
Optimal Investment Strategies under Delayed
Information: General Theory, Specific Model Analysis,

and AR(1) Application

BSc Thesis

Author:
Tamás Terényi

Adviser:
Miklós Rásonyi

Department of Probability Theory and Statistics

Mathematics BSc

Eötvös Loránd University
Faculty of Science
Budapest, 2025



Abstract

This thesis investigates optimal investment strategies within the framework of exponential
utility maximization. The work is presented in three main parts.
First, we explain a general theory for an investor facing a delay D in observing a price process
S = (Sk)k=0,...,n whose increments are multivariate normal developed by Dolinsky and Zuk
(2023). They establish the existence and uniqueness of an optimal trading strategy γ̂. This
result hinges on a unique decomposition of the inverse covariance matrix (precision matrix) Λ
of price increments into Λ = Q̂−1 + Γ̂, where Q̂ is a banded positive-definite matrix and Γ̂ is
a symmetric matrix with a specific zero-pattern related to the delay D. The proof involves a
verification theorem based on a martingale measure approach and duality arguments.
Second, to illustrate the practicalities of determining the crucial precision matrix Λ, we analyze
a specific price process Si = zi−1 +zi, where zk are i.i.d. Gaussian variables. For the increments
Xi = Si − Si−1 of this MA(1)-like price model, we explicitly compute their covariance matrix
Σ. The core of this part is the derivation of a closed-form expression for every entry of the
precision matrix Λ = Σ−1, using block matrix inversion techniques and properties of tridiagonal
"path" matrices. This part showcases the difficulties of coming to an explicit solution despite
strong results which make it theoretically possible.
Third, we apply the general optimal investment framework to a discrete-time Autoregressive
(AR(1)) model Xt = (1 + β) Xt−1 + σ ϵt for the risky asset, specifically under conditions of
no information delay (D = 0) and a zero initial state (X0 = 0). By first deriving the explicit
precision matrix for the AR(1) increments and then substituting it into the simplified opti-
mal strategy formula (where expected increments µj = 0), we demonstrate that the resulting
strategy, γ̂i = β

σ2 [1 − (T − i)β]Xi−1, precisely matches the known solution found by Deák and
Rásonyi (2015) for fully informed investors. This reconciliation serves as a validation of both
results.
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Chapter 1

Introduction

Optimal investment decisions are a cornerstone of financial mathematics and economics. In-
vestors constantly seek strategies to maximize their expected utility of wealth, balancing risk
and return. Classical models often assume instantaneous availability of information. However,
in real-world markets, information delays are prevalent, stemming from various sources such
as data processing times, reporting lags, or the inherent nature of certain economic indicators,
which can be of particular effect in high-frequency trading for instance (Föllmer and Schied,
2016, Chapter 3). This thesis addresses the problem of optimal portfolio selection for an investor
who faces such information delays.
The primary objective is to develop a framework for determining optimal trading strategies
under exponential utility when market information is not immediately available. We consider
a discrete-time financial market where the price increments of a risky asset are multivariate
normally distributed. The investor’s information about past prices is subject to a fixed delay
D.
This work is structured into three main parts:
The first part of the thesis (Chapter 2) lays down the general theoretical groundwork based on
Dolinsky and Zuk (2023). We formulate the problem of maximizing expected exponential utility
of terminal wealth in the presence of information delays. We prove a theorem that characterizes
the unique optimal trading strategy. This characterization relies on a specific decomposition of
the precision matrix. The proof of this theorem employs techniques from convex optimization
and martingale duality.
The second part (Chapter 3) focuses on a use case of the general theory. To provide a concrete
and non-trivial example of how the necessary matrix can be derived, we analyze a specific price
process model where prices are formed by the sum of two consecutive i.i.d. Gaussian random
variables. For this model, we explicitly calculate the covariance matrix of price increments and
then undertake the derivation of its inverse. This involves leveraging results for the inverse of
tridiagonal matrices and applying block matrix inversion techniques (Schur complements) to a
reordered system.
The third part (Chapter 4) serves to connect the general theory with an established results in
financial modeling by Deák and Rásonyi (2015). We consider a standard Autoregressive process
of order 1 for the risky asset. Under the simplifying assumptions of no information delay (D = 0)
and a zero initial asset value, we apply the optimal strategy formula derived in Chapter 2. We
explicitly compute the precision matrix for the AR(1) increments and demonstrate that the
general theory recovers the known optimal trading strategy for a fully informed investor in this
AR(1) setting.
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Chapter 2

Optimal Investment with Delayed
Information

This chapter develops the general mathematical framework for determining the optimal in-
vestment strategy for an investor who maximizes exponential utility of terminal wealth while
facing a delay in the observation of asset prices based on Dolinsky and Zuk (2023). We begin
by defining the market model and the investor’s optimization problem as they did, then explain
their proof step by step.

2.1 Model Setup and Problem Formulation

We have a price process S = (Sk)k=0,...,n on a complete probability space (Ω, F ,P). The
increments (S1 −S0, . . . , Sn −Sn−1) are multivariate normal with mean vector µ and covariance
matrix Σ, which is positive-definite. Set Λ := Σ−1.
We fix a delay D ∈ Z+. The information filtration of our investor is GD

k := σ(S0, . . . , S(k−D)+).
A trading strategy γ = (γ1, . . . , γn) is predictable with respect to {GD

k }. Its terminal wealth at
time n is

V γ
n =

n∑
i=1

γi(Si − Si−1)

We consider exponential utility with parameter 1 (i.e. risk aversion α = 1), and the goal is:

Maximize E
[
−e−V γ

n

]
over all γ ∈ AD

We introduce two classes of matrices:

1. SD ⊂ Mn(R): the set of positive-definite matrices Q with banded structure such that
Qij = 0 whenever |i − j| > D. (Hence Q is a covariance-type matrix with a bandwidth
D.)

2. TD ⊂ Mn(R): the set of symmetric matrices Γ such that Γij = 0 whenever |i − j| ≤ D.
(Hence Γ has zeros on its main diagonal and on D diagonals on either side.)

2.2 Main Theorem on Optimal Strategy

The central result of this chapter provides the unique optimal trading strategy and the cor-
responding maximum expected utility. It relies on a specific algebraic decomposition of the
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precision matrix Λ. The theorem states that there exists a unique decomposition

Λ = Q̂−1 + Γ̂ (2.1)

where Q̂ ∈ SD and Γ̂ ∈ TD. The maximizer γ̂ = (γ̂1, ..., γ̂n) for the optimization problem is
unique and is given by the linear form

γ̂i =
n∑

j=1
Λijµj −

i−1∑
j=1

Γ̂ij(Sj − Sj−1), i = 1, ..., n. (2.2)

The corresponding value is given by

EP
[
− exp(−V γ̂

n )
]

= −

√√√√∣∣∣∣∣Q̂Σ
∣∣∣∣∣ exp

(
−1

2µΛµ′
)

(2.3)

2.3 Proof of the Main Theorem

The proof of this theorem proceeds in three main steps. First, we establish the existence and
uniqueness of the matrix decomposition Λ = Q̂−1 + Γ̂, which we will not detail. Second, we
present a verification argument based on martingale duality, which provides conditions for a
candidate strategy to be optimal. Third, we construct the candidate optimal strategy γ̂ and
an associated dual measure Q̂ that satisfy these conditions.

2.3.1 Existence and Uniqueness of the Matrix Decomposition

This step demonstrates that the precision matrix Λ can be uniquely decomposed as stated in
the theorem.

1. Positivity and Sylvester’s criterion: We know Λ is positive-definite. Hence, all its
leading principal minors are positive as per (Gilbert, 1991). In particular, the relevant
minors which overlap only in certain banded parts are also positive.

2. Application of Theorem 5.5 in Barrett and Feinsilver (1981): Because Λ satisfies
those positivity properties on principal minors (specifically the ones with “width” D +1),
it follows from that result that Λ can be written as Λ = R + (Λ − R), where R itself is
invertible and banded (and in fact symmetric), and Λ − R is in TD.

3. Set Q̂ := R−1. Then Q̂ is in SD because it’s the inverse of a banded, positive-definite
matrix R. (Equivalently, the structure in Q̂ and positivity follow from the structure and
positivity of R.) We define Γ̂ := Λ − R. By construction, Γ̂ is in TD. And we get

Λ = Q̂−1 + Γ̂.

4. Uniqueness: The same reference ensures that if you try to represent Λ in that form in
two different ways, they must coincide.

So Step I concludes that there is a unique decomposition

Λ = Q̂−1 + Γ̂, Q̂ ∈ SD, Γ̂ ∈ TD

3



2.3.2 Verification via Martingale Duality

This step introduces a verification result. If we can find a strategy γ̃, an equivalent probability
measure Q̃, and a constant C satisfying a specific relationship, then γ̃ is guaranteed to be the
optimal strategy.

The Setup for Step II

We define QD to be the collection of probability measures Q (equivalent to P) that have finite
relative entropy and also satisfy a certain conditional mean-zero condition, namely:

EQ[St − Ss | GD
s ] = 0 for all t ≥ s. (2.1)

This effectively says that under Q, the increments St − Ss behave like martingale increments
with respect to the delayed filtration {GD

s }.

The Statement in Step II

Step II says:

If we manage to find a triplet (γ̃, Q̃, C) with γ̃ ∈ AD, Q̃ ∈ QD, and a real constant
C such that

V γ̃
n + log

(
dQ̃
dP

)
= C (almost surely), (2.2)

then γ̃ must be the unique optimal portfolio for the exponential utility objective,
and

EP

[
−e−V γ̃

n

]
= −e−C

So Step II is a verification step: if you guess (or derive) the right strategy and the right measure
Q̃ so that (2.2) is fulfilled, that guess is forced to be correct.

