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Introduction

Algorithmic trading is a vibrant research area at the interface of academia and industry.
Our recent research contained in the present thesis focuses on bridging reinforcement learning
theory and quantitative finance to explore trading policies in an artificial financial environment
where the price of a single risky asset follows fractional Brownian motion, and in which the
phenomenon of market friction is incorporated. Building on results by Guasoni, Nika, and
Rásonyi [7] we benchmark artificial trading algorithms which were learned by an agent through
reinforcement learning. The work in progress shows that the problem can be formalized in the
framework of reinforcement learning, and that for a reasonable horizon, and anti-persistent price
dynamics, the theoretical rates are achieved by an artificial agent using the Proximal Policy
Optimization algorithm within a few million training steps.

Reinforcement Learning (RL) has rapidly emerged as a cornerstone of modern artificial in-
telligence, powering landmark achievements that redefine the boundaries of what computers are
capable of. From AlphaGo’s mastery over the complex game of Go [19] and AlphaGeometry’s
automated geometry proofs at Olympiad level [22], to superhuman performance in video game
environments like that of Atari 2600 [13], Dota 2 [3], and StarCraft II [23], the impact of RL
is undeniable. Its principles are also integral to refining large language models through Rein-
forcement Learning from Human Feedback (RLHF) [4], and Group Relative Policy Optimization
(GRPO) [17]. Reinforcement learning also enables increasingly sophisticated autonomous robots
to navigate and interact with the physical world.

At its heart, RL formalizes the intuitive process of learning from experience, a mechanism
arguably fundamental to how intelligent beings, including humans, adapt and thrive. Much
like a toddler iteratively discovers the mechanics of walking through persistent trial and error,
without explicit supervised instruction, RL agents learn optimal strategies by interacting with an
environment and observing the consequences of their actions. This intrinsic ability to generate
its own learning data through experience distinguishes RL from many other machine learning
paradigms that rely on precompiled datasets. The mathematical framework of reinforcement
learning will be further explored in the first chapter.

This thesis is structured into four main chapters, each building upon the preceding material
to develop a rigorous mathematical treatment of reinforcement learning and its application to
trading strategies on stylized market models.

The first chapter lays the theoretical foundation by introducing Markov decision processes,
which serve as the formal framework for modeling sequential decision-making problems. The
chapter proceeds to define value functions, which quantify the expected returns of states or
actions under a given policy. Subsequently, the Bellman expectation equation is presented as
a fundamental recursive relationship for value functions, followed by the Bellman optimality
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equation, which characterizes the optimal value function and forms the basis for many solution
methods.

The second chapter surveys the principal algorithmic approaches to solving reinforcement
learning problems. It begins with value iteration, a dynamic programming method for comput-
ing optimal policies, and Q-learning, a widely used off-policy temporal-difference algorithm.
The chapter then discusses policy gradient methods, which optimize parameterized policies
directly, and examines the REINFORCE algorithm as a canonical example. Further, it covers
the Advantage Actor Critic (A2C) method, which combines value-based and policy-based ap-
proaches, and concludes with Proximal Policy Optimization (PPO), a modern algorithm known
for its stability and performance in complex environments.

The third chapter shifts its focus to the mathematical modeling of financial time series. It
begins with an overview of stochastic processes, providing the necessary background. The
discussion then centers on fractional Brownian motion, a generalization of classical Brownian
motion that captures long-range dependence and self-similarity, and explores its relevance and
challenges in the context of trading strategies.

The fifth and last chapter presents empirical investigations designed to evaluate the practical
performance of reinforcement learning algorithms in artificial trading environments. The first
section describes experiments involving an autoregressive price model, while the second section
addresses trading scenarios as described in the third chapter.

The thesis concludes with a brief summary of the principal findings and outlines possible
directions for future research.
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Chapter 1

Introduction to Reinforcement Learning

This chapter will explore and formalize the core concepts of reinforcement learning from a
computational perspective. While not intended as an exhaustive guide to the vast landscape of
RL, the following sections will equip the reader with the foundational knowledge necessary to
understand its mechanisms and, critically, to approach and tackle a novel financial investment
problem, as will be detailed in later chapters. For a comprehensive guide to the field, readers are
encouraged to consult seminal texts such as Sutton and Barto [21].

1.1 Markov decision processes

Markov decision processes conceptualize the notion of an actor with agency interacting with
an environment and receiving rewards contingent on its actions. In the continuation of this
chapter and the subsequent one, we endeavor to provide solutions to this mathematical system.

Definition 1.1.1. A Markov decision process (MDP) is defined by the tuple (S, A, Pa, Ra)
where

• S is the set of all possible states, called the state space.

• A is the set of all possible actions, known as the action space.

• P is the state transition probability function, such thatPa
ss′ is the probability of transitioning

to state s′ upon taking action a at state s, expressed as

Pa
ss′ = P[St+1 = s′ | St = s, At = a]

• R is the reward function, such that Ra
s represents the reward received after taking action

a at state s, expressed as

Ra
s = E[Rt+1 | St = s, At = a]

Within the framework of a Markov decision process, an agent exercises control by selecting
actions. The function responsible for associating states with corresponding actions is referred to
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as the policy function, denoted as π.
A policy may be deterministic, meaning it assigns a specific action to each state.

π : S → A

A policy may also be probabilistic, thereby associating each state with a probability distribution
over possible actions.

π : S → P (A)

In a Markov decision process, the successor state is solely influenced by the current state,
rendering preceding states inconsequential. This indicates that an MDP lacks memory of any
previous states, a characteristic known as the Markov property. Consequently, the system is
fully represented by the state transition probability function P . When constructing a model of
a system with memory, it is feasible to incorporate all requisite information from prior states
within the current state.

s

a

s′n

s′1

Ra
ss′

Pa
ss′

Figure 1.1: Diagram of a single step in a Markov Decision Process, where hollow circles
represent states, while full circles represent actions.

1.2 Value function

Value functions play a quintessential role in reinforcement learning by estimating the expected
cumulative reward an agent may obtain from a given state or state-action pair, under a specific
policy. These functions provide a quantitative measure for assessing the quality of decisions
which may inform the agent’s strategy as it interacts with its environment.

Definition 1.2.1. The return Gt is defined as the total discounted reward from time step t.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1 (1.1)

where γ ∈ [0, 1] is the discount rate and Rt is the random variable that denotes the reward at
time step t.

Remark 1.2.2. The closer γ is to 1, the more future rewards matter; the closer γ is to 0, the more
immediate rewards matter.
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It is clear to see that the return at time step t is directly related to the return at time step t+ 1,
as demonstrated by equation (1.2).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γ1Rt+3 + γ2Rt+4 + . . . )

= Rt+1 + γGt+1

(1.2)

Definition 1.2.3. The state-value function v : S → R is a function that maps states to values. The
value of a state is defined as the expected discounted return starting from state s and following
policy π.

vπ(s) = Eπ [Gt | St = s] (1.3)

Notice that in a Markov decision process, the state-value function depends on the policy due
to the agent’s capacity to influence its trajectory through the environment. Consequently, the
state-value function essentially provides an estimate of the expected return obtainable from state
s when adhering to policy π.

