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Chapter 1

Introduction

Lapidus and Van Frankenhuijsen [12] presented a theory of fractal strings set in R which

we will partially discuss in Chapter 2. The concepts introduced by them most naturally

generalize to metric spaces that are topological groups as well. According to a theorem

by Birkhoff and Kakutani, a topological group G is metrizable if, and only if, G is

Hausdorff, and the identity element has a countable neighbourhood basis. Moreover, if G

is metrizable, G gives a compatible metric d, which is left-invariant: d(xy, xz) = d(y, z).

A Polish group is a topological group where G as a topological space is Polish1. It is

known that every separable metrizable topological group can be embedded densely to a

Polish group. [9]

In this paper we will focus on the special case when the group in question is (Zp,+).

If we equip Z with the metric induced by |.|p (Equation 3.1), then the Polish group in

which it can be densely embedded is Zp. Since this is not merely a group but a ring, it

comes with a large family of spectral strings that arise from affine varieties.

Note that this family only exists over Zp. Over R these sets do not give rise to fractal

strings, except in dimension one, when they are trivial2.

In the present paper, we generalize the one-dimensional real fractal zeta function

introduced in [12] to the p-adic setting (ζV (I)(s)). First we will concentrate on affine

varieties for which we establish a number of interesting properties. In particular we show

1. the rationality of ζV (I)(s) (Theorem 3.3.1)

1A topological space is called Polish if it is separable and completely metrizable.
2Or we can say they do not exist even there, since there are only finitely many intervals that have to

be left out.
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2. that the abscissa of convergence of ζV (I)(s) coincides with the Minkowski dimension

generalized from the Minkowski dimension of fractal strings (Theorem 4.2.6)

3. a closed formula of ζV (I)(s) as a p-adic integral (Theorem 5.2.1).

We then show how these concepts generalize to the p-adic projective space.

A quick outline of this note is as follows. In Chapter 2 we review the theory of

fractal strings on the line and introduce the fractal zeta function. Then we illustrate

the correlation between a fractal string’s dimension and its zeta function’s abscissa of

convergence. After that in Chapter 3 we extend the definitions presented previously to

p-adic affine varieties such as fractal strings, and fractal zeta functions. We then prove

the rationality of said functions for the non-singular case. In Chapter 4 we compare

different definitions of dimensions on p-adic affine varieties, both algebraic and analytic.

We then go on by discussing the connections between ζV (I)(s) and Igusa’s local zeta

function, which enables us to give a closed formula for the p-adic fractal zeta function.

We end with transfering our results of affine fractal strings to projective varieties.



Chapter 2

The Geometric Zeta Function of a

Fractal String

The following definitions and statements, with their proofs, can be found in Lapidus and

Van Frankenhuijsen [12].

2.1 The zeta function of a fractal string

A fractal string is a bounded open set (Ω) of the real line, and as such, it consists of

countably many disjoint open intervals. Let us denote the complement of Ω with VΩ. A

fractal string may be represented by the lengths of these intervals which form a sequence:

L = l1, l2, l3, . . . . Without loss of generality we may assume that l1 ≥ l2 ≥ · · · > 0. It is

also known that the sum
∑∞

j=1 lj is finite and equal to the Lebesgue measure of Ω.

The generalized Dirichlet-series

ζL(s) =
∞∑
j=1

lsj

is the geometric zeta function of the fractal string L. Since ζL(s) converges in 1, it gives

a holomorphic function for Re s > 11.

The study of this function is motivated by the question the Polish-American mathe-

matician, Mark Kac asked: ”Can one hear the shape of a drum?”, i.e. can one recover

(up to isometry) a domain from its spectrum of the Dirichlet Laplacian over Ω:

1Recall that for a positive real number a, and s ∈ C, as = es log a.
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2.2. PROPERTIES OF A FRACTAL STRING’S ZETA FUNCTION 6

−∆u = λu in Ω

u = 0 on ∂Ω

This question lead to numerous studies dealing with the subject and although it has

been proved that there are non-isometric domains of Rn (n ≥ 4) that are isospectral, one

can recover much of its geometric properties by determening its spectrum. We may find

the spectrum by finding the fractal string’s spectral zeta function.

Every eigenvalue λ of the Dirichlet Laplaplacian gives a frequency f =
√
λ
π

of the

fractal string. And since the frequency of an interval of length l yields the frequencies

l−1, 2l−1, 3l−1, . . ., the frequencies of L are k · l−1
j , k ∈ Z+.

Definition 2.1.1. The spectral zeta function of L = {lj}∞j=1 is

ζν(s) =
∞∑

k,j=1

(k · l−1
j )−s

Since

ζν(s) =
∞∑

k,j=1

(k · l−1
j )−s =

∞∑
k,j=1

k−s · lsj =
∞∑
k=1

k−s ·
∞∑
j=1

lsj = ζ(s) · ζL(s)

(where ζ(s) is the Riemann zeta function), we may obtain the spectral zeta function by

finding the fractal zeta function of the fractal string, rendering it an interesting topic of

research.

2.2 Properties of a fractal string’s zeta function

The Minkowski dimension of the fractal string can be defined as the following:

DL = inf{α ≥ 0 : vol(ε) = O(ε1−α) as ε → 0+}

(which is the inner Minkowski dimension of ∂Ω), where vol(ε) is the volume of the outer

ε neighbourhood of VΩ:

vol(ε) = vol1{x ∈ Ω : d(x, ∂Ω) < ε}

The Minkowski dimension of the boundry of Ω gives important information about

the eigenvalues of the above mentioned Dirichlet Laplacian. The question may arise,
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why consider the Minkowski dimension instead of the more commonly known Hausdorff

dimenion. Although the two dimensions often agree (like in the case of similitudes)

the Hausdorff dimension takes into account the geometric representations of sets. The

Minkowski dimension observes the inner tubes of the boundry and is invariant to the

order and position of intervals, enabling us to calculate it without the knowledge of the

fractal string’s representation.

Definition 2.2.1. The abscissa of convergence for the fractal zeta function ζL(s) =∑∞
j=1 l

s
j is the following:

σL = inf{α ∈ R :
∞∑
j=1

lsj converges if Re s > α}

This is well defined since σL exists2 and ∀z, s ∈ C |zs| = |z|Re s, so if for α ∈ R
∑∞

j=1 l
α
j

converges, then based on the Weierstrass M-test and the fact that limj→∞ lj = 0 the series∑∞
j=1 l

s
j has to converge for any s ∈ C,Re s > α. [15]

An interesting fact is that the Minkowski dimension coincides with the abscissa of

convergence of a fractal string’s zeta function:

Theorem 2.2.2. [12]

DL = σL

We will illustrate this theorem through an example:

Example 2.2.3. The Cantor string is the complement of the ternary Cantor set in [0,1]

(thus l1 =
1
3
, l2 = l3 =

1
9
; l4 = l5 = l6 = l7 =

1
27
, . . .).