Why This Implies Optimality

1. Relation (2.2) implies
EP
[
−e−V γ̃

n

]
= −e−C .

2. Uniqueness: For exponential utility −e−x, the maximization problem is maxγ E
[
−e−V γ

n

]
.

This is a strictly concave functional in γ. Hence, if an optimizer exists, it is unique. So
any candidate that we can verify is an optimizer must automatically be the unique one.

3. Verifying that no other γ can yield a strictly larger value is done via a standard
“duality” or “Fenchel–Legendre” inequality argument:

log
(
EP

[
e−V γ

n

])
≥ −EQ

[
log

(
dQ
dP

)]
(2.4)

for any Q ∈ QD.
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Why (2.1) ensures EQ[V γ
n ] = 0

Observe that condition (2.1) says EQ[St − Ss | GD
s ] = 0. For a delayed-predictable strategy γ,

you effectively can factor out γi as a GD
i−1-measurable random variable in the difference Si−Si−1.

Then a repeated application of (2.1) yields

EQ[V γ
n ] = EQ

[
n∑

i=1
γi(Si − Si−1)

]
= 0

Thus under Q ∈ QD, the expected increment of the wealth process is zero.

Derivation of the inequality (2.3) from (2.2)

• (2.2) says that for some strategy γ̃ ∈ AD, measure Q̃ ∈ QD, and constant C ∈ R,

V γ̃
n + log

(
dQ̃
dP

)
= C (almost surely).

• we are aiming for

log
(
EP

[
e−V γ̃

n

])
= −C = −EQ̃

[
log

(
dQ̃
dP

)]
(2.3)

as in the original proof. We want to see why both equalities in (2.3) hold.
From (2.2), we have

V γ̃
n + log

(
dQ̃
dP

)
= C

Rearrange to

−V γ̃
n = −C + log

(
dQ̃
dP

)
Exponentiate both sides to get

e−V γ̃
n = e−C exp

(
log

(
dQ̃
dP

))
= e−C dQ̃

dP

Taking expectation under P:

EP

[
e−V γ̃

n

]
= e−CEP

[
dQ̃
dP

]
But by definition of the Radon–Nikodým derivative

EP

[
dQ̃
dP

]
= Q̃ (Ω) = 1

So
EP
[
e−V γ̃

n

]
= e−C

Taking the natural logarithm gives

log
(
EP
[
e−V γ̃

n

])
= log(e−C) = −C
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Again from (2.2):

log
(

dQ̃
dP

)
= C − V γ̃

n

Take expectation now under Q̃:

EQ̃

[
log

(
dQ̃
dP

)]
= EQ̃[C] − EQ̃[V γ̃

n ]

By definition, C is just a constant, so EQ̃[C] = C. Also, Q̃ ∈ QD ensures EQ̃[V γ̃
n ] = 0. Therefore,

EQ̃

[
log

(
dQ̃
dP

)]
= C

Hence
−C = −EQ̃

[
log

(
dQ̃
dP

)]
Putting both pieces together yields exactly the chain of equalities in (2.3):

log
(
EP

[
e−V γ̃

n

])
= −C = −EQ̃

[
log

(
dQ̃
dP

)]

Derivation of the Duality Inequality

1. We are trying to show that for any strategy γ,

log
(
EP

[
e−V γ

n

])
≥ −EQ

[
log

(
dQ
dP

)]
.

This is a form of weak duality statement: the left side (the “primal” expression) is bounded
below by the right side (the “dual” expression).

2. Why it’s “≥”:

• We want to minimize E[e−V ] (equivalently maximize −E[e−V ]).
• When you take the logarithm, minimizing E[e−V ] is the same as minimizing log(E[e−V ]).
• You exhibit a particular strategy γ̂ (the “candidate optimal strategy”) and a partic-

ular measure Q̂ that satisfy this inequality and achieve equality.

Fix any γ ∈ AD. We want:

log
(
EP[e−V γ

n ]
)

≥ −EQ

[
log

(
dQ
dP

)]
, for every Q ∈ QD

Assume EP[e−V γ
n ] < ∞. Otherwise, the left-hand side is +∞ and the inequality is trivial. Write

EP[e−V γ
n ] = EP

[
e−V γ

n + z
dQ
dP

V γ
n

]
,

if and only if EQ[V γ
n ] = 0. Since γ ∈ AD and Q ∈ QD, we do have EQ[V γ

n ] = 0, so we can add
that zero term. Now apply the Legendre–Fenchel (or Young) inequality:

xy ≤ ex + y(log y − 1),
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valid for all real x, y. In our proof, we set x = −V γ
n (ω) and y = z dQ

dP (ω). Then:

−V γ
n (ω) ·

(
z

dQ
dP

(ω)
)

≤ e−V γ
n (ω) + z

dQ
dP

(ω)
(

log
(

z
dQ
dP

(ω)
)

− 1
)

Add z dQ
dP (ω)V γ

n (ω) to both sides. The left becomes 0:

0 ≤
[
e−V γ

n (ω) + z
dQ
dP

(ω) (log(· · · ) − 1)
]

+ z
dQ
dP

(ω)V γ
n (ω)

Regroup: [
e−V γ

n (ω) + z
dQ
dP

(ω)V γ
n (ω)

]
︸ ︷︷ ︸

call this "X"

+ z
dQ
dP

(ω) (log(· · · ) − 1)︸ ︷︷ ︸
call this "Y"

So:
0 ≤ X + Y ⇒ X ≥ −Y

Rewriting gives:

X ≥ −Y = z
dQ
dP

(ω)
(

1 − log
(

z
dQ
dP

(ω)
))

Substitute back:

e−V γ
n (ω) + z

dQ
dP

(ω)V γ
n (ω) ≥ z

dQ
dP

(ω)
(

1 − log
(

z
dQ
dP

(ω)
))

Taking expectations under P:

EP

[
e−V γ

n + z
dQ
dP

V γ
n

]
≥ EP

[
z

dQ
dP

(
1 − log

(
z

dQ
dP

))]

Since z is constant:

EP

[
z

dQ
dP

(
1 − log

(
z

dQ
dP

))]
= zEP

[
dQ
dP

(
1 − log

(
z

dQ
dP

))]

Distribute inside the expectation:

= z

(
EP

[
dQ
dP

]
− EP

[
dQ
dP

log
(

z
dQ
dP

)])

Since dQ
dP is the Radon–Nikodym derivative:

EP

[
dQ
dP

]
= Q(Ω) = 1

For the second term:
EP

[
dQ
dP

log
(

z
dQ
dP

)]
= EQ

[
log

(
z

dQ
dP

)]
Thus:

z

(
1 − EQ

[
log

(
z

dQ
dP

)])
Expand the logarithm:

EQ

[
log

(
z

dQ
dP

)]
= log z + EQ

[
log

(
dQ
dP

)]

7



Therefore:
1 − EQ

[
log

(
z

dQ
dP

)]
= 1 − log z − EQ

[
log

(
dQ
dP

)]
,

and multiplying by z:

z − z log z − zEQ

[
log

(
dQ
dP

)]

Putting everything together:

EP
[
e−V γ

n

]
≥ z − z log z − zEQ

[
log

(
dQ
dP

)]

Taking logarithms gives the desired inequality.
Define

f(z) := z − z log z − zEQ

[
log

(
dQ
dP

)]
, z > 0

For convenience, let

α := EQ

[
log

(
dQ
dP

)]

Then
f(z) = z − z log z − αz = z [1 − log z − α]

Our goal is to find maxz>0 f(z). Because f(z) is differentiable on (0, ∞) and tends to −∞ as
z → 0+ or z → ∞, it will have a global maximum at a critical point where f ′(z) = 0.
We compute f ′(z) by breaking f into simpler terms:

1. The derivative of z w.r.t. z is 1.

2. The derivative of −z log z is −(log z + 1).

3. The derivative of −αz is −α.

Putting these together:

f ′(z) = 1 − (log z + 1) − α = − log z − α

Hence
f ′(z) = 0 ⇐⇒ − log z − α = 0 ⇐⇒ log z = −α ⇐⇒ z = e−α

So the unique critical point is

z∗ = e−α = exp
(

−EQ

[
log

(
dQ
dP

)])

Because f(z) is a concave function on (0, ∞) (one can also check f ′′(z) < 0 for z > 0), this
critical point is indeed the global maximum.
To see the maximum value, we plug z∗ into f . That is,

f(z∗) = f(e−α) = e−α − (e−α) log(e−α) − αe−α

8



Recall: log(e−α) = −α, so
(e−α) log(e−α) = e−α(−α) = −αe−α

Thus,
f(e−α) = e−α − (−αe−α) − αe−α = e−α + αe−α − αe−α = e−α

Hence the maximum value of f(z) over z > 0 is

max
z>0

f(z) = e−α = exp
(

−EQ

[
log

(
dQ
dP

)])

Therefore,

EP
[
e−V γ

n

]
≥ exp

(
1 − EQ

[
log

(
dQ
dP

)])
,

which is equivalent to

log
(
EP
[
e−V γ

n

])
≥ −EQ

[
log

(
dQ
dP

)]

2.3.3 Construction of the Candidate Optimal Strategy and Dual
Measure

The final step in the proof is to explicitly construct the strategy γ̂ (as given in the theorem
statement) and a measure Q̂ such that they satisfy the verification condition (2.2) from Step
II. This confirms that γ̂ is the unique optimal strategy.
First, we explicitly define the candidate optimal trading strategy

γ̂i =
n∑

j=1
Λijµj −

i−1∑
j=1

Γ̂ij(Sj − Sj−1), i = 1, . . . , n,

and verify that γ̂ is admissible, i.e., γ̂ ∈ AD. Second, we construct a probability measure Q̂
(via its Radon–Nikodym derivative with respect to P) such that the equality

V γ̂
n + log

(
dQ̂
dP

)
= C

holds, where the constant C is defined by

C = 1
2
(
log |Σ| − log |Q̂| + µΛµ′

)
This identity is exactly the condition needed (as established in Step II) to verify that γ̂ is the
unique optimizer for our exponential utility maximization problem.