Definition 1.2.4. The action-value function q : S ×A → R is a function that maps state-action
pairs to values. The value of an action at a given state is the expected discounted return starting
from state s and taking action a and from then onward following policy π.

qπ(s, a) = Eπ [Gt | St = s, At = a] (1.4)

Analogous to the state-value function, the action-value function provides an estimate of the
expected return from a specific state s subsequent to executing action a, while adhering to the
policy π.

1.3 Bellman expectation equation

In this section, we will establish foundational results concerning the previously defined value
functions. Upon concluding this section, we will derive equations for both the state-value and
action-value functions that connect the value of the present state to that of its successor states,
thereby providing a system of equations applicable to all Markov decision processes.

Proposition 1.3.1.
v(s) = Eπ [Rt+1 + γv(St+1) | St = s] (1.5)

Proof.
vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

= Eπ[Rt+1 + γEπ[Gt+1 | St+1] | St = s]

= Eπ[Rt+1 + γvπ(St+1) | St = s]

(1.6)

In the penultimate equality, we use the law of total expectation to eliminate the inner conditional
expectation.

An analogous equation for the action-value function can be stated by reversing the order of
operations in the previous proposition.
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Proposition 1.3.2.

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1) | St = s, At = a] (1.7)

Proof.
qπ(s, a) = Eπ[Gt | St = s, At = a]

= Eπ[Rt+1 + γGt+1 | St = s, At = a]

= Eπ[Rt+1 + γEπ[Gt+1 | St+1, At+1] | St = s, At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1) | St = s, At = a]

(1.8)

In the following, we provide an equation that relates the state-value function to the action-value
function, and vice versa. Through these bidirectional relationships, we will derive the Bellman
expectation equation.

First we provide a relationship between the state-value function and the action-value function.
Figure 1.2a depicts a one-step look-ahead, which provides visual aid for equation (1.9).
To express the value of the present state, we take the weighted sum of the values of the state-action
pairs that are reachable from s.
Proposition 1.3.3.

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (1.9)

Proof.
vπ(s) = Eπ[Gt | St = s] = Eπ[Eπ[Gt, | St, At], | St = s]

= Eπ[qπ(s, At) | St = s] =
∑
a∈A

π(a|s)qπ(s, a) (1.10)

Figure 1.2b mirrors Figure 1.2a, albeit in a reversed order, offering an alternative one-step
look-ahead with respect to potential transitions that may incur from state s upon executing
action a. Equation (1.11) states that the action-value of the present state-action pair consists of
the immediate reward upon taking action a at state s and the discounted weighted sum of the
values of the successor states s′.
Proposition 1.3.4.

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s

′) (1.11)

Proof.

qπ(s, a) = E[Gt | St = s, At = a] = E[Rt + γGt+1 | St = s, At = a]

= E [Rt + γE[Gt+1 | St+1 = s] | St = s, At = a]

= E [Rt + γvπ(St+1) | St = s, At = a]

= Ra
s + γE [vπ(St+1) | St = s, At = a]

= Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s

′)

(1.12)
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vπ(s)← s

qπ(s, a)← a

(a) Backup diagram for equation (1.9).

qπ(s, , a)← s, a

vπ(s
′)← s′

r

(b) Backup diagram for equation (1.11).

Figure 1.2: Backup diagrams for equations (1.9) and (1.11), where the hollow circles represent
states and the full circles represent actions.

Taking the two one-step look-ahead diagrams, we derive the composite diagram 1.3a.
Writing equation (1.9) and substituting for qπ(s, a) using (1.11) we get the recursive equation
(1.13) that relates the value of the current state to that of the successor states. The stated equation
is called the Bellman expectation equation for the state-value function.

vπ(s) =
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S

Pa
ss′vπ(s

′)

)
(1.13)

Reversing the order of the two diagrams, we get a new composite diagram 1.3b that relates the
action-value of the present state-action pair to that of the possible successor state-action pairs.
Same again, writing equation (1.11) and substituting vπ(s

′) using (1.9) we get the following
recursive equation for qπ. Equation (1.14) is called the Bellman expectation equation for the
action-value function.

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′

∑
a′∈A

π(a′ | s′)qπ(s′, a′) (1.14)

vπ(s)← s

a

vπ(s
′)← s′

r

(a) Backup diagram for equation (1.13).

qπ(s, a)← s, a

s′

qπ(s
′, a′)← s′, a′

r

(b) Backup diagram for equation (1.14).

Figure 1.3: Backup diagrams for equations (1.13) and (1.14), where the hollow circles
represent states and the full circles represent actions.

1.4 Bellman optimality equation

In the preceding section, we formulated two equations: the first establishes a relationship
between the state-value function of the current state and the weighted average of the state-value
of its successor states (1.13), while the second connects the action-value of the existing state-
action pair to that of the subsequent states and actions (1.14). Nevertheless, the aforementioned
equations are applicable to all policies. Our objective, however, is to identify an equation that is
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specifically applicable to the optimal policy, which would enable us to solve it and consequently
derive the optimal policy.

In this section, we define what an optimal policy and an optimal value function are. We will
provide an equation that resolves the Markov decision process by presenting a formulation for
the optimal state-value and action-value functions, utilizing the equations established in the
preceding section.

Definition 1.4.1. The optimal state-value function v∗(s) is the maximum state-value function
over all policies.

v∗(s) = max
π

vπ(s) ∀s ∈ S

Definition 1.4.2. The optimal action-value function q∗(s, a) is the maximum action-value func-
tion over all policies.

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S ∀a ∈ A

In order to define the optimal policy, we ought to define a partial ordering on the set of all
policies.

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) ∀s ∈ S

This implies that one policy is considered greater to another if it yields a greater expected
discounted return for all states. Given that the state-value function is bounded by above, there
exists a policy π∗ such that

π∗ ≥ π ∀π

Notice that π∗ is not unique, as distinct policies may achieve the same discounted return.
Nevertheless, all optimal policies are denoted by π∗. Moreover, by definition, it follows that if
π = π′ then vπ = vπ′ . Consequently, all optimal policies induce the same state-value function,
namely vπ∗ = v∗.
The same property holds for the action-value function, that is, qπ∗ = q∗.

Through the newly established definitions of optimal state-value functions, action-value func-
tions, and policies, we are now equipped to delineate our objective in solving a Markov Decision
Process (MDP): the derivation of the optimal policy π∗.

In the preceding section, we derived an equation that relates the value of the current state
to the weighted average value of its successor states. By amending equation (1.13), it can be
restructured to represent the optimal policy, thus eliminating the need to compute the average in
favor of determining the maximum value among the successor states.

v∗(s) = max
a

(
Ra

s + γ
∑
s′∈S

Pa
ss′v∗(s

′)

)
(1.15)

In summary, the aforementioned equation conveys that the value of a state under the optimal
policy must equal the immediate reward and the weighted average value of the successor states
corresponding to the optimal action.