VC(ε) =
∑

j:lj<2ε

lj +
∑

j:lj≥2ε

2ε = 2ε · (2n − 1) +
∞∑
k=n

2k3−k−1 = 2ε · 2n +
(
2

3

)n

− 2ε

if 0 < ε ≤ 1
2
and 3−n ≥ 2ε > 3−n−1, because the discs covering the endpoints of

the interval overlap if lj < 2ε. To find the Minkowski dimension we may assume that

2ε = 3−n, because any other ε is between two of this form and thus through the squeeze

theorem we get the same result:

VC(ε) = 2ε · 2n +
(
2

3

)n

− 2ε = 3 ·
(
2

3

)n

− 2

3n
=

2

3n
(3 · 2n−1 − 1)

2Since limj→∞ lj = 0, for any α ∈ R≤0 there exists jα, that if j > jα, then lαj ≥ 1, which means that∑∞
j=1 l

α
j = ∞, thus σL ≥ 0.
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So to get the Minkowski dimension we take the logε of the tube of the fractal:

log 2− n log 3 + log(3 · 2n−1 − 1)

−n log 3
∼ n log 2− (n− 1) log 3

−n log 3
∼ 1− log 2

log 3

which makes DC = log3 2.

The zeta function of the Cantor string is:

ζC(s) =
∞∑
k=1

2k−13−ks =
1

2

∞∑
k=1

2k3−ks < ∞ ⇐⇒ | 2
3s
| < 1 ⇐⇒ 2

3Re s
⇐⇒ Re s > log3 2

so the abscissa of convergence is also log3 2.

In general, the geometric zeta function may not have an analytic continuation to all

of C, but we can introduce a screen S of the fractal string:

S : S(t) + it (t ∈ R)

the contour of the fractal, where S(t) is a continous function S : R → [−∞, DL]. Then

we say that

W = {s ∈ C|Re s ≥ S(Ims)}

is a window of the fractal string and we assume that the fractal zeta function has a

meromorphic extension to a neighbourhood of W .

The set of poles of ζL in the window (DL ⊂ W ) is called the visible complex dimensions

of L, or complex dimensions if W = C (so, if ζL has a meromorphic extension to C).
Through Theorem 2.2.2 we know that for any s that has Re s > DL the fractal zeta

function converges, ζL is holomorphic on the Re s > DL half plane, thus

DL ⊂ {s ∈ C|Re s ≤ DL}.

Example 2.2.4. Let us take a look at the Cantor string and choose W = C:

ζC(s) =
∞∑
k=1

2k−13−ks =
3−s

1− 2 · 3−s

thus the poles of the fractal zeta function are at 1− 2 · 3−s = 0. Therefore, the complex

dimensions of the Cantor string are:

DL = {DL + in
2π

log 3
|n ∈ Z}

since 2π
log 3

is the period of oscillation. [12]



Chapter 3

p-adic Fractal Strings Associated to

Affine Varieties

3.1 Background

Let us introduce a new absolute value on the integers and then extend it to the rational

numbers1 [11]. Let’s fix a prime p and define for a ∈ Z

|a|p = p−k ⇐⇒ (pk|a) ∧ (pk+1 ̸ |a) (3.1)

Since for any a, b ∈ Z : |ab|p = |a|p|b|p: ∣∣a
b

∣∣
p
=

|a|p
|b|p

is well defined on Q. The completion of this metric space gives us the p-adic numbers:

Qp [10]. We use Zp = {x ∈ Qp : |x|p ≤ 1} as the notation for the unit ball in Qp. It is

also the closure of Z in Qp.

It will be convenient to use another realization of Zp. Zp is isomorphic to the set

that can be defined as {
∑∞

k=0 akp
k : ak ∈ {0, 1, . . . , p− 1}∀k} (formal sums) or the set of

infinite sequences x1, x2, . . . where ∀k ∈ N xk+1 ≡ xk mod pk. For any x, y ∈ Zp:

|x− y|p ≤ p−k ⇐⇒ pk|(x− y) ⇐⇒ x ≡ y mod pk

So {
∑∞

k=0 akp
k : ak ∈ {0, 1, . . . , p− 1}∀k, a0 = b0, . . . , an = bn} is the representation of a

ball in Zp with p−n radius.

1A theorem of Ostrowski shows that the possible absolute values on Q are equvivalent to either the

usual |.| or one of the |.|p-s introduced here. [11]
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3.1. BACKGROUND 10

Proposition 3.1.1. Zp is homeomorphic to the Cantor set.

Proof. It follows from Brouwer’s theorem [2] that every non-empty, perfect, compact,

totally disconnected metric space is homeomorphic to the Cantor set, thus it is sufficient

to prove that Zp has these properties:

1. perfect: If x ∈ Zp and |x|p = p−k, k ∈ N, then Bp−k(x) ⊂ Zp.

2. compact: It is enough to show that Zp is sequential compact.

Let (xn)n∈N ⊂ Zp be a sequence. Define a0 ∈ {0, . . . , p − 1} such that xn ≡ a0

mod p for infinitely many xn-s, and let xn0 be one of them. Recursively define

ak ∈ {0, . . . , p − 1} such that xn ≡
∑k

i=0 aip
i mod pk+1 for infinitely many xn-s,

and let xnk
be one of them.

Then limk→∞ xnk
= x =

∑∞
i=0 aip

i, since |x− xnk
|p ≤ p−(k+1).

3. totally disconnected: It is enough to see that ∀x ∈ Zp has a neighbourhood base

consisting of clopen subsets. Since x 7→ x + y is a homeomorphism in Zp for any

y ∈ Zp, we may assume that x = 0. {Bp−k(0)|∀k ∈ N} is a neighbourhood base of

0 with clopen subsets.

By Haar’s theorem [5] on every locally compact topological group there exists a left-

translation-invariant measure called left Haar measure. On a commutative topological

group, this is right-translation-invariant as well and thus is simply called Haar measure.

We define the Haar measure of Zp to be 1: λ(Zp) = 1.

To determine the Haar measure on Zp, note that for any k ∈ N Zp is the disjoint

union of pk balls of radius p−k all of whom are translates of each other. Moreover any

ball of radius p−k is one of these balls and hence,

λ(Bp−k(x)) = p−k

for any x. Finally any ball agrees with a ball of radius p−k for some k: if p−(k+1) < r ≤ p−k

than Br(x) = Bp−k(x) and so, the Haar measure of a ball with radius r has to be p−k for

the unique k such that p−(k+1) < r ≤ p−k.

We make the product space Zn
p a metric space induced by the maximum norm:

|(x1, . . . , xn)
T |p = max{|x1|p, . . . , |xn|p}
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This also has a Haar measure and applying the same as before, the normalized Haar

measure in Zn
p is

∀x ∈ Zn
p , p

−(k+1) < r ≤ p−k : λ(Br(x)) = p−nk.

3.2 Introducing the p-adic fractal zeta function

Definition 3.2.1. A p-adic fractal string (V ) is the union of countably many disjoint

open balls.