Sub-step 1: Verification that γ̂ is Admissible

1. Definition of γ̂: The candidate strategy is given by

γ̂i =
n∑

j=1
Λijµj −

i−1∑
j=1

Γ̂ij(Sj − Sj−1), i = 1, . . . , n

Recall that the matrices Λ and Γ̂ arise from the unique decomposition
Λ = Q̂−1 + Γ̂,

where Q̂ ∈ SD (a banded, positive-definite matrix) and Γ̂ ∈ TD (a symmetric matrix with
Γ̂ij = 0 whenever |i − j| ≤ D).
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2. Admissibility Check: The strategy γ̂ is adapted to the filtration {GD
k } because the

second term in the expression for γ̂i involves summation over indices j ≤ i − 1. Moreover,
given that Γ̂ij = 0 for |i − j| ≤ D, the remaining non-zero terms in the sum involve only
increments that are GD

i−1-measurable. Specifically, Sj − Sj−1 is GD
j -measurable. For γ̂i to be

GD
i−1-measurable, we need Sj − Sj−1 involved in the sum to be GD

i−1-measurable. This means
j ≤ (i − 1 − D)+. However, the sum goes up to j = i − 1. The condition Γ̂ij = 0 if |i − j| ≤ D

means that for Γ̂i,j to be non-zero, we need |i − j| > D. If j < i, this means i − j > D, or
j < i − D. This ensures Sj − Sj−1 is GD

(i−D−1)+ ⊆ GD
i−1-measurable. Thus, γ̂ is predictable with

respect to the delayed information flow, and we conclude γ̂ ∈ AD.

Sub-step 2: Definition of the Constant C and the Dual Measure Q̂

1. Constant C:

Define
C = 1

2
(
log |Σ| − log |Q̂| + µΛµ′

)
This constant is introduced in order to normalize the exponential of the terminal wealth, as
will be seen below.

2. Definition of Q̂:

The measure Q̂ is defined via its Radon–Nikodym derivative with respect to P by

dQ̂
dP

= exp(C − V γ̂
n )

Notice that if the identity

V γ̂
n + log

(
dQ̂
dP

)
= C

holds pointwise, then taking expectations under P yields

EP
[
exp(−V γ̂

n )
]

= exp(−C),

which, via Step II, guarantees that γ̂ is optimal. To prove that Q̂ is a probability measure (and
to compute its effect on the distribution of the increments), we proceed as follows:

1. Expressing the Wealth Process in Terms of Increments:

Let Xi = Si − Si−1 for i = 1, . . . , n, so that the terminal wealth becomes

V γ̂
n = γ̂1X1 + · · · + γ̂nXn = γ̂X ′

Recall that
V γ̂

n =
n∑

i=1
γ̂i(Si − Si−1) =

n∑
i=1

γ̂iXi

Hence, if we view γ̂ and X both as row vectors, γ̂ = (γ̂1, . . . , γ̂n) and X = (X1, . . . , Xn), then

V γ̂
n = γ̂X ′ =

n∑
i=1

γ̂iXi
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By definition (from the proof’s construction), each component γ̂i of the optimal strategy takes
the form

γ̂i =
n∑

j=1
Λijµj −

i−1∑
j=1

Γ̂ijXj

Hence

V γ̂
n =

n∑
i=1

 n∑
j=1

Λijµj −
i−1∑
j=1

Γ̂ijXj

Xi

Rewrite V γ̂
n by splitting it into “Λµ” terms and “Γ̂” terms:

V γ̂
n =

n∑
i=1

n∑
j=1

ΛijµjXi︸ ︷︷ ︸
Term (A)

−
n∑

i=1

i−1∑
j=1

Γ̂ijXjXi︸ ︷︷ ︸
Term (B)

We next handle each part separately.

(A) =
n∑

i=1

n∑
j=1

ΛijµjXi

If one interprets X as a row vector and µ as a row vector, then in matrix notation this double
sum is the same as the scalar X(Λµ′). Equivalently, one might write

(A) = µΛX ′

Both interpretations reflect that we are summing over the product of ΛijµjXi in index form.
Either way,

(A) = µΛX ′

(B) =
n∑

i=1

i−1∑
j=1

Γ̂ijXjXi

Because Γ̂ is symmetric, i.e. Γ̂ij = Γ̂ji, we can symmetrize the sum over i ̸= j. Concretely,

n∑
i=1

i−1∑
j=1

Γ̂ijXjXi =
∑

1≤j<i≤n

Γ̂ijXjXi = 1
2

n∑
i=1

n∑
j=1

Γ̂ijXiXj

Hence, in matrix form,
(B) = 1

2XΓ̂X ′

Putting (A) and (B) together, we obtain:

V γ̂
n = [(A)] − [(B)] = µΛX ′ − 1

2XΓ̂X ′

That is precisely the desired identity:

V γ̂
n = µΛX ′ − 1

2XΓ̂X ′

Recall that Λ = Q̂−1 + Γ̂. It then follows that

V γ̂
n = µΛX ′ − 1

2XΓ̂X ′ = µΛX ′ − 1
2X(Λ − Q̂−1)X ′ = µΛX ′ − 1

2XΛX ′ + 1
2XQ̂−1X ′
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The construction permits one to express the Radon–Nikodym derivative as a ratio of two
Gaussian densities. Specifically, since under P the vector X = (X1, . . . , Xn) is distributed as

X ∼ N (µ, Σ),

A crucial step is the explicit formula for V γ̂
n in terms of X. By construction (using the symmetry

of Γ̂ and the decomposition Λ = Q̂−1 + Γ̂), one shows:

V γ̂
n = µΛX ′ − 1

2XΓ̂X ′

But since Γ̂ = Λ − Q̂−1, the expression rearranges to

V γ̂
n = µΛX ′ − 1

2XΛX ′︸ ︷︷ ︸
“shift by Λ"

+1
2XQ̂−1X ′

Hence
−V γ̂

n = −µΛX ′ + 1
2XΛX ′ − 1

2XQ̂−1X ′

The constant C is chosen (by design) so that when you exponentiate

C − V γ̂
n ,

it lines up exactly with the ratio of two Gaussian likelihoods. Concretely, recall

C = 1
2(log |Σ| − log |Q̂| + µΛµ′)

Combining everything, one writes

dQ̂
dP

= exp(C − V γ̂
n ) = exp

(1
2(log |Σ| − log |Q̂| + µΛµ′) − V γ̂

n

)
Substitute the expression for V γ̂

n from the previous step:

−V γ̂
n = −µΛX ′ + 1

2XΛX ′ − 1
2XQ̂−1X ′

Hence
C − V γ̂

n = 1
2(log |Σ| − log |Q̂|) + 1

2µΛµ′ − µΛX ′ + 1
2XΛX ′ − 1

2XQ̂−1X ′

Under P, the probability density function (pdf) of X ∼ N (µ, Σ) is

fP(x) = 1√
(2π)n|Σ|

exp
(

−1
2(x − µ)Λ(x − µ)′

)
, with Λ = Σ−1

Similarly, the pdf of X ∼ N (0, Q̂) is

fQ̂(x) = 1√
(2π)n|Q̂|

exp
(

−1
2xQ̂−1x′

)

We want to see

dQ̂
dP

(x) ≡
fQ̂(x)
fP(x) =

exp
(
−1

2xQ̂−1x′
)

/
√

(2π)n|Q̂|

exp
(
−1

2(x − µ)Λ(x − µ)′
)

/
√

(2π)n|Σ|
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Hence the ratio is:
fQ̂(x)
fP(x) =

 1√
(2π)n|Q̂|

/
1√

(2π)n|Σ|

 · exp
(

−1
2xQ̂−1x′ + 1

2(x − µ)Λ(x − µ)′
)

That front factor is simply
√

|Σ|
|Q̂| . Next, expand the term 1

2(x − µ)Λ(x − µ)′:

(x − µ)Λ(x − µ)′ = xΛx′ − xΛµ′ − µΛx′ + µΛµ′

Hence
−1

2xQ̂−1x′ + 1
2(x − µ)Λ(x − µ)′ = −1

2xQ̂−1x′ + 1
2(xΛx′ − 2xΛµ′ + µΛµ′)

This is precisely the combination that shows up in C − V γ̂
n , which rearranges in a way that

leaves you with:
1
2µΛµ′ − µΛx′ + 1

2xΛx′ − 1
2xQ̂−1x′

Together with
√

|Σ|
|Q̂| out front, it matches the constant exp(C) factor as well. Therefore, by

matching each term, one sees that

exp(C − V γ̂
n (x)) =

exp
(
−1

2xQ̂−1x′
)

/
√

(2π)n|Q̂|

exp
(
−1

2(x − µ)Λ(x − µ)′
)

/
√

(2π)n|Σ|

From the above ratio, it follows that∫
Rn

dQ̂
dP

(x)fP(x) dx =
∫
Rn

fQ̂(x)
fP(x) fP(x) dx =

∫
Rn

fQ̂(x) dx = 1,

so indeed Q̂ is a probability measure. Moreover, Q̂ assigns to X precisely the density fQ̂—i.e.,
the N (0, Q̂) distribution—by construction of that ratio. Hence, we have shown:

dQ̂
dP

(x) =
fQ̂(x)
fP(x) , which implies (X; Q̂) ∼ N (0, Q̂)

