
Faster algorithms in isogeny based
cryptography

BSc Thesis

Made by:

Tot Bagi Márton
Mathematics BSc

Advisor:

Kutas Péter

ELTE Faculty of Informatics,

Department of Computer Algebra

Eötvös Loránd University

Faculty of Science

2025

Acknowledgements

I would like to thank Kutas Péter, who has been my supervisor for the past three years. He

provided me with numerous opportunities and helped me overcome any administrative

obstacles that came up. He always explained complex and deep concepts in elegant ways,

enabling me to grab the essence of those ideas.

I would also like to thank Réka, who was always ready to provide support when needed.

Without her I wouldn’t have started writing this thesis until the week before the

submission deadline.

1

Contents

1 Introduction 3

2 Elliptic curves 3

2.1 Group law . 4

2.2 Isogenies . 6

2.3 The endomorphism ring . 10

2.4 Elliptic curves over Finite fields . 11

3 Isogeny-based cryptography 13

3.1 Cryptographic group actions . 13

3.2 Evaluating isogenies . 15

4 PEARL-SCALLOP 16

4.1 My contributions . 18

4.1.1 Fewer multiplications . 20

4.1.2 More efficient multiplication . 21

4.1.3 Faster square root . 25

5 Other algorithmic improvements 26

5.1 Finding the order of a group element . 26

5.2 Division fields . 29

5.2.1 A faster algorithm . 29

5.2.2 Prime powers . 31

5.2.3 Composite numbers . 32

2

1 Introduction

Cryptography is the practice of secure communication via insecure channels, integral to

everyday Internet use, from online banking to social media. The security of cryptographic

schemes relies on the hardness of specific algorithmic problems. Currently deployed schemes

are based on problems that are believed to be hard for classical algorithms, such as factoring

or the discrete logarithm problem. However, these may become vulnerable with the advent

of large-scale quantum computers. This danger is not imminent, there is at least 10-15 years

until this will pose a threat, but nonetheless it is important to build schemes, which are

based on problems that cannot be solved even with a quantum computer.

Post-quantum cryptography aims to solve exactly this. One of the promising avenues to

post-quantum schemes is isogeny based cryptography, which was first introduced in [8]

The first half of this thesis aims to introduce the necessary theoretical knowledge of

elliptic curves, isogenies (Section 2), and cryptographic group actions (Section 3). The

second half contains the optimizations I implemented in the PEARL-SCALLOP schemes

precomputation (Section 4), and other algorithmic improvements which I have worked on

since then (Section 5).

2 Elliptic curves

Definition 2.1. An elliptic curve E defined over a field K (denoted by E/K) is the locus

in P2(K) of an equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with ai ∈ K, given the locus is nonsingular as a curve and where K is the closure of K and

P2 is the projective plane.

The above equation has only one solution with Z = 0, this is O = (0 : 1 : 0) the point at

infinity. Because of this, we can substitute x = X/Z and y = Y/Z to get an affine equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

3

with the extra point O. This equation is called a long Weierstrass equation.

If E/K is an elliptic curve and K ⊆ N is another field, we denote the set of points defined

over N (called the N -rational points) with E(N) = {(x, y) ∈ E | x, y ∈ N} ∪ {O}.

If char(K) ̸= 2, 3, then every elliptic curve admits a short Weierstrass equation

y2 = x3 + ax+ b

Since in isogeny based cryptography we are working in finite fields with large characteristic,

from now on we will use these short Weierstrass equations.

Definition 2.2. The discriminant of the Weierstrass equation is ∆ = −16(4a3+27b2). The

j-invariant of the elliptic curve is j(E) = −1728 (4a)3

∆

The j-invariant is called as such, because isomorphisms preserve it. Not only that, but

two elliptic curves are isomorphic if and only if their j-invariant is the same.

The discriminant is useful for checking nonsingularity. A curve is singular ⇐⇒ ∆ = 0.

The definition at the beginning of this section is not completely precise. In reality an

elliptic curve is an (E,O) pair, where E a smooth projective curve of genus 1, and O a

distinguished point on E. However, one can show that any such curve is isomorphic to the

locus of a Weierstrass equation, which also sends O to (0 : 1 : 0) [15, Chapter III.3].

2.1 Group law

Elliptic curves have additional structure: one can define a group action on it’s points, re-

quiring that every 3 points on a line sum to 0. Because of Bézout’s theorem, every line will

intersect the curve in exactly 3 points. The 0 of our group will be the point at infinity.

If we have a point P = (x, y) on the curve, it’s easy to see that the point Q = (x,−y)

will also be on the curve. Moreover, the third point on the curve collinear with P and Q is

O, which implies that Q = −P . Now we will define the + operation properly:

Definition 2.3. Let E : y2 = x3 + ax + b be an elliptic curve and let P1 = (x1, y1) and

P2 = (x2, y2) be two points on E, (P1 ̸= O ≠ P2). Then:

4

• P +O = P = O + P for every P ∈ E

• If x1 = x2 and y1 = −y2, then P1 + P2 = O

• Otherwise let

λ =

y2−y1
x2−x1

if P1 ̸= P2

3x2
1+a

2y1
if P1 = P2

then P1 + P2 = (x3, y3) is defined by

x3 = λ2 − x1 − x2

y3 = −λx3 − y1 + λx1

[13]

Theorem 2.4. An elliptic curve E with the + operation defines an Abelian group

Proof. One can verify that this addition rule geometrically means that we get P+Q by taking

the third intersection of the line of P and Q with the curve, then taking the intersection of

the curve and the vertical line through this third intersection.

From this it’s obvious that if P,Q,R are collinear points on the curve, then (P+Q)+R =

O.

From the geometric interpretation, it is also clear, that this operation is commutative, a

line through P and Q is the same as the line through Q and P .

The existence of a 0 element, and the existence of −P is evident from our definition.

What is left to show is the associativity, whose proof is too long for this thesis. For the long

proof see [20, Section 2.4], for an involved one see [15, Chapter III, Proposition 3.4e].

We will denote the m-th multiple of a point P with [m]P . The m-torsion subgroup of E

is the set of points whose order divides m, which will be denoted by E[m]. For any field K

over which E is defined the set of K-rational points, E(K) is also a subgroup.

Proposition 2.5. Let E be an elliptic curve, and let m ̸= 0 be an integer. E[m] has the

following structure

5

• E[m] ≃ (Z/mZ)2 if the characteristic of k does not divide m

• If p > 0 is the characteristic of k, then

E[pi] ≃

Z/piZ for any i ≥ 0, or

{O} for any i ≥ 0

Proof. See [15, Coro. 6.4]

2.2 Isogenies

This section will mostly follow Chapter III, Section 4 and 6 of [15], with some additions from

previous chapters as some concepts defined in them will be needed here.