The same can be applied to the Bellman expectation equation for the action-value function
(1.14).

q∗(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′ max

a′
q∗(s

′, a′) (1.16)
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The above two equations are the Bellman optimality equation for the state-value function and
for the action-value function, respectively.

The Bellman optimality equations, when solved, yield the optimal state-value or action-value
function, subsequently leading to the derivation of the optimal policy. Nevertheless, a closed-
form solution does not exist for these equations in general. Moreover, the resolution of the
equations necessitates knowledge about the dynamics of the environment P , which may not
always be available. The subsequent chapter will present two iterative methods for resolving the
Bellman optimality equations: Value iteration and Q-learning.
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Chapter 2

Reinforcement Learning Algorithms

In the previous chapter, we established the foundational framework of reinforcement learning,
formalizing the problem setting through Markov Decision Processes (MDPs) and introducing
the core concepts that underpin learning from interaction. Building on this groundwork, the
focus of this chapter shifts to the central question of how does an agent learn an optimal policy
within an MDP?

The ultimate objective in reinforcement learning is for an agent to discover a policy that
maximizes the expected cumulative (discounted) reward by navigating through a complex envi-
ronment solely through experience. Achieving this requires algorithmic strategies that iteratively
improve the agent’s behavior based on feedback from its interactions.

In this chapter, we will explore a wide variety of reinforcement learning algorithms, beginning
with fundamental iterative methods that progressively refine value estimates. Each algorithm we
present addresses limitations of its predecessors, advancing in complexity and capability. Our
exploration of reinforcement learning algorithms culminates with the derivation of Proximal
Policy Optimization (PPO), an algorithm that remains a state-of-the-art standard due to its
balance of sample efficiency, stability, and ease of implementation.

2.1 Value iteration

The Bellman optimality equation for the state-value function (1.15) describes a system of
equations that yield the optimal state-value function, which implies the optimal policy. Never-
theless, a general solution does not exist in general. This section provides one way of solving
this equation through the iterative improvement of an approximation of the optimal state-value
function.

Given that the Bellman equation is inherently a recursive equation relating the value of the
present state to that of the successor states, it can be transformed into an iterative procedure.
Iterative algorithms of this nature are prevalent in numerical methods employed for solving
systems of equations, wherein their convergence is frequently contingent upon principles of
contraction mapping.

In this section, we will not demonstrate the convergence of the Value iteration algorithm to
the optimal state-value function. Nonetheless, it suffices to assert that by establishing a complete

13



metric space defined over the state-value function and employing a contraction mapping to
articulate the update rule used in Value iteration, it consequently follows that the iterative
application of this mapping leads to a unique fixed point, which is precisely v∗.

Algorithm 1 Value Iteration
while ∆ > θ do

∆← 0
vprev ← v
for s ∈ S do

v(s)← maxa∈A
(
Ra

s + γ
∑

s′∈S Pa
ss′vprev(s

′)
)

∆← max{∆, |v(s)− vprev(s)|}
end for

end while

In this context, θ serves as the convergence criterion; it is a hyperparameter that indicates
when the algorithm has achieved convergence. The convergence criterion manages the trade-off
between computational cost and accuracy; a smaller θ value results in a more precise value
function at the expense of increased computational time.

During each iteration, the largest change in state-values is computed and stored in ∆, and
convergence is deemed to occur when the largest change in state-value throughout a complete
iteration is less than θ. The essential component of the algorithm is represented by the
following statement, which corresponds to equation (1.15) but without referencing the optimal
policy.

v(s)← max
a∈A

(
Ra

s + γ
∑
s′∈S

Pa
ss′vprev(s

′)

)
(2.1)

The objective of the value iteration algorithm is to learn the optimal state-value function, v∗.
However, our primary interest lies in determining the optimal policy, π∗. To derive the policy
from the evaluated state-value function, the policy is defined to act greedily, selecting actions
that maximize the estimated return.

π(s) = argmax
a∈A(s)

(
Ra

s + γ
∑
s′∈S

Pa
ss′v(s

′)

)
(2.2)

It should be noted that in order to calculate the new value function, knowledge of the state
transition probability function P is required. Generally, this knowledge cannot be presumed, as
in most scenarios, we lack access to an accurate world model.

2.2 Q-learning

In value iteration, the update of the current value function requires an understanding of the
environmental dynamics to compute the new value of the state. This approach is referred to
as model based RL, in contrast to model free RL, where the agent operates without access to
the system’s underlying dynamics. This requirement is most often a limitation, as in real-world
applications, we cannot presume the availability of an accurate world model.
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Q-learning mitigates this limitation by directly learning from interactions, utilizing the ob-
served successor state and the received reward to update its action-value estimates. In Q-learning,
a Q-function is maintained, which, similar to the learned value function in value iteration, ap-
proximates the optimal action-value function. The signature of the Q-function is represented as
Q : S × A → R. Importantly, in scenarios where both state and action spaces are finite, the
Q-function can be thought of as a table with |S| rows and |A| columns; hence, it is often referred
to as the Q-table.

Q-learning, like value iteration, is a value-based method. Consequently, the agent first learns
an action-value function, from which a policy is derived post-training. The trivial extraction of
policy from a learned Q-function involves greedily selecting the optimal action at each state
based on the learned action-values.

π∗(s) = argmax
a∈A

Q∗(s, a) (2.3)

where Q∗ is the optimal Q-function that induces the optimal policy π∗.

Algorithm 2 Q-learning
for i← 1, num episodes do

ε← εi
Observe S0

t← 0
repeat

Choose action At using policy derived from Q (e.g. ε-greedy)
Take action At and observe the reward and state that follows, Rt+1, St+1

Q(St, At)← (1− α)Q(St, At) + α (Rt+1 + γmaxa Q(St+1, a))
t← t+ 1

until St is terminal
end for
return Q

The update rule is derived through a modification to the Bellman optimality equation for
the action-value function. Direct application of the Bellman equation within the algorithm is
infeasible, as it explicitly requires the state probability transition function. Consequently, the
Q-value is updated on the basis of the observed successor state and reward, thereby mitigating
the requirement for the state transition probability function.

Q(St, At)← (1− α)Q(St, At) + α
(
Rt+1 + γmax

a
Q(St+1, a)

)
(2.4)

During the sampling of actions from the Q-function in the training phase, it is possible to
introduce some randomness by refraining from selecting the current optimal action prescribed by
the Q-function, opting instead to select randomly with a probability of ε. This approach, known
as ε-greedy, facilitates the agent to explore rather than merely exploiting the prevailing optimal
action. Q-learning is characterized as an off-policy algorithm, on account of the difference
between the final policy it generates and the exploratory policy utilized during the accumulation
of experience in training.

In Reinforcement Learning, we must balance exploration versus exploitation. It is clear that at
the early stages of training, it is evident that the agent has not experienced most of the environment
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yet, thus it would be beneficial for it to explore more and collect experience. Conversely, when
the agent has found a strategy that has high return, it should exploit it.

A common approach to balance the exploration-exploitation trade-off in Q-learning is to start
training with a high ε value and applying an annealing function throughout the training process.
This approach ensures that as training advances, the value is gradually reduced and the rate of
exploration diminishes.

