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Introduction

In actuarial science and risk management, understanding the distribution of losses is essen-

tial for accurately modeling insurance claims. Among the most widely used distributions

in insurance mathematics, the Pareto distribution plays a key role in characterizing heavy-

tailed claim amounts. Additionally, Extreme Value Theory (EVT) provides a theoretical

framework for analyzing extreme losses and shares deep connections with the Pareto dis-

tribution, making it a valuable tool in insurance risk assessment.

This thesis explores notable probability distributions in insurance, with a focus on Pareto-

type distributions and their applications. The first chapter introduces the classical Pareto

distribution, highlighting its key properties and methods for parameter estimation. Next,

the thesis delves into the theoretical foundations of Extreme Value Theory, demonstrating

its relationship with the Generalized Pareto Distribution. A dedicated chapter examines

the Peaks Over Threshold method, a widely used approach for modeling extreme events,

which is based on fundamental results from EVT. Finally, we discuss generalized Pareto

curves, which provide a more refined modeling tool than the classical Pareto distribution.

Throughout this thesis, simulations using insurance data are employed to illustrate the ef-

fectiveness of various estimation techniques. In the first chapter, a simulation is conducted

to compare Maximum Likelihood Estimation and the Method of Moments in estimating

the cutoff level of the Pareto distribution, offering insights into their practical performance.
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The first chapter is based on the paper Estimation in the Pareto Distribution by Mette

Rytgaard [9]. The simulations in this chapter and another one in the third chapter are

written by me. In addition, Lemma 1 in the first chapter is developed by me through

a combination of ideas gathered from various informal sources, including discussions and

guidance from my supervisor.

The second chapter is entirely based on the book Extreme value theory: an introduc-

tion by Laurens Haan and Ana Ferreira [5]. It is a reformulation of the first and third

chapters that lay the theoretical foundation for POT analysis.

The third and fourth chapters are based on the papers Application of the Peaks-Over-

Threshold Method on Insurance Data by Max Rydman [8] and Generalized Pareto Curves:

Theory and Applications by Thomas Blanchet, Juliette Fournier, and Thomas Piketty [2],

respectively.
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Chapter 1

The Pareto Distribution

1.1 General Properties

The distribution function of a Pareto random variable X with parameters α > 0 and c > 0

can be given by

FX(x) =


1−

(
c
x

)α
x ≥ c

0 x < c

(1.1)

If X is Pareto distributed and α > 1 its mean value can be given by the following formula:

E[X] =
α

α− 1
c (1.2)

Otherwise, if α ≤ 1 then E[X] = ∞. For α > 2, the variance of X is

Var[X] =
α

(α− 1)2(α− 2)
c2 (1.3)

If α ≤ 2 then Var[X] = ∞. It follows from the distribution function FX that the density

function is

fX(x) =


αcα

xα+1 x ≥ c

0 x < c

(1.4)
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1.2 Estimating the parameters

The following section is based on the paper by Mette Rytgaard [9].

1.2.1 Maximum Likelihood Estimation

Let X1, ..., Xn be independent identically Pareto distributed random variables. Then its

likelihood function is

L (α, c, x) =

n∏
i=1

αcαX−α−1i 1(Xi ≥ c) = αncαn
n∏

i=1

X−α−1i 1(Xi ≥ c) (1.5)

Hence, its log-likelihood function is

ℓ(α, c, x) = n logα+ αn log c− (α+ 1)

n∑
i=1

logXi1(Xi ≥ c) (1.6)

When maximizing l, a larger value of c will result in a larger value of l, so the optimal

value of c is

ĉ = min
i

Xi (1.7)

while also keeping in mind that ∀i : Xi ≥ c. From now on, we assume that the parameter

c is known (as is very often the case in practice) or estimated using the above formula.

For the estimation of α, consider the partial derivative of l with respect to α:

∂l

∂α
=

n

α
+ n log c−

n∑
i=1

logXi1(Xi ≥ c) (1.8)

Making (1.8) equal to zero and expressing α, we get the following:

α̂ =
n

n∑
i=1

log Xi
c

1(Xi ≥ c) (1.9)

From now on, if X is a random variable, then X ∼ Pa(α, c), X ∼ exp(α), and X ∼ Γ(n, α)

denote that X is Pareto, exponential, or Gamma distributed with the given parameters,
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respectively.

Remark. Let Y = log X
c where X ∼ Pa(α, c). Then Y ∼ exp(α).

Proof. We can use the density function transformation formula to determine the density

function of Y .

fY (y) = fX(h−1(y)) ·
∣∣∣∣∂h∂yh−1(y)

∣∣∣∣ (1.10)

if Y = h(X). Now, h(y) = log y
c so h−1(y) = cey. Substitution gives us

fY (y) = αcα(cey)−α−1cey = αe−αy (1.11)

Remark. If X,Y ∼ exp(α) and independent, then X + Y ∼ Γ(2, α).

Proof. Using the convolution formula, we get the following:

fX+Y (x) =

∫ ∞
−∞

fX(x−y)fY (y)dy =

∫ ∞
0

αe−α(x−y)αe−αydy = α2e−αx
∫ x

0
1dy = α2xe−αx

(1.12)

It follows from the above that if T =
∑n

i=1 log
Xi
c then T ∼ Γ(n, α) with the density

function

fΓ(x) =
αn

(n− 1)!
xn−1e−αx1(T ≥ 0) (1.13)

Since α̂ = n
T , the expected value of α̂ is

E[α̂] =
nα

n− 1

∫ ∞
0

αn−1

(n− 2)!
xn−2e−αxdx =

nα

n− 1
(1.14)

because the density function of a random variable with Γ(n − 1, α) distribution appears

in the integral and integrating it on R gives 1. Next, E[α̂2] can be calculated similarly:

E[α̂2] =
n2α2

(n− 1)(n− 2)

∫ ∞
0

αn−2

(n− 3)!
xn−3e−αxdx =

n2α2

(n− 1)(n− 2)
(1.15)
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Thus, the variance of α̂ is

Var[α̂] = E[α̂2]− E[α̂]2 =
n2α2

(n− 1)2(n− 2)
. (1.16)

An improved estimation of α could be α∗ = n−1
T in a sense that E[α∗] = α, making it

unbiased. Furthermore, its variance is also smaller since

Var[α∗] =
α2

n− 2
< Var[α̂] (1.17)

Since we assumed that X1, ..., Xn are independent Pareto distributed random variables

with parameters (α, c) it follows that Yi = log Xi
c are independent exponentially distributed

random variables with parameter α. Now, we let

Zn =
1

n− 1

n∑
i=1

Yi (1.18)

which is asymptotically normally distributed with parameters
(
1
α ,

1
nα2

)
. To see why, note

that we can use the central limit theorem since Z1, Z2, ... is a sequence of i.i.d. random

variables with a finite mean and variance. Thus, as n → ∞ the following holds:

F (Zn < x) ≈ Φ

(
x− an
bn

)
(1.19)

By setting an = 1
α and bn =

√
1

nα2 we obtain the desired result.