We want to look at maps between elliptic curves, which preserve both part of the curves:

the projective variety, and the group.

Definition 2.6. Let E,E ′ be two elliptic curves. An isogeny ϕ : E → E ′ is a non-constant

algebraic map of projective varieties sending the point at infinity of E onto the point at

infinity of E ′.

Theorem 2.7. Let E,E ′ be elliptic curves defined over a field K and let ϕ : E → E ′ be an

isogeny between them. Then:

• ϕ is a group morphism

• ϕ has finite kernel

• If K is algebraically closed, ϕ is surjective

If we have two isogenies ϕ and ψ, we can define their sum:

(ϕ+ ψ) : E → E ′

P 7→ ϕ(P) + ψ(P)

Therefore, if we add the constant map, which sends every point to O, to the set of isogenies

between E and E ′, we get a group, which we will denote by Hom(E,E ′). Moreover, because

6

the composition of isogenies is again an isogeny, the set of endomorphisms of the curve E

(isogenies from the curve to itself) forms a ring, which we will denote by End(E).

From multiplication with integers, we can create isogenies (endomorphisms):

[m] : E → E

P 7→ [m]P

We will now define the degree of an isogeny, but before that it is neccessary to introduce

function fields.

Definition 2.8. Let E/K be an elliptic curve. It’s ideal, denoted by I(E/K) is the set of

polynomials in K[x, y] which vanish on every point of the curve.

The coordinate ring of E/K is K[E] = K[x,y]
I(E/K)

.

The function field of E/K is the quotient field of K[E], denoted by K(E).

Remark 2.9. Because the curve is a variety, K[E] will always be an integral domain, hence

it makes sense to talk about the quotient field of K[E].

Now if we have an isogeny ϕ : E1 → E2, it induces an injection in the other way between

the function fields: ϕ∗ : K(E2) → K(E1), ϕ
∗(f) = f ◦ ϕ. Using this, we can now define the

degree of an isogeny.

Definition 2.10. Let ϕ : E → E ′ be an isogeny. It’s degree, deg ϕ, is equal to [K(E) :

ϕ∗(K(E ′))], the extension degree of the function fields. An isogeny is said to be separable,

inseparable or purely inseparable if the extension of function fields is.

Proposition 2.11. For isogenies, this extension of function fields is always finite

We have a nice formula for the degree of composed isogenies:

deg(ϕ ◦ ψ) = deg(ϕ) · deg(ψ)

Most of the time, we will work with separable isogenies, whose degree equals the size of

their kernel.

If m ̸= 0, then the isogeny [m] has the kernel E[m]. The degree of [m] equals m2 (if

p ∤ m).

7

Theorem 2.12. Let

ϕ : E1 → E2 and ψ : E1 → E3

be nonconstant isogenies, and assume that ϕ is separable. If kerϕ ⊂ kerψ, then there is a

unique isogeny

λ : E2 → E3

such that ψ = λ ◦ ϕ

Notice how this theorem did not require from ψ to be separable.

There is one very important isogeny which we haven’t yet talked about, which we define

now.

Definition 2.13. Let E/K : y2 = x3 + ax + b be an elliptic curve defined over a field of

characteristic p > 0. Let q = pn. Then we call the map

ϕq((x, y)) = (xq, yq)

the q-th power Frobenius map, which is an isogeny between E and E(q) : y2 = x3 + aqx+ bq.

In particular, if K = Fps, and q = prs, then this map is an endomorphism, and we call

it the q-th power Frobenius endomorphism.

Propably the most important fact about the Frobenius map is the following.

Proposition 2.14. [15, Chapter II, 2.11] Let ϕq be the q-th power Frobenius map as previ-

ously. The ϕq is a purely inseparable isogeny, and deg ϕq = q.

Remark 2.15. It is easy to see, that if q = pn, then ϕq = ϕn
p = ϕp ◦ · · · ◦ ϕp

Proposition 2.16. [15, Chapter II, 2.12] Let E1, E2 be elliptic curves defined over a field

with finite characteristic. Let ψ : E1 → E2 be an isogeny. Then it can be factored as λ ◦ ϕq,

where q = degi(ψ), ϕq is the q-th power Frobenius, and λ is a separable isogeny.

Previously we said that we will mostly work with separable isogenies. We can do that,

because of this proposition, we can factor every inseparable isogeny into the composition

of a separable isogeny and the Frobenius map. From this it also follows, that every purely

inseparable isogeny is a q-th power Frobenius for some q.

8

Theorem 2.17. Let E be an elliptic curve and let G be a finite subgroup of E. Then there

exists a unique (up to isomorphism) elliptic curve E ′ and a unique (up to composition with

isomorphism) separable isogeny ϕ, such that ϕ : E → E ′ and kerϕ = G.

Definition 2.18. An isogeny ϕ is cyclic, if kerϕ is a cyclic group.

Another really important property of isogenies is the existence of the dual isogeny.

Theorem 2.19. Let ϕ : E1 → E2 be an isogeny. There exists a unique isogeny ϕ̂ : E2 → E1

which together with ϕ satisfies ϕ̂ ◦ ϕ = [m] on E1 and ϕ ◦ ϕ̂ = [m] on E2.

Theorem 2.20. [15, Chapter III, Theorem 6.2.] Let ϕ, ψ : E1 → E2 be an isogeny, and let

ϕ̂ be it’s dual. Let λ : E2 → E3 be another isogeny. The dual isogenies have the following

properties:

1. λ̂ ◦ ϕ = ϕ̂ ◦ λ̂

2. ϕ̂+ ψ = ϕ̂+ ψ̂

3. ∀m ∈ Z [̂m] = [m]

4. deg ϕ̂ = deg ϕ

5.
ˆ̂
ϕ = ϕ

Proof. 1. Using the fact, that the composition of isogenies is associative and that

∀m ∈ Z : [m] commutes with any isogeny we can see that

(ϕ̂ ◦ λ̂) ◦ (λ ◦ ϕ) = ϕ̂ ◦ [deg λ] ◦ ϕ = [deg λ] ◦ ϕ̂ ◦ ϕ = [deg λ · deg ϕ] = [deg(λ ◦ ϕ)]

From the above equation and the fact that the dual isogeny is unique, it follows that

λ̂ ◦ ϕ = ϕ̂ ◦ λ̂

2. The proof of this involves divisors, which we won’t introduce here, see [15, Chapter

III, Theorem 6.2]

9

3. From the definition, it’s clear that [̂m] ◦ [m] = [deg([m])] = [m2]. Now it’s clear that

[m]◦ [m] = [m2], and from the uniqueness of the dual isogeny, it follows that [m] = [̂m].