2.3 Policy gradient methods

So far we have only discussed value based RL algorithms, where we indirectly learn the
optimal policy by learning the optimal value function. An alternative approach to solving the
reinforcement learning control problem is to directly learn a policy by iteratively improving on
the current policy, thus leading to an incremental improvement at each step; these types of RL
algorithms are called policy based.

In this section, our focus will be directed on policy gradient algorithms, which are a subclass
of policy-based algorithms. In a policy gradient algorithm, the policy is parameterized, and
an objective function is employed to measure the performance of the policy. When improving
the policy after each step of the algorithm, we compute the objective function and adjust the
parameters of the policy in the direction of the gradient of the objective function. By following
the gradient, we ensure that the change in parameters will be that of the greatest ascent (or
descent).

The primary advantage of policy gradient algorithms lies in their ability to effectively gener-
alize to continuous action spaces. It should be noted that in the value iteration and Q-learning
algorithms, calculating a maximum over all actions is required. This task becomes prohibitively
expensive when applied to continuous action spaces. However, for policy gradient algorithms,
the computational burden of determining the gradient remains consistent, regardless of whether
the action space is of high or low dimensionality.

Among the most common policy gradient algorithms are REINFORCE, Advantage Actor
Critic, Trust Region Policy Optimization, and Proximal Policy Optimization. These methods
will be covered in the following sections. Nonetheless, a comprehensive grasp of policy gradient
algorithms is indispensable for the comprehension of the algorithms that follow.

Let us introduce the following objective function for continuing tasks, that measures the
average value of all states weighted by their stationary distribution.

J(θ) =
∑
s∈S

dπ(s)vπ(s) (2.5)

where dπ represents the stationary distribution of the Markov chain over the state space by
adhering to π, and vπ denotes the true value function under π. This objective function ensures
that states frequently visited by the policy bear greater significance.

For episodic tasks, the objective function can be defined as the value of the initial state under
policy π.

J(θ) = vπ(s0) (2.6)
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The episodic and continuing cases define different objective functions J(θ), necessitating that
they be treated separately. Nevertheless, they ultimately lead to the same result, with the major
part of the derivation being identical for both cases. Therefore, we focus on the episodic case
and propose the continuing case as an exercise for the reader.

Directly calculating the gradient of the objective function might seem to be terribly challeng-
ing, given that the parameter affects the policy, which in turn affects the stationary distribution.
Furthermore, it is also dependent on the successor states after selecting an action, which is
controlled by the environment. In situations where complete information about the environ-
ment is unavailable, direct computation of the objective function or its gradient is not feasible.
Fortunately, the gradient can be reformulated to resemble an expectation, allowing it to be
approximated through sampling methods.

Theorem 2.3.1. Policy gradient theorem

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

qπ(s, a)∇θπθ(a | s) (2.7)

Proof. To keep the notation clean and readable, we omit writing θ in all cases, and leave it
implicit that the gradients are with respect to θ and that policy π is a function of θ.

By equation (1.9), we can rewrite the state value function.

∇vπ(s) = ∇

[∑
a

π(a | s)qπ(s, a)

]
(2.8)

We can apply the sum and the product rule of the gradient.

∇vπ(s) =
∑
a

[
∇π(a | s)qπ(s, a) + π(a | s)∇qπ(s, a)

]
(2.9)

By equation (1.11), we can rewrite the action-value function.

∇vπ(s) =
∑
a

[
∇π(a | s)qπ(s, a) + π(a | s)∇

∑
s′

Pa
ss′ (r + vπ(s

′))

]
(2.10)

Since the reward received does not depend on θ, its gradient is zero.

∇vπ(s) =
∑
a

[
∇π(a | s)qπ(s, a) + π(a | s)

∑
s′

Pa
ss′∇vπ(s′)

]
(2.11)

It appears that the gradient of the value of the current state depends on the gradient of the value
of the successor states. With this recursive formula, we can unroll the equation by substituting
the formula for∇vπ into ∇vπ(s′).
Through sufficient expansion of this recursive relationship, it is ensured that all states of the state
space are visited, thereby resulting in the subsequent equation.

∇vπ(s) =
∑
x∈S

∞∑
k=0

P(s→ x, k, π)
∑
a

∇π(a | x)qπ(x, a) (2.12)
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where P(s → x, k, π) is the probability of reaching state x starting from state s, after k steps,
by following policy π.

Let η(s) =
∑∞

k=0 P(s0 → s, k, π) and ϕ(s) =
∑

a∇π(a | s)qπ(s, a). With these shorthand
notations in place, we can rewrite the latest form of the equation.

∇J(θ) = ∇vπ(s0) =
∑
s∈S

∞∑
k=0

P(s0 → s, k, π)
∑
a∈A

∇π(a | s)qπ(s, a)

=
∑
s∈S

η(s)ϕ(s) =
∑
s∈S

(∑
s η(s)∑
s η(s)

)
η(s)ϕ(s)

=

(∑
s∈S

η(s)

)∑
s∈S

η(s)∑
s η(s)

ϕ(s) ∝
∑
s

η(s)∑
s η(s)

ϕ(s)

=
∑
s∈S

dπ(s)ϕ(s)

(2.13)

Given that
∑

s∈S η(s) is a constant, and η(s)∑
s η(s)

is precisely dπ(s), we finally arrive at the
desired result after resubstituting for our shorthand notation of ϕ(s).

∇J(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

∇π(a | s)qπ(s, a) (2.14)

Observe that the expression on the right-hand side of the policy gradient theorem consists of
a weighted sum over all states, with each state weighted according to its likelihood under policy
π. Consequently, adhering to policy π results in encountering states in these proportionalities.
Given that dπ is a probability distribution over S, and ϕ(s) constitutes a function over S, the
right-hand side of the policy gradient theorem embodies an expectation.

∇J(θ) = Eπ

[∑
a∈A

∇π(a | s)qπ(s, a)

]
(2.15)

The intention is to employ the policy gradient theorem as an update rule within a gradient based
algorithm. Nevertheless, the current formulation remains unsampleable due to the necessity of
summing over the entirety of actions. To transform this summation into an expectation, it is
requisite to multiply each action by its corresponding selection probability, which precisely
constitutes the policy π.

∇J(θ) = Eπ

[∑
a∈A

π(a | s)qπ(s, a)
∇π(a | s)
π(a | s)

]

= Eπ

[
Eπ

[
qπ(s, a)

∇π(a | s)
π(a | s)

]]
= Eπ

[
qπ(s, a)

∇π(a | s)
π(a | s)

] (2.16)

Recall that∇ log f = ∇f
f

by the chain rule. Thus, we derive the following update rule, which
will serve as the foundational update rule for the algorithms that follow.

∇J(θ) = Eπ [qπ(s, a)∇ log π(a | s)] (2.17)
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2.4 REINFORCE

In the preceding section, we derived the generic update rule applicable to policy gradient
methods (2.17). The principal challenge remaining with this update rule arises from the absence
of the true action value function qπ. Thus, an estimate or a substitution for the action-value
function is required that does not incur bias. Recall that qπ(s, a) = E [Gt | s, a], which implies
that the return is an unbiased estimator of the action-value. Therefore, the action-value function
can be substituted for its definition in the generic policy gradient update.