In every bounded metric space, we can call a bounded open set a fractal string if it

is the disjoint union of countably many open balls. Because of the structure of Zp, all

bounded open sets are fractal strings.

In the definition of such a decomposition of a p-adic fractal string, the radii of the

balls are not unique, hence some care is needed when defining the fractal zeta function.

Open balls in Zp have neither a well defined center nor a well defined radius. It can

happen that Br(x) = Bs(y) without x = y or r = s. However this can only happen if

p−(k+1) < r, s ≤ p−k and |x− y|p < p−k [4]. The fact that any open ball of radius r is the

union of p balls of radii r/p further complicates this issue. Thus a p-adic fractal string is

not uniquely defined, we can give the same set as the disjoint union of countably many

open balls in numerous ways.

Definition 3.2.2. Given an open set U of Zp we will say that a ball Br(x) ⊂ U is maximal

(with respect to U) if for any balls Bs(y) ⊂ U if Br(x) ⊂ Bs(y) then Br(x) = Bs(y).

Given a maximal ball in U Br(x) we define its radius to be p−k with p−(k+1) < r ≤ p−k.

We will require that in the collection that gives our fractal string no finite unions give

another ball of Zp, thus, each ball present in the representation of the fractal string as a

union of countably many disjoint open balls is maximal with respect to the fractal string.

To introduce the p-adic zeta function of varieties we will first prove that the com-

plement of affine varieties are fractal strings by Definition 3.2.1, the union of countably

many disjoint maximal balls.

Definition 3.2.3. Let f1, . . . , fk be a polynomials of n-variables with integer coefficients

and I the ideal generated by them. Then

V (I) = {x ∈ Zn
p : f(x) = 0,∀f ∈ I}

is the variety of f1, . . . , fk.
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Let us introduce the following notation: if x =
∑∞

k=0 akp
k, then [x]m =

∑m−1
k=0 akp

k.

Let N(pk) denote the number of solutions mod pk and set N(p0) = 1.

Proposition 3.2.4. Zn
p\V (I) is a fractal string and for each k ∈ Z+ there are pnN(pk−1)−

N(pk) maximal balls of radius p−k in the complement of V (I).

Lemma 3.2.5. Let f ∈ Zp[x1, ...., xn] and x ∈ Zn
p . Then f(x) = 0 if and only if

f([x]k) ≡ 0 mod pk for all k ∈ Z+.

Proof. The map x 7→ x mod pk is a ring homomorphism and x ≡ [x]k mod pk. Thus

if ∀kf([x]k) ≡ 0 mod pk, then ∀kf(x) ≡ 0 mod pk, which means that for any positive

integer k |f(x)|p < p−k, thus f(x) = 0.

If f(x) = 0, then f(x) ≡ 0 mod pk for any k ∈ Z+ and since x ≡ [x]k mod pk we

get that ∀kf([x]k) ≡ 0 mod pk.

Using Lemma 3.2.5 we can now prove Proposition 3.2.4.

Proof. If [x]k is no longer a solution for f([x]k) = 0 (where as [x]k−1 is) then the p−k ball

around [x]k is in the complement of V (f), because any point of Zn
p can only differ from

[x]k till the kth digit in their formal series representation. The complement is the disjoint

union of such balls.

If I = (f1, . . . , fm) then V (I) =
⋂m

i=1 V (fi) and in Zn
p the finite intersection of the

union of countably many disjoint balls is countably many disjoint balls.

All maximal balls in the complement of V (I) of radius p−k come from solutions

mod p−(k−1), thus there are pnN(pk−1)−N(pk) of them.

We generalize the definition presented in Chapter 2 by defining the p-adic fractal zeta

function of the p-adic fractal string V . This is similar to the one-dimensional case, except

the radii and the multiplicities are not unique. However we can assign to V the unique

sequence {kj}∞j=1 if V =
⋃∗

j

⋃∗kj
i=1Bp−j(xji) and for each xji that’s the maximum radius

ball around it that’s in the complement: ∀1 ≤ i ≤ kj : Bp−(j−1)(xji) ̸⊂ V .

Definition 3.2.6. Assume that V =
⋃∗

j

⋃∗kj
i=1 Bp−j(xji) is a decomposition into maximal

balls as above. Then let

ζV (s) =
∞∑
j=1

kjp
−js

the fractal zeta function of the p-adic fractal string V .
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In Proposition 3.2.4 we proved that if V = Zn
p\V (I), then kj = pnN(pj−1) − N(pj).

And so

ζV (I)(s) =
∞∑
k=1

(pnN(pk−1)−N(pk))p−ks

is the p-adic fractal zeta function of the variety of I.

3.3 Properties of the p-adic zeta function

Before going on to the most striking property of ζV (I)(s) and present the proof, we will

now calculate the zeta function of an example.

Theorem 3.3.1. If I ◁ Z[x1, . . . , xn] is an ideal, then the series ζV (I) can be expressed

as a rational function of T = p−s.

Example 3.3.2. f(x, y) = x2+y2−1 we are looking for ([x]k, [y]k) pairs that satisfy the

following knowing that ([x]k−1, [y]k−1) satisfied the congruence mod pk−1:

[x]2k + [y]2k ≡ 1 mod pk

([x]k−1 + ak−1p
k−1)2 + ([y]k−1 + bk−1p

k−1)2 ≡ 1 mod pk

[x]2k−1 + ak−1[x]k−1p
k−1 + [y]2k−1 + bk−1[y]k−1p

k−1 ≡ 1 mod pk

Since [x]2k−1+[y]2k−1 ≡ 1 mod pk−1, we have cpk−1 ≡ [x]2k−1+[y]2k−1−1 mod pk for some

c ∈ {0, . . . , p− 1}, which gives

c+ ak−1[x]k−1 + bk−1[y]k−1 ≡ 0 mod p

Since we reached a linear equality which gives us p solutions we can say that

N(pk) = pN(pk−1) = pk−1N(p)

which means that for each k there are p2N(pk−1)−N(pk) number of balls with p−k radii.

The geometric zeta function would be:

∞∑
k=1

(p2N(pk−1)−N(pk))p−ks = N(p)
∞∑
k=1

(pk − pk−1)p−ks =

=
N(p)

p
(p− 1)

∞∑
k=1

pk(1−s) = N(p)(p− 1)
1

1− p1−s
p−s = N(p)(p− 1)

T

1− pT

which is a rational function of T = p−s.
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Definition 3.3.3. Let K be a field and f ∈ K[x1, . . . , xn]. The variety V (f) is called

non-singular if {x = (x1, . . . , xn) | f(x) = 0, ∂f
∂x1

(x) = 0, . . . , ∂f
∂xn

(x) = 0} = ∅.
The variety V (I) is called non-singular overK if the vector space {( ∂f

∂x1
(x), . . . , ∂f

∂xn
(x))|f ∈

I} has the same dimension ∀x ∈ V (I) over K.