4. deg ϕ̂ · deg ϕ = deg(ϕ̂ ◦ ϕ) = deg([deg ϕ]) = (deg ϕ)2 =⇒ deg ϕ̂ = deg ϕ

5. Using part 1 and 4 of the theorem, we can see that

ϕ̂ ◦ ϕ = [deg ϕ] = [̂deg ϕ] = ̂̂ϕ ◦ ϕ = ϕ̂ ◦ ˆ̂ϕ

And again from the uniqueness we see that ϕ =
ˆ̂
ϕ

2.3 The endomorphism ring

Definition 2.21. Let d < 0 be an integer. Q(
√
d) is called an imaginary quadratic field.

Definition 2.22. A quaternion algebra is an algebra of the form

K = Q+Qα +Qβ +Qαβ

where α and β satisfies 0 > α2, β2 ∈ Q and αβ = −βα

There is one specific quaternion algebra in which we are interested in: the quaternion

algebra which ramifies at p (a specific prime) and at ∞. For every prime p there is up to

isomorphism 1 unique quaternion algebra satisfying this. We will denote it by Bp,∞.

Definition 2.23. Let K be a Q-algebra that is finitely generated over Q. An order R of K

is a subring that is also a finitely generated Z-module, which satisfies R⊗Q.

Theorem 2.24. Let E be an elliptic curve defined over a field K of characteristic p. The

ring End(E) is isomorphic to one of the following:

• Z;

• An order O in a quadratic imaginary field. In this case we say E has complex multi-

plication by O;

• Only if p > 0, a maximal order O in Bp,∞. In this case we say that E has quaternionic

multiplication by O.

10

2.4 Elliptic curves over Finite fields

While so far we have talked about elliptic curves over a general field, now we will focus our

attention to finite fields. From now on p will always denote the (positive) characteristic of

our field, and we will denote the finite field with q = pn elements by either Fq or Fpn . We

will denote the closure of Fq by Fq.

One question which arises while working with elliptic curve over finite fields, is that if

a curve E is defined over Fq, how many Fq-rational points are there? We will denote this

number by #E(Fq).

First we show that the number of rational points is ”roughly” q.

Theorem 2.25. (Hasse) Let E/Fq be an elliptic curve. Then

|q + 1−#E(Fq)| ≤ 2
√
q

The first question that might arise in someone is: where does this number, q+1−#E(Fq),

come from? To answer this, we have to back away a bit.

Because in finite fields x ∈ Fq ⇐⇒ xq = x, a point P ∈ E is Fq rational if and only if

πq(P) = P . This means that ker(πq − 1) is exactly the group of Fq rational points.

As it turns out the endomorphism πq−1 is a separable endomorphism, so #ker(πq−1) =

deg(πq − 1). To prove this, one has to introduce invariant differentials, which is out of scope

for this work, but one can read about them in [15, III.5].

Now what is deg(πq − 1)? As we have seen previously,

[deg(πq − 1)] = (πq − 1) ◦ ̂(πq − 1)

and using the properties of the dual isogeny

[deg(πq − 1)] = (πq − 1) ◦ (π̂q − 1) = [q] + 1− (πq + π̂q)

Now rearranging the terms, we get that

πq + π̂q = [q] + 1− [deg(πq − 1)]

11

What we have shown that πq + π̂q = [t] for some t ∈ Z. From this it also follows, that the

Frobenius endomorphism satisfies the quadratic equation

x2 − tx+ q = 0

While we have not mentioned this yet, the degree map on the endomorphism ring is a positive

definite quadratic form (see [15, III.6.3]

Proposition 2.26. [15, V.1.2] Let A be an abelian group and let

d : A→ Z

be a positive definite quadratic form. Then

|d(ψ − ϕ)− d(ϕ)− d(ψ)| ≤ 2
√
d(ϕ)d(ψ)

for all ϕ, ψ ∈ A.

Proof. See [15, V.1.2]

Now we can prove Hasse’s theorem

Proof. As we have seen above, we need to prove, that | deg(πq − 1) − q − 1| ≤ 2
√
q. But

because q = deg(πq) and 1 = deg(1) this is exactly the Cauchy-Schwarz inequality above.

Now we will define supersingular elliptic curves. In isogeny based cryptography most

of the schemes are based on them. They are useful for many reasons, we will list some of

them. The first and most important reason is that given an equation for a supersingular

elliptic curve, it is hard to calculate it’s endomorphism ring, and this is equivalent with

finding an isogeny between two supersingular curves [21], which is the hard problem on

which most of the schemes are based on. The second reason is that a lot of schemes need

curves with ”smooth” cardinality, that is a cardinality whose prime divisors are ”small” for

some meaning of small. Supersingular curves’ cardinality and group structure are known, and

we can generate supersingular curves with smooth cardinality. The third reason is that every

supersingular curves’ j-invariant is defined over Fp2 , which means that it is computationally

much easier to manage them.

12

Definition 2.27. Let E/Fq be an elliptic curve. The curve is supersingular, if E[pi] = {O},

for any (every) i.

Curves not supersingular are called ordinary.

Now we will give other equivalent characterisations of supersingular curves.

Proposition 2.28. An elliptic curve E defined over Fq is supersingular if and only if one

of the following holds:

• The trace of it’s Frobenius endomorphism is divisible by p

• End(E) is an order in a quaternion algebra

Proposition 2.29. Let E be a supersingular elliptic curve. Then

• j(E) ∈ Fp2,

• There exists an isomorphism from E to a curve E ′/Fp2 with the trace of the Frobenius

endomorphism equal to −2p

[13, Proposition 87]

Proposition 2.30. Let E be a supersingular elliptic curve over Fp2. Then if the trace of the

p2-Frobenius is −2p on E, then πp2(P) = −p · P for every P point on E.

Proof. If t = −2p, then the minimal polynomial of the Frobenius is x2+2px+ p2 = (x+ p)2,

which means that (πp2 + p)2(P) = O =⇒ (πp2 + p)(P) = O, that is πp2 = −p.

These two propositions mean, that when working with supersingular curves one can

always assume that the p2-Frobenius is just multiplication by −p.

3 Isogeny-based cryptography

3.1 Cryptographic group actions

Before we talk about concrete isogeny based cryptographic constructions, it is useful to talk

about cryptographic group actions. It’s an abstraction which can be used to decompose the

13

process of creating and understanding many isogeny based schemes into two steps: The first

step is to show, that a group action with certain properties can be used to build a primitive,

and the second is to show that a certain group action in isogenies satisfies those properties,

hence can be used to create that primitive.