Lemma 1. Let ξ1, ξ2, ... be i.i.d. random variables with mean µ and positive, finite variance

σ2. Let ξ̄n = 1
n

n∑
i=1

ξi and suppose that f is a continuously differentiable function with

f ′(µ) ̸= 0. Then
√
n(f(ξ̄n)− f(µ))

d→ N (0, (f ′(µ))2σ2).

Proof. Throughout the proof, we will use the Portmanteau lemma: ξn
d→ ξ is equivalent

to any of the following conditions

1. E[f(ξn)] → E[f(ξ)] ∀ continuous and bounded function f

2. E[f(ξn)] → E[f(ξ)] ∀ bounded and Lipschitz function f
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It follows from the central limit theorem that
√
n(ξ̄n − µ)

d→ N (0, σ2). Since f is continu-

ously differentiable ∃ξ̄n
′ ∈ (ξ̄n, µ) such that f(ξ̄n)−f(µ) = f ′(ξ̄n

′
)(ξ̄n−µ) by the Lagrange

mean value theorem. By applying the continuous mapping theorem and the strong law

of large numbers, we get f ′(ξ̄n
′
)

p→ f ′(µ). Let Yn = f ′(ξ̄n
′
), c = f ′(µ), X = N (0, σ2) and

Xn =
√
n(ξ̄n − µ). With this notation, it suffices to only prove that (Xn, Yn)

d→ (X, c)

since by letting g(x, y) = xy (a continuous function) the continuous mapping theorem

gives g(Xn, Yn) = XnYn
d→ g(X, c) = N (0, c2σ2).

Therefore, we focus on proving that if Xn
d→ X and Yn

p→ c ∈ R then (Xn, Yn)
d→ (X, c).

For this, notice that (Xn, c)
d→ (X, c) because if f is any bounded and continuous func-

tion then g(x) = f(x, c) is also bounded and continuous and by the Portmanteau lemma

E[g(Xn)] → E[g(X)] from which E[f(Xn, c)] → E[f(X, c)] so (Xn, c)
d→ (X, c) by again

using the lemma. Furthermore, |(Xn, Yn)− (Xn, c)| = |Yn − c| p→ 0.

Now let Zn = (Xn, Yn), W = (X, c) and Wn = (Xn, c) be random variables. We claim

that if |Zn −Wn|
p→ 0 and Wn

d→ W then Zn
d→ W which is exactly what we are trying

to prove. For this, let f be a bounded and Lipschitz function so |f(x)| ≤ M ∀ x ∈ R and

∃K : |f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ R. Notice that

|E[f(Zn)− f(Wn)]| ≤ E[|f(Zn)− f(Wn)|]

= E[|f(Zn)− f(Wn)|I(|Zn −Wn| < ϵ)]

+ E[|f(Zn)− f(Wn)|I(|Zn −Wn| ≥ ϵ)]

≤ KϵP(|Zn −Wn| < ϵ) + 2MP(|Zn −Wn| ≥ ϵ)

≤ Kϵ+ 2MP(|Zn −Wn| ≥ ϵ|)

Also,

|E[f(Zn)− f(W )]| ≤ |E[f(Zn)− f(Wn)]|+ |E[f(Wn)− f(W )]|

≤ Kϵ+ 2MP(|Zn −Wn| ≥ ϵ|) + |E[f(Wn)− f(W )]|



9

The first inequality uses the triangle inequality and the second one is true because of

the previous result. Now, if ϵ → 0 then Kϵ → 0 and P(|Zn − Wn| ≥ ϵ|) → 0 since

|Zn −Wn|
p→ 0. Because Wn

d→ W , |E[f(Wn)− f(W )]| → 0 by the Portmanteau lemma.

Therefore, |E[f(Zn)− f(W )]| → 0 so Zn
d→ W by the lemma.

Consider the function f(y) = 1
y with f ′( 1α) = −α2 ̸= 0. It follows from Lemma 1 that the

sequence a∗n = f(Zn) is asymptotically normally distributed with parameters
(
α, α

2

n

)
.

1.2.2 Method of Moments Estimation

First, we want to estimate α given that we know c. According to (1.2) E[X] = α0

α0−1c if

X ∼ Pa(α0, c). Solving X̄ = E[X] gives α0 = X̄
X̄−c which is the first method of moments

estimator. Consider the independent random variables X1, ..., Xn where Xi ∼ Pa(α, c).

Then it follows from the central limit theorem that

Yn =
1

n

n∑
i=1

Xi (1.20)

is asymptotically normally distributed with parameters
(

α
α−1c,

αc2

(α−1)2(α−2)n

)
if α > 2. Let-

ting f(y) = y
y−c with f ′

(
αc
α−1

)
̸= 0 it follows from Lemma 1 that the sequence a0n = f(Yn)

is asymptotically distributed with parameters
(
α, α(α−1)

2

n(α−2)

)
. In practice, if we do not know

every single loss amount (which is needed for the maximum likelihood estimation) only the

total amount of losses and the number of losses exceeding c, then we can only calculate α0.

Now, we focus on estimating both α and c using the method of moments. For this,

consider X ∼ Pa(α, c) with its first two moments

µ1 = E[X] =
α

α− 1
c =

1

n

n∑
i=1

Xi, µ2 = E[X2] =
α

α− 2
c2 =

1

n

n∑
i=1

X2
i (1.21)

where the sample X1, ..., Xn consists of independent identically Pareto distributed ran-

dom variables. It follows from the first equation that ĉ =
(
1− 1

α

)
X̄ and substituting
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Figure 1.1: The probability that all sample points are at least ĉ. The experiment was
performed on a sample size of 103 i.i.d. Pareto distributed random variables for different
values of α and c. Each random sample was regenerated 103 times. Evenly spaced random
values for α and c were generated from the intervals [1, 15] and [1, 50], respectively. The
code for the above plot can be found at [4].

it back to the second one gives α̂ =

(
±
√

X̄22 − X̄2X̄2 + X̄2 − X̄2

)(
X̄2 − X̄2

)−1
where

X̄2 = 1
n

n∑
i=1

X2
i .