When this maximum dimension is m we say that dimension of V (I) is n−m.

This paper will only give a self-contained proof of Theorem 3.3.1 when V (I) is non-

singular over Z/pZ 2. In Chapter 5 we consider the general case, including singular

varieties and show, using a hard theorem of Igusa that relies on Hironaka’s resolution of

singularities, that the fractal zeta function is rational even for singular varieties.

Our previous method (Example 3.3.2) fails in singular cases since the number of

solutions mod pk aren’t distributed as evenly as for non-singular varieties. The number

of solutions around a non-singular point mod pk can be given as a geometric sequence,

but around a singular point it varies and has to be calculated separately. The difficulties

are well illustrated via the following example, which is the simplest singularity:

Example 3.3.4. f(x, y) = xy

xy ≡ 0 mod p if and only if at least one of them are dividable by p.

xy ≡ [x]2[y]2 ≡ [x]1[y]1 + p(b1[x]1 + a1[y]1) mod p2

If [x]1 ̸≡ 0 mod p or [y]1 ̸≡ 0 mod p, thus (x, y) is not in the p−2 neighbourhood of

the singularity, then this gives p solutions. If [x]1 ≡ [y]1 ≡ 0 mod p, then it yields p2

solutions.

Similarly for each m the p−m neigbourhood of the singularity behaves differently and

depending on the parity of m it brings 1 or p2 results which complicates our previous

method.

Luckily this can easily be resolved in the following way. Let us use the following

notation:

Mk(p
l) = |{([x]k, [y]k)|xy ≡ 0 mod pk, gcd([x]k, p

k) = pl}|

Since

{([x]k, [y]k)|xy ≡ 0 mod pk} = ∪∗k
l=0{([x]k, [y]k)|xy ≡ 0 mod pk, gcd([x]k, p

k) = pl}

2If a variety is non-singular over Z/pZ, then it follows that it is non-singular over Qp, but the converse

does not hold.
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it is enough to find Mk(p
l) to get N(pk), because

N(pk) =
k∑

l=0

Mk(p
l).

If 0 ≤ l < k and gcd([x]k, p
k) = pl, then pk−l|y, so

Mk(p
l) = (pk−l+1 − pk−l)pl = (p− 1)pk.

Now Mk(p
k) = pk, since [x]k has to be 0 and [y]k can be anything. Thus

N(pk) =
k∑

l=0

Mk(p
l) = k(p− 1)pk + pk.

Just like in the previous example, the p-adic fractal zeta function can be written as

ζV (f)(s) =
∞∑
k=1

(p2N(pk−1)−N(pk))p−ks =

=
∞∑
k=1

((k − 1)(p− 1)pk+1 + pk+1 − k(p− 1)pk − pk)p−ks =

= (p− 1)2
∞∑
k=1

(k − 1)(p1−s)k = p2(1−s)(p− 1)2
∞∑
k=1

(k − 1)(p1−s)k−2.

Since
∞∑
k=1

(k − 1)T k−2 =

(
∞∑
k=1

T k−1

)′

=

(
1

1− T

)′

=
1

(1− T )2

we have

ζV (f)(s) = p2(p− 1)2
T 2

1− 2pT + p2T 2

a rational function in T = p−s.

3.4 Proof of rationality of the zeta function

Now we turn to building up our proof for Theorem 3.3.1. We begin by introducing a

lemma.
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Lemma 3.4.1. If f ∈ Z[x1, . . . , xn] and its variety is non-singular over Z/pZ then the

number of solutions mod pk satisfies

N(pk) = p(n−1)(k−1)N(p)

Proof. Because of Lemma 3.2.5 we may assume that a given [x]k−1 was a solution

mod pk−1 and we are interested in how many [x]k solutions mod pk are such that

[x]k ≡ [x]k−1 mod pk−1. For every i between 1 and n if xi =
∑∞

j=0 bi,jp
j then [xi]k =

[xi]k−1 + bi,k−1p
k−1. Let us use the following notations:

x = (x1, . . . , xn)

∀k : bk = (b1,k, . . . , bn,k)

∇f(x) = (
∂f

∂x1

(x), . . . ,
∂f

∂xn

(x))

∀k : ⟨∇f(x),bk⟩ =
n∑

i=1

bi,k
∂f

∂xi

(x)

Then we get

f([x]k) ≡ f([x]k−1 + bk−1p
k−1) mod pk

Notice that for any x ∈ Zp

[x]dk ≡ ([x]k−1 + bpk−1)d ≡ [x]dk−1 + d[x]d−1
k−1bp

k−1 mod pk

because any component which would give a higher degree would have a constant multiplier

that is divisible by pk.

And so

[x1]
d1
k . . . [xn]

dn ≡ [x1]
d1
k−1 . . . [xn]

dn
k−1 + (

n∑
i=1

dibi,k[xi]
di−1
k−1 Πi ̸=j[xj]

dj
k−1)p

k−1 mod pk

≡ [x1]
d1
k−1 . . . [xn]

dn
k−1 + ⟨∇([x1]

d1
k−1 . . . [xn]

dn
k−1),bk−1⟩pk−1 mod pk

Thus

f([x]k) ≡ f([x]k−1) + ⟨∇f(x),bk−1⟩pk−1 mod pk

Just like in the example the components which aren’t dependent on bi,k−1 give

f([x]k−1) ≡ 0 mod pk−1

which means there is a c = c([x]k−1) ∈ {0, . . . , p−1} such that f([x]k−1) ≡ cpk−1 mod pk.
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Thus f([x]k) ≡ 0 mod pk if and only if

c+ ⟨∇f([x]k−1),bk−1⟩ ≡ c+ ⟨∇f([x]1),bk−1⟩ ≡ 0 mod p.

Therefore

N(pk) =
∑

[x]k−1 mod pk−1

f([x]k−1)≡0

|{b ∈ (Z/pZ)n : ⟨∇f([x]1),b⟩ ≡ −c([x]k−1) mod p}.

Since f is non-singular, ∇f ̸= 0, and so:

N(pk) =
∑

[x]k−1 mod pk−1

f([x]k−1)≡0

|{b ∈ (Z/pZ)n : ⟨∇f([x]k−1),b⟩ ≡ −c([x]k−1) mod p} =

= |{b ∈ (Z/pZ)n : ⟨∇f([x]k−1),b⟩ ≡ 0 mod p}|N(pk−1) = pn−1N(pk−1).

Using induction on k we get:

N(pk) = p(n−1)(k−1)N(p)

Lemma 3.4.2. If V (I) is non-singular over Z/pZ and of dimension n − m, then the

number of solutions mod pk is the following:

N(pk) = p(n−m)(k−1)N(p)

Proof. Let f1, . . . , fm ∈ I be polynomials so that in [x]1 their gradients span the vector

space {( ∂f
∂x1

(x), . . . , ∂f
∂xn

(x))|f ∈ I}, thus, they are linearly independent. Since V (I) is

non-singular and with algebraic dimension n−m, there exist such polynomials in I.

