτ is
a
∏
τ

P (Xi)-measurable S-function, therefore by Proposition 3.9 it is a hereditary S-

function as well. Thus we have

µτ (c−1
τ (Y ))

2.7
=

∫
∏
τ1

Xi

∫
∏
τ2

Xi

χY ◦cτ dµτ2 dµτ1
3.11
=

∫
∏
τ

Xi

χY ◦cτ dµτ
3.13
=

∫
X0

...

∫
Xn−1

χY dµn−1... dµ0.

Definition 3.17. Let n ∈ N and for all i ∈ n let Xi be sets endowed with the measures
µi : P (Xi) → R. The canonical product measure

∏
i∈n
µi is defined as the set function∏

i∈n
µi : Cn(Xi) → R for which∏

i∈n

µi(E) = µτ (c−1
τ (E)).

Specifically, if for all i ∈ n µi = µ over a set X, we call µn the n-dimensional canonical
power measure of µ. It follows from Corollary 3.16 that this is well-defined.
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Remark 3.18. Cn(Xi) is indeed (the underlying set of) a Boolean set algebra and µn
is indeed a finitely additive measure.

Proof. E ∈ Cn(Xi) if and only if c−1
τ (E) ∈ P (Xi)

τ for all operation schemes τ . As
P (Xi)

τ is a Boolean set algebra for every τ , so is Cn(Xi). More precisely:

•
∏
i∈n
Xi ∈ Cn(X) as c−1

τ (
∏
i∈n
Xi) ∈ P (Xi)

τ ;

• if E ∈ Cn(Xi), then
∏
i∈n
Xi−E ∈ Cn(Xi) as c−1

τ (E) ∈ P (Xi)
τ and P (Xi)

τ is closed

under complementation;

• if E1, E2 ∈ Cn(Xi), then E1 ∪ E2 ∈ Cn(Xi) as c−1
τ (E1), c

−1
τ (E2) ∈ P (Xi)

τ and
P (Xi)

τ is closed under binary unions.

Similarly, as µτ is finitely additive for each τ , so is µn.

3.3 Computing the canonical measure in a special
case

In this section we will provide an interesting alternative way of computing the canonical
power measure of certain sets. First we will recall a construction due to Tarski in Section
3.3.1, which can be used in transferring a measure from a group to a set upon which the
group acts. Similarly, we will recall a reversal of this construction, discussed in Section
5 of [6] and Remark 3.14 of [5]. The idea behind these constructions is fixing a point
of the underlying set, and examining which group elements transform it into which set
elements. We will discuss how a similar construction can be used in transferring other
functions from a set to a group and vice versa. These constructions will be useful in
Section 4.1 as well. In Section 3.3.2, supposing an additional property of our starting
invariant measure, we will prove the equality of a multidimensional integral and an
integral over the set of cosets of a certain stabilizer subgroup. The contents of Section
3.3.2 are not in the main direction of our investigation, however, we are providing them
as an interesting aside. In some instances, the result of Theorem 3.34 could be used to
easily calculate canonical measures.

3.3.1 Measures and group actions

Let G be a group acting transitively on a set X. Let x0 ∈ X, let Gx0 be the stabilizer
subgroup of G with respect to x0, that is,

Gx0 = {g ∈ G : g(x0) = x0}.

The set of cosets of Gx0 will be denoted by G/Gx0 .
Let x ∈ X. Then {g ∈ G : g(x0) = x} is a coset of Gx0 , thus an element of G/Gx0 .
Similarly, if Y ⊂ X, then {g ∈ G : g(x0) ∈ Y } is the union of some cosets of Gx0 , as
there exists H ⊂ G/Gx0 so that {g ∈ G : g(x0) ∈ Y } = ∪H.

Notation 3.19. Let Ax0 = {∪H : H ⊂ G/Gx0}.
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It is easy to see that this is (the underlying set of) a Boolean set algebra.

Definition 3.20. Let G be a group acting on a set X and let A be a Boolean set
algebra on X. We say that a measure µ : A → R is G-invariant, if for all g ∈ G and
Y ∈ A we have g(Y ) ∈ A and µ(Y ) = µ(g(Y )).

Now we recall Tarski’s construction which can be used to transfer an invariant
measure from a group G to a set G is acting upon.