A major difference between the maximum likelihood and the method of moment esti-

mation is the way the parameter c is determined. In the former case, all sample points

correspond to a nonzero value, while in the latter, some sample points Xi < ĉ may result

in an incorrect model. However, as c and n increase, the probability that all of X1, ..., Xn

is greater than c gets close to 1.
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Figure 1.2: Six randomly generated Yn samples that are asymptotically normally dis-
tributed. We can see that the maximum likelihood method gives a slightly better esti-
mation than method of moments, which is a bit shifted to the left. The experiment was
performed on a sample size of 103 Pareto distributed random variables, repeated 104 times.
The code for the above plot can be found at [4].

1.3 Simulations

Now we simulate some of the above illustrated methods to see how well they work in

practice. We start with the methods described in Section 1.2.2. For this, we randomly

selected parameters α and c from intervals (2.5, 7) and (2.8, 8), respectively, and generated

a sample containing 103 i.i.d. Pareto distributed random values and repeated it 103 times

to get Yn. After this, we estimated the parameters α and c using maximum likelihood and

the method of moments.

Next, we tested these estimation techniques on a dataset containing 10,000 rows of in-

surance claim amounts [3], along with additional information about the customer and
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Figure 1.3: The PDF, CDF and ECDF of a Pareto distribution with parameters α and c
determined by ML and MM with a cutoff level at 5,000. We can see that both ML and
MM estimations capture the tendency of the ECDF well, but neither of them is precise.
The code for the above plot can be found at [4].

policy. It is sometimes assumed that insurance claims follow a Pareto distribution, allow-

ing us to use historical data to estimate the parameters of the distribution. Before fitting

a Pareto distribution to the dataset, only the claims with values greater than $5,000 were

kept. It is worth noting that when using the method of moments, the estimated ĉ turned

out to be greater than some of the claims amounts, which can be a disadvantage compared

to the maximum likelihood estimation.
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Chapter 2

Extreme Value Theory

2.1 Introduction

Suppose X1, X2, ... are i.i.d. random variables. The central limit theorem is concerned

with the limit behavior of X1 +X2 + ... +Xn as n → ∞, whereas in extreme value the-

ory, our goal is to find out the limit behavior of max(X1, ..., Xn) or min(X1, ..., Xn) =

−max(−X1, ...,−Xn).

Let F be the distribution function of Xi and x∗ = sup{x : F (x) < 1}. Then,

max(X1, ..., Xn)
p→ x∗, n → ∞ (2.1)

since P(max(X1, ..., Xn) < x) = P(X1 < x, ...,Xn < x) = Fn(x) and if ξn
d→ c ∈ R

then ξn
p→ c for a sequence of random variables ξ1, ξ2, .... This expression converges to

0 if x < x∗ and to 1 if x ≥ x∗. Therefore, to avoid a degenerate limit distribution, we

introduce real sequences an > 0 and bn such that

max(X1, ..., Xn)− an
bn

(2.2)



14

holds with

lim
n→∞

Fn(anx+ bn) = G(x) (2.3)

for each continuity point of G, if G is a nondegenerate distribution function.

Definition. G is called an extreme value distribution

Definition. The class of distribution functions F satisfying (2.3) is called the maximum

domain of attraction of G. Notation: F ∈ D(G).

2.2 Alternative Formulations

In order to work with (2.3) easier, we will write it in a few different equivalent forms. By

taking the logarithm of both sides, we get

lim
n→∞

n logF (anx+ bn) = logG(x) (2.4)

Since for every fixed x the right-hand side is constant, it follows that F (anx + bn) → 1.

So,

lim
n→∞

− logF (anx+ bn)

1− F (anx+ bn)
= 1 (2.5)

By using (2.5) and taking the reciprocal of both sides, we can rewrite (2.4) to

lim
n→∞

1

n(1− F (anx+ bn))
= − 1

logG(x)
(2.6)

2.3 Finding The Limit Distribution

Now, our goal is to find all limit distributions G for which (2.3) holds.

Definition. For a nondecreasing function f let f←(y) = inf{y : f(y) ≥ x} be its left-

continuous inverse.

The following lemma turns out to be useful in writing (2.6) in a more concise form.
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Lemma 2. Let fn be a sequence of nondecreasing functions, g a nondecreasing function

and ∀x ∈ (a, b) for which x is a continuity point of g

lim
n→∞

fn(x) = g(x) (2.7)

Then ∀x ∈ (g(a), g(b)) that is a continuity point of g←, we have

lim
n→∞

f←n (x) = g←(x) (2.8)

Proof. We want to show that ∀ϵ > 0 ∃nϵ ∀n ≥ nϵ

f←n (x)− ϵ ≤ g←(x) ≤ f←n (x) + ϵ (2.9)

if x is a continuity point of g←. Choose 0 < ϵ1 < ϵ, such that g←(x)−ϵ1 is a continuity point

of g. Also, note that g← is strictly monotonically increasing. Since g is nondecreasing, it

follows that g← is also nondecreasing. For the sake of contradiction, if we assume that

∃x, y : x < y and g←(x) = g←(y), then g would take both x and y at g←(x), which

is impossible. From the definition of left-continuous inverse functions g(g←(x)) ≤ x,

but because g is continuous at g←(x) − ϵ1 and g← is strictly monotonically increasing,

g(g←(x)− ϵ1) < x is also true. Next, choose δ < x− g(g←(x)− ϵ1). Since g is continuous

at g←(x)− ϵ1, ∃n0 ∀n ≥ n0 : fn(g
←(x)− ϵ1) < g(g←(x)− ϵ1) < x. Applying f←n to both

sides gives g←(x) ≤ f←n (x) + ϵ1,, which proves the right inequality. The other direction

can be proved similarly.

Now, if we let U← be the left-continuous inverse of 1
1−F , then we can use Lemma 2 to

write (2.6) as

lim
n→∞

U←(nx)− bn
an

= G←(e−
1
x ) := D(x) (2.10)

since U(anx+bn)
n ⇔ U(anx+ bn) = yn ⇔ anx+ bn ≥ U←(yn) ⇔ x ≥ U←(yn)−bn

an
. Similarly,

− 1
logG(x) ⇔ e

− 1
y = G(x) ⇔ G←(e

− 1
y ) ≤ x and applying Lemma 2 gives the desired result.

This looks promising, as it is a much simpler expression than before and we will use it in
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the next lemma, which will be a stepping stone to the main theorem of this chapter.