Definition 3.1. A group G acts on the set X, if there is a map ⋆ : G × X → X which

satisfies to following:

• If e is the identity element of G, then e ⋆ x = x ∀x ∈ X

• ∀g, h ∈ G and ∀x ∈ X g ⋆ (h ⋆ x) = gh ⋆ x

We denote the group action by (G,X, ⋆)

Definition 3.2. A group action (G,X, ⋆) is a cryptographic group action, if G and X is

finite, G is commutative and there exists efficient algorithms for the following:

• Membership testing: Given a string g, decide whether g represents an element from G

• Equality testing: Given g1, g2 ∈ G decide whether g1 = g2

• Group operations: Given g1, g2 ∈ G calculate g−1
1 , g1g2

• Sampling: Find a random element in G with uniform probability

• Membership testing: Given a string x, decide whether it represents an element from X

• Equality testing: Given x1, x2 ∈ X, decide whether x1 = x2

• Action: Given g ∈ G and x ∈ X compute g ⋆ x

and the following problem is hard:

Given x1, x2 ∈ X find g ∈ G, such that g ⋆ x1 = x2. (In groups this problem is called the

Discrete Logarithm Problem (DLP))

Remark 3.3. While we have not required to be able to sample from X uniformly, that’s

because we can just fix an element x0 ∈ X, then get a random element by applying a random

g ∈ G to it.

14

The Diffie-Hellman key exchange was defined for groups, but it is easy to see, that it

works exactly the same way for group actions.

Say Alice and Bob want to exchange keys. They can follow the protocol below:

1. Alice chooses a random element x0 ∈ X and a random element g1 ∈ G. She computes

x1 = g1 ⋆ x0, and sends (x0, x1) to Bob.

2. Bob chooses a random element g2 ∈ G and computes x2 = g2 ⋆ x0. He sends x2 to

Alice. The secret key is K = g2 ⋆ x1.

3. Alice computes the secret key K = g2 ⋆ x1 = g1 ⋆ h2.

[8, Section 3]

Remark 3.4. Like the Diffie-Hellman based on groups, the version based on group actions

does not rely on the DLP or it’s group action version, but on a subtly different problem.

Given x0, x1, x2, where x1 = g⋆x0, compute g⋆x2. This is the Computational Diffie Hellman

problems (CDH) group action equivalent.

Remark 3.5. It is obvious that the CDH is easier than the DLP in both groups and group

actions (that is if one solves DLP one also solves CDH). However, from a cryptographic

perspective the other direction holds much interest, because the assumption is that DLP is

hard (for groups in the classical setting, for group actions even with quantum computers).

In the classical setting it is not known generally, whether solving the CDH for groups also

solves the DLP, however it is known for group actions that the CDH and DLP are quantum

equivalent [14].

3.2 Evaluating isogenies

So far we only talked about isogenies abstractly, but how can we store and evaluate them in

practice?

If we have a cyclic isogeny from the curve E, it corresponds to a cyclic subgroup G on

E. What we store is a generator P of G. We will shortly see Velu’s formula which we can

use to evaluate the isogeny using only P .

15

If our isogeny is non-cyclic, then we can write it as a composition of cyclic isogenies (and

possibly a composition with the Frobenius endomorphism).

Proposition 3.6. Vélu formulas [19] Let E : y2 = x3 + ax + b be an elliptic curve defined

over a field K and let G ⊂ E(K) be a finite subgroup. Denote with x(P), y(P) the x and

y coordinates of a point P . Let ϕ : E → E ′ be the unique (up to isomorphism) separable

isogeny with kernel G. Then

ϕ(P) =

x(P) + ∑
Q∈G\O

x(P +Q)− x(P), y(P) +
∑

Q∈G\O

y(P +Q)− y(P)

for every P ∈ E(K) \G. Moreover E ′ admits an equation y2 = x3 + a′x+ b′, where

a′ = a− 5
∑

Q∈G\O

(3x(Q)2 + a)

b′ = b− 7
∑

Q∈G\O

(5x(Q)3 + 3ax(Q) + 2b)

This gives us an algorithm to evaluate a separable isogeny in O(d) field operations,

where d is the degree of the isogeny. We can now see why we break down isogenies into

the composition of cyclis ones. If the degree of a separable isogeny is
∏s

i=1 p
αi
i , then we can

evaluate it in O(
∑s

i=1 αipi) steps instead of O(
∏s

i=1 p
αi
i).

There exists a variant of the formula which is called
√
elu. It can evaluate an isogeny

with prime degree l in O(
√
l) field operations [4]. This is not just a theoretical improvement

which is useless in practice because of a large hidden constant in the O, it becomes more

efficient than Vélu’s formula for l < 100.

4 PEARL-SCALLOP

As discussed before cryptographic group actions are a very close analogue of the pre-quantum

discrete logarithm problem and thus are an ideal setting to build certain advanced protocols.

The first truly efficient instantiation is CSIDH [7] where the class group of Z[
√
−p] acts on

the set of supersingular elliptic curves over Fp. This action has several subtleties. First

16

elements of the class group are ideal classes but representatives of the ideal class matter

from an algorithmic point of view. Namely, the norm of an ideal corresponds to the degree

of the corresponding isogeny and since p is of cryptographic size, a random representative

will not admit an efficient representation. The way this is handled in CSIDH is that one

only works with smooth norm ideals and conjecturally these span the entire class group.

This approach is sufficient for a key exchange but not sufficient for signatures where one

needs to sample random elements from an ideal class. The problem that arises is that p is

quite big an thus computing the class group for appropriate sizes is infeasible. This issue

was handled by CSi-FiSh [5] for the CSIDH-512 parameter set using a record class group

computation but that approach does not even scale to CSIDH-1024. There are other methods

to avoid this issue but knowing the order of the class group is actually highly important for

advanced applications such as threshold schemes [10].

A completely new approach to resolve this issue was proposed in SCALLOP [9] where

the acting group is still a class group but of a non-maximal order of large prime conductor

of a quadratic field with class number 1. Such class numbers can be computed using the

celebrated class number formula. However, computing the structure of the class group is a

bit more involved and that poses some scaling problems as well. Furthermore, these specific

issues pose both security and efficiency problems.

The aim of PEARL-SCALLOP is to design a variant of SCALLOP with the following

properties:

• Maximal order that has a medium size class number

• A conductor which is the product of a few large primes

• Efficient group action

One difficulty of SCALLOP variants versus CSIDH is that one has to transfer orientations

through the group action (as opposed to the canonical Frobenius) and PEARL-SCALLOP

achieves the most practical instantiation in that regard as the orientation is represented by

a 2k-degree isogeny. One practical problem in PEARL-SCALLOP is the generation of an

17

oriented curve which is part of parameter generation. This is known to be polynomial time

but naive methods can be too costly in practice. This where I contributed to the entire

project.