Finally, we must verify that Q̂ belongs to the set QD; that is, it must satisfy
EQ̂[St − Ss | GD

s ] = 0 for all t ≥ s

Under Q̂, the vector X is distributed as N (0, Q̂). The observation is that the matrix Q̂ has the
property that its entries satisfy Q̂ij = 0 for |i − j| > D; this is inherent in the definition of the
set SD. As a consequence, for each k, the increment Xk is independent of X1, . . . , X(k−1−D)+

under Q̂. This conditional independence property implies, for any s < t, that
EQ̂[Xt | GD

s ] = 0
Recalling that St − Ss is the sum of the increments Xs+1 + · · · + Xt, linearity of expectation
together with the independence implied by the bandedness of Q̂ yields

EQ̂[St − Ss | GD
s ] = 0

Thus, we conclude that Q̂ ∈ QD. By completing the above sub-steps, we have shown that the
candidate strategy γ̂ is admissible and, when paired with the measure Q̂ constructed via

dQ̂
dP

= exp(C − V γ̂
n ),

satisfies the equality

V γ̂
n + log

(
dQ̂
dP

)
= C
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2.4 Summary of Chapter 2

This chapter has laid the theoretical foundation for optimal investment under delayed infor-
mation. We have established that for an investor with exponential utility facing multivariate
normal price increments and a fixed information delay D, there exists a unique optimal trading
strategy. This strategy is explicitly given in terms of the mean price increments µ, the preci-
sion matrix Λ = Σ−1, and a matrix Γ̂ derived from a unique decomposition Λ = Q̂−1 + Γ̂. The
matrix Q̂ is D-banded, reflecting the information structure, while Γ̂ captures adjustments due
to the delay. A practical challenge in applying this theory is the determination of the precision
matrix Λ and its decomposition for specific price process models. The next chapter explores
this challenge.
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Chapter 3

Precision Matrix for an MA(1)-like
Price Process

The general theory developed in Chapter 2 highlights the central role of the precision matrix
Λ = Σ−1 of price increments. Obtaining this matrix can be difficult. This chapter delves into
a specific, non-trivial example of a price process to illustrate the calculation of Σ and, more
importantly, its inverse Λ.

3.1 The MA(1)-like Model for Prices

We consider a price process Si constructed from underlying i.i.d. Gaussian random variables
zk.
In what follows we assume that

Si = zi−1 + zi, i = 1, . . . , n,

where
z0, z1, . . . , zn ∼ i.i.d. N (0, 1)

(In our setting the “initial” price S0 is a constant; for convenience we may take S0 = 0 because
only increments matter.) We then define

Xi := Si − Si−1, i = 1, . . . , n

A short calculation shows that

• For i = 1 we have
X1 = S1 − S0 = z0 + z1,

• For i ≥ 2 we have

Xi = Si − Si−1 = (zi−1 + zi) − (zi−2 + zi−1) = zi − zi−2

3.2 Covariance Structure of Increments

The next step is to determine the covariance matrix Σ for the vector of price increments
X = (X1, . . . , Xn)′.
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Define the (n + 1)-vector
z = (z0, z1, . . . , zn)′,

and define the n-vector
X = (X1, X2, . . . , Xn)′

Then one may write
X = Az,

where the n × (n + 1) matrix A is given by

A =



1 1 0 0 · · · 0
−1 0 1 0 · · · 0
0 −1 0 1 · · · 0
... ... ... ... . . . ...
0 0 · · · −1 0 1

 .

For example, the second row is (−1, 0, 1, 0, . . . , 0) since

X2 = z2 − z0 = −1 · z0 + 0 · z1 + 1 · z2 + 0 · z3 + . . . )

Since the zi’s are independent with variance 1, the covariance matrix of z is the (n+1)×(n+1)
identity, and hence the covariance matrix Σ of the increments X is

Σ := Cov(X) = AA′

We now compute the entries of Σ.

The diagonal entries

• For i = 1:

X1 = z0 + z1 =⇒ Var(X1) = Var(z0) + Var(z1) = 1 + 1 = 2

• For i ≥ 2:

Xi = zi − zi−2 =⇒ Var(Xi) = Var(zi) + Var(zi−2) = 1 + 1 = 2

Thus, for every i = 1, . . . , n,
Σii = 2

The off-diagonal entries Let i and j be two indices from {1, . . . , n}.

1. When one of the indices is 1

• For i = 1, j ≥ 2, write

X1 = z0 + z1, Xj =


z2 − z0, j = 2,

z3 − z1, j = 3,

zj − zj−2, j ≥ 4

Then using independence we have:

16



– For j = 2: the only common term is z0 (with coefficient +1 in X1 and −1 in
X2); hence

Cov(X1, X2) = 1 · (−1) = −1.

– For j = 3: the only common term is z1 (with coefficient +1 in X1 and −1 in
X3); hence

Cov(X1, X3) = −1
– For j ≥ 4: there is no index k such that zk appears in both X1 and Xj; hence

Cov(X1, Xj) = 0

2. When i, j ≥ 2.

• For i, j ≥ 2 we have

Xi = zi − zi−2 and Xj = zj − zj−2

Therefore,

Cov(Xi, Xj) = E[(zi − zi−2)(zj − zj−2)] = δij − δi,j−2 − δi−2,j + δi−2,j−2,

where δab is 1 if a = b and 0 otherwise. In particular:
– If i = j then

Cov(Xi, Xi) = 1 + 1 = 2
– If |i − j| = 2 (with i, j ≥ 2) then exactly one of the two “cross-terms” equals 1

and the others vanish, so
Cov(Xi, Xj) = −1

– If |i − j| ≠ 0, 2 then there is no overlap and

Cov(Xi, Xj) = 0

Thus the n × n covariance matrix Σ = (Σij) is given explicitly by

Σij =


2, i = j,

−1, if {i, j} = {1, 2} or {1, 3}, or if i, j ≥ 2 and |i − j| = 2,

0, otherwise

3.3 The Inverse Covariance (Precision) Matrix S(n)−1

For each integer n ≥ 3 define the symmetric matrix S(n) ∈ Rn×n

S
(n)
ij =


2, i = j,

−1, {i, j} ∈ {{1, 2}, {1, 3}} or (i, j ≥ 2 and |i − j| = 2),
0, otherwise.

Graph-theoretically S(n) is (identity + Laplacian) of the tree that consists of a root vertex 1
to which two disjoint paths are attached:

• the even chain 2 − 4 − 6 − · · · − (2ne) of length ne = ⌊n/2⌋;
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• the odd chain 3 − 5 − 7 − · · · − (2no + 1) of length no = ⌊(n − 1)/2⌋.

Because S(n) is positive definite, it has a unique inverse Σ(n) =
(
S(n)

)−1
.

The goal is a single explicit formula for every entry Σ(n)
ij and a formal proof that this formula

is correct.
Throughout we set

Le := ne + 1, Lo := no + 1, λ := LeLo

n + 1 .

3.3.1 For the tridiagonal “path” matrix

Fm :=


2 −1

−1 2 . . .
. . . . . . −1

−1 2


m×m

the inverse has a classical closed form:

(F −1
m )ij = min(i, j) (m + 1 − max(i, j))

m + 1 , (1 ≤ i, j ≤ m). (2.1)

Proof

Base m = 1. F1 = [2] ⇒ F −1
1 = [1/2] which matches (2.1).

Induction step. Write Fm+1 in block form

Fm+1 =
[

2 e⊤
1

e1 Fm

]
, e1 =


−1
0
...
0


With the Schur complement c = 2 − e⊤

1 F −1
m e1 = 2 − m

m+1 = m+2
m+1 the block-inverse formula gives

F −1
m+1 =

[
c−1 −c−1e⊤

1 F −1
m

−F −1
m e1c

−1 F −1
m + c−1F −1

m e1e
⊤
1 F −1

m

]

We prove that the closed form

(F −1
m )ij = min(i, j) (m + 1 − max(i, j))

m + 1 (1 ≤ i, j ≤ m) (2.1)

indeed gives the inverse of

Fm =


2 −1

−1 2 . . .
. . . . . . −1

−1 2


m×m

The base case m = 1 is immediate: F1 = [2] so F −1
1 = [1/2].
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Induction step m −→ m + 1 Write

Fm+1 =
[
a u⊤

u B

]
, a = 2, u =


−1
0
...
0


m×1

, B = Fm

Using the Schur complement, the block inverse is

F −1
m+1 =

[
c−1 −c−1u⊤B−1

−c−1B−1u B−1 + c−1B−1uu⊤B−1

]
, c = a − u⊤B−1u (⋆)

Because u has only its first entry non-zero,

u⊤B−1u = (B−1)11 = m

m + 1 (by 2.1), c = 2 − m

m + 1 = m + 2
m + 1 ,

so
c−1 = m + 1

m + 2 = min(1, 1) [m + 2 − max(1, 1)]
m + 2 . (3.1)

Thus the (1, 1)-entry matches (2.1).
For j = 2, . . . , m + 1 let j′ := j − 1 ∈ {1, . . . , m}.
Using (⋆):

(F −1
m+1)1j = −c−1u⊤B−1ej′ = c−1(B−1)1j′ = m + 1

m + 2 · m + 1 − j′

m + 1 = m + 2 − j

m + 2 . (3.2)

But min(1, j) = 1 and max(1, j) = j, so (3.2) coincides with (2.1).
Symmetry gives the entire first column.
Write i′ := i − 1, j′ := j − 1 ∈ {1, . . . , m}. From (⋆):

(F −1
m+1)ij = (B−1)i′j′ + c−1(B−1u)i′(u⊤B−1)j′

= min(i′, j′)(m + 1 − max(i′, j′))
m + 1 + m + 1

m + 2 · m + 1 − i′

m + 1 · m + 1 − j′

m + 1 (3.3)

Case A: i′ ≤ j′ Then min(i′, j′) = i′, max(i′, j′) = j′. Using m + 1 − j′ = m + 2 − j and
i′ + 1 = i,

numerator of (3.3) = i′(m + 1 − j′) + m + 1 − i′

m + 2 (m + 1 − j′)

= (m + 1 − j′) [(m + 2)i′ + (m + 1 − i′)] = (m + 1 − j′)(m + 1)(i′ + 1)

Dividing by (m + 1)(m + 2) yields

(F −1
m+1)ij = (i′ + 1)(m + 1 − j′)

m + 2 = i(m + 2 − j)
m + 2 , (3.4)

which is exactly (2.1) for i ≤ j.
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Case B: j′ < i′ The calculation is identical with i′, j′ swapped and produces

(F −1
m+1)ij = j(m + 2 − i)

m + 2 ,

matching (2.1) for j < i.