Like in our previous proof for each fi we get a ci so that

cip
k−1 ≡ fi([x]k−1) mod pk

and so we are looking for the number of b ∈ (Z/pZ)n which satisfy

∀i : ⟨∇fi([x]k−1),b⟩ ≡ ⟨∇fi([x]1),b⟩ ≡ −ci mod p

So we are looking for the number of solutions mod p in (Z/pZ)n for the equation

Jx = −c, where Jij =
∂fi
∂xj

([x]1) is the element in the ith row in the jth column, J is the

Jacobian matrix of F = (f1, . . . , fm)
T .
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By the definition of f1, . . . , fm the rank of J is m. Therefore, since dim(im J) = m,

J : (Z/pZ)n → (Z/pZ)m

is surjective, and dim(ker J) = n−m through the dimension theorem for vector spaces.

Therefore, there are pn−m solutions for Jx = y for any y ∈ (Z/pZ)m. Thus

N(pk) = |{b ∈ (Z/pZ)n : Jb ≡ −c mod p}|N(pk−1) = pn−mN(pk−1) = p(n−m)(k−1)N(p).

We will now prove Theorem 3.3.1 in the non-singular case.

Proof. We may assume that V (I) has dimension n−m. Through Proposition 3.2.4 there

are pnN(pk−1) − N(pk) maximal balls of radius p−k in the complement of V (I). Using

Lemma 3.4.2 we get:

ζV (I)(s) =
∞∑
k=1

(pnN(pk−1)−N(pk))p−ks = N(p)
∞∑
k=1

(p(n−m)(k−2)+n − p(n−m)(k−1))p−ks =

= N(p)(p−(n−2m) − p−(n−m))
∞∑
k=1

(pn−m−s)k = N(p)(p−(n−m) − p−n)
pn−s

1− pn−m−s
=

= N(p)(pm − 1)
T

1− pn−mT

Our results can be expressed in the terms of the generating function of the sequence

N(pk). This is called the Poincaré series of V (I) [13, 14]:

Definition 3.4.3.

PV (I)(T ) =
∞∑
k=0

N(pk)p−nkT k

We then have the following connection:

Proposition 3.4.4.

ζV (I)(s) = (pnT − 1)PV (I)(p
nT ) + 1

Note that by Lemma 3.4.2. The Poincaré series of a non-singular variety V (I) is also

a rational function.



Chapter 4

Dimension Concepts for p-adic

Varieties and Fractal Zeta Functions

The dimension of an algebraic variety can be defined in many ways. One may take the

dimension to be the maximum dimension of the tangent spaces at the variety’s non-

singular points like we did in Definition 3.3.3. Any ideal I = (f1, . . . , fm) generated by m

independent polynomials over a field will have at least n −m as its variety’s dimension

in the affine space An.

Since we are in a space equipped with a metric, this gives us the opportunity to intro-

duce and observe other concepts for the dimension of the variety. Recall from Chapter

2 that for one-dimensional real fractal strings, the abscissa of convergence of a fractal

string’s zeta function coincides with its Minkowski dimension. We will now prove that

this still holds for a non-singular p-adic variety’s zeta function after defining its Minkowski

dimension. The proof will consist of proving for each of them separately that they agree

with the algebraic dimension.

As before let I ◁ Z[x1, . . . , xn].

4.1 The abscissa of convergence

Definition 4.1.1. The abscissa of convergence for the p-adic fractal zeta function ζV (I)(s) =∑∞
j=1 kjp

−js is the following:

σV (I) = inf{α ∈ R :
∞∑
j=1

kjp
−jsconverges if Re s > α}

19
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Proposition 4.1.2. The abscissa of convergence of the p-adic zeta function of V (I) when

non-singular over Z/pZ and with algebraic dimension n−m, is n−m.

Proof.

ζV (I)(s) = N(p)(p−(n−2m) − p−(n−m))
∞∑
k=1

(pn−m−s)k < ∞ ⇐⇒

⇐⇒ |pn−m−s| < 1 ⇐⇒ Re(n−m− s) < 0 ⇐⇒ n−m < Re s

4.2 The Minkowski dimension

The Minkowski dimension, also called the box dimension of a set in a metric space

measures how well it can be covered by balls. We may use a different approach and

define the Minkowski dimension using the set’s Minkowski content. In the non-singular

case both ways lead to the same result, the algebraic dimension.

Definition 4.2.1. The volume of the ε tube of the variety is

vol(ε) = λ({x ∈ Zn
p\V (I)|∃y ∈ V (I) : |x− y|p < ε}).

Similarly to fractal strings, we can define the variety’s Minkowski dimension using

the tube’s volume:

Definition 4.2.2. The Minkowski dimension of the variety V (I) is

DV (I) = inf{α ≥ 0 : vol(ε) = O(εn−α) as ε → 0+}.

Notice that for planecurves and surfaces in R3 this gives the expected results:

If γ is a smooth, simple, closed plane curve, then [16]

vol(ε) = 2Length(γ)ε = O(ε) = O(ε2−1)

thus, the dimension is 1 as expected.

If Σ is an oriented closed surface in R3, then Weyl’s tube formula for a surface in R3 gives

[16]

vol(ε) = 2Area(Σ)ε+
4π

3
χ(Σ)ε3 = O(ε) = O(ε3−2)

where χ(Σ) is the Euler characteristic of the surface, which makes the dimension to be 2.
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Proposition 4.2.3. The Minkowski dimension of the variety V (I) when non-singular

over Z/pZ and with algebraic dimension n−m, is n−m.

Proof. It is sufficient to show for ε = p−l. If x ∈ Zn
p \V (I) and ∀y ∈ V (I) : |x−y|p ≥ p−k,

then Bp−k(x) ⊂ Zn
p\V (I). So to find vol(p−l), we need to add the measure of the balls

with radii at most p−(l+1) in the representation of the fractal string:

vol(p−l) =
∞∑

k=l+1

(pnN(pk−1)−N(pk))p−nk

From Lemma 3.4.2 we find that in this case N(pk) = p(n−m)(k−1)N(p), and so

vol(p−l) = N(p)
∞∑

k=l+1

(p(n−m)(k−2)+n − p(n−m)(k−1))p−nk =

= N(p)(p−(n−2m) − p−(n−m))
∞∑

k=l+1

p−mk =

= N(p)(p−(n−2m) − p−(n−m)) · p−ml

pm − 1
=

N(p)

p(n−m)
p−ml

Thus

logp−l(vol(p−l)) =
log(N(p))− (lm+ n−m) log(p)

−l log(p)

And so

lim
l→∞

logp−l(vol(p−l)) = m

Or we may use the general definition for a set’s Minkowski dimension:

Definition 4.2.4. Let N(V (I), ε) denote the minimal number of sets with diameter at

most ε that cover V (I). The box dimension of the variety V (I) is the limit

dimM(V (I)) = lim
ε→0

logN((V (I), ε))

log 1
ε

when it exists. [1]