4.1 My contributions

As a part of the precomputation we needed the basis for a lot of torsion subgroups on the

curve E : y2 = x3 + x (from now on, E will always denote this curve). More precisely:

Problem 1. Given a prime p, and a lower bound T , select m1,m2, . . .ms prime powers,

such that p | mi, mi is not ”too large” and lcm(m1,m2, . . . ,ms) ≥ T , and for each mi find a

basis (Pi, Qi) of the torsion subgroup E[mi], where E : y2 = x3 + x over Fp.

These basis where later used to evaluate isogenies of order mi, hence why they cannot

be too large (in practice each mi < 100000).

The main reason that this part of the precomputation was the bottleneck, that to find these

torsion basis, it was necessary to do calculations over relatively large extensions of Fp2 .

Now let us see how one can find a torsion bases for a given mi.

First, we have to find the smallest extension Fp2k , for which E[mi] ⊆ E(Fp2k).

It is known [12, Theorem 2], that the group structure of

E(Fp2k) ≃ (Z/(pk − (−1)k)Z)2

This means that we only have to find the smallest k, for which mi | pk − (−1)k, and simply

incrementing k until this happens is fast enough for us.

I will now show the high level algorithm to find the torsion basis.

18

Algorithm 1 Finding the m-torsion basis in E(Fp2k)

function TorsionBasis(m, p, k)

while true do

P ← TorsionPoint(m, p, k)

Q← TorsionPoint(m, p, k)

if P,Q generate the torsion then

return (P,Q)

Algorithm 2 Finding a point of order m in E(Fp2k)

function TorsionPoint(m, p, k)

while true do

R← RandomPoint(p, k)

c← pk−(−1)k

m

P ← c ·R

if order of P is m then

return P

Algorithm 3 Generating a random point in E(Fp2k)

function RandomPoint(p, k)

while true do

x← Random(Fp2k)

z ← x3 + x

if
√
z ∈ Fp2k then

return (x,
√
z)

19

I will now describe those optimizations I implemented, which are also interesting from a

mathematical perspective.

After some testing, it turned out that by far the largest bottleneck in the torsion basis

finding is the single line P ← c · R in the torsion point finding. This single operation took

the majority of the time.

After looking closer, this makes sense: as m is really small (< 100000) and p is large log(p) ∼

2000, hence c ∼ pk. Then, multiplication by an integer c takes log(c) ∼ k · log(p) additions

and doublings on the curve over E(Fp2k). Even if we assume that a multiplication/division

in Fp2k takes 2k log(k) operations in Fp, overall we need at least 2k2 log(k) log(p) operations

in Fp.

There are two main ways to reduce the time taken up by these multiplications. The first

is to make the multiplications faster and the second is to make fewer multiplications. I’ll

start by explaining the latter.

4.1.1 Fewer multiplications

A naive idea would be to instead of finding torsion bases for m1,m2, . . .ms, what if we tried

to find a torsion bases for
∏s

i=1mi? Then from that it would be straightforward to calculate

the mi-torsion bases.

The main problem with this idea is that while one by one each of the mi-torsion may

be defined over relatively small extensions of Fp2 , the
∏s

i=1mi-torsion is only defined over a

huge extension, where it would be impossible to make computations.

However what we can do is to group together those mi-torsions, who are defined over the

same extension. As there is not many small prime powers whose torsion is defined over a

given extension, calculating them together takes roughly the same time as it would have a

single one.

By this optimalization it was possible to achieve a 2-5x speedup in each extension.

Another optimalization independent from the previous is the following:

20

We know the endomorphism ring of E, concretely we know the following two endomorphisms:

πp : (x, y) 7→ (xp, yp)

and

i : (x, y) 7→ (−x,
√
−1y)

Find a point P of order m. Then instead of finding another point the usual way check

whether πp(P) or i(P) forms a basis together with P . While I was not able to determine

the precise probability of this method working, in practice this did indeed work in most of

the cases.

This provided another roughly 2x speedup.

4.1.2 More efficient multiplication

The main fact that will be used to speed up the multiplication is that the p2-Frobenius on

E is equivalent to multiplication by −p

∀P ∈ E : πp2(P) = −p · P

This follows from Proposition 2.28, and the fact that Tr(πp2) = p2 + 1 − #E(Fp2) = p2 +

1− (p+ 1)2 = −2p.

Thus we can compute p · P much faster that the simple double and add algorithm, by

calculating −πp2(P) = (xp
2
,−yp2), where P = (x, y). However we can evaluate the Frobenius

endomorphism even faster, but for that we need to talk about how Fp2k is represented in

software. This is primarily done by taking an irreducible, degree 2k polynomial f ∈ Fp[x],

then representing elements of Fp2k by polynomials of degree less than 2k. The computations

are done mod (p), mod (f).

Now, instead of raising z ∈ Fp2k to the pth power we can calculate the polynomial

Fp[x] ∋ g ≡ xp mod (f) with just as many operations. Then whenever we need to calculate

zp for a z ∈ Fp2k , which is actually just the polynomial, we can calculate g(z) ≡ zp mod (f).

This can be done in O((2k)(1+ω)/2), where ω is the coefficient for the complexity of matrix

21

multiplication, meaning that we can multiply two n × n matrices in O(nω) operations [6].

While there are known algorithms with ω ≤ 2.5, we can just work with the naive ω = 3,

which makes the modular polynomial composition work in O(k2).

Moreover if we want to raise multiple field elements z1, z2, . . . zt to the power of pr, we

can first compute gr = g(g(g(. . .))), that is g composed r times with itself. Computing gr

can be done in O(log(r)) compositions. Then after calculating gr, we can compose it with

our elements gr(z1), gr(z2), . . . gr(zt).

Assume that we would calculate zp
2
for t different field elements during our precom-

putation. Then using the naive approach would take O(log(p2) · t) modular polynomial

multiplications which is O(log(p) ·M(k) · t) operations in Fp, where M(k) is the number of

operations needed to calculate f · g mod (h) for f, g, h ∈ Fp[x], with their degrees at most

k. For the range of k in our case this goes from the naive k2 to the FFT multiplication’s

k log(k).

Using modular composition instead, we need O(log(p)) polynomial multiplications and

t+1 modular compositions, resulting in an overall O(log(p) ·M(k)+ t · k2) operations in Fp,

which is much better than the naive approach.

Now that the amortized cost of evaluating −πp2(P) is near zero compared to computing

p · P naively, how can we utilize this?

We could try to write c · P as (
k−1∑
i=0

cip
i

)
· P =

k−1∑
i=0

ci(p
i · P)

compute pi · P efficiently, then calculating ci · piP using double and add (here
∑k−1

i=0 cip
i is

c written into base p). The problem with this approach is that in general ci is a ”random”

number between 0 and p, meaning that almost always log(ci) ∼ log(p), hence our overall

complexity is still k · log(p).