Definition 3.21. Let G be a group acting on a set X and let x0 ∈ X. Let A ⊂ P (G)
be a Boolean set algebra over X such that Ax0 ⊂ A. Let µ : A → R be a G-invariant
measure. Then µx0 : P (X) → R is defined as the function for which

µx0(Y ) = µ({g ∈ G : g(x0) ∈ Y }).

Remark 3.22. µx0 is a G-invariant measure on the algebra P (X). Further information
can be found in Fact 5.1 of [6].

From [6] we recall the converse of this construction.

Definition 3.23. Let µ : P (X) → R be a G-invariant measure. Then keeping the prior
notation of Ax0 , let

µx0 : Ax0 → R,

µx0(Y ) = µ({g(x0) : g ∈ Y }).

Remark 3.24. According to Lemma 5.4. of [6], µx0 is a measure on the algebra Ax0 .

Theorem 3.25. (Theorem 5.5 of [6].) Suppose µ is a G-invariant measure defined on
P (X) and let x0 ∈ X. Then for any Y ⊂ X we have

(µx0)x0(Y ) = µ(Y ).

Theorem 3.26. Similarly, let x0 ∈ X and let G be a group acting on X. Let A ⊂ P (G)
be a set algebra on G for which Ax0 ⊂ A. Suppose µ : A→ R is a G-invariant measure
of G. Then for any H ∈ Ax0

(µx0)
xo(H) = µ(H).

Proof. First, observe that if H is the union of some cosets of Gx0 , then

{g ∈ G : g(x0) ∈ {h(x0) : h ∈ H}} = H.

Using this observation in the last step, we obtain

(µx0)
xo(H) = µx0({h(x0) : h ∈ H}) = µ({g ∈ G : g(x0) ∈ {h(x0) : h ∈ H}}) = µ(H).

Assuming that G acts transitively on X, we can define a bijection between X and
G/Gx0 , and thus between functions of type X → Y and functions of type G/Gx0 → Y ,
where Y is an arbitrary set.
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Definition 3.27. Let X be a set with a group G acting on it. Let x0 ∈ X and Y be a
set. Let f : G/Gx0 → Y and h : X → Y . Then

fx0 : X → Y,

fx0(x) = f(gGx0), where g(x0) = x.

Similarly,

hx0 : G/Gx0 → Y,

hx0(gGx0) = h(g(x0)).

Clearly, these functions are well-defined.

Remark 3.28. Indeed, with these definitions, the following are true:

(fx0)
x0 = f,

(gx0)x0 = g,

(IdX)
x0 : G/Gx0 → X is a bijection between G/Gx0 and X, where IdX is the identity

function of X.

Definition 3.29. We will use a partial version of this construction as well. Let X and
Y be sets with the group G acting on them both. Let x0 ∈ X, y0 ∈ Y and Z be a set.
For a function f : X × Y → Z we define

fx0 : G/Gx0 × Y → Z,

fx0(gGx0 , y) = f(g(x0), y) and similarly,

f y0 : X ×G/Gy0 → Z,

f y0(x, gGy0) = f(x, g(x0)).

Notation 3.30. Repeating this construction in both variables yields the same result
regardless of which order we apply it in, hence we use the notation

fx0,y0 = (fx0)y0 = (f y0)x0 .

Remark 3.31. We occasionally use these notions with a finite tuple x̄ ∈ X instead
of a single element x0. In these instances we mean the pointwise (with respect to x̄)
application of these constructions.

3.3.2 Computing the canonical measure

Definition 3.32. Let G be a group acting on a set X. Let µ : P (G) → [0, 1] be a G-
invariant probability measure (that is, µ(G) = 1). We call µ a stabilizer independent
measure if for all tuples x̄, ȳ ∈ X we have

µ(Gx̄,ȳ) = µ(Gx̄ ∩Gȳ) = µ(Gx̄) · µ(Gȳ).
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The following proposition will be useful in a later proof, as well as help us get
acquinted with this notion.