Lemma 3. Let an > 0, bn be real sequences, G a nondegenerate distribution function,

a(t) := a⌊t⌋ and b(t) := b⌊t⌋. The following statements are equivalent:

1.

lim
n→∞

Fn(anx+ bn) = G(x) (2.11)

if x is a continuity point of G.

2.

lim
t→∞

t(1− F (a(t)x+ b(t))) = − logG(x) (2.12)

if x is a continuity point of G such that 0 < G(x) < 1.

3.

lim
t→∞

U←(tx)− b(t)

a(t)
= D(x) (2.13)

if x > 0 is a continuity point of D.

Proof. (2) ⇔ (3): Since (2) is just an alternative formulation of (2.3) the equivalence

follows from (2.10) and Lemma 2.

(1) ⇔ (3): We have already shown that (1) ⇔ (2.10) so it is sufficient to show that

(3) ⇔ (2.10). For this, notice that if t ≥ 1 and x is a continuity point of D then

U←(⌊t⌋x)− b(t)

a(t)
≤ U←(tx)− b(t)

a(t)
≤

U←
(
tx
(
1 + 1

⌊t⌋

))
− b(t)

a(t)
(2.14)

By letting n = ⌊t⌋ the left-hand side converges to D(x) due to (2.10). The right-hand side

converges to D(x′) > D(x) if x′ > x for every continuity point x′ and (3) follows from

this.

The following theorem identifies all nondegenerate distribution functions that can occur

in (2.3) (in other words, the class of extreme value distributions).
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Theorem 1 (Fisher and Tippet, 1928). The class of extreme value distributions is Gγ(ax+

b) where a > 0 and

Gγ(x) = exp(−(1 + γx)
− 1

γ ), 1 + γx > 0 (2.15)

and if γ = 0 then the right-hand side is exp(−e−x).

Proof. Consider the function D defined in Lemma 3 part (3) and suppose that 1 is a

continuity point of D. Then,

lim
t→∞

U(tx)− U(t)

a(t)
= lim

t→∞

U(tx)− b(t)− U(t) + b(t)

a(t)
= D(x)−D(1) := E(x) (2.16)

for each continuity point x > 0. If y > 0,

U(txy)− U(t)

a(t)
=

U(txy)− U(ty)

a(ty)
· a(ty)
a(t)

+
U(ty)− U(t)

a(t)
(2.17)

Now, we want to show that the limits lim
t→∞

U(ty)−U(t)
a(t) and lim

t→∞
a(ty)
a(t) exist. We proceed with

an indirect proof. Suppose ∃A1, A2, B1, B2 such that A1 ̸= A2 or B1 ̸= B2 where Ai and

Bi are limit points of a(ty)
a(t) and U(ty)−U(t)

a(t) , respecitvely, for i = 1, 2. Taking the limit of

both sides in (2.17), we get

E(xy) = E(x)Ai +Bi (2.18)

for i = 1, 2 and for every continuity point of E(·) and E(·y). For any x take a sequence

of continuity points xn such that xn → x−. Since E is left-continuous (because D is the

left-continuous inverse of G at e−
1
x ), it follows that E(xny) → E(xy) so (2.18) holds for

all x, y > 0. Subtracting (2.18) for i = 1, 2 from each other gets

E(x)(A1 −A2) = B2 −B1 (2.19)

If A1 ̸= A2 or B2 ̸= B1 then E(x) would be a constant function but it is impossible since

we already assumed that G is nondegenerate. Thus, A1 = A2 and B1 = B2 must hold.
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Therefore, the aforementioned limits exist and let

A(y) := lim
t→∞

a(ty)

a(t)
(2.20)

for every y > 0 and we can rewrite E(xy) as

E(xy) = E(x)A(y) + E(y) (2.21)

for every x, y > 0. Letting s = log x, t = log y and H(x) := E(ex), we have

H(t+ s) = H(s)A(et) +H(t) (2.22)

Since H(0) = E(1) = D(1)−D(1) = 0 we can rewrite (2.22) as

H(t+ s)−H(t)

s
=

H(s)−H(0)

s
A(et) (2.23)

Since H is monotone (because ex is monotone and the left-continuous inverse G←(e−
1
x ) is

monotone as well) ∃t : ∃H ′(t) so according to (2.23) H is differentiable everywhere. Thus,

by taking the limit of both sides, as s → ∞, we get

H ′(t) = H ′(0)A(et) (2.24)

Now, if H ′(0) = 0 was true then H(t) would be constant but it contradicts with the fact

that G is assumed to be nondegenerate. Hence, Q(t) := H(t)
H′(0) = A(et) is well-defined. It

follows that Q(0) = A(1) = 0 and Q′(0) = 1. Then we can rewrite (2.22) as

Q(t+ s)−Q(t) = Q(s)Q′(t), Q(s+ t)−Q(s) = Q(t)Q′(s) (2.25)

where in the last equation we exchanged the role of t and s. Subtracting these two from
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each other and dividing by s gets

Q(t)
Q′(s)− 1

s
=

Q(s)

s
(Q′(t)− 1) (2.26)

so if s → ∞ this becomes

Q(t)Q′′(0) = Q′(t)− 1 (2.27)

Since Q′(t) = cH(t) + 1 for a c ∈ R and we already showed that H is differentiable

everywhere it follows that Q is twice differentiable. Thus,

Q′′(t) = Q′(t)Q′′(0) and γ := (logQ′)′(t) = Q′′(0) (2.28)

and it follows that

Q′(t) = eγt (2.29)

and it is well-defined for t = 0 as well since Q′(0) = 1. Moreover,

Q(t) =

∫ t

0
eγt =

eγt − 1

γ
(2.30)

which is also well-defined since Q(t) = 0 at t = 0. Hence,

H(t) = H ′(0)
eγt − 1

γ
⇔ D(t) = D(1) +H ′(0)

tγ − 1

γ
(2.31)

Also,

D(1) +H ′(0)
tγ − 1

γ
= x ⇔ tγ − 1 =

x−D(1)

H ′(0)
γ ⇔ t =

(
1 +

x−D(1)

H ′(0)
γ

) 1
γ

⇔ D←(x) =

(
1 +

x−D(1)

H ′(0)
γ

) 1
γ

(2.32)
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By definition, D(x) = G←(e−
1
x ), so

D←(x) =

(
1 +

x−D(1)

H ′(0)
γ

) 1
γ

= − 1

logG(x)
⇔ G(x) = exp

(
−
(
1 + γ

x−D(1)

H ′(0)

)− 1
γ

)

= exp
(
−(1 + γ(ax+ b))

− 1
γ

)
(2.33)

for a = 1
H′(0) and b = − D(1)

H′(0) . If 1 is not a continuity point of D then choose an arbitrary

continuity point x0 of D and follow the proof with U(tx0).