However there are two ways to make this idea work.

The first idea is to notice that c = pk−(−1)s

m
which is not a random number. Let us denote

22

by Φd the dth cyclotomic polynomial. If k = 2l is even, then

pk − (−1)k = pk − 1 =
∏
d|k

Φd(p)

and if k = 2l + 1 is odd, then

pk − (−1)k = pk + 1 =
∏
d|k

Φ2d(p)

as (pk + 1) · (pk − 1) = p2k − 1.

Let us assume for a moment that m is prime. Then it must divide Φd(p) if k is even and

Φ2d if k is odd for some d | k. But we also know which d this must be, because we know

that k is the smallest positive integer for which m | pk − (−1)k.

If k is odd, then Φ2d(p) | pd+1 = pd− (−1)d, hence the only factor which does not occur

for smaller extension degrees is Φ2k(p).

If k = 2l with l odd, then ∀d | l, Φ2d(p) | pl − (−1)l and Φd(p) | p2d − 1 = p2d − (−1)2d.

Hence the only factor, whose first occurrence is for k is Φl(p).

If 4 | k, then with a similar logic the only new factor will be Φk(p).

This means that for every k we can select an lk, such that m | Φlk(p) | pk − (−1)k. This

means that we can write c · P as

pk − (−1)k

m
· P =

Φlk(p)

m
· p

k − (−1)k

Φlk(p)
· P

with both terms being integers. This is great for us, because the second term pk−(−1)k

Φlk
(p)

has

small coefficients in base p (because it is the product of not too many cyclotomic polynomials

evaluated at p), which means that we can use the above described algorithm using the

Frobenius endomorphism to quickly compute pk−(−1)k

Φlk
(p)
·P . Then instead of needing k · log(p)

doublings and additions, we only need deg(Φlk) · log(p) doublings and additions.

At the start of this technique we restricted ourselves to m being a prime. What we do in

practice instead is to search from the start not divisors of pk − (−1)k but divisors of Φlk(p).

This does mean that we sometimes don’t pick prime powers which we otherwise could have,

but overall this is a great tradeoff.

23

The other technique we can use is multi-exponentiation (which in our case becomes

”multi-multiplication” as our group is denoted additively). Let

Φlk(p)

m
=

r∑
i=0

eip
i

and as before, we can compute pi ·P efficiently. Then we would need to compute
∑r

i=0 ei(p
i ·

P). This can be done efficiently using the 2ω-ary method for ω = 1 also called Shamir’s trick

[3]:

Algorithm 4 Shamir’s trick for multiexponentiation

function MultiExp(P1, . . . , Pr, e1, . . . , er)

for (x1, . . . xr) ∈ {0, 1}r do

Q[x1, . . . , xr]←
∑r

i=1 xi · Pi

l← max{⌈log(ei)⌉ | i = 1, 2, . . . , r}

R← O

for i = l, l − 1, . . . 0 do

R← 2 ·R

R← R +Q[ei1, e
i
2, . . . , e

i
r] (where eij is the ith bit of ej)

return R

This algorithm needs 2r additions on the curve in the precomputation phase and l dou-

blings and additions in the main phase. In our case l ∼ log(p) and r = deg(Φlk). However

this algorithm also needs to store 2r points, which did actually put an upper bound on

r in our case, because if k ≥ 100, then storing a single point means storing 2 2k degree

polynomials in Fp[x], which means storing 2k log(p) sized numbers requiring more than

4 · 100 · 2000 = 800000 bits = 100 Kilobytes of storage.

Because of this, we limited the multiexponentiation to only do 10 points at once. That is if

deg(Φlk) > 10, we split up P, p·P, . . . pdeg(Φlk
) ·P into chunks of 10, calculated

∑10t+9
i=10t ei(p

i ·P)

for each chunk, then summed them.

Overall (for large k) instead performing deg(Φlk) · log(p) ∼ deg(Φlk) · 2000 doublings and

additions, we performed
deg(Φlk

)

10
· (1024 + log(p)) ∼ deg(Φlk) · 300 doublings and additions

24

which is 6-7x factor.

4.1.3 Faster square root

After all these improvements to multiplication by an integer, it got fast enough for other

bottlenecks to appear: namely taking square roots in finite fields.

We needed square roots in two places:

• Embedding Fp2 = Fp[x]/(x
2 + 1) into Fp2k . For this we needed to find

√
p− 1 in Fp2k .

• Finding random points on the elliptic curve

For square root finding in finite fields, PARI/GP used the Tonelli-Shanks algorithm,

which works for any group. However it’s complexity depends on s = val2(p
2k−1), the 2-adic

valuation of the cardinality of F×
p2k

, which in our case was quite large. There are algorithms

specifically for square root finding in finite fields like [1] and [11]. The latter one is actually

superior over both the former and the Tonelli-Shanks algorithm. I implemented this in C

using the PARI/GP library. Later I also contributed this and it’s extension for tth root

finding to PARI.

The overall time reduction in the precomputation meant that the log(p) ∼ 2000 case had

roughly the same runtime as the log(p) ∼ 1000 had before my optimizations.

The code I contributed to the project can be found at https://github.com/mtotbagi/

SCALLOP-params/blob/main/starting-curve/ in the precompute parallel file and the c torsion

folder.

As a result of these contributions I became a co-author of the paper Faster SCALLOP

from Non-Prime Conductor Suborders in Medium Sized Quadratic Fields which got pub-

lished in the IACR International Conference on Public-Key Cryptography [2].

25

https://github.com/mtotbagi/SCALLOP-params/blob/main/starting-curve/
https://github.com/mtotbagi/SCALLOP-params/blob/main/starting-curve/

5 Other algorithmic improvements

5.1 Finding the order of a group element

Let G be a finite group of order n. Assume that we know the prime factorization of n ==∏s
i=1 p

αi
i with pi being distinct primes, e.g. because n is powersmooth.

It is important to be able to find the order of an element of the group efficiently. We first

define two problems:

Problem 2. Let g be an element in the group G. Find the o(g), the order of g in polynomial

of log(n) number of operations (assuming we know the factorization of n).

In the problem above, we don’t have anything information about the element g, which

we sometimes do have, hence the following problem:

Problem 3. Let g be an element in the group G, and let k ∈ Z>0 such that gk = 1. Assume

that we know the factorization of k. Find the o(g), the order of g in polynomial of log(k)

number of operations.

One can see that this is a generalization of the first problem, we always know that gn = 1,

so it is enough to provide an algorithm for this.