3.3.2 Block structure of S(n)

Re-order the basis to 1 | 2, 4, 6, · · · | 3, 5, 7, . . . .
Then

S(n) =
[
a u⊤

u B

]
, a = 2, u =



−1
0
...
0

−1
0
...
0


, B = diag(Fne , Fno). (3.1)

Example for n = 7 In the natural numerical order 1, 2, 3, 4, 5, 6, 7 the matrix S(7) looks
“pentadiagonal”:

S(7) =



2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 0 −1 0 0
0 −1 0 2 0 −1 0
0 0 −1 0 2 0 −1
0 0 0 −1 0 2 0
0 0 0 0 −1 0 2


Re-label the vertices in the order

π = (1, 2, 4, 6, 3, 5, 7),

i.e. first the root, then the even chain, then the odd chain. Let P be the corresponding
permutation matrix (the matrix whose columns are the standard basis vectors eπ(1), . . . , eπ(7)).
Then

P S(7) P ⊤ =



2 −1 0 0 −1 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 0 0 0

−1 0 0 0 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


=
(

2 u⊤

u diag(F3, F3)

)

Here u = (−1, 0, 0, −1, 0, 0)⊤ picks out the first vertex of each path, and each diagonal block
F3 is the familiar tridiagonal 2/ − 1 “path” matrix defined in (2.1).
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Block–inverse formula (Schur complement)

Let
M =

[
a u⊤

u B

]
, a ∈ R, u ∈ Rm, B ∈ Rm×m, B invertible

Because the upper–left block is the scalar a, the Schur complement is just the number

c = a − u⊤B−1u.

Provided c ̸= 0 (true in our application) one has

M−1 =
[

c−1 −c−1u⊤B−1

−c−1B−1u B−1 + c−1B−1u u⊤B−1

]
, (*)

Verification: Multiply (∗) by M and check that all four block products give the identity; the
key cancellations are c−1(a − u⊤B−1u) = 1 in the first row and −c−1B−1u u⊤ + B−1u u⊤ = 0 in
the lower block.

In our setting a = 2. Writing
λ := 1

c
= 1

a − u⊤B−1u

and replacing c−1 by λ in (∗) gives the formula.
The inverse of such a block matrix is[

λ −λu⊤B−1

−λB−1u B−1 + λB−1uu⊤B−1

]
, λ = 1

a − u⊤B−1u
(3.2)

Because only the first entry of each F −1
m appears in u⊤B−1u, formula (2.1) gives

u⊤B−1u = ne

Le

+ no

Lo

= 2 −
(

1
Le

+ 1
Lo

)
Hence

2 − u⊤B−1u = 1
Le

+ 1
Lo

= n + 1
LeLo

, λ = 1
2 − u⊤B−1u

= LeLo

n + 1

Finally we permute the inverse (3.2) back to the natural order 1, 2, 3, . . . and express its entries
in closed form. Let

Ŝ := P S(n) P ⊤ =
[
2 u⊤

u B

]
, B = diag

(
Fne , Fno

)
,

so that Ŝ−1 is the block matrix produced by the Schur-complement calculation:

Ŝ−1 =
[

λ −λu⊤B−1

−λB−1u B−1 + λB−1u u⊤B−1

]
, λ = 1

2 − u⊤B−1u

Because a permutation matrix is orthogonal we have P ⊤ = P −1; hence

(
S(n)

)−1
= P ⊤ Ŝ−1 P
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Example for n = 7 inversion Back to our example for n = 7

Ŝ−1 =



2 3
2 0 0 3

2 0 0
3
2

15
8

9
8 0 0 0 0

0 9
8

15
8 0 0 0 0

0 0 0 15
8

9
8 0 0

3
2 0 0 9

8
15
8 0 0

0 0 0 0 0 7
8

1
8

0 0 0 0 0 1
8

7
8


.

Back to the natural order. Finally,

(
S(7)

)−1
= P ⊤ Ŝ−1 P =



2 3
2

3
2 1 1 1

2
1
2

3
2

15
8

9
8

5
4

3
4

5
8

3
8

3
2

9
8

15
8

3
4

5
4

3
8

5
8

1 5
4

3
4

3
2

1
2

3
4

1
4

1 3
4

5
4

1
2

3
2

1
4

3
4

1
2

5
8

3
8

3
4

1
4

7
8

1
8

1
2

3
8

5
8

1
4

3
4

1
8

7
8



Statement of the problem

3.4 Explicit Formula for the Precision Matrix Entries

Leaf–distance function. For every internal vertex write

d(i) :=
Le − k, i = 2k,

Lo − ℓ, i = 2ℓ + 1 (ℓ ≥ 1),

so that d(i) counts the number of edges from vertex i to the leaf of its own chain.

With this notation the inverse of S(n) is

Σ(n)
ij = 1

n + 1



LeLo, i = j = 1,

Lo d(j), i = 1, j even,

Le d(j), i = 1, j odd > 1,

d(i) d(j), i even, j odd,

n + 1
Le

min(k, ℓ)
(
Le − max(k, ℓ)

)
+ Lo

Le

d(i) d(j), i = 2k, j = 2ℓ,

n + 1
Lo

min(k, ℓ)
(
Lo − max(k, ℓ)

)
+ Le

Lo

d(i) d(j), i = 2k + 1, j = 2ℓ + 1.

We already proved (2.1) for the path inverse by induction. To elevate that result to S(n) itself,
induct from n to n + 2:
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• appending two new leaf vertices n + 1, n + 2 (one on each chain) enlarges B by one row
and column in each diagonal block, whose inverse is given by the induction hypothesis
(2.1). After the extension we have Le 7→ Le + 1 and Lo 7→ Lo + 1; consequently the factor
in front of the matrix changes from 1

n+1 to 1
n+3 .;

• the update of u merely appends two zeros, so the scalar λ in (3.2) changes from λn = LeLo

n+1
to λn+2 = (Le+1)(Lo+1)

n+3 ;

• direct substitution shows that (4.1) with the enlarged parameters reproduces the new
block-inverse (3.2).

Because the base case n = 3 coincides with Σ(3) =

1 1
2

1
2

1
2

3
4

1
4

1
2

1
4

3
4

, formula (4.1) holds for all n ≥ 3.

■

3.5 Verification and Implications

Checking if this is indeed the inverse leveraging Python and the SymPy library

import sympy as sp

def _parameters(n: int):
"""Return (n_e, n_o, L_e, L_o) for a given n 3."""
if n < 3:

raise ValueError("n must be at least 3.")
n_e = n // 2 # n/2
n_o = (n - 1) // 2 # (n1)/2
L_e = n_e + 1
L_o = n_o + 1
return n_e, n_o, L_e, L_o

def S_matrix(n: int) -> sp.Matrix:
"""Precision matrix S^{(n)}:

S_{ij} = 2, i = j
= -1, {i,j} = {1,2} or {1,3} or (i, j 2 and |i-j| = 2)
= 0, otherwise

"""
n_e, n_o, L_e, L_o = _parameters(n)
S = sp.zeros(n, n)

for i in range(n):
for j in range(n):

if i == j:
S[i, j] = 2

elif (i == 0 and j in (1, 2)) or (j == 0 and i in (1, 2)):
S[i, j] = -1

elif i >= 1 and j >= 1 and abs(i - j) == 2:
S[i, j] = -1

else:
S[i, j] = 0

return S
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def _leaf_distance(index: int, n: int, L_e: int, L_o: int):
i = index
if i == 1:

return None # not used for the root
if i

k = i // 2
return L_e - k

else: # odd vertex 2+1, 1
= (i - 1) // 2

return L_o -

def sigma_entry(i: int, j: int, n: int) -> sp.Rational:
n_e, n_o, L_e, L_o = _parameters(n)
factor = sp.Rational(1, n + 1)

# Symmetry
if j < i:

return sigma_entry(j, i, n)

# Root row/column
if i == 1 and j == 1:

return factor * L_e * L_o

if i == 1:
d_j = _leaf_distance(j, n, L_e, L_o)
if j

return factor * L_o * d_j
else: # j odd (>1)

return factor * L_e * d_j

# Mixed parity
if (i

d_i = _leaf_distance(i, n, L_e, L_o)
d_j = _leaf_distance(j, n, L_e, L_o)
return factor * d_i * d_j