Theorem 2. If γ ∈ R then the following are equivalent:

1. If 1 + γx > 0 and an > 0 then

lim
n→∞

Fn(anx+ bn) = Gγ(x) = exp(−(1 + γx)
− 1

γ ) (2.34)

2. There is a positive function a such that

lim
t→∞

U←(tx)− U←(t)

a(t)
= Dγ(x) =

xγ − 1

γ
(2.35)

and if γ = 0 the right-hand side is interpreted as log x.

3. There is a positive function a such that

lim
t→∞

t(1− F (a(t)x+ U(t))) = (1 + γx)
− 1

γ (2.36)

if 1 + γx > 0.

4. There is a positive function f such that

lim
t→x∗−

1− F (t+ f(t)x)

1− F (t)
= (1 + γx)

− 1
γ (2.37)

for all x for which 1 + γx > 0 and x∗ = sup{x : F (x) < 1}.

Proof. (1) ⇔ (2) ⇔ (3): By letting b(t) = U(t) the equivalence follows from Lemma 3 and
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Theorem 1.

(2) ⇔ (4): Fix ϵ > 0, let g be a nondecreasing function and g← be its left-continuous

inverse. It follows from the definition of g← that g(g←(t)) ≤ t and since g is nondecreasing

g(g←(t)− ϵ) ≤ t and g(g←(t) + ϵ) ≥ t. It follows that

A =
U←

(
1−ϵ

1−F (t)

)
− U←

(
1

1−F (t)

)
a
(

1
1−F (t)

) <
t− U←

(
1

1−F (t)

)
a
(

1
1−F (t)

) <
U←

(
1+ϵ

1−F (t)

)
− U←

(
1

1−F (t)

)
a
(

1
1−F (t)

) = B

(2.38)

Because of (2),

lim
t→x∗−

A =
(1− ϵ)γ − 1

γ
and lim

t→x∗−
B =

(1 + ϵ)γ − 1

γ
(2.39)

Therefore,

lim
t→x∗−

t− U←
(

1
1−F (t)

)
a
(

1
1−F (t)

) = 0 (2.40)

Again because of (2), for every x > 0 the following holds

lim
t→x∗−

U←
(

x
1−F (t)

)
− t

a
(

1
1−F (t)

) =
xγ − 1

γ
(2.41)

Hence,

lim
t→x∗−

1− F (t)

1− F
(
t+ xa

(
1

1−F (t)

)) = (1 + γx)
1
γ (2.42)

since
U←

(
x

1−F (t)

)
− t

a
(

1
1−F (t)

) = x ⇔ U←
(

x

1− F (t)

)
= a

(
1

1− F (t)

)
x+ t

⇔ x

1− F (t)
≥ 1

1− F
(
t+ xa

(
1

1−F (t)

))
⇔ x ≥ 1− F (t)

1− F
(
t+ xa

(
1

1−F (t)

))
(2.43)

and using Lemma 2 gives (2.42).
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2.4 The Generalized Pareto Distribution

Let’s revisit part (4) of Theorem 2, which states that ∃f : f > 0 such that

lim
t→x∗−

1− F (t+ f(t)x)

1− F (t)
= (1 + γx)

− 1
γ (2.44)

if 1 + γx > 0. Now, suppose that X is a random variable with distribution function

F such that F ∈ D(Gγ). Then the numerator and denominator can be rewritten as

1− P(X < t+ f(t)x) ⇔ P
(
X−t
f(t) > x

)
and P(X > t), respectively. It follows that

P
(
X − t

f(t)
> x

∣∣∣∣ X > t

)
=

P
(
X > t

∣∣∣ X−t
f(t) > x

)
P
(
X−t
f(t) > x

)
P(X > t)

=
P
(
X−t
f(t) > x

)
P(X > t)

=
1− F (t+ f(t)x)

1− F (t)

(2.45)

where the second equality is true because f, x > 0. Hence,

lim
t→x∗−

P
(
X − t

f(t)
> x

∣∣∣∣ X > t

)
= (1 + γx)

− 1
γ (2.46)

if 0 < x < (max(0, −γ))−1. That is, we found the conditional distribution of X−t
f(t) given

that X > t, which is

Hγ(x) := 1− (1 + γx)
− 1

γ , 0 < x < (max(0, −γ))−1 (2.47)

Definition. A random variable X is generalized Pareto distributed (GPD) if it has the

following cumulative distribution function

Fγ(x) =


1− (1 + γx)

− 1
γ γ ̸= 0

1− e−x γ = 0

(2.48)

With this, we essentially showed that X−t
f(t) is approximately GPD from a given threshold

t. This has many applications in insurance since we can set a threshold value for the
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claims amount and the exceedances will follow a generalized Pareto distribution. The

only remaining step is to determine the parameters of such Pareto distribution, but this

is fairly straightforward with Maximum Likelihood or Method of Moments estimation.

The next chapter introduces more sophisticated techniques for modeling the behavior of

exceedances.
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Chapter 3

Peaks Over Threshold (POT)

3.1 Motivation

For a given dataset, extreme value analysis is used to model values that largely deviate from

the mean. In the previous chapter, we showed that once a high (or low) enough threshold

is set, the values above (or below) that level can be interpreted as Generalized Pareto

Distributed variables. The Peaks Over Threshold (POT) method is one way to model

extreme values, by first setting a threshold value u according to a given strategy, secluding

all samples that exceed u and modeling those values using the tail of the exceedances.

3.2 Introduction

Let u be the threshold and X be an unbounded random variable with distribution function

F . Then

Fu(x) = P (X − u < x | X > u) =
P (X > u | X < u+ x)P(X < u+ x)

P(X > u)

=
F (x+ u)− F (u)

F (u)

(3.1)

since in the numerator we are looking for the probability of u < X < u + x (here, F (u)

denotes the exceedance probability P(X > u)). Further, suppose that X is a random
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variable with i.i.d. samples X1, ..., Xn. Let K(u) be the set of indices that exceed u and

N(u) be the number of exceedances in the sample. Now, we can define the excess Yj for

each Xj > u as

{Y1, ..., YN(u)} = {Xi − u | i ∈ K(u)} (3.2)

It follows that samples Yi are i.i.d. and if a large enough u is given, they are approximately

GPD. These exceedances turn out to be useful for modeling F (x), but if we use the

empirical distribution function for this task and x is very large, then the EDF will depend

on a few extreme values, causing it to have a high variance. A more effective approach is

to rewrite F (x) as

F (x) = F (u)F u(x− u) = P(X > u)P (X − u > x− u | X > u) (3.3)

Replacing F (x) with the EDF and noting that F u(x) is approximately GPD, we get the

so-called POT estimator, which is

F (x) =
N(u)

n
(1 + γ̂(x− u))

− 1
γ̂ (3.4)

for every u < x < ∞ where γ̂ is a parameter estimator.