Proposition 4.2.5. The box dimension of the variety V (I) when non-singular over

Z/pZ, where I is with algebraic dimension n−m, is n−m.
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Proof. It is sufficient to show for ε = p−k, because N(V (I), ε) = N(V (I), p−k) for some

k. However N(V (I), p−k) = N(pk), because for each x ∈ V (I) the balls with radius p−k

around the solutions of mod pk give a minimal cover.

dimM(V (I)) = lim
ε→0

log(N(V (I), ε))

log 1
ε

= lim
k→∞

log(N(V (I), p−k))

k log(p)
= lim

k→∞

log(N(pk))

k log(p)

But since V (I) is non-singular we know that N(pk) = p(n−m)(k−1)N(p), thus,

dimM V (I) = lim
k→∞

log(p(n−m)(k−1)N(p))

k log(p)
= lim

k→∞
((n−m)

k − 1

k
+

log(N(p))

k log(p)
) = n−m

Thus, we have proved the following:

Theorem 4.2.6. The Minkowski dimension of a non-singular variety over Z/pZ aligns

with the abscissa of convergence of its p-adic zeta function.

4.3 The Hausdorff dimension

As mentioned above, the Minkowski dimension and the Hausdorff dimension agree in the

case of self-similiar sets that satisfy the open set condition in Rn. We may introduce

self-similarity in the following way on the p-adic numbers: f : Qn
p → Qn

p is a contraction

if ∀x, y ∈ Qn
p : |f(x) − f(y)|p < |x − y|p. Then if F = {f1, . . . , fk} is a finite set of

contractions, there exists a unique non-empty compact set K ⊂ Qp called the attractor

[6] that satisfies

K =
k⋃

i=1

fi(K)

We say that K is a p-adic self-similiar set. If ∀x, y ∈ Qn
p : |f(x)− f(y)|p = r|x− y|p for

some 0 < r < 1, then we call r the contraction ratio.

Definition 4.3.1. The diameter of X ⊂ Qn
p is

diam(X) = sup
x,y∈Qn

p

|x− y|p
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Definition 4.3.2. When ε > 0 and d ≥ 0

Hd
∞(X) = inf{

∞∑
i=0

diamp(Xi)
d|X ⊂

∞⋃
i=0

Xi}

and this helps us to define the Hausdorff dimension of the set

dimH(X) = inf{d ≥ 0|Hd
∞(X) = 0}

Lemma 4.3.3. If the variety V (I) is non-singular Zn
p \V (I) is a self-similiar set, more-

over if the algebraic dimension is n−m, then Zn
p \ V (I) =

⋃∗pn−m

i=1 (xi + p(Zn
p \ V (I))) for

some xi ∈ Zn
p .

Proof. This follows from the proof we have given for Lemma 3.4.2.

So Zn
p \ V (I) is the attractor of F = {fi|∀1 ≤ i ≤ n − m : fi(x) = xi + px}. Thus

Zn
p \ V (I) is the disjoint union of pn−m many p(Zn

p \ V (I)), which makes it easier to

calculate the Hausdorff dimension of the fractal string.

Proposition 4.3.4. When V (I) is non-singular with algebraic dimension n−m, dimH(Zn
p\

V (I)) = n−m.

Proof. We will first show that dimH(Zn
p \ V (I)) ≤ n−m:

For this let Zn
p \ V (I) ⊂

⋃∞
j=0Xj be an arbitrary cover. Then since Zn

p \ V (I) is

non-singular, Lemma 4.3.3 shows that it is self-similar:

Zn
p \ V (I) =

∗pn−m⋃
i=1

(xi + p(Zn
p \ V (I))) ⊂

∗pn−m⋃
i=1

(xi + p(
∞⋃
j=0

Xj))

and thus the sets Xij = xi + pXj also form a cover.

Hd
∞(X) = inf{

∞∑
i=0

diamp(Xi)
d|X ⊂

∞⋃
i=0

Xi}

≤ inf{
∞∑
i=0

pn−m

(
diamp(Xi)

p

)d

|X ⊂
∞⋃
i=0

Xi} =
pn−m

pd
Hd

∞(Zn
p \ V (I))

We may iterate the above reasoning and through that we can prove inductively the

following inequality for any positive integer k:

Hd
∞(Zn

p \ V (I)) ≤
(
pn−m

pd

)k

Hd
∞(Zn

p \ V (I))
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Since this stands for any positive integer k, taking the limit leads to

0 < Hd
∞(Zn

p \ V (I)) ≤ lim
k→∞

(
pn−m

pd
)kHd

∞(Zn
p \ V (I)) < ∞ =⇒ pn−m

pd
≥ 1 ⇐⇒ d ≤ n−m

Note that the sets Ui = B 1
p
(xi) for 1 ≤ i ≤ pn−m form a cover of Zn

p \ V (I), thus for

each

d ≥ 0 : Hd
∞(Zn

p \ V (I)) ≤ pn−m

pd
< ∞

.

This observation and the inequality of the limit show that for any

d > n−m : Hd
∞(Zn

p \ V (I)) = 0

making dimH(Zn
p \ V (I)) ≤ n−m.

Now to prove the equality we show that dimH(Zn
p \ V (I)) ≥ n−m.

This is based on the fact that for any positive integer k : p−kd ≤ pn−mp−(k+1)d, when

d ≤ n−m. So in this case, we recieve a smaller value if we take a cover with bigger radii

balls. Thus the above mentioned {Ui}p
n−m

i=1 cover gives the infimum of the sums.

Therefore dimH(Zn
p \ V (I)) = n−m.



Chapter 5

Connection to the Igusa Local Zeta

Function

5.1 The Igusa local zeta function and the Poincaré

series

The case of a singular variety’s fractal zeta function can be dealt with if we consider

its connections to the Poincaré series (Definition 3.4.3). This research was initiated by

Jun-Ichi Igusa, in a more generalized context regarding the so called Igusa local zeta

function [8]:

ZK,ϕ(s) =

∫
Kn

ϕ(x)|f(x)|sK |dx|K

for s ∈ C with Re s > 0 where K is a local field, |.|K is an absolute value on K,f ∈
K[x1, . . . , xn] is a polynomial, |dx|K a Haar measure compatible with that absolute value

and ϕ ∈ S(Kn) is a compactly supported locally constant function1.

If K = Qp and ϕ = χZn
p
the characteristic function of Zn

p then we get the Igusa local

zeta function for p-adic numbers:

ZV (f)(s) =

∫
Zn
p

|f(x)|spdλ(x)

A survey of the main results can be found in [13, 14].

Theorem 5.1.1. ZV (f)(s) is a rational function in T = p−s.

1A so called Schwartz-function on Kn.

25
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Igusa [8] showed this in 1974 using Hironaka’s theorem [7] about the resolution of

singularities.