# Same parity
if i

k = i // 2
= j // 2

d_i = L_e - k
d_j = L_e -
term1 = sp.Rational(n + 1, L_e) * min(k, ) * (L_e - max(k, ))
term2 = sp.Rational(L_o, L_e) * d_i * d_j
return factor * (term1 + term2)

else: # both odd (3) : i = 2k+1, j = 2+1
k = (i - 1) // 2
= (j - 1) // 2

d_i = L_o - k
d_j = L_o -
term1 = sp.Rational(n + 1, L_o) * min(k, ) * (L_o - max(k, ))
term2 = sp.Rational(L_e, L_o) * d_i * d_j
return factor * (term1 + term2)

def Sigma_matrix(n: int) -> sp.Matrix:
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= sp.zeros(n, n)
for i in range(1, n + 1):

for j in range(1, n + 1):
[i - 1, j - 1] = sigma_entry(i, j, n)

return

# Demo / verification
if __name__ == "__main__":

n_demo = 7
S = S_matrix(n_demo)
_explicit = Sigma_matrix(n_demo)

# Check: S * \Sigma == I
is_identity = (S * _explicit) == sp.eye(n_demo)

print("S^(n) for n =", n_demo)
sp.pprint(S)
print("\n^(n) (explicit) for n =", n_demo)
sp.pprint(_explicit)
print("\nVerification S * = I ? ->", is_identity)



2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 0 −1 0 0
0 −1 0 2 0 −1 0
0 0 −1 0 2 0 −1
0 0 0 −1 0 2 0
0 0 0 0 −1 0 2


︸ ︷︷ ︸

S



2 3
2

3
2 1 1 1

2
1
2

3
2

15
8

9
8

5
4

3
4

5
8

3
8

3
2

9
8
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8

3
4

5
4

3
8

5
8

1 5
4

3
4

3
2

1
2

3
4

1
4

1 3
4

5
4

1
2

3
2

1
4

3
4

1
2

5
8

3
8

3
4

1
4

7
8

1
8

1
2

3
8

5
8

1
4

3
4

1
8

7
8


︸ ︷︷ ︸

S−1



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


︸ ︷︷ ︸

S S−1

Numerical illustration of the optimal–weight kernel

The closed forms of Section 3 yield an explicit γ̂–kernel, but the algebra is lengthy and not
enlightening. Instead we evaluate the formula symbolically in Python/SymPy and visualise the
resulting coefficients.
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Figure 3.1: Heat-map of the weights that every past price level Sj receives inside each trading
decision γi when the delay is D = 0 and the horizon is n = 60. Row i (i = 1, . . . , n) corresponds
to the strategy coefficient vector of γi; column j (j < i) corresponds to the underlying price Sj.
The colour encodes the net coefficient Cij = −Γ̂ij + 1{j+1<i}Γ̂i,j+1, so that a positive (yellow)
tile means an upward move in Sj increases γi, whereas a negative (purple/blue) tile decreases
it. The plot is strictly upper-triangular because each γi only depends on prices observed up to
time i−1. The alternating sign pattern reflects the telescoping form of the increments Sj −Sj−1
and the banded structure of the inverse covariance matrix Λ = S−1.
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Chapter 4

Optimal Investment in an
Autoregressive (AR(1)) Market

Road-map and connection to previous chapters

The present chapter serves a different purpose than the previous ones:
1. It treats the standard AR(1) model

Xt = (1 + β) Xt−1 + σ ϵt, ϵt ∼ N (0, 1),
for which fully-informed optimal policies are already documented in (Deák and Rásonyi, 2015).
2. By re-computing the precision matrix for the increments ∆Xt := Xt − Xt−1 and feeding it
into the general formula of Chapter 2, we verify that our delayed-information theory collapses
to the already proven solution when the delay is D = 0. This completes the logical circle
announced in the Introduction.
3. For simplicity, I will be referring to Deák and Rásonyi (2015) as the second paper and
Dolinsky and Zuk (2023) as the first paper.

4.1 Model set-up

The second paper considers a single risky asset (Xt)t≥0 evolving as:
Xt = (1 + β)Xt−1 + σϵt, t ≥ 1,

with X0 = z given, β ∈ R, σ > 0, and ϵt ∼ i.i.d. N (0, 1).
Define the increments:

∆Xt = Xt − Xt−1

From the model:
∆Xt = βXt−1 + σϵt

4.2 Covariance and precision matrix of the increments

We know:
Xt−1 = z(1 + β)t−1 + σ

t−1∑
k=1

(1 + β)t−1−kϵk
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Thus:
∆Xt = βz(1 + β)t−1 + σϵt + βσ

t−1∑
k=1

(1 + β)t−1−kϵk

To isolate the random part, define the vector ϵ = (ϵ1, . . . , ϵT )⊤. We can write:

∆Xt = βz(1 + β)t−1︸ ︷︷ ︸
µt

+
t∑

k=1
Lt,kϵk,

where the coefficients Lt,k are determined as follows:

• For k = t: The coefficient of ϵt is σ.

• For 1 ≤ k < t: The coefficient of ϵk is βσ(1 + β)t−1−k.

• For k > t: No dependence, so Lt,k = 0.

This gives the random part of ∆Xt as:

∆Xt − µt = σϵt + βσ
t−1∑
k=1

(1 + β)t−1−kϵk

In matrix form, let ∆X = (∆X1, . . . , ∆XT )⊤ and µ = (µ1, . . . , µT )⊤. Define the lower-
triangular matrix L = (Lt,k)1≤k≤T by:

Lt,t = σ, Lt,k =
βσ(1 + β)t−1−k, k < t,

0, k > t.

Hence:
∆X = µ + Lϵ

Since ϵ ∼ N (0, IT ), the covariance matrix of ∆X is:

Σ = Var(∆X) = Var(Lϵ) = LL⊤

Explicit Covariance Matrix

Thus Σ is explicitly:

Σt,s =
min(t,s)∑

k=1
Lt,kLs,k

Substituting Lt,k:

• If t = s:
Σt,t = L2

t,t +
t−1∑
k=1

[βσ(1 + β)t−1−k]2 = σ2
[
1 + β2

t−2∑
i=0

(1 + β)2i

]
.

• If t > s:
Σt,s = Lt,sLs,s +

s−1∑
k=1

Lt,kLs,k.
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Concrete Example for T = 3

Step 1: Construct L

The lower triangular matrix L is constructed as follows:

L =

L1,1 0 0
L2,1 L2,2 0
L3,1 L3,2 L3,3

 =

 σ 0 0
βσ σ 0

βσ(1 + β) βσ σ



Step 2: Compute Σ = LL⊤

The entries of Σ are computed as:

Σ1,1 = σ2,

Σ2,1 = βσ · σ = βσ2,

Σ2,2 = (βσ)2 + σ2 = σ2(β2 + 1),
Σ3,1 = [βσ(1 + β)]σ = β(1 + β)σ2,

Σ3,2 = [βσ(1 + β)](βσ) + (βσ)σ = β2(1 + β)σ2 + βσ2 = βσ2[β(1 + β) + 1],
Σ3,3 = [βσ(1 + β)]2 + (βσ)2 + σ2 = β2σ2(1 + β)2 + β2σ2 + σ2 = σ2[1 + β2 + β2(1 + β)2].

Thus, for T = 3, Σ is:

Σ =

 σ2 βσ2 β(1 + β)σ2

βσ2 σ2(β2 + 1) βσ2[β(1 + β) + 1]
β(1 + β)σ2 βσ2[β(1 + β) + 1] σ2[1 + β2 + β2(1 + β)2]


The mean vector µ is:

µ =

 βz
βz(1 + β)
βz(1 + β)2



Step 1: Inverting L

To find Σ−1, we first invert L. Let M = L−1. Since L is lower-triangular with σ on the diagonal,
M will be lower-triangular with Mt,t = 1/σ. The off-diagonal elements are determined by the
requirement ML = I. For example:

• For T = 1:
L = [σ], M = [1/σ].

• For T = 2:
L =

(
σ 0

βσ σ

)
, M =

(
1/σ 0

−β/σ 1/σ

)
.

• For T = 3:

L =

 σ 0 0
βσ σ 0

βσ(1 + β) βσ σ

 , M =

 1/σ 0 0
−β/σ 1/σ 0
−β/σ −β/σ 1/σ

 .
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For general T , M = L−1 is:

Mt,t = 1
σ

, Mt,k =
−β/σ, if k < t,

0, if k > t.

Step 2: Finding Σ−1

We know Σ = LL⊤, so:
Σ−1 = (L⊤)−1L−1 = M⊤M

The matrix M is:

M =



1/σ 0 0 · · · 0
−β/σ 1/σ 0 · · · 0
−β/σ −β/σ 1/σ · · · 0

... ... ... . . . ...
−β/σ −β/σ −β/σ · · · 1/σ


Each column t of M has the following structure:

• Zeros in rows 1, . . . , t − 1.

• A 1/σ at row t.

• −β/σ in rows t + 1, . . . , T .

Step 3: The Entries of Σ−1

Let Γ = Σ−1 = M⊤M . To find Γt,s for 1 ≤ t ≤ s ≤ T :

Γt,s = (M⊤M)t,s =
T∑

k=1
Mk,tMk,s

• Diagonal entries (t = s): For the t-th diagonal element Γt,t:

Γt,t = 1
σ2 + (T − t)β2

σ2 = 1 + β2(T − t)
σ2 .

• Off-diagonal entries (t ̸= s): These can be computed similarly by summing over the
non-zero overlaps of M .

Final Closed-Form for Σ−1

We have derived that for all 1 ≤ t ≤ T :

(Σ−1)t,t = 1 + β2(T − t)
σ2

For 1 ≤ t < s ≤ T :
(Σ−1)t,s = (Σ−1)s,t = β2(T − s) − β

σ2

This gives us every entry of the precision matrix Σ−1 explicitly in terms of β, σ, and the time
indices t, s.
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4.3 Deriving the optimal strategy via the general theo-
rem

We now take
γ̂i =

T∑
j=1

Λi,jµj︸ ︷︷ ︸
Term A

−
i−1∑
j=1

Λi,j∆Xj︸ ︷︷ ︸
Term B

, i = 1, . . . , T,

and insert

• µj = βz(1 + β)j−1,

• ∆Xj = βXj−1 + σϵj,

• Λi,j from the explicit entries of Σ−1.