3.3 Setting a Threshold

The POT analysis depends highly on the value of u since, if the value is too large, only

a few samples will exceed this threshold, increasing the estimator’s variance. On the con-

trary, if u is too low, the exceedances will be less likely to follow a GPD, resulting in a

higher bias. Thus, our goal is to find a sweet spot to balance variance and bias.

The simplest method for setting a threshold is to select the k-largest values. Common

values that usually work well in practice are k =
√
n, k = n2/3

log logn , or the 90th percentile.

This rule of thumb method is the fastest way of finding the value of u, but due to its sim-
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plicity, it may not work well for every dataset. Other, more sophisticated methods include

the Mean Residual Life Plot and Parameter Stability Plot, which rely on the graphical

interpretation of the data.

3.4 Parameter Estimation

Once a suitable threshold is set, we can estimate the parameters of the generalized Pareto

distribution using the maximum likelihood method. If γ ̸= 0 then the density function is

f(x) = (1+ γx)
− 1

γ
−1

and f(x) = e−x if γ = 0. Then the log-likelihood function, given the

exceedances Y1, ..., YN(u) is

l(γ | Y1, ..., YN(u)) = −
(
1 +

1

γ

)N(u)∑
i=1

log(1 + γYi) (3.5)

if γ ̸= 0 and

l(Y1, ..., YN(u)) =

N(u)∑
i=1

Yi (3.6)

if γ = 0. Taking the derivative with respect to γ and setting it to zero will give the

estimator γ̂.

3.5 Simulations

We tested the POT analysis on the same insurance dataset as in Section 1.3. The 90th

percentile was used as the threshold value (
√
n and n2/3

log logn were also tested, but there

were only a few hundred data samples using such threshold levels, so we omitted their

illustration) and the parameters were estimated using the maximum likelihood method.
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Figure 3.1: The histogram of exceedances and the fitted GPD using the 90th percentile
as the threshold level. We can see it from the QQ plot that the extracted values closely
follow a generalized Pareto distribution. The code for the above plot can be found at [4].
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Chapter 4

Pareto-type Distributions

4.1 Introduction

Pareto-type distributions are a class of probability distributions that exhibit power-law

behavior in the tail. More precisely, X has a Pareto-type distribution if P(X > x) ≈ Cx−α

with constant C > 0 and tail index α > 0. It is easy to see that if X ∼ Pareto(α, c), then

X is also a Pareto-type distribution since P(X > x) =
(
c
x

)α
, so we can let C = cα with

tail index α.

It is a well-known result that the upper tail of the income or wealth distributions can

be modeled by a Pareto distribution (see [6]). However, this simple model turns out to

be inaccurate in many cases, so our goal is to develop a new, more complex model that

better captures the real world. This new model is the generalized Pareto curve.

4.2 Generalized Pareto Curves

Let X be a random variable that characterizes the distribution of income or wealth.

Assume that X is integrable and its distribution function, F , is differentiable over [a,∞)

or R and let f denote the density and Q the quantile function. Further assume that Q is

invertible.
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Definition. For an income level x > 0, the inverted Pareto coefficient is B(x) = E(X | X >

x) or

b∗(x) =
1

(1− F (x))x

∫ ∞
x

zf(z)dz (4.1)

The difference is that b∗(x) is scale-invariant while B(x) is not. For example, if our data

suggests that the expected wealth is $20 million above the threshold level $10 million then

B(x) = 20 · 106 while b∗(x) = 2. Notice that we can rewrite b∗(x) using the quantile

function in the following form

b(p) =
1

(1− p)Q(p)

∫ 1

p
Q(z)dz (4.2)

Note that if X ∼ Pareto(α, c) then b(p) = α
α−1 . We call the function b : p 7→ b(p) defined

over [p, 1) a generalized Pareto curve, where p = F (c). It is also reasonable to assume that

c > 0 since negative thresholds do not have applications in practice and the definition has

a singularity at 0.

Theorem 3. If X satisfies the assumptions stated above then b is differentiable and ∀p ∈

[p, 1) : 1− b(p) + (1− p)b′(p) ≤ 0 and b(p) ≥ 1.

Proof. The fact that b(p) ≥ 1 follows from the definition since b(p) = b∗(x) = E(X | X>x)
x .

Also, ∀p ≥ p :

(1− p)Q(p)b(p) =

∫ ∞
p

Q(z)dz (4.3)

Differentiating both sides with respect to p gives

(1− p)Q(p)b′(p) + (1− p)b(p)Q′(p)− b(p)Q(p) = −Q(p) (4.4)

Since we assumed c > 0, it follows that ∀p ≥ p : Q(p) > 0. Then dividing both sides by

Q(p) gives

(1− p)b′(p) + (1− p)b(p)
Q′(p)

Q(p)
− b(p) = −1 (4.5)
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After rearranging:

(1− p)b(p)
Q′(p)

Q(p)
= b(p)− 1− (1− p)b′(p) (4.6)

Since the quantile function is increasing, the left-hand side is nonnegative, which concludes

the proof.

Theorem 4. If X is defined for x > c, F (c) = p, and the generalized Pareto curve is

b : [p, 1) 7→ R, then ∀p ≥ p, the p-th quantile is

Q(p) = c
(1− p)b(p)

(1− p)b(p)
exp

(
−
∫ p

p

1

(1− p)b(u)
du

)
(4.7)

Proof. From (4.6) we have

Q′(p)

Q(p)
=

1

1− p
− 1

(1− p)b(p)
− b′(p)

b(p)
(4.8)

After integrating from p to p:

∫ p

p

Q′(u)

Q(u)
du = logQ(p)− logQ(p) =

∫ p

p

1

1− u
du−

∫ p

p

1

(1− u)b(u)
du−

∫ p

p

b′(u)

b(u)
du (4.9)

From which

Q(p) = Q(p)exp

(∫ p

p

1

1− u
du−

∫ p

p

1

(1− u)b(u)
du−

∫ p

p

b′(u)

b(u)
du

)
= Q(p)

(1− p)b(p)

(1− p)b(p)
exp

(
−
∫ p

p

1

(1− p)b(u)
du

)

and since Q(p) = c we are done.