Let’s give an algorithm for a subset of this problem, when k is a prime power, k = pα.

This will be used in the general algorithm.

Well, as k is a prime power, there aren’t many options for k, namely 1, p, p2, . . . , pα.

It’s easy to see that the worst case is when o(g) = k, and that in this case the number of

group operations is O(α · log(p)) = O(log(k)).

Now we will see two algorithms to solve the problem generally, both based on a similar

principle.

Let k =
∏s

i=1 p
αi
i and gk = 1. Let ci =

k
p
αi
i

. Using the previous algorithm we can calculate

o(gci) = pβi

i , with 0 ≤ βi ≤ αi. Then we know that gcip
βi
i = (gci)p

βi
i = 1, so

o(g) | cipβi

i =⇒ o(g) | gcd{cipβi

i | i = 1, 2, . . . s} =
s∏

i=1

pβi

i

26

Algorithm 5 Finding the order of an element in the easy case

function EasyOrder(g, p, α)

c← 0

h← g

while c < α do

if h = 1 then

break

h← hp

c← c+ 1

return pc

It is also easy to see, that g
∏s

i=1 p
βi
i = 1, hence o(g) =

∏s
i=1 p

βi

i .

From this we can construct the algorithm which was also used in the PARI/GP computer

algebra software [16].

Algorithm 6 General algorithm for finding the order of an element

function GenOrder(g, k =
∏s

i=1 p
αi
i)

o← k

h← g

for i← 1..s do

c← o/pαi
i

h← gc

t← EasyOrder(h, pi, αi)

o← c · t

return o

How many group operations does this algorithm use? Well, as in the easier case, the

worst case is when o(g) = k. Then in the ith iteration, the algorithm performs O(αi log(pi)+

log(k/pαi
i)) = O(log(k)). As we have s number of iterations (which is the number of distinct

prime divisors of k), the overall complexity is O(s log(k)).

We can also notice, that we only need to store O(1) number of group elements at once.

27

However we can achieve better time performance than O(s log(k)). I will now present my

alternative algorithm for computing the order of an element. The main idea is, that instead

of iterating through each possible prime divisor of the order of g, we can instead split them

into two, then recursively calculate the order for the first and second halves.

Algorithm 7 Recursive algorithm for finding the order of an element

function RecOrder(g, k =
∏s

i=1 p
αi
i)

if s = 1 then

return EasyOrder(g, p1, α1)

c←
∏s

i=⌊s/2⌋+1 p
αi
i

h← gc

o1 ← RecOrder(h, k/c =
∏⌊s/2⌋

i=1 pαi
i)

h← go1

o2 ← RecOrder(h, o1 =
∏s

i=⌊s/2⌋+1 p
βi

i)

return o1 · o2

We can see that the depth of the recursivity will be ⌈log(s)⌉ and the number of distinct

prime divisors at the ith depth level will be ⌈ s
2i
⌉. Using this, we can calculate the number

of group operations used in the algorithm (in the worst case).

At the last depth level, when s = 1, as we have already seen there will be O(log(pαi
i))

operations in one function call, overall O(log(k)). At other depth levels we cannot give a

nice formula for the number of operations in one function call. However, we can see that

overall in a fixed depth level there will be overall O(log(k)) + the recursive calls.

This means that overall there will be O(log(s) log(k)) group operations. This gives us

an improvement from the previous algorithm, which needed O(s log(k)) operations. In some

use cases this is a really significant improvement e.g when s = 50, this results in a 12x faster

algorithm.

There is one small downside of my algorithm, which is that it does need to store O(log(s))

group elements. However in practice this should not mean a problem, even if k ∼ 2100000

s < 10000 meaning log(s) ≤ 14, which can be handled easily.

28

5.2 Division fields

Definition 5.1. The m-division field of an elliptic curve E : y2 = x3 + ax+ b over a finite

field Fq is the smallest extension of Fq over which the m-torsion is rational.

Problem 4. Let E : y2 = x3+ ax+ b be an elliptic curve over Fq. Find the extension degree

of the m-division field.

In Section 4.1, we solved this problem with a naive approach, which also utilized that we

know the group structure of supersingular curves. In this section we will introduce a better

one, which also works for ordinary curves.

One algorithm is to take the mth division polynomial φm, whose roots are the x-

coordinates of the m-torsion points, and find the splitting field of it over Fq, lets say that it is

Fqk . Then every x-coordinate of m-torsion points is defined over Fqk , and every y-coordinate

can be written as
√
x3 + ax+ b, which is either in Fqk or in Fq2k . It can also be proven

[18, Lemma 4.4], that it is enough to check whether a single y-coordinate (of a point of full

order m) is in Fqk and if it is, then the whole torsion is defined over Fqk .

This is the algorithm implemented in SageMath [17]. However creating the splitting field

and checking whether an y-coordinate is defined over it is quite slow even for n > 100.

5.2.1 A faster algorithm

We will now explain algorithm 1 from [18], which works for primes. Then we will show

our algorithm which works for any odd prime power, consequently also working for any odd

number.

First, the case m = 2 is a special case. If P = (x0, y0) and 2P = O, then P = −P =⇒

y0 = 0 =⇒ x0 is a root of the polynomial x3 + ax + b. Thus the 2-division field is the

splitting field of x3 + ax+ b.

From now on let m denote an odd prime (m ̸= p). As before, we denote the Frobenius

endomorphism by πq and we will denote πq|E[m] = φq. Now consider that πn
q = πqn and that

if πqn(P) = P then P ∈ E(Fqn). These two facts imply that the order of φq = the degree

29

of the m-division field. Here the order of φq (from now on denoted by o(φq)) is meant as a

group homomorphism acting on E[m]. This means that it is enough to find o(φq)

By choosing a base of E[m] P,Q, we can map φq to a matrix M ∈ GL2(Fm). Their

minimal polynomial of the Frobenius endomorphism modulo (m) (which is f(x) = x2−tx+q,

where t = q+1−#E(Fq)) will be equal to the minimal polynomial ofM , and o(φq) = o(M).

Over Fm there is an M ′ matrix in Jordan-normal form which is similar to M , M ∼ M ′.

We also know that o(M) = o(M ′), and their minimal polynomial is also equal. The diagonal

elements of M ′ are the roots of the minimal polynomial. Using this, we can (in most cases)

determine o(M ′) = o(M) = o(φq).

We can create 3 cases based on the roots of the minimal polynomial:

• If the roots of f are α ̸= β ∈ Fm, then M
′ is simplyα 0

0 β

and o(M ′) = lcm(o(α), o(β)).

• If the roots are not in Fm, then they are α and αm ∈ Fm2 , and o(M ′) = lcm(o(α), o(αn)) =

o(α).