Proposition 3.33. Let X be a set with a group G acting on it such that for all finite
tuples x̄ ∈ X, the set of cosets G/Gx̄ is finite. Let α = ⟨β, γ⟩ be an operation scheme and
x̄ = ⟨x1, x2⟩ ∈

∏
α

X. Assume further that for all g1Gx1 ∈ G/Gx1 and g2Gx2 ∈ G/Gx2

there exists

g ∈ G such that gGx̄ = g1Gx1 ∩ g2Gx2 . (∗∗)

Let µ : P (G) → R be a G-invariant stabilizer independent probability measure. Let
f :

∏
α

X → R be a hereditary S-function. Then

∫
G/Gx1 ×G/Gx2

fx1,x2 d(µ ∗ µ) =
∫

G/Gx̄

f x̄ dµ.

For completeness we note that (∗∗) holds if G is the automorphism group of certain
Fraïssé limits or of certain stable structures. We do not go into details, as these issues
are not in the main direction of this work.

Proof. Since G/Gx1 and G/Gx2 are both finite, we can rewrite the first integral as∫
G/Gx1 ×G/Gx2

fx1,x2 d(µ ∗ µ) =

=
∑

g1Gx1∈G/Gx1
g2Gx2∈G/Gx2

(µ ∗ µ)(g1Gx1 × g2Gx2) · fx1,x2(g1Gx1 , g2Gx2).

As g1Gx1 × g2Gx2 are all measurable rectangles, 2.20 applies. Thus we obtain∑
g1Gx1∈G/Gx1
g2Gx2∈G/Gx2

(µ ∗ µ)(g1Gx1 × g2Gx2) · fx1,x2(g1Gx1 , g2Gx2) =

=
∑

g1Gx1∈G/Gx1
g2Gx2∈G/Gx2

µ(g1Gx1) · µ(g2Gx2) · fx1,x2(g1Gx1 , g2Gx2).

As µ is stabilizer independent, we can further transform this, obtaining∑
g1Gx1∈G/Gx1
g2Gx2∈G/Gx2

µ(g1Gx1) · µ(g2Gx2) · fx1,x2(g1Gx1 , g2Gx2) =

=
∑

g1Gx1∈G/Gx1
g2Gx2∈G/Gx2

µ(g1Gx1 ∩ g2Gx2) · fx1,x2(g1Gx1 , g2Gx2) = (⋆).
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By (∗∗), for all g1Gx1 ∈ G/Gx1 and g2Gx2 ∈ G/Gx2 we have gGx̄ such that

gGx̄ = g1Gx1 ∩ g2Gx2 .

Similarly, for these we have

fx1,x2(g1Gx1 , g2Gx1) = f(g1(x1), g2(x2)) = f(g(x̄)) = f x̄(gGx̄).

Using these facts, we obtain

(⋆) =
∑

gGx̄ ∈ G/Gx̄

µ(gGx̄) · f x̄(gGx̄) =

∫
G/Gx̄

f x̄ dµ.

Theorem 3.34. Let X be a set with a group G acting on it transitively such that for
all finite tuples x̄ ∈ X, the set of cosets G/Gx̄ is finite. Let µ : P (G) → [0, 1] be a
G-invariant stabilizer independent probability measure. Let α be an arbitrary operation
scheme with ρ(α) = n and for all i ∈ n let xi ∈ X and µi = µxi. Let x̄ ∈

∏
α

X so that

cα(x̄) = (x0, ..., xn−1). If a function f :
∏
α

X → R is a hereditary S-function, then

∫
∏
α

X

f dµα =

∫
G/Gx̄

f x̄ dµ.

Proof. First, by Fact 3.1, these integrals exist. We will prove their equality by induction
on n. First assume n = 1, thus α = 0. Then we have f : X → R and we need to show

(∗)
∫
X

f dµx0 =

∫
G/Gx0

fx0 dµ.

Since G acts transitively on X, for all x ∈ X there exists a gx ∈ G for which gx(x0) = x
holds. Define the function Φ : X → G/Gx0 so that Φ(x) = gxGx0 holds for all x.
(Similarly to Remark 3.28, Φ = (IdG/Gx0

)x0 , where IdG/Gx0
is the identity function

of G/Gx0 .) Clearly Φ is a bijection between X and G/Gx0 . Moreover, Φ preserves
measures in the following sense: for any Y ⊂ G/Gx0

µ(∪Y ) = µx0({Φ−1(y) : y ∈ Y }).