∇J(θ) = Eπ [Eπ [Gt | St = s, At = a] · ∇ log π(a | s)] (2.18)

By the law of total expectation, we can eliminate the inner expectation.

∇J(θ) = Eπ [Gt · ∇ log π(a | s)] (2.19)

With the aforementioned update rule, we present the REINFORCE algorithm [25].

Algorithm 3 REINFORCE
Initialize a differentiable policy πθ with parameter θ ∈ Rd

repeat
Sample an episode S0, A0, R1, . . . , ST−1, AT−1, RT following policy πθ

for each step of the episode t = 0, . . . , T − 1 do
Gt ← return from step t
θ ← θ + αγtGt∇θ log πθ(At, St)

end for
until π converges

However, the REINFORCE algorithm is only applicable for episodic environments, as the
full return of an episode is required for a single update. For episodic environments, the sampled
update serves as an unbiased estimator of the true policy gradient update. Nevertheless, we must
also consider the variance of the sample alongside the bias.
In order to control the variance of the sample, we can introduce a baseline function B(s),
dependent solely on the state rather than the action.

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

(
qπ(s, a)− b(s)

)
∇θπθ(a | s) (2.20)

It is clear to see that the introduction of the baseline does not alter the validity of the policy
gradient theorem, as the introduced part simplifies to zero.∑

a∈A

b(s)∇θπθ(a | s) = b(s)∇θ

∑
a∈A

πθ(a | s) = b(s)∇θ1 = 0 (2.21)

By subtracting a baseline function, we can differentiate between actions more clearly for
different states.
Consider a scenario where, in state s1, one action holds a value of 11 while another action
possesses a value of 12. Similarly, in state s2, one action is valued at 1, and its alternative at 2. In
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these examples, although the difference between the two actions remains constant across both
states, the update magnitude at state s1 will be significantly larger, attributed to the higher overall
value of the optimal action compared to the best action at state s2. To rectify this discrepancy, it
is proposed to establish the state’s value as the baseline, ensuring that the updates for states s1
and s2 are equivalent.

2.5 Advantage Actor Critic

Previously, we have derived the policy gradient theorem, which enables the update of the
policy by sampling trajectories. Nonetheless, the equation directly references the action-value
function q(s, a), the exact form of which is unknown to us. The REINFORCE algorithm employs
an approximation of the action-value function; however, this approximation does not undergo
refinement. Actor Critic methods improve on this idea by learning the action-value function
and incorporating the learned action-value into the update rule. In this framework, the actor is
responsible for learning the policy, whereas the critic is tasked with learning the action-value.
Consequently, Actor Critic methods are categorized as both value-based and policy-based.

This section is dedicated to the development of an Actor Critic method that is designed to
approximate the so-called advantage, and learns a policy based on the input provided by the
advantage estimate.

In the preceding section, we argued that the subtraction of the state’s value as a baseline
during each update does not compromise the validity of the policy gradient theorem, provided
the baseline remains independent of the action. Nevertheless, this approach may contribute to a
reduction in variance by centering the sampled values. The policy gradient update incorporating
the state value baseline is expressed as follows.

∇J(θ) = Eπ [(qπ(s, a)− vπ(s))∇ log π(a | s)] (2.22)

The inner part comes up frequently enough that it has a name; it is called the advantage.

Aπ(s, a) := qπ(s, a)− vπ(s) (2.23)

Should one endeavor to formulate an algorithm based on the aforementioned update rule,
it may be necessary to estimate both the state-value function and the action-value function.
However, a more efficient approach can be adopted by solely estimating the state-value function,
provided that the advantage function is appropriately reformulated. By employing the definition
of the action-value function and partially unrolling the Bellman equation, one can deduce the
following outcomes.

qπ(s, a) = Eπ[Gt | St = s, At = a] = Eπ[Rt + γvπ(St+1) | St = s, At = a] (2.24)

Rewriting the definition of the advantage function with the derived formulation of the action-
value function, we get the following.

Aπ(s, a) =

qπ(s,a)︷ ︸︸ ︷
Eπ[Rt + γvπ(St+1) | St = s, At = a] −vπ(s) (2.25)
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Let us introduce the temporal difference (TD) error to tighten up our notation.

δπ := Rt + γvπ(St+1)− vπ(St) (2.26)

By considering the expectation of the temporal difference (TD) error conditioned on the state
and action, it becomes evident that the TD error serves as an unbiased estimator of the advantage
function when the true value function is employed.

Eπ [δπ | St = s, At = a] = Eπ[Rt + γvπ(St+1) | St = s, At = a]− vπ(s) = Aπ(s, a) (2.27)

Thus, the TD error can be employed to calculate the update for the policy gradient.

∇J(θ) = Eπ [∇ log π(a | s)δπ] (2.28)

Having established this reformulation, it becomes sufficient to approximate the state value
function to facilitate the completion of a policy gradient update. Numerous methods exist for
learning the state value function, although we will not delve into the specifics of these various
approaches. Among the simplest methods is TD Learning. The update rule for a single-step
temporal difference method, commonly referred to as TD(0), is presented as follows.

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] (2.29)

This update rule implies that following each action undertaken, the one-step TD error, Rt+1+
γV (St+1) − V (St), is computed based on our present estimation of V (St), and the estimate is
incrementally adjusted using the sampled value of the TD error.

2.6 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [16] represents the culmination of all our previous efforts
at improving RL algorithms. PPO is an actor critic algorithm distinguished by two key ideas:
the generalized advantage estimate (GAE) and the clipped surrogate objective.

Definition 2.6.1. Let LCPI denote the conservative policy iteration (CPI) objective function.

LCLIP (θ) = Êt

[
rt(θ)Ât

]
(2.30)

where the ratio function rt is defined as follows:

rt(θ) =
πθ(at|st)
πθold(at|st)

Our objective is to avoid large changes to the current policy in one step, as they might impact
convergence. One method to limit the change in policy is to impose a penalty based on the
Kullback-Leibler (KL) divergence [10] of the policy, which is the key idea of TRPO [14].
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However, PPO employs a different approach by clipping the change in policy rather than penal-
izing it. The following equation defines the clipped surrogate objective for PPO. Additionally,
Figure 2.1 offers an illustration of the clipped surrogate objective function.

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε

)
Ât

]
(2.31)

1− ϵ1 + ϵ

r

LCLIP

A > 0

1− ϵ1 + ϵ r

LCLIP

A < 0

Figure 2.1: Diagrams depicting the clipped surrogate LCLIP as a function of the policy
probability ratio r.

Proximal Policy Optimization is an actor critic method, meaning that it is responsible for
learning both the policy and the value function. For the algorithm to learn the value function,
we introduce the squared-error loss LV F for the value function.

LV F =
(
Vθ(st)− V target

t

)2 (2.32)

In addition to the policy loss and the value loss, PPO further augments the loss function by
incorporating an entropy bonus, which aids the agent in exploration S[πθ](st).