It is also known that the above mentioned Poincaré series can be given as a rational

function of the Igusa local zeta function. We will present a proof for this as seen below.

Proposition 5.1.2. [8]

ZV (f)(s) =
(p−s − 1)PV (f)(p

−s) + 1

p−s

Proof.

ZV (f)(s) =

∫
Zn
p

|f(x)|spdλ(x) =
∞∑
k=0

∫
{x∈Zn

p ||f(x)|p=p−k}
p−ksdλ(x) =

=
∞∑
k=0

p−ks

∫
{x∈Zn

p ||f(x)|p=p−k}
dλ(x) =

∞∑
k=0

p−ksλ({x ∈ Zn
p ||f(x)|p = p−k}) =

=
∞∑
k=0

p−ks(λ({x ∈ Zn
p ||f(x)|p ≤ p−k})− λ({x ∈ Zn

p ||f(x)|p ≤ p−(k+1)}))

Now observe that:

λ({x ∈ Zn
p ||f(x)|p ≤ p−k}) = λ({x ∈ Zn

p |f([x]k) ≡ 0 mod pk}) = p−nkN(pk)

Which means that:

ZV (f)(s) =
∞∑
k=0

p−ks(λ({x ∈ Zn
p ||f(x)|p ≤ p−k})− λ({x ∈ Zn

p ||f(x)|p ≤ p−(k+1)})) =

=
∞∑
k=0

p−ks(p−nkN(pk)− p−n(k+1)N(pk+1)) =

=
∞∑
k=0

p−ksp−nkN(pk)− 1

p−s

∞∑
k=1

p−ksp−nkN(pk) =

= PV (f)(p
−s)− 1

p−s
(PV (f)(p

−s)− 1) =
(p−s − 1)PV (f)(p

−s) + 1

p−s

Based on Proposition 5.1.2 we may deduce the following corollary.

Corollary 5.1.3.

PV (f)(T ) =
1− T · ZV (f)(s)

1− T
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5.2 Closed formula of the p-adic fractal zeta function

Since the Igusa local zeta function can be given as a rational function in T , and the

Poincaré series is a rational function of the Igusa local zeta function, and our fractal zeta

function is a linear function of the Poincaré series, we can see that it also can be given

as a rational function of T . The relationships between the three functions suggest the

following theorem.

Theorem 5.2.1. The p-adic zeta function of a p-adic affine variety given by a principal

ideal can be given in a closed formula as a p-adic integral.

Proof. From Proposition 3.4.4 and 5.1.2 we get

ζV (f)(s) = p−(n−s)ZV (f)(−(n− s)) = p−(n−s)

∫
Zn
p

|f(x)|−(n−s)
p dλ(x)

so we have given our fractal zeta function in a closed formula.

Notice that the Igusa local zeta function is only defined on varieties given by a prin-

cipal ideal, but all varieties can be given in such a form:

Proposition 5.2.2. If I◁Zp[x1, . . . , xn], then ∃f ∈ Zp[x1, . . . , xn], so that V (I) = V (f).

Remark 5.2.3. Here V (I) refers to the set of points in Zn
p as in Definition 3.2.3 and not

the abstract algebraic variety in the sense of scheme theory.

Proof. Let I be the ideal generated by f1, . . . , fk ∈ Zp[x1, . . . , xn], then it is sufficient to

find a g ∈ Zp[x1, . . . , xk] that’s only root is (0, . . . , 0) ∈ Zk
p since then f = g(f1, . . . , fk)

satisfies the conditions given.

It is enough to show that there is an h ∈ Zp[x1, x2] that on Z2
p vanishes only at the

point (0, 0). Given such an h, the polynomial

g(x1, . . . , xk) = h(x1, h(x2, . . . h(xk−2, h(xk−1, xk)) . . . ))

is a polynomial with integer coefficients whose only root is (0, . . . , 0) ∈ Zk
p.

Let h(x, y) = x2 − py2. We will show that h(x, y) meets the above conditions, i.e. if

x, y ∈ Zp then h(x, y) = 0 if and only x, y are both 0. It is enough to see that y = 0,

because h(x, y) = 0 if and only if x2 = py2, thus if y = 0, then x2 = 0, and so x = 0. To

prove this, we will show that ∀k pk|y using induction on k:



5.2. CLOSED FORMULA OF THE p-ADIC FRACTAL ZETA FUNCTION 28

For the base case assume first that k = 1: since x2 = py2, p|x2, thus p|x, meaning

p2|py2, which shows, that p|y.
Now assume that pk|y: again since x2 = py2, p2k+1|x2, meaning pk+1|x, which shows,

that p2k+2|py2, and so pk+1|y.

Therefore, since every p-adic affine variety can be described as a principal ideal’s

variety, Theorem 5.2.1 shows that the p-adic fractal zeta function of all p-adic affine

varieties can be given as a p-adic integral.



Chapter 6

p-adic Projective Fractal Strings

The concepts introduced for p-adic affine varieties can be easily transferred to p-adic

projective varieties as well. In this chapter we show how our base definitions extend to

the p-adic projective space after briefly introducing the space itself.

6.1 The p-adic projective space

Definition 6.1.1.

Sn = {x ∈ Zn+1
p : |x|p = 1}

x, y ∈ Sn : x ∼ y ⇐⇒ ∃λ ∈ Zp : λx = y, |λ|p = 1

PZn
p = Sn/ ∼

Remark 6.1.2. This PZn
p introduced above is homeomorphic with the projective space

Pn(Qp), the points of which are the lines that go through the origo in Qn+1
p . From here

on, we consider this topological space instead of the algebraic construct, since we may

define the following metric on PZn
p :

Definition 6.1.3. Let dp(x, y) denote the distance between the equivalence class of x

and y on Sn.

Proposition 6.1.4. PZn
p =

⋃∗n
i=0 Ui, where Ui = {x ∈ Sn : |x1|p < 1, . . . , |xi−1|p <

1, |xi|p = 1}.

These maps give a better insight as to how this metric actually behaves.

Lemma 6.1.5. If x ∈ Ui, y ∈ Uj, then dp(x, y) is equal to

29
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1. |x′ − y′|p, when i = j and x ∼ x′, y ∼ y′, x′
i = y′i = 1.

2. 1, when i ̸= j.

Remark 6.1.6. If x ∈ Ui, then ∃x′ ∈ Ui : x ∼ x′, x′
i = 1, since by the definition of Ui its

ith coordinate is a unit, and thus xi has a multiplicative inverse.

Proof. 1. It suffices to show that for any λ ∈ Z×
p : |x′ − λy′|p ≥ |x′ − y′|p, because

∀λ, µ ∈ Z×
p : |µx′ − λy′|p = |µ|p|x′ − λ

µ
y′|p.

If for λ ∈ Z×
p : |x′−λy′|p < |x′−y′|p = p−k, then ∀1 ≤ j ≤ n+1 : |x′

j −λy′j|p < p−k.

Even for j = i, thus since |1− λ|p < p−k, λ ≡ 1 mod pk+1.