Thus Φ is an isomorphism between the measure spaces (X,P (X), µx0) and
(G/Gx0 , P (G/Gx0), µ). Further, f = fx0 ◦ Φ. From this we can see that (∗) holds.

Turning to the inductive step, let α = ⟨β, γ⟩. For x̄ ∈
∏
α

X we use the notation

x̄ = ⟨x′, x′′⟩. In this case, we can regard f as a binary function over
∏
β

X ×
∏
γ

X. For

clarity’s sake, keep in mind that β ranges over the first variable and γ ranges over the
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second variable. Thus the variable we are integrating with respect to is always clear.
Starting with the left side of the equation, we have∫

∏
α

X

f(x, y) dµα =

∫
∏
⟨β,γ⟩

X

f(x, y) d(µβ ∗ µγ) 3.11
=

∫
∏
β

X

∫
∏
γ

X

f(x, y) dµγ dµβ = (I1).

As |ρ(γ)| < n and for any fixed x ∈
∏
β

X we can use the inductive hypothesis on∫
∏
γ

X

f(x, y) dµγ, we get

(I1) =

∫
∏
β

X

 ∫
G/Gx′′

fx
′′
(x, h) dµ

 dµβxi = (I2).

Similarly, as F =

∫
G/Gx′′

fx
′′
(x, h) dµ is a function of form F :

∏
β

X → R with |ρ(β)| < n

and by Proposition 3.10 it is a hereditary S-function, we can use the inductive hypoth-
esis again. Then we obtain

(I2) =

∫
G/Gx′

 ∫
G/Gx′′

fx
′′
(g, h) dµ


x′

dµ =

∫
G/Gx′

∫
G/Gx′′

fx
′,x′′(g, h) dµ dµ = (I3).

As f is a hereditary S-function, so is fx′,x′′ . Thus, we can use Fact 3.11 again, and we
get

(I3) =

∫
G/Gx′ ×G/Gx′′

fx
′,x′′(g, h) d(µ ∗ µ).

As µ is stabilizer independent, by Proposition 3.33 this is equal to∫
G/Gx̄

f x̄(g) dµ.
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Chapter 4

The finite model property

Recall that an infinite structure A has the finite model property iff each first order
formula true in A is also true in a finite substructure of A. More formally, for any first
order formula φ, if A |= φ, then there exists a finite substructure A0 of A for which
A0 |= φ still holds. An important and nontrivial example for a structure having the
finite model property is the Rado graph GR = ⟨V,E⟩ (that is, the random graph in the
Erdős-Rényi sense with countably infinitely many vertices).

Our goal in this chapter will be twofold. First we will present some information
regarding the natural occurence of automorphism invariant (finitely additive) measures
in Section 4.1. Then, in Section 4.2 we will present a sketch of a proof for the finite
model property of the Rado graph. Using this proof as a motivational example, we will
examine a generalization of the ideas presented. We will show such a generalization
(Theorem 6.2 of [5]) that uses countably additive measures as a tool for proving the
finite model property of some structures. Finally, in Corollary 4.13 we will show an
analogue of that proof to establish the finite model property of certain structures that
have an automorphism invariant (finitely additive) measure.

4.1 On the existence of automorphism invariant mea-
sures

Studying the existence of (not necessarily automorphism invariant) finitely additive
probability measures defined on the underlying sets of certain first order structures
has a great tradition. Such investigations go back at least to the related work of H. J.
Keisler (carried out in the 1960’s). In the last few years these investigations received
renewed impetus.

More concretely, there are two sources of finding automorphism invariant measures
on the underlying sets: Stone spaces and the automorphism group of a given first order
structure. One such source is the celebrated paper [3], where in Sections 2, 3, and
4 therein, the authors show the existence of automorphism invariant measures in a
rather general setting. However, their intention and the methods they apply are quite
different from our present investigations. Hence we follow the approach of [5] which
is based on more elementary investigations (which are essentially group theoretical,
combined with countable combinatorics).
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Recall that an elementary mapping is one which preserves the truth value of each
(first order) formula. By a finite elementary mapping on a structure A we mean an
elementary mapping which has finite substructures of A both as its domain and its
codomain.

Definition 4.1. A structure A is strongly ℵ0-homogeneous if each finite elementary
mapping of A extends to an automorphism of A.