S[πθ](s) = −
∑
a∈A

π(a | s) log π(s, a) (2.33)

Combining the previously established components, the final PPO objective function is pre-
sented as follows.

LCLIP+V F+S
t (θ) = Êt[L

CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)]

Where the coefficients c1 and c2 are hyperparameters controlling the significance of the value
loss and the entropy bonus, respectively.

In practical applications, automatic differentiation software is typically utilized to circumvent
the manual computation of derivatives. In such scenarios, it is necessary to construct the clipped
surrogate objective LCLIP+V F+S

t (θ) and perform optimization steps on it, such as stochastic
gradient descent (SGD) or ADAM [9].
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So far we have only defined the objective, but we have not discussed how to estimate the ad-
vantage function. Recall how we estimated the advantage in the advantage actor critic algorithm;
we argued that the true TD error is an unbiased estimator of the advantage. However, we do not
know the true value function v∗, only an estimate V πθ which may be biased. Thus, if the value
estimate has high bias, so will the advantage estimate.
To reduce the bias introduced by the value function, we can look at more steps, reducing the
contribution of the value function in the estimate.

Â
(k)
t =

k−1∑
l=0

γlδt+1 = −V πθ(St) +Rt + γRt+1 + γ2Rt+2 + · · ·+ γkV πθ(st+k) (2.34)

Introducing more steps does lead to a reduced bias, because the coefficient of V πθ(St+k)
becomes smaller as k increases. The reduction of bias does not come free, as with increasing
the sample length, the variance increases.
To summarize, A(1)

t has high bias but low variance, while A
(k)
t has low bias but high variance.

How do we pick k such that we get the lowest bias and lowest variance? The generalized
advantage estimator GAE(γ, λ) [15] is defined as the exponentially-weighted average of these
k-step estimators.

Â
GAE(γ,λ)
t :=(1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
=(1− λ)

(
δt + λ (δt + γδt+1) + λ2

(
δt + γδt+1 + γ2δt+2

)
+ . . .

)
=(1− λ)

(
δt
(
1 + λ+ λ2 + . . .

)
+ γδt+1

(
λ+ λ2 + λ3 + . . .

)
+γ2δt+2

(
λ2 + λ3 + λ4 + . . .

)
+ . . .

)
=(1− λ)

(
δt

(
1

1− λ

)
+ γδt+1

(
λ

1− λ

)
+ γ2δt+2

(
λ2

1− λ

)
+ . . .

)
=

∞∑
l=0

(γλ)lδt+l

(2.35)

As the result of the previous derivation, we can see that the generalized advantage estimator
resolves in an astonishingly simple formula of the discounted sum of TD errors. To control the
bias-variance trade-off, we can change the values of γ and λ.
The only problem remaining is that GAE(γ, λ) is defined as an infinite sum, which is problematic
to compute on finite machines. To resolve this problem, we can sample a trajectory of length T
and calculate the truncated sum for each step of the sample trajectory. [12]

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1 =
T−t−1∑
l=0

(γλ)lδt+l (2.36)

An additional concept utilized by PPO, which has not been previously discussed, involves exe-
cuting multiple actors in parallel to speed up training [12]. Integrating the previously established
components, the final PPO algorithm in pseudocode is presented as follows.
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Algorithm 4 Proximal Policy Optimization (PPO)
for iteration = 1, 2, . . . do

for actor = 1, 2, . . . , N do
Run policy πθold in environment for T time steps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L with respect to θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for
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Chapter 3

Trading fractional Brownian motion

3.1 Stochastic processes

Definition 3.1.1. Let (Ω,A, P ) be a probability space and (S,Σ) a measurable space. A stochas-
tic process is a collection of S-valued random variables, which can be written as

{X(t) : t ∈ T} (3.1)

for some index set T.

Typically, the index set T represents time, making T a subset of the real numbers. In sce-
narios where the index set signifies time, it becomes possible to model a variety of real-world
phenomena, such as the population dynamics of a group of animals, the trajectory of a particle
suspended in a medium, or the behavior of financial markets. In the ensuing sections, a concrete
model for a financial market will be delineated, and the methodology to realize asymptotically
optimal trading results will be discussed.

Definition 3.1.2. For every t ∈ T, let Ft be a sub-σ-algebra of A. Then (Ft)t∈T is called a
filtration, if Fk ⊆ Fl for all k ≤ l.

Definition 3.1.3. A stochastic process Xt is adapted to the filtration Ft if the random variable
Xt : Ω→ S is a (Ft,Σ) measurable function for all t ∈ T.

A filtration with an adapted stochastic process effectively models the accumulation of knowl-
edge concerning past and present events. At a given timestep t ∈ T, all relevant information
about the past and present is encapsulated withinFt. The designation ofFt as a filtration signifies
that the aggregation of our knowledge expands as time progresses. In the event that the stochastic
process Xt is adapted to this filtration, then at each timestep t ∈ T the sub-σ-algebraFt contains
sufficient information to determine the value of all random variables Xs where s ≤ t.

From here on out, we focus our attention on Gaussian processes, with particular emphasis on
a specific process known as fractional Brownian motion. Multiple findings have established that
financial prices can be modeled with stochastic processes of long memory. A collection of such
results can be found at [2]. We focus on fractional Brownian motion as it exhibits the property
of long memory and it has been used in the past to model financial prices [6].
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Definition 3.1.4. A time continuous stochastic process Xt is Gaussian if for every finite set of
indices {t1, t2, . . . , tk} ⊆ T

Xt1,t2,...,tk = (Xt1 , Xt2 , . . . , Xtk) (3.2)

is a multivariate Gaussian random variable.

Definition 3.1.5. A time continuous Gaussian process BH(t) on [0, T ] is a fractional Brownian
motion (fBm), if the following properties are satisfied:

BH(0) = 0 (3.3)

E[BH(t)] = 0 ∀t ∈ T (3.4)

E [BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
(3.5)

where H ∈ (0, 1).

The parameter H is called the Hurst parameter, and it characterizes the type of fractional
Brownian motion. In the case ofH < 1/2, the increments of the process are negatively correlated,
while in the case of H > 1/2, the increments are positively correlated. When H = 1/2, we
recover the usual Brownian motion with independent increments. Figure 3.1 shows realizations
of the fBm process for different Hurst parameters.

Figure 3.1: Typical fBm realizations of length 100. Hurst parameters less than 0.5 shown on the
left subplot, while Hurst parameters greater than 0.5 shown on the right subplot.

3.2 Trading fractional Brownian motion

Within this section, a financial model will be presented, including a discussion on optimal
trading strategies within the scope of this model. The results shown are with direct reference to
[7]. Consider a modeled financial market wherein the price of a risky asset adheres to an adapted
process St, where t ∈ [0, T ]. The trader may trade at finite rates on the risky asset, though
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they incur a temporary, nonlinear price impact as a consequence. Subsequently, we proceed to
delineate the family of feasible strategies available to the trader.