It can be verified that for power laws (e.g., the Pareto distribution) b(p) is constant.

However, pure power laws rarely exist in practice, so we can weaken the definition and

only characterize distributions through their asymptotic behavior. This is the motivation

for the following definition.
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Definition. X is an asymptotic power law if for some α > 0, 1−F (x) = L(x)x−α, where

L(x) is a slowly varying function which means that ∀λ > 0: lim
x→∞

L(λx)
L(x) = 1.

We can also generalize the definition of slowly varying functions to allow arbitrary positive

real numbers as the limit.

Definition. L is a regularly varying function if ∀λ > 0 : lim
x→∞

L(λx)
L(x) ∈ R+

In general, we will restrict ourselves to α > 1 so that the means are finite. The following

theorems are from Karamata, and they turn out to be useful in the proof of theorems

regarding asymptotic power laws.

Theorem 5 (Karamata, direct half). Let f be a regularly varying function with index α,

and be locally bounded on [a,∞). Then for any σ < −(α+ 1)

lim
x→∞

xσ+1f(x)∫∞
x tσf(t)dt

= −(σ + α+ 1) (4.10)

Theorem 6 (Karamata, converse half). Let f be positive and locally integrable on [a,∞).

If for some σ < −(α+ 1),

lim
x→∞

xσ+1f(x)∫∞
x tσf(t)dt

= −(σ + α+ 1) (4.11)

then f varies regularly with index α.

Lemma 4. Let f be measurable and positive and assume that for some λ0 > 1,

lim
x→∞

f(λx)

f(x)
= ∞ (λ > λ0) (4.12)

Then (4.12) holds uniformly in λ over every interval [λ0,∞) where λ > λ2
0.

Corollary 1. If f ∈ R∞ then Lemma 4 holds uniformly in λ over all intervals (0, λ−10 )

and (λ,∞) for every λ0 > 1. Here, R∞ denotes the set of regularly varying functions at

∞.
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The proofs for the above results can be found in the book Regular Variation [1]. For the

next few proofs, the following lemma will be used, which states that we can rewrite b∗(x)

into a more convenient form.

Lemma 5.

b∗(x) = 1 +
1

(1− F (x))x

∫ ∞
x

1− F (z)dz (4.13)

Proof. Since

1− F (x) =

∫ ∞
x

f(z)dz (4.14)

we can use integration by parts:

∫ ∞
x

zf(z)dz =

∫ ∞
x

(−z)(−f(z))dz = [z(1− F (z)]∞z=x +

∫ ∞
x

1− F (z)dz (4.15)

Because we assumed that X is integrable, we have 1 − F (x) = o
(
1
x

)
from Markov’s

inequality. This is because if g(x) = P(X > x) then

E(|X|) =
∫ ∞
0

g(x)dx < ∞ (4.16)

and since g is nonincreasing, we have

lim
x→∞

xg(x) = 0 (4.17)

Hence, the bracketed term converges to 0 if x → ∞, so (4.15) becomes

x(1− F (x)) +

∫ ∞
x

1− F (z)dz (4.18)

and substituting it back to b∗ concludes the proof.

Theorem 7. If α > 0 then X is an asymptotic power law if and only if lim
p→1

b(p) = α
α−1

Proof. ⇒ : Note that lim
p→1

b(p) = lim
x→∞

b∗(x) and the assumption that L is slowly varying

is equivalent to the assumption that 1−F is regularly varying. Then, applying the direct
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half of Karamata’s theorem with σ = 0 to Lemma 5 we get

lim
x→∞

b∗(x) = 1 +
1

α− 1
=

α

α− 1
(4.19)

⇐: Since lim
p→1

b(p) = α
α−1 we have

lim
x→∞

1

b∗(x)− 1
= α− 1 (4.20)

Applying the converse half of Karamata’s theorem with σ = 0 we conclude that 1− F is

regularly varying with index −α.

It is worth mentioning that the previous theorem generalizes the fact that ifX ∼ Pareto(α, c)

then b(p) = α
α−1 in an asymptotic sense.

Theorem 8. 1− F (x) is rapidly varying, meaning ∀λ > 1 : lim
x→∞

1−F (λx)
1−F (x) = 0 if and only

if lim
p→∞

b(p) = 1.

Proof. ⇒: After a change of variable to z = tx in Lemma 5 we have

b∗(x) = 1 +

∫ ∞
1

1− F (tx)

1− F (x)
dt = 1 +

∫ K

1

1− F (tx)

1− F (x)
dt+

∫ ∞
K

1− F (tx)

1− F (x)
dt (4.21)

for K > 1. Since we assumed that F is differentiable, the function t 7→ 1−F (tx)
1−F (x) is contin-

uous on [1,K], so it is bounded. Thus, from the dominated convergence theorem,

lim
x→∞

(∫ K

1

1− F (tx)

1− F (x)
dt

)
=

∫ K

1

(
lim
x→∞

1− F (tx)

1− F (x)

)
dt = 0 (4.22)

because we assumed that 1− F (x) is rapidly varying. We also have

lim
x→∞

1− F (xt)

1− F (x)
dt = 0 (4.23)
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uniformly for t on [K,∞) from Corollary 1. Thus, from the uniform convergence theorem,

lim
x→∞

(∫ ∞
K

1− F (tx)

1− F (x)
dt

)
=

∫ ∞
K

(
lim
x→∞

1− F (tx)

1− F (x)

)
dt = 0 (4.24)

Since both integrals converge to 0 in (4.21), lim
x→∞

b∗(x) = 1.

⇐: Since lim
x→∞

b∗(x) = 1,

lim
x→∞

(∫ ∞
1

1− F (tx)

1− F (x)
dt

)
= 0 (4.25)

from Lemma 5. Let λ > 1 and x > x. Because the function t 7→ 1−F (tx)
1−F (x) is decreasing,

1− F (λx)

1− F (x)
<

1− F (tx)

1− F (x)
∀t < λ (4.26)

After integrating both sides with respect to t from 1 to λ,

1− F (λx)

1− F (x)
<

1

λ− 1

∫ λ

1

1− F (tx)

1− F (x)
dt <

1

λ− 1

∫ ∞
1

1− F (tx)

1− F (x)
dt (4.27)

because ∀t : 1−F (tx)
1−F (x) ≥ 0. Since the left-hand side is nonnegative, after taking the limit of

both sides as x → ∞ and using (4.25) we conclude that 1− F is rapidly varying.