Let A be a countable strongly homogeneous structure. Endow A with the discrete
topology and AA with the product topology. As it is well known, this topology on AA is
the same as the pointwise convergence topology induced by the discrete topology on A.
Endow Aut(A) with the subspace topology inherited from the above topology on AA.
This way Aut(A) becomes a topological group, its operations will be continuous. In fact,
with the above topology Aut(A) is a Polish space (that is, separable and metrizable by
a complete metric), which is a particularly well behaved and well understood class of
topological spaces. From now all topological notions of Aut(A) should be understood
with respect to the topology described above.

Definition 4.2. (Definition 2.2 of [5].) A topological group G is defined to be σ∗-
compact if there exists an increasing sequence ⟨Gn : n ∈ N⟩ of subgroups of G such
that Gn is compact for all n ∈ N and G =

⋃
n∈N

Gn.

Recall that if G is a group of permutations of a set A (that is, G ≤ Sym(A)), then
the G-orbit of an element a ∈ A is denoted by

OG(a) = {g(a) : g ∈ G}.

Similarly, for any finite tuple ḡ ∈ G and element a ∈ A, the orbit Oḡ(a) is the orbit of
a with regards to the subgroup of G generated by ḡ.

Definition 4.3. (Definition 2.3 of [5].) Let A be a first order structure. For any n ∈ N
we define

AutFinn (A) := {ḡ ∈ nAut(A) : ∀a ∈ A we have |Oḡ(a)| < ℵ0}.

Fact 4.4. (Lemma 2.6.1 of [5].) Let A be a countable strongly ℵ0-homogeneous struc-
ture. Suppose AutFinn (A) is dense in nAut(A) for all n ∈ N. Then there exists a dense
σ∗-compact subgroup of Aut(A). For Fraïssé limits in particular, the converse of this
statement holds as well. For further details see Remark 4.5 of [5].

We note that the density of AutFinn (A) in nAut(A) is known to be equivalent with
interesting and thoroughly studied combinatorial properties of finite substructures of
A. In particular, Hrushovski’s extension property can be characterized in terms of
density conditions on AutFinn (A). We don’t recall the particulars here, as these details
are not in the main direction of the topic of this work. For further information, see for
example Lemma 4.3 of [5].
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Fact 4.5. (Lemma 3.10 of [5].) Suppose A is a countable set and G ≤ Sym(A). If G
is σ∗-compact then there exists a G-invariant finitely additive probability measure µ on
G such that dom(µ) = Borel(G).

Corollary 4.6. Let A be a countable strongly ℵ0-homogeneous structure and suppose
AutFinn (A) is dense in nAut(A) for all n ∈ N. Then there exists a dense σ∗-compact
subgroup G of Aut(A) and a G-invariant finitely additive probability measure µ on G
such that dom(µ) = Borel(G).

Proof. By Fact 4.4, there exists a a dense σ∗-compact subgroup G of Aut(A) and by
Fact 4.5 there exists a G-invariant finitely additive probability measure µ on G such
that dom(µ) = Borel(G).

In Proposition 4.12, the measure used is not on the automorphism group, but on
the (underlying set of the) structure itself. This is not a problem, as a measure on a
group can be easily turned into a measure on the structure and vice versa, as we have
shown in Section 3.3.1. With the aid of Remark 3.22 we can construct automorphism in-
variant probability measures on the underlying set of certain strongly ℵ0-homogeneous
structures as follows.

Theorem 4.7. Let A be a countable strongly ℵ0-homogeneous structure and suppose
AutFinn (A) is dense in nAut(A) for all n ∈ N. Then there exists a finitely additive
probability measure ν on A which is invariant under a dense subgroup of Aut(A) such
that dom(ν) = P (A).

Proof. By Corollary 4.6 there exist a dense σ∗-compact subgroup G of Aut(A) and a
G-invariant finitely additive probability measure µ on G such that dom(µ) = Borel(G).
Let x0 ∈ A be arbitrary and define the set function ν to be ν = µx0 . Observe that Gx0

is an open subset of G. It follows that Ax0 ⊆ Borel(G). Therefore Remark 3.22 applies
and we obtain that ν = µx0 is a G-invariant finitely additive probability measure with
dom(ν) = P (A).