We do this in two big parts: Term A then Term B, and sum them.

4.3.1 Term A: ∑T
j=1 Λi,jµj

We write
Term A =

T∑
j=1

Λi,jβz(1 + β)j−1

Depending on whether j ≤ i or j > i, the expression for Λi,j changes (diagonal vs. off-diagonal).
Let us separate the sum:

T∑
j=1

=
i−1∑
j=1

+
i∑

j=i

+
T∑

j=i+1

Since the middle sum is just the single diagonal term j = i, we split:

Term A =
i−1∑
j=1

Λi,jβz(1 + β)j−1 + Λi,iβz(1 + β)i−1︸ ︷︷ ︸
diagonal part

+
T∑

j=i+1
Λi,jβz(1 + β)j−1

Using the formula for Λi,j:

• Diagonal (i = j):

Λi,i = 1 + β2(T − i)
σ2 .

• Off-diagonal:

– For j < i, we use Λi,j = Λj,i:

Λi,j = β2(T − i) − β

σ2 , for 1 ≤ j < i.

– For j > i:
Λi,j = β2(T − j) − β

σ2 .
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Thus:

Term A =
i−1∑
j=1

[
β2(T − i) − β

σ2

]
βz(1 + β)j−1 +

[
1 + β2(T − i)

σ2

]
βz(1 + β)i−1+

+
T∑

j=i+1

[
β2(T − j) − β

σ2

]
βz(1 + β)j−1

4.3.2 Term B: −∑i−1
j=1 Λi,j∆Xj

Recall that
∆Xj = βXj−1 + σϵj

Thus,

Term B = −
i−1∑
j=1

Λi,j [βXj−1 + σϵj]

Since j ≤ i − 1 < i, we use the formula:

Λi,j = β2(T − i) − β

σ2 , for all j = 1, . . . , i − 1

Hence,

Term B = −
i−1∑
j=1

[
β2(T − i) − β

σ2

]
[βXj−1 + σϵj]

Factoring out β2(T −i)−β
σ2 :

Term B = −
[

β2(T − i) − β

σ2

]
i−1∑
j=1

[βXj−1 + σϵj]

4.4 Combine Term A and Term B

Putting these together,

γ̂i = Term A + Term B = [(⋆1) + (⋆2) + (⋆3)] −
[

β2(T − i) − β

σ2

]
i−1∑
j=1

[βXj−1 + σϵj]

Recalling:
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(⋆1) =
i−1∑
j=1

[
β2(T − i) − β

σ2

]
βz(1 + β)j−1,

(⋆2) =
[

1 + β2(T − i)
σ2

]
βz(1 + β)i−1,

(⋆3) =
T∑

j=i+1

[
β2(T − j) − β

σ2

]
βz(1 + β)j−1.

We see that (⋆1) and Term B share the same factor β2(T −i)−β
σ2 . Grouping terms:

(⋆1) −
[

β2(T − i) − β

σ2

]
i−1∑
j=1

βXj−1 =
[

β2(T − i) − β

σ2

]β
i−1∑
j=1

z(1 + β)j−1 − β
i−1∑
j=1

Xj−1


Factoring:

=
[

β2(T − i) − β

σ2

]
β

i−1∑
j=1

[
z(1 + β)j−1 − Xj−1

]

Handling the ϵj terms:

−
[

β2(T − i) − β

σ2

]
i−1∑
j=1

σϵj

Final expression:

γ̂i =
[

β2(T − i) − β

σ2

]
β

i−1∑
j=1

[
z(1 + β)j−1 − Xj−1

]
+ (⋆2) + (⋆3) −

[
β2(T − i) − β

σ2

]
i−1∑
j=1

σϵj

4.5 Expanding All Pieces for the AR(1) Model

After expanding all pieces for the AR(1) model,

Xt = (1 + β)Xt−1 + σϵt, ∆Xt = Xt − Xt−1 = βXt−1 + σϵt,

we ended up with:

γ̂i =
[

β2(T − i) − β

σ2

]
β

i−1∑
j=1

[
z(1 + β)j−1 − Xj−1

]
︸ ︷︷ ︸

(A)

+
[
β

1 + β2(T − i)
σ2

]
z(1 + β)i−1

︸ ︷︷ ︸
(B)

+
T∑

j=i+1

[
β2(T − j) − β

σ2

]
βz(1 + β)j−1

︸ ︷︷ ︸
(C)

−
[

β2(T − i) − β

σ2

]
i−1∑
j=1

σϵj︸ ︷︷ ︸
(D)
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4.5.1 Outline of the Plan

The expression for γ̂i above has four parts: (A), (B), (C), (D). Notice:

1. Parts (A) and (D) each contain the common factor

β2(T − i) − β

σ2 .

Part (A) multiplies it by a sum of [z(1 + β)j−1 − Xj−1], and part (D) multiplies it by a
sum of σϵj.

2. Part (B) is a single “diagonal” term involving z(1 + β)i−1.

3. Part (C) is a sum from j = i + 1 to T , also involving z(1 + β)j−1.

Crucially, Xi−1 itself (for an AR(1)) can be written in closed form:

Xi−1 = z(1 + β)i−1 + σ
i−1∑

m=1
(1 + β)i−1−mϵm

4.6 Detailed Step-by-Step Telescopes

We want to handle terms (A), (B), (C), (D) in a systematic way.

4.6.1 Rewrite z(1 + β)j−1 − Xj−1

Focus on the sum inside (A):

i−1∑
j=1

[
z(1 + β)j−1 − Xj−1

]

For each j,

Xj−1 = z(1 + β)j−1 + σ
j−1∑
m=1

(1 + β)j−1−mϵm

Thus,

z(1 + β)j−1 − Xj−1 = −σ
j−1∑
m=1

(1 + β)j−1−mϵm

Therefore, part (A) becomes:

(A) =
[

β2(T − i) − β

σ2

]
β

i−1∑
j=1

−σ
j−1∑
m=1

(1 + β)j−1−mϵm


Factoring out the minus sign and σ:
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(A) = −
[

β2(T − i) − β

σ2

]
βσ

i−1∑
j=1

j−1∑
m=1

(1 + β)j−1−mϵm

Interchanging the summation order:

(A) = −
[

β2(T − i) − β

σ2

]
βσ

i−2∑
m=1

i−1∑
j=m+1

(1 + β)j−1−mϵm

The inner sum is a finite geometric series:

i−1∑
j=m+1

(1 + β)j−1−m = (1 + β)i−1−m − 1
β

Thus,

(A) = −
[

β2(T − i) − β

σ2

]
σ

i−2∑
m=1

[
(1 + β)i−1−m − 1

]
ϵm

= −
[

β2(T − i) − β

σ2

]
σ

i−2∑
m=1

(1 + β)i−1−mϵm +
[

β2(T − i) − β

σ2

]
σ

i−2∑
m=1

ϵm

Finally, writing it more compactly:

(A) = −β2(T − i) − β

σ2 σ
i−1∑

m=1
(1 + β)i−1−mϵm

4.6.2 Compare Part (A) with Part (D)

Part (D) was:

(D) = −
[

β2(T − i) − β

σ2

]
i−1∑
j=1

σϵj

So combining (A) + (D):

(A) + (D) = −β2(T − i) − β

σ2 σ
i−1∑

m=1
(1 + β)i−1−mϵm +

i−1∑
j=1

σϵj

Rewriting the sum as a single term:

(A) + (D) = −β2(T − i) − β

σ2 σ
i−1∑

m=1
(1 + β)i−1−mϵm

(A) + (D) = −β2(T − i) − β

σ2 σ
i−1∑

m=1
(1 + β)i−1−mϵm.
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4.6.3 Rewrite That ϵ-Sum in Terms of Xi−1

Recall the AR(1) expression for Xi−1:

Xi−1 = z(1 + β)i−1 + σ
i−1∑

m=1
(1 + β)i−1−mϵm

Hence,

σ
i−1∑

m=1
(1 + β)i−1−mϵm = Xi−1 − z(1 + β)i−1

Thus,

(A) + (D) = −β2(T − i) − β

σ2

[
Xi−1 − z(1 + β)i−1

]
Expanding,

(A) + (D) = −β2(T − i) − β

σ2 Xi−1 + β2(T − i) − β

σ2 z(1 + β)i−1

So we rewrite:

(A) + (D) = −β2(T − i) − β

σ2 Xi−1 + β2(T − i) − β

σ2 z(1 + β)i−1.