S(T ) :=
{
ϕ : ϕ is a R-valued, optional process,

∫ T

0

|ϕu| du <∞ a.s.
}

(3.6)

The trader’s initial asset position is represented by z = (z0, z1), indicating possession of z0
units of the riskless asset and z1 units of the risky asset. The quantity of shares in the risky asset
at time t ∈ [0, T ], after following strategy ϕ, is specified as

X1
t (ϕ) := z1 +

∫ t

0

ϕu du (3.7)

The aggregate position in the riskless asset is defined in a comparable manner, albeit incor-
porating the effect of price impact. The trader incurs a superlinear penalty associated with the
trading speed, as determined by parameters α > 1 and λ > 0, thereby establishing the position
in the riskless asset at time t ∈ [0, T ] as

X0
t (ϕ) := z0 −

∫ t

0

ϕuSu du−
∫ t

0

λ |ϕu|α du (3.8)

In the subsequent discussions, we assume a starting portfolio of (z0, z1) = (0, 0), meaning
that the trader starts with zero initial capital allocation in either asset.

Let A(T ) be the family of feasible strategies starting with zero initial capital allocation, and
with the final position composed exclusively of the riskless asset, and a well-defined notion of
expected terminal riskless asset position. Formerly stated as

A(T ) := {ϕ ∈ S(T ) : X1
T = 0,E[X0

T (ϕ)−] <∞} (3.9)

where x− = −min{x, 0}.

Building upon the preceding detailed framework, we can now define the objective of our
problem: to identify the strategy ϕ ∈ A(T ) that realizes maximal expected profits within the
riskless asset.

Proposition 3.2.1. For each T ∈ R+, u(T ) <∞ and there exists ϕ∗ ∈ A(T ) such that

u(T ) = E[X0
T (ϕ

∗)] (3.10)

where
u(T ) := sup

ϕ∈A(T )

E[X0
T (ϕ)] (3.11)

In essence, the aforementioned proposition asserts the existence of an optimal strategy for any
time horizon T that achieves maximal returns.

Proposition 3.2.2. There exists a market bound

Q(T ) =

∫ T

0

E|St|
α

α−1 dt (3.12)
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that dominates the returns of any strategy ϕ ∈ A(T )

E|X0
T (ϕ)| ≤ CQ(T ) (3.13)

where C is some constant.

Proof. The existence of the market bound is asserted by the proof of Proposition 3.1. in [7].

Theorem 3.2.3. Let λ > 0, α > 1, and H ∈ (1, 2) \ {0.5}. Then for St := BH
t ,

(i) Maximal expected profits satisfy

lim sup
T→∞

u(T )

TH(1+1/(α−1))+1
<∞ (3.14)

(ii) For each 0 < κ < 1/(α− 1), the strategies

ϕt(T, κ) :=

{
sgn (St(H − 1/2)) |St|κ , t ∈ [0, T/2),

− 1
T/2

∫ T/2

0
ϕs ds, t ∈ [T/2, T ]

(3.15)

satisfy

lim
T→∞

EX0
T (ϕ(T, κ))

TH(1+κ)+1
> 0 (3.16)

The first part of the theorem states that the ratio
u(T )

TH(1+1/(α−1))+1
(3.17)

does not grow without bound. Meaning that for sufficiently large time horizons T , there exists
C such that

u(T ) ≤ C · TH(1+1/(α−1))+1 (3.18)

The second part of the theorem describes a family of strategies that exhibit at least as steep
a slope as TH(1+κ)+1. In the limiting case, where κ → 1/(α − 1), the two parts of the theo-
rem combined establish that the described strategy achieves asymptotically optimal returns. A
depiction of the asymptotic optimality of the described strategy is presented in Figure 3.2.

The proposed strategy is predicated on the Hurst parameter of the fBm process. It executes
trades counter to the price direction in the anti-persistent scenario, while aligning with the
price direction under persistent conditions. The second half of the trading period is exclusively
dedicated to linear liquidation, minimizing the impact of trading speed while liquidating its
entire position in the risky asset. Figure 3.4 aims to provide a depiction of the distribution of
actions for each time step t ∈ [0, T ], while Figure 3.3 portrays representative trajectories of the
optimal strategy for four different Hurst parameters.

A key metric economists measure when assessing the risk associated with the return of
investing strategies is the Sharpe ratio. In essence, the Sharpe ratio aims to quantify the reliability
of excess returns. The Sharpe ratio is defined as the expected returns in the riskless asset divided
by the standard deviation of the returns in the riskless asset (3.19). Figure 3.5 depicts the
empirically measured Sharpe ratio of the optimal strategy for different Hurst parameters.

E[X0
T −X0

0 ]√
var(X0

T −X0
0 )

(3.19)
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Figure 3.2: Expected profits (vertical axis in logarithmic scale) against time horizon (horizontal
axis in logarithmic scale) with the market bound. For each Hurst parameter and each time
horizon the expected returns of the optimal strategy are empirically calculated from 500

samples.

Figure 3.3: Typical realizations for the optimal strategy for different Hurst parameters.
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Figure 3.4: Distributions of actions for 500 simulated trading sequences for the optimal
strategy for every time step. The active trading half of the action distributions in blue, with the

liquidation half of the trading period in orange.

Figure 3.5: Sharpe ratio against Hurst parameter for optimal strategy, each data point calculated
from 500 simulations.
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Chapter 4

Experiments

4.1 Artificial trading on autoregressive prices

This chapter details the experiments conducted to train an artificial agent, using reinforcement
learning, to discover optimal trading strategies within the framework defined in Section 3.2.

The initial step in addressing a problem with reinforcement learning involves defining an
environment that encapsulates the problem’s key characteristics. Our research involved exper-
imenting with various investment settings, leading to the development of a base investment
environment from which different specific settings are derived. The base investment environ-
ment is characterized by the price process generator and the length of the trading period, T . Each
specific investment setting is defined by these components, alongside a unique utility function
and the implementation of a single trading step.

An implementation of the Proximal Policy Optimization algorithm, based on the CleanRL
single-file implementation [8], was used as the training algorithm. Across all experiments, both
the actor and the critic were implemented using a multilayer perceptron (MLP). A list of all the
hyperparameters used can be found in Table 4.1.

Initially, we sought to replicate the results presented by [5], which outline an investment
problem based on autoregressive prices. However, the exponential utility function defined as:

u(x) = −e−x (4.1)

was deemed computationally impractical. To address this, we explored substituting a linear utility
function, with the aim of achieving satisfactory performance in the original setting after training
in the modified setting. However, this approach proved unsuccessful. The original exponential
utility heavily penalized even minor losses, overshadowing positive returns. Figure 4.1 illustrates
the evaluation results during training, comparing the linear utility (blue) and the certainty
coefficient (orange). The certainty coefficient for n realizations is calculated as the inverse utility
of the average utility:

u−1

(∑
u(xi)

n

)
(4.2)

Following these initial experiments, we shifted our focus to the investment setting detailed
in Section 3.2, which employs the identity function as the utility function. This setting presents
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Figure 4.1: Evaluation during training for autoregressive process against the optimal strategy.
At each iteration, the current model is evaluated on 5000 sample episodes. The average

terminal cash holdings of the current model are shown in solid blue, while the shaded area
depicts the interquartile range of outcomes. The certainty coefficient of the current model is

shown in solid orange, while the 95% confidence interval of the certainty coefficient is shown
in shaded orange.

challenges due to the superlinear friction imposed on the trading speed, coupled with the
complexity of the fBm process compared to the autoregressive process.