If |x′
j − y′j|p = p−k, then x′

j ≡ y′j mod pk, but x′
j ̸≡ y′j mod pk+1. Therefore

x′
j ̸≡ λy′j mod pk+1, which means, that |x′

j − λy′j|p ≥ p−k.

2. We may assume that i < j.

dp(x, y) = minλ∈Z×
p
|x−λy|p = minλ∈Z×

p
max0≤k≤n |xk−(λy)k|p and since ∀λ : |xi|p =

1, |λyi|p < 1 =⇒ ∀λ : |xi − λyi|p = 1 it has to be 1.

Proposition 6.1.7. If x ∈ Ui and dist(x, V (I)) = r, then Br(x) ⊂ Ui.

Proof. This follows directly from the second point of the lemma.

6.2 The p-adic projective fractal zeta function

Definition 6.2.1. V ⊂ PZn
p is a p-adic projective fractal string if it is the disjoint union

of countably many balls.

Like for the affine case, this decomposition is not at all unique, but again we may

assign to the projective fractal string the maximal ball decomposition where the radii are

of the form p−j.

Definition 6.2.2. Assume that V =
⋃∗

j

⋃∗kj
i=1 Bp−j(xji) is a decomposition into maximal

balls. Then let

ζ̂V (s) =
∞∑
j=1

kjp
−js

be the fractal zeta function of the p-adic projective fractal string V .
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Proposition 6.1.7 ensures that the maximal balls in the complement stay on their

respective maps, which will make it easier to trace back the problems to our previous

results.

Definition 6.2.3. Let f(x) ∈ Zp[x1, . . . , xn+1] be a homogeneous polynomial, and let

I ◁ Zp[x1, . . . , xn+1] be a homogeneous ideal - an ideal for which if f ∈ I, then all of

its homogeneous components are in I as well [3]. Then let us introduce the following

notations:

fi(x1, . . . , xi−1, xi+1, . . . , xn+1) = f(px1, . . . , pxi−1, 1, xi+1, . . . , xn+1)

Ii = {fi : f ∈ I}
Ni(p

k) denotes the number of points mod pk of V (Ii)

Proposition 6.2.4. Ii is an ideal.

Proof. If fi, gi ∈ Ii with f, g ∈ I, then fi+gi ∈ Ii, since (f+g)i = fi+gi. Similarly for any

q ∈ Zp[x1, . . . , xn] : qfi ∈ Ii, since if Q is the homogenous form of q, then (Qf)i = qfi.

Definition 6.2.5. Let I ◁ Zp[x1, . . . , xn+1] be as above, then

V̂ (I) = {x ∈ PZn
p : f(x) = 0,∀f ∈ I}

the topological space defined by the variety of I in the p-adic projective.

This object is well defined since if x, y ∈ Sn, f ∈ Zp[x1, . . . , xn+1] is homogeneous,

f(x) = 0 and λx = y for some λ ∈ Zp, then f(y) = f(λx) = λn+1f(x) = 0. Thus, if

x ∈ Sn is in the space, then its whole equivalence class is.

Proposition 6.2.6. PZn
p \ V̂ (I) is a p-adic projective fractal string.

Proof. ιi(x1, . . . , xn) = (px1, . . . , pxi−1, 1, xi, . . . , xn) gives a bijection between Zn
p \ V (Ii)

and Ui \ V̂ (I).

ιi(Bp−k)(x) = {y : |ιi(x)j−yj|p = p−k ∀1 ≤ j < i, |ιi(x)j−yj|p < p−k ∀j ≥ i}∪Bp−k(ιi(x))

is the disjoint union of pi−1 number of balls with radius p−k, moreover, if Bp−k is a

maximal ball in Zn
pV (Ii) then the image is the union of pi−1 maximal balls, because

ι−1
i (Bp−k)(x) = {y : |ι−1

i (x)j − yj|p < p−k ∀j ≥ i} ∩Bp−(k−1)(ι−1
i (x))

And since Zn
p \ V (Ii) is a p-adic fractal string, PZn

p \ V̂ (I) is the disjoint union of

countably many balls.
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The functions ιi give us the understanding we need to find the connection between

the p-adic projective fractal zeta function ζ̂V̂ (I)(s) and the p-adic fractal zeta functions

on the maps Ui corresponding with the variety.

Proposition 6.2.7.

ζ̂V̂ (I)(s) =
n+1∑
i=1

pi−1ζV (Ii)(s) =
∞∑
k=1

p−ks(
n+1∑
i=1

pi−1(pnNi(p
k−1)−Ni(p

k)))

Proof. If kj is as before and kij is the number of maximal balls with radius p−j on Ui,

then kij = pi−1k′
ij, where k′

ij is the number of balls with radius p−j in the maximal ball

decomposition of V (Ii). Thus using Proposition 3.2.4 we find that

ζ̂V̂ (I)(s) =
∞∑
j=1

kjp
−js =

∞∑
j=1

n+1∑
i=1

kijp
−js =

n+1∑
i=1

pi−1

∞∑
j=1

k′
ijp

−js =

=
n+1∑
i=1

pi−1ζV (Ii)(s) =
∞∑
k=1

p−ks(
n+1∑
i=1

pi−1(pnNi(p
k−1)−Ni(p

k))

Through this proposition, we may reap the results of our labour and prove the ratio-

nality of the function by giving a closed formula for it.

V (Ii) is an affine variety, and so, as shown in Proposition 5.2.2, for each 1 ≤ i ≤ n+1

there exists a gi ∈ Zp[x1, . . . , xn], such that the Zp points of the varieties V (Ii) and V (gi)

are identical or form the same set. In which case, the following holds.

Theorem 6.2.8. If V (Ii) = V (gi), then

ζ̂V̂ (I)(s) = p−(n−s)

n+1∑
i=1

pi−1

∫
Zn
p

|gi(x)|−(n−s)
p dλ(x)

Proof. Since V (Ii) ⊂ Zn
p is an affine variety we can apply Theorem 5.2.1:

ζV (Ii)(s) = ζV (gi)(s) = p−(n−s)

∫
Zn
p

|gi(x)|−(n−s)
p dλ(x)

and taking Proposition 6.2.7 into consideration we get that

ζ̂V̂ (I)(s) =
n+1∑
i=1

pi−1ζV (Ii)(s) =
n+1∑
i=1

pi−1p−(n−s)

∫
Zn
p

|gi(x)|−(n−s)
p dλ(x)
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Theorem 6.2.9. ζ̂V̂ (I)(s) is rational in p−s.

Proof.

ζ̂V̂ (I)(s) = p−(n−s)

n+1∑
i=1

pi−1

∫
Zn
p

|gi(x)|−(n−s)
p dλ(x) = p−(n−s)

n+1∑
i=1

pi−1ZV (gi)(−(n− s))

and ZV (gi)(s) is rational in p−s for all gi.
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Writefull Teljes dolgozat
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