4.6.4 Add Parts (B) and (C)

Now recall:

(B) = β(1 + β2(T − i))
σ2 z(1 + β)i−1

(C) =
T∑

j=i+1

[
β2(T − j) − β

σ2

]
βz(1 + β)j−1

So,

(B) = β(1 + β2(T − i))
σ2 z(1 + β)i−1, (C) = βz

T∑
j=i+1

β2(T − j) − β

σ2 (1 + β)j−1

4.6.5 Combine All Four Parts: (A) + (B) + (C) + (D)

From 3.3 we have

(A) + (D) = −β2(T − i) − β

σ2 Xi−1 + β2(T − i) − β

σ2 z(1 + β)i−1
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Hence,

γ̂i = (A) + (B) + (C) + (D)

So,

γ̂i = −β2(T − i) − β

σ2 Xi−1 + β2(T − i) − β

σ2 z(1 + β)i−1︸ ︷︷ ︸
call this (E1)

+ β(1 + β2(T − i))
σ2 z(1 + β)i−1︸ ︷︷ ︸

(B)

+

+
T∑

j=i+1

β2(T − j) − β

σ2 βz(1 + β)j−1

︸ ︷︷ ︸
(C)

Combine the Terms (E1) + (B)

Inside the big bracket, we see two terms that are multiples of z(1 + β)i−1:

(E1) = β2(T − i) − β

σ2 z(1 + β)i−1

(B) = β(1 + β2(T − i))
σ2 z(1 + β)i−1

Add them:

(E1) + (B) = z(1 + β)i−1

σ2

[
β2(T − i) − β + β(1 + β2(T − i))

]
Inside the bracket:

β2(T − i) − β + β + β3(T − i) = β2(T − i) + β3(T − i) = β2(T − i)(1 + β)

Hence,

(E1) + (B) = z(1 + β)i−1

σ2 β2(T − i)(1 + β)

Factor out β2(1 + β):

(E1) + (B) = β2(T − i)
σ2 z(1 + β)i

(We just pulled out one extra factor of (1 + β).)
Thus so far the bracket is:

[(E1) + (B)] + (C) = β2(T − i)
σ2 z(1 + β)i + (C)
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Now Add (C)

Recall (C) explicitly:

(C) =
T∑

j=i+1

β2(T − j) − β

σ2 βz(1 + β)j−1

So,

(E1) + (B) + (C) = β2(T − i)
σ2 z(1 + β)i + βz

T∑
j=i+1

β2(T − j) − β

σ2 (1 + β)j−1

Factor out z
σ2 to get:

(E1) + (B) + (C) = z

σ2

β2(T − i)(1 + β)i +
T∑

j=i+1
β(β2(T − j) − β)(1 + β)j−1



4.7 Model and Notation

We have one risky asset {Xt}t=0,1,...,T satisfying

Xt = (1 + β)Xt−1 + σϵt, X0 = 0, ϵt
i.i.d.∼ N (0, 1)

Hence

∆Xt = Xt − Xt−1 = βXt−1 + σϵt

We fix a finite horizon T .

4.8 The First Paper’s Formula Simplifies When µ = 0

When µj = 0 for all j, the term

T∑
j=1

Λi,jµj

vanishes. Therefore, Corollary 1.3 (or Theorem 1.1) becomes

γ̂i = −
i−1∑
j=1

Λi,j∆Xj, i = 1, . . . , T

In other words:

γ̂i = −
i−1∑
j=1

Λi,j [βXj−1 + σϵj] .
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4.9 Covariance and Precision Matrix for the AR(1) In-
crements

Because X0 = 0 does not affect the increment-covariance structure (the increments ∆Xt still
come from βXt−1 + σϵt with ϵt ∼ N (0, 1)), the covariance matrix Σ of ∆X = (∆X1, . . . , ∆XT )
is exactly the same as in the general AR(1) case. We recall:
1. ∆X = Lϵ for a certain lower-triangular L. 2. Σ = LL⊤. 3. Λ = Σ−1 = (L⊤)−1L−1 = M⊤M ,
where M = L−1 is also lower triangular.

Λi,j = (Σ−1)i,j =


1+β2(T −i)
σ2 , i = j,

β2(T −max(i,j))−β
σ2 , i ̸= j.

4.10 Substituting Λi,j into the Strategy

From 4.6.5 we can already see how the optimal strategy will simplify for z = 0. However,
the general theorem’s formula also simplifies nicely for such 0-mean processes, which we will
demonstrate through this example. We have

γ̂i = −
i−1∑
j=1

Λi,j [βXj−1 + σϵj] , i = 1, . . . , T

Observe j in that sum always satisfies j < i. So max(i, j) = i. Thus Λi,j simplifies to

Λi,j = β2(T − i) − β

σ2 , for j < i

Hence

γ̂i = −
i−1∑
j=1

β2(T − i) − β

σ2 [βXj−1 + σϵj]

Factor out the constant β2(T −i)−β
σ2 :

γ̂i = −
[

β2(T − i) − β

σ2

]
i−1∑
j=1

[βXj−1 + σϵj]

We can rewrite this as:

γ̂i = −β2(T − i) − β

σ2

β
i−1∑
j=1

Xj−1 + σ
i−1∑
j=1

ϵj

 .

4.10.1 Sum of Xj−1 for j = 1, . . . , i − 1
i−1∑
j=1

Xj−1 = X0 + X1 + · · · + Xi−2
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But X0 = 0. Also, each Xk is a linear combination of {ϵm}m≤k. Concretely,

Xk = σ
k∑

m=1
(1 + β)k−mϵm

So

i−1∑
j=1

Xj−1 =
i−2∑
k=0

Xk =
i−2∑
k=0

[
σ

k∑
m=1

(1 + β)k−mϵm

]

When k = 0, X0 = 0. So effectively the outer sum starts from k = 1. We can interchange sums:

i−2∑
k=1

k∑
m=1

=
i−2∑

m=1

i−2∑
k=m

Hence

i−1∑
j=1

Xj−1 = σ
i−2∑

m=1

i−2∑
k=m

(1 + β)k−mϵm

Now the inside sum in k from m to (i − 2) is a finite geometric series in (1 + β). Specifically,

i−2∑
k=m

(1 + β)k−m =
i−2−m∑

r=0
(1 + β)r = (1 + β)i−1−m − 1

(1 + β) − 1 = (1 + β)i−1−m − 1
β

So

i−1∑
j=1

Xj−1 = σ
i−2∑

m=1

[
(1 + β)i−1−m − 1

β
ϵm

]

Factor out σ
β
:

i−1∑
j=1

Xj−1 = σ

β

i−2∑
m=1

[(1 + β)i−1−m − 1]ϵm

4.11 Substitute These Sums Back into γ̂i

Recall:

γ̂i = −β2(T − i) − β

σ2

β
i−1∑
j=1

Xj−1 + σ
i−1∑
j=1

ϵj


We found:

β
i−1∑
j=1

Xj−1 = β · σ

β

i−2∑
m=1

[(1 + β)i−1−m − 1]ϵm = σ
i−2∑

m=1
[(1 + β)i−1−m − 1]ϵm

So inside the bracket we have:
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β
i−1∑
j=1

Xj−1 + σ
i−1∑
j=1

ϵj = σ
i−2∑

m=1
[(1 + β)i−1−m − 1]ϵm + σ

i−1∑
j=1

ϵj

We can merge these sums:
1. The first sum has m from 1 to (i − 2). 2. The second sum has j from 1 to (i − 1).
Rename j → m in the second sum to see both are sums in ϵm. Then

σ
i−1∑

m=1
ϵm = σ (ϵ1 + ϵ2 + · · · + ϵi−1)

Combine with the first sum:

[(1 + β)i−1−m − 1] + 1 = (1 + β)i−1−m

Hence

β
i−1∑
j=1

Xj−1 + σ
i−1∑
j=1

ϵj = σ
i−1∑

m=1
(1 + β)i−1−mϵm

(We used the fact that when m = i − 1, (1 + β)i−1−(i−1) = (1 + β)0 = 1.)
But now notice:

σ
i−1∑

m=1
(1 + β)i−1−mϵm = Xi−1,

because

Xi−1 = σ
i−1∑

m=1
(1 + β)i−1−mϵm (see §5.1)

Therefore the bracket becomes simply Xi−1. In short:

β
i−1∑
j=1

Xj−1 + σ
i−1∑
j=1

ϵj = Xi−1

4.12 Final Formula for γ̂i

We now plug this result back:

γ̂i = −β2(T − i) − β

σ2

β
i−1∑
j=1

Xj−1 + σ
i−1∑
j=1

ϵj


︸ ︷︷ ︸

=Xi−1

= −β2(T − i) − β

σ2 Xi−1

We can rearrange the factor β2(T − i) − β. Notice:

β2(T − i) − β = β [β(T − i) − 1] = −β [1 − β(T − i)]
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Hence

−
[
β2(T − i) − β

]
= β [1 − (T − i)β]

So:

γ̂i = − [β2(T − i) − β]
σ2 Xi−1 = β

σ2 [1 − (T − i)β] Xi−1

Thus:

γ̂i = β

σ2 [1 − (T − i)β] Xi−1.

This matches exactly the second paper’s Theorem 2.1 for the fully informed (no-delay) investor.
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Chapter 5

Conclusion and Outlook

This thesis set out to show the concrete manifestation of general theory explicitly on models.
Starting from the abstract decomposition result of Dolinsky and Zuk (2023), to two case stud-
ies which illustrated the analytical and practical aspects of this framework. Together, these
examples demonstrate both the power and the limitations of such models. As we saw, coming
to an explicit solution can be rather challenging, which is why numerical approximations are
something to look out for.
Looking ahead, at least three directions appear particularly promising. First, extending the
delayed-information paradigm to a multi-asset settings would test the scalability of the matrix-
decomposition approach. Second, relaxing the Gaussian assumption could reveal whether sim-
ilar “banded + sparse” structures survive in more realistic markets. Finally, further sophisti-
cating the assumptions, for instance the delay itself also being a random variable.
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MI. nyilatkozat

Alulírott Terényi Tamás Álmos, nyilatkozom, hogy szakdolgozatom elkészítése során az alább
felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás
helye

Szövegvázlat készítés ChatGPT o1 Bevezetés
Nyelvhelyesség
ellenőrzése/javítása/
/átfogalmazások

ChatGPT o1 Teljes dolgozat

LaTeX formázási
tanács

ChatGPT o1 Teljes dolgozat

Kód hibakeresés ChatGPT o1 SymPy kód

A felsoroltakon túl más MI alapú eszközt nem használtam.
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