4.2 Artificial trading on fractional Brownian motion

Similar to the autoregressive environment, we implemented the trading step for this invest-
ment problem, incorporating the friction on trading speed and utilizing a prepackaged Python
implementation for simulating fBm realizations. It is important to note that Theorem 3.2.3 ap-
plies to continuous-time trading, which is infeasible on computers. Consequently, we discretized
the investment problem by restricting trading on the fBm process to positive integers. The defi-
nitions of the risky and riskless assets were adapted to accommodate this discrete-time trading
framework. The quantity of shares in the risky asset is defined as:

Ht =
t∑

k=1

hk (4.3)

The aggregate position in the riskless asset is defined as:

Vt = −
t∑

k=1

Skhk −
t∑

k=1

λ|hk|α (4.4)
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Fractional Brownian motion has been extensively studied as a way to model asset prices since
its first introduction by Mandelbrot [11]. However, whether it is truly an accurate model has been
deeply debated, as studies contending whether it displays long memory have been inconclusive
or rejected. Among the many studies, which aim to model asset prices with fractional Brownian
motion, Gatheral et al. [6] estimated the smoothness of the log-volatility of assets represented
in the Oxford-Man dataset. Their findings led them to model the log-volatility with a fractional
Brownian motion with Hurst parameter H < 0.5. Furthermore, estimating the Hurst parameter
of the selected assets using their model shows that it lies between 0.08 and 0.2. Therefore,
we concentrated our efforts on training an agent on fBm with Hurst parameter of this range.
To examine the asymptotic properties of the reinforcement learning model, we trained five
distinct models across increasing time horizons, ranging from 128 to 2048. Figure 4.2 illustrates
the performance of the trained model against the analytically optimal model, while Figure 4.3
presents sample trading realizations executed by the trained model for fixed time horizon T =
128, and Figure 4.4 shows the plot of evaluations for each iteration during training for time
horizon T = 128.

Figure 4.2: Asymptotic model evaluation for fixed Hurst parameter H = 0.1, trading period
against model performance and market bound. Trained RL model in blue against analytical

strategy of Theorem 3.2.3 in orange against theoretical market bound in dashed green.

The results indicate that the trained model outperforms the analytical strategy for time horizons
up to 512. However, the performance of the reinforcement learning framework degrades as the
time horizon increases. This issue is attributed to the credit assignment problem, a common
challenge in reinforcement learning where longer episodes make it difficult to accurately attribute
outcomes to specific actions.

As previously discussed, the Hurst parameter for indices within the Oxford-Man Institute
of Quantitative Finance Realized Library ordinarily spans a range from 0.08 to 0.2. A more
comprehensive exposition of this data is available in Table B.2 of [6]. Consequently, we trained
a model using a Hurst parameter drawn from a uniform distribution on the interval (0.05, 0.15).
Figure 4.5 presents the evaluation of this model.
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Figure 4.3: Four typical episodes for the trained agent, with parameters H = 0.1, T = 128.
Actions are shown in blue, prices are shown in orange, riskless asset holdings are shown in

purple, risky asset holdings are shown in red. The wealth (green) is computed as the sum of the
riskless asset position and the value of the held risky assets.

Figure 4.4: Evaluation during training for fixed Hurst parameter H = 0.1, iterations against
wealth and Sharpe ratio. At each iteration, the current model is evaluated on 500 sample

episodes. The average terminal cash holdings of the current model are shown in solid blue,
while the shaded area depicts the interquartile range of outcomes. Calculated returns for the

analytical strategy of Theorem 3.2.3 are shown in dashed blue, while calculated Sharpe ratio is
shown in dashed green.
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Figure 4.5: Evaluation during training for random Hurst parameter H ∼ U(0.05, 0.15),
iterations against wealth and Sharpe ratio. At each iteration, the current model is evaluated on
500 sample episodes. The average terminal cash holdings of the current model are shown in

solid blue, while the shaded area depicts the interquartile range of outcomes. Calculated
returns for the analytical strategy of Theorem 3.2.3 are shown in dashed blue, while calculated

Sharpe ratio is shown in dashed green.
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Hyperparameter Value
seed 1
torch_deterministic True
cuda True
save_model False
eval_train True
num_eval_train 100
num_envs_eval 100
action_train False
printing True
env_id FBMEnv
env_kwargs.T 128
env_kwargs.hurst 0.1
env_kwargs.hurst_epsilon 0.05
env_kwargs.random_hurst True
env_kwargs.friction_parameter 2
env_kwargs.illiquidity 0.01
env_kwargs.penality_version 0
env_kwargs.reward_type delta bankroll
env_kwargs.window_size 32
learning_rate 0.0003
num_envs 32
num_steps 8T
anneal_lr True
gamma 1.0
gae_lambda 0.95
num_minibatches 32
update_epochs 10
norm_adv True
clip_coef 0.2
clip_vloss True
ent_coef 0.0
vf_coef 0.5
max_grad_norm 0.5
num_iterations 500

Table 4.1: Hyperparameters used in training for the random uniform Hurst experiment.
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Conclusion

In this thesis, we have explored the mathematical framework of reinforcement learning, with
the primary objective of applying its methods to find optimal trading strategies in a novel
financial market model. By employing the proximal policy optimization algorithm, we were
able to demonstrate that in the market model described in Section 3.2, the trained artificial agent
was capable of performing on par with the analytically optimal strategy for small enough trading
periods and anti-persistent prices.

In conclusion, the results, shown in Figure 4.4 and Figure 4.5, demonstrate that our trained
model outperforms the strategy outlined in Theorem 3.2.3 for sufficiently small time horizons.
This leads to the conclusion that reinforcement learning can be effectively used to train an agent
that surpasses a known analytical strategy for trading periods of limited duration. On the basis
of the claims stated in [6], one could find practical applications of the proposed artificial agent
by trading on index funds modeling volatility, such as the VIX [1], and expect higher expected
returns with smaller risk for trading periods of up to 512 days.

While this work addresses several important aspects of the problem, some questions remain
open. In particular, trading on persistent fBm prices is not discussed as the liquidation process
complicates the strategy that the agent needs to learn. Future studies could build on these
results by extending to persistent fBm prices by limiting the agent to only trade in the first half
of the trading period and systematically liquidating the amounted assets linearly, as it can be
shown that in this case linear liquidation is optimal. Further extensions are also within reach to
adapt different market models to the reinforcement learning framework, even in the case where
analytical strategies are not known.

In summary, this thesis contributes to the field of reinforcement learning driven quantitative
finance by demonstrating that reinforcement learning is capable of learning optimal trading
strategies, and it lays the groundwork for further exploration of financial market models modeled
and solved with reinforcement learning.
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