4.2 Finitely additive measures and the finite model
property

The well known proof that the Rado graph has the finite model property can be sum-
marized as follows. Enumerate the set of vertices of GR as V = {an : n ∈ ω} and
denote by Gn the subgraph of GR spanned by {ak : k < n}. It is well known that
the first order theory of GR (more generally, the first order theory of any Fraïssé limit
in a finite relational language) can be axiomatized by ∀∃-formulas. Suppose φ is a
∀∃-formula true in GR. Then a short and relatively straightforward calculation shows
that the probability P (Gn |= φ) converges to 1 as n tends to infinity. In particular,
the probability P (Gn |= φ) is strictly positive for large enough (finite) n; therefore,
for some (in fact, all large enough) finite n there exists an n-element substructure An

of GR such that An |= φ. Versions of this proof can be found in several sources. For
further details we refer to Lemma 7.4.6 of [2] where the above idea is presented in a
somewhat more general setting.
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Let A be any countable first order structure. One strategy for proving the finite
model property of A could be adapting the probabilistic argument from the Rado graph.
If there exists an automorphism invariant (countably or finitely additive) measure on
the underlying set A of A, the adaptation is straightforward but not completely obvious.
In the case of the Rado graph the invariant measure we use is defined on the set of all
edges of the graph, however it is more natural to find automorphism invariant measures
on the automorphism group Aut(A) or the underlying set A of A. We presented some
situations in which these exist in Section 4.1. The approach based on this adaptation
has been carried out in [6] using countably additive measures. We will present the
authors’ findings shortly, but first we will examine the concept of fat formulas.

Roughly, a formula φ(v, w) is defined to be fat if the µ-measures of the slices
{||φ(v, w)||a : a ∈ A} are bounded from below with a positive number ε. To provide an
intuitive explanation, let ε be any positive real number and introduce the quantifiers
∃εw with intended meaning “there exist at least µ-measure ε many w such that...”. We
define this by stipulating

Definition 4.8. A |= ∃εwφ(a, w) iff µ({b ∈ A : A |= φ(a, b)}) ≥ ε.

Thus, φ is a fat formula iff there exists ε > 0 such that A |= ∀v∃εwφ(v, w). Precisely:

Definition 4.9. Let A be a structure endowed with a measure µ : P (A) → R. Let
φ(x0, ..., xr−1, y) be a formula with free variables x0, ..., xr−1, y. We say that φ is fat, if
there exists ε > 0 such that for all a0, ..., ar−1 ∈ A we have

µ({b ∈ A : A ⊨ φ(a0, ..., ar−1, b)}) > ε.

Assume A is a Fraïssé limit (of its finite substructures). Theorem 6.2 of [6] can
be rephrased as follows. Suppose µ is an automorphism invariant countably additive
probability measure with dom(µ) = P (A). For an arbitrary quantifier free formula φ if
there exists ε > 0 such that

A |= ∀v∃εwφ(v, w),

then there exists a finite substructure A0 of A for which

A0 |= ∀v∃wφ(v, w) still holds.

In other words, if a ∀∃-formula ∀v∃wφ(v, w) is true in A in the strong sense that for
all a, the µ-measure of the set {b ∈ A : A |= φ(a, b)} is larger than a positive constant
ε (which does not depent on a), then ∀v∃wφ(v, w) is also true in a finite substructure
of A. Consequently, if the theory of A can be axiomatized by ∀∃-formulas such that
the quantifier free parts of these formulas are fat, then A has the finite model property.

In [6] the above result (Theorem 6.2 of [6]) was examined for countably additive
probability measures. Here, in Proposition 4.12 and Corollary 4.13 below we prove an
analogous result for finitely additive measures. On one hand, this is a considerable
achievement, because weakening the condition of “being countably additive” to “being
finitely additive” makes it easier to find invariant measures. However, the adaptation
of the probabilistic argument presented above requires dealing with large (measure
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theoretic) powers of the measure given on the underlying set of the structure we are
examining. As we have seen in earlier sections, constructing well behaved powers of
finitely additive probability measures requires further work. This was done in Sections
2. and 3. with the finite model property and with the approach for proving it as
described above as the motivation.