4.3 Generalized Pareto Curves in Practice

Examples of rapidly varying functions include the normal or exponential distribution.

Loosely speaking, such distributions have a thin tail and converge to zero faster than any

power law. Since the generalized Pareto coefficient converges to one when p → 1, it can

characterize thin-tailed distributions from fat-tailed ones.

Theorem 7 and Theorem 8 divide the class of probability distributions into three cat-

egories based on the behavior of the generalized Pareto curve. There are strict power laws

for which b(p) → c > 1, thin-tailed distributions for which b(p) → 1, and distributions that

are not in the previous two categories. Those distributions may oscillate at an increasingly
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Figure 4.1: Generalized Pareto Curves of pre-tax income in France and the United States
in 1980 and 2010, from the paper Generalized Pareto Curves: Theory and Applications
[2].

fast rate without converging to anything (for example, b(p) = 3+ sin(log(1− p)) is such a

function). However, from a practical point of view, the third category is not relevant, so

we are left with two classes of distributions characterized by the limit behavior of b(p).

When X is a strict power law, which means that b(p) is constant, the level of inequality is

the same as we move higher in the distribution. For example, the share of the top 20% of

the population is the same as the top 2% among the top 20%, which is equal to the share

of the top 0.2% among the top 2%. Deviations from this constant result in an unequal

share as we move higher. If b(p) increases near p = 1 then the top 0.2% among the top

2% gets a larger fraction of income than the top 2% among the top 20%. On the other

hand, a decrease in b(p) near p = 1 shows a reverse behavior.

As an example, take the levels of pre-tax income in France and the United States over

the 1962-2014 period. The generalized Pareto curve has changed a lot more in the United

States than in France, which reflects a well-known wealth distribution change in the US:

the income distribution among the top is more unequal. In both countries, b(p) converges

to a value strictly greater than one, meaning that X is an asymptotic power law. How-

ever, the coefficients vary greatly even as p approaches one, so a simple Pareto distribution
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could not have captured this information, since in this case b(p) would be constant. Be-

cause b(p) increases even as p → 1, income levels are more skewed towards the very top in

both countries than the simple Pareto distribution suggests. We can also observe that the

curves are U-shaped. This is not specific to these two countries, as we can see a similar

pattern in other countries as well. This fact is important since we know that b(p) does

not converge monotonically to a constant value as most other models suggest.

In practice, when trying to determine the generalized Pareto curves from a finite sample,

a simple plug-in approach does not work. To see why, consider the sample (X1, X2, ..., Xn)

of i.i.d. copies of X and let X∗i denote the i-th largest value in the sample (i.e., the i-th

order statistic). Then, a natural reformulation of Section 4.2 is

b̂n(p) =
1

(n− ⌊np⌋)X∗⌊np⌋+1

n∑
k=⌊np⌋+1

X∗k (4.28)

If n−1
n ≤ p < 1 then b̂n(p) = 1 regardless of the sample. In general, as p gets close to

one, the estimator is skewed towards one, which means that we cannot determine the

asymptotic value of b(p) solely from the sample. However, in Generalized Pareto Curves:

Theory and Applications [2] the authors show a more sophisticated method called Pareto

Interpolation for determining the generalized Pareto curve from a finite sample.

4.4 Other Pareto Coefficients

We can extend the original definition of b(p) to generate an arbitrary number of Pareto

coefficients that describe power law behavior. For this, notice that if G(x) = 1− F (x) =

Cx−α then

an(x) = − xG(n)(x)

G(n−1)(x)
− n+ 1 = α ∀n > 0 (4.29)
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Figure 4.2: Distribution of pre-tax national income using α0, α1 and α2 in the United
States, 2010, from the paper Generalized Pareto Curves: Theory and Applications [2].

For example, a1(x) =
xf(x)
1−F (x) for n = 1. We can also generalize this definition and allow

negative derivatives, as long as α > −n+ 1:

G(n)(x) = (−1)n
∫ ∞
x

...

∫ ∞
t2︸ ︷︷ ︸

|n| times

G(t1)dt1 ... dt|n| (4.30)

We call an(x) the local Pareto coefficient of order n. It follows from above that

a0(x) = 1 +
x(1− F (x))∫∞
x 1− F (t)dt

(4.31)

Hence,

b(p) =
a0(x)

a0(x)− 1
(4.32)

So we expressed b(p) = b0(p) in terms of the local Pareto coefficient of order 0. Similarly,

we could have defined b(p) as bn(p) = an(x)
an(x)−1 , but this involves estimating successive

derivatives, which are difficult. Therefore, only a0, a1 and a2 are used in practice. Fig-

ure 4.2 shows the curves of the aforementioned local Pareto coefficients. The traditional a0

is more U-shaped than the other two, which are more skewed towards the left. However,

no matter which one we choose, there is a change of slope as p → 1, which is a major

difference to simple power laws.
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Conclusion

This thesis examined notable probability distributions in insurance, focusing on Pareto-

type distributions and Extreme Value Theory (EVT). Beginning with the classical Pareto

distribution, we explored its properties and parameter estimation techniques. In par-

ticular, we found that the Method of Moments may estimate a cutoff level larger than

some observed data points, excluding part of the dataset. Simulations on insurance data

demonstrated the effectiveness of Pareto distributions in modeling claims, though some

deviations suggest areas for improvement.

Building on this, we introduced Extreme Value Theory and established key results, in-

cluding the Fisher-Tippett theorem, which characterizes the asymptotic distribution of

extreme order statistics. We then examined the Peaks Over Threshold (POT) method, a

widely used approach for modeling excess losses. Simulations confirmed that exceedances

above a suitably chosen threshold closely follow a Generalized Pareto Distribution (GPD),

reinforcing the practical applicability of EVT-based methods in insurance risk modeling.

The final chapter explored Pareto-type distributions and introduced generalized Pareto

curves, which provide a more refined framework for modeling wealth, income, or insur-

ance claims. They offer a better alternative to the classical Pareto model, capturing

variations in tail behavior that standard approaches may overlook.
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MI alapú eszközök használatáról

szóló nyilatkozat

Aluĺırott Frankli Márk nyilatkozom, hogy a szakdolgozatom elkésźıtése során az alább

felsorolt feladat elvégzésére a megadott MI-alapú eszközt alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye

Irodalomkeresés Perplexity [2]

Nyelvhelyesség ellenőrzése Writefull Teljes dolgozat

Ezen táblázat késźıtése GPT-4o Ezen táblázat

A felsoroltakon túl más MI alapú eszközt nem használtam.
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