• The last case is when there is a single root α ∈ Fm with multiplicity 2. This is the

hardest case, as M ′ can now have two forms:α 0

0 α

 α 1

0 α

In the first case o(M ′) = o(α) and in the second case o(M ′) = m · o(α). This follows

from the fact that m is the smallest positive integer for whichM ′m is a diagonal matrix

and o(α) = o(αm).

How can we decide between the two cases?

We can use the division polynomial. Let d = o(α). If the mth division polynomial

splits into linear factors over Fqd , then we know that the m-division field is either Fqd

30

or Fq2d . But we also know that the m-division field must be either Fqd or Fqmd and we

also know that m ̸= 2, hence the m-division field must be Fqd .

If the mth division polynomial does not split over Fqd the the m-division field must be

Fqmd .

Notice that algorithm 1 in [18] starts with calculating #E(Fq). But this is unnecessary,

we only need to determine the trace of the Frobenius mod (m), which is one of the steps

in Schoof’s algorithm to determine #E(Fq). So instead we can just use that substep from

Schoof’s algorithm which will be much faster then computing the whole cardinality.

5.2.2 Prime powers

Now let 1 < k ∈ Z and we want to find the mk-division fields extension degree, assuming

that the mk−1 is rational over Fq (if it isn’t, we can use this algorithm recursively). Our

main tool again will be the Frobenius endomorphism restricted to E[mk].

We want to find o(πq|E[mk]). Let P,Q be a basis for E[mk]. Then o(πq|E[mk]) is the

smallest j for which πj
q(P) = πj

q(Q) = O. Now using the fact that the mk−1 torsion is

rational:

m · πq(P) = πq(m · P) = m · P

m · (πq(P)− P) = O

Thus we can write πq(P) = P + P ′, where P ′ is an m-torsion point. From this

πs
q(P) = πs−1

q (P + P ′) = · · · = P + s · P ′

What we got is that o(πq|E[mk]) is either 1 or m. Notice that so far this is all theory, no

calculations were needed for this. To actually decide whether the m-division field degree is 1

or m we can again use the division polynomial in the same way we used it when the minimal

polynomial had a single root.

31

5.2.3 Composite numbers

Now to find the n-division field degree for an odd composite number n (p ∤ n), we first

need to factor it. We can easily do this, as next to the following steps the cost of this is

insignificant.

Let n =
∏s

i=1 p
αi
i . Calculate the pαi

i for each i, let the result of it be di. Then the

n-division field degree is lcm{di | i = 1, 2, . . . s}.

32

References

[1] Gora Adj and Francisco Rodŕıguez-Henŕıquez, Square root computation over even extension fields, IEEE

Transactions on Computers 63 (2013), no. 11, 2829–2841.

[2] Bill Allombert, Jean-François Biasse, Jonathan Komada Eriksen, Péter Kutas, Chris Leonardi, Aurel

Page, Renate Scheidler, and Márton Tot Bagi, Faster scallop from non-prime conductor suborders in

medium sized quadratic fields, Iacr international conference on public-key cryptography, 2025, pp. 333–

363.

[3] Vidal Attias, Luigi Vigneri, and Vassil Dimitrov, Rethinking modular multi-exponentiation in real-world

applications, Journal of Cryptographic Engineering 13 (2023), no. 1, 57–70.

[4] Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith, Faster computation of isogenies

of large prime degree, Open Book Series 4 (2020), no. 1, 39–55.

[5] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren, Csi-fish: efficient isogeny based signatures

through class group computations, International conference on the theory and application of cryptology

and information security, 2019, pp. 227–247.

[6] Richard P Brent and Hsiang T Kung, Fast algorithms for manipulating formal power series, Journal of

the ACM (JACM) 25 (1978), no. 4, 581–595.

[7] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes, Csidh: an efficient

post-quantum commutative group action, Advances in cryptology–asiacrypt 2018: 24th international

conference on the theory and application of cryptology and information security, brisbane, qld, australia,

december 2–6, 2018, proceedings, part iii 24, 2018, pp. 395–427.

[8] Jean-Marc Couveignes, Hard homogeneous spaces, 2006. https://eprint.iacr.org/2006/291.

[9] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz, Lorenz Panny,

and Benjamin Wesolowski, SCALLOP: scaling the CSI-FiSh, PKC (2023).

[10] Luca De Feo and Michael Meyer, Threshold schemes from isogeny assumptions, Iacr international con-

ference on public-key cryptography, 2020, pp. 187–212.

[11] Javad Doliskani and Éric Schost, Taking roots over high extensions of finite fields, Mathematics of

Computation 83 (2014), no. 285, 435–446.

[12] Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia Veroni, Deuring for the peo-

ple: Supersingular elliptic curves with prescribed endomorphism ring in general characteristic., IACR

Cryptol. ePrint Arch. 2023 (2023), 106.

33

https://eprint.iacr.org/2006/291

[13] Luca De Feo, Mathematics of isogeny based cryptography, ArXiv abs/1711.04062 (2017).

[14] Steven Galbraith, Yi-Fu Lai, and Hart Montgomery, A simpler and more efficient reduction of dlog to

cdh for abelian group actions, Iacr international conference on public-key cryptography, 2024, pp. 36–60.

[15] Joseph H Silverman, The arithmetic of elliptic curves, Vol. 106, Springer, 2009.

[16] PARI/GP version 2.15.4, The PARI Group, Univ. Bordeaux, 2023. available from http://pari.math.

u-bordeaux.fr/.

[17] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 10.3), 2024.

https://www.sagemath.org.

[18] A van Tuyl, The field of n-torsion points of an elliptic curve over a finite field, Ph.D. Thesis, 1997.

[19] Jacques Vélu, Isogénies entre courbes elliptiques, CR Acad. Sci. Paris, Séries A 273 (1971), 305–347.

[20] Lawrence C Washington, Elliptic curves: number theory and cryptography, Chapman and Hall/CRC,

2008.

[21] Benjamin Wesolowski, The supersingular isogeny path and endomorphism ring problems are equivalent,

2021 ieee 62nd annual symposium on foundations of computer science (focs), 2022, pp. 1100–1111.

I, Tot Bagi Márton, declare I have not used AI based tools while working on my thesis.

34

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

	Introduction
	Elliptic curves
	Group law
	Isogenies
	The endomorphism ring
	Elliptic curves over Finite fields

	Isogeny-based cryptography
	Cryptographic group actions
	Evaluating isogenies

	PEARL-SCALLOP
	My contributions
	Fewer multiplications
	More efficient multiplication
	Faster square root

	Other algorithmic improvements
	Finding the order of a group element
	Division fields
	A faster algorithm
	Prime powers
	Composite numbers