Definition 4.10. Let A be a structure and let µ : P (A) → R be an automorphism
invariant (finitely additive) measure. We call A canonically measurable if each of its
definable subsets belongs to the appropriate dimensional canonical power algebra of A.

As an example, we note that by a yet unpublished result of Sági if A is stable,
then it is canonically measurable. Here we do not recall the definition of stability, as
it would require much technical preparation not in scope of the topic of this work. For
further information, see Section 6.7 of [2].

Notation 4.11. Suppose A is a relational structure and s̄ ∈ A is a finite tuple. By
A|s̄ we mean the substructure of A which comprises of the elements of s̄.

Proposition 4.12. Let A be a countable canonically measurable relational struc-
ture endowed with a (finitely additive) probability measure µ : P (A) → [0, 1]. Let
φ(x0, ..., xr−1, y) be a fat formula. Then

lim
n→∞

µn({s̄ ∈ nA : A|s̄ ⊭ (∀x0...∀xr−1)(∃y)φ}) = 0.

We note that if in addition µ is Aut(A)-invariant (or at least G-invariant for some
dense subgroup G of Aut(A)), then in many cases one can show that certain formulas
are fat. We postpone presenting related investigations for further papers.

Proof. For each ā ∈ rA let

Zā := {b ∈ A : A ⊨ ¬φ(ā, b)} = A− {b ∈ A : A ⊨ φ(ā, b)}.

Since φ is a fat formula, there exists ε > 0 such that µ(Zā) ≤ 1− ε for all ā.
Let n ∈ N so that r < n. For any i ∈ [n]r let

Xi := {s̄ ∈ nA : A ⊨ ¬(∃j ∈ n)φ(s̄|i, sj)}.

For each ā ∈ rA, we can look at the ā-section of Xi. Let’s use the notation

(Xi)ā := {s̄ ∈ n−iA : A ⊨ ¬(∃j ∈ (n− i))φ(ā, sj)}.

Clearly, (Xi)ā ⊂ n−iZā. We remark that n−iZā is a rectangle, thus it is µn−r-measurable
even without the condition of A being canonically measurable. Using the product
measure µn−r on (Xi)ā we get

µn−r((Xi)ā) ≤ µn−r(n−iZā)
2.20
= (µ(Zā))

n−r ≤ (1− ε)n−r.

Thus we have

µn(Xi) = (µr ∗ µn−r)(Xi) =

∫
Ar

∫
An−r

χXi
dµn−r dµr ≤

∫
Ar

(1− ε)n−r dµr ≤ (1− ε)n−r.
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Let Yn := {s̄ ∈ nA : A|s̄ ⊭ ∀x0, ..∀xr−1∃yφ(x0, ..., xr−1, y)}. Then we have

Pn := µn(Yn) = µn(
⋃
i∈[n]r

Xi) ≤
∑
i∈[n]r

µn(Xi) ≤
(
n

r

)
(1− ε)n−r.

Thus

0 ≤ lim
n→∞

Pn ≤ lim
n→∞

(
n

r

)
(1− ε)n−r ≤ lim

n→∞
nr(1− ε)n = 0.

Corollary 4.13. Let A be a countable canonically measurable relational structure en-
dowed with a (finitely additive) probability measure µ : P (A) → [0, 1]. Suppose A can
be axiomatized by a set Σ of ∀∃ formulas such that their quantifier free parts are fat.
Then A has the finite model property.

Proof. Let φ be a formula such that A |= φ. Then by the compactness theorem we
have a finite Σφ ⊂ Σ such that Σφ |= φ. For each ψ ∈ Σφ let its quantifier free part be
ψ′. The conditions of Proposition 4.12 are satisfied by ψ′, so it is true that

lim
n→∞

µn({s̄ ∈ nA : A|s̄ ⊭ ψ}) = 0.

Thus we have

lim
n→∞

µn({s̄ ∈ nA : A|s̄ ⊭ Σφ}) ≤
∑
ψ∈Σφ

lim
n→∞

µn({s̄ ∈ nA : A|s̄ ⊭ ψ}) =
∑
ψ∈Σφ

0 = 0.

Essentially, this means that for large enough n most substructures A0 of A for which
|A0| = n, we have A |= Σφ. Thus φ remains true in some finite A0, therefore A has the
finite model property.
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