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2.0 Prerequisites

2.1 Semigroups

Basic notions

In this section, we list some basic definitions and elementary, well-known facts
from semigroup theory. The discussion of the topic closely follows parts of the first
chapter of [Ste16]. A set S equipped with an associative binary operation ’·’ is called
a semigroup. We usually denote the product of elements with juxtaposition or by
putting an ’·’ between them. From now on, S will denote a semigroup. If S has
an identity element, we call it a monoid. There is not much difference between
monoids and semigroups since if S does not have an identity element we can adjoin
one externally by introducing a new symbol 1, and by considering the semigroup on
S ∪ {1} where the product of elements of S stays the same and for any s ∈ S we
define 1s = s1 = s, furthermore 1 · 1 = 1. The semigroup obtained this way is called
the semigroup with externally adjoined identity and will be denoted as S1.

An element z of S is called a zero element if for every s ∈ S we have sz = z = zs.
Similarly, if S does not contain a zero element, we can adjoin one externally as
above. The semigroup obtained this way is called the semigroup with externally
adjoined zero and will be denoted as S0.

A subsemigroup of a semigroup is a subset that also forms a semigroup. A sub-
group of a semigroup is any subsemigroup that is also a group. The subsemigroup
generated by a subset X ⊆ S is the smallest semigroup in S, with respect to
inclusion, which contains X as a subset.

An ideal of S is a subset J such that S1JS1 ⊆ J . From the definition, it follows
that any ideal of S is also a subsemigroup of S. An ideal generated by one element
s is defined as the ideal S1sS1 and is called the principal ideal generated by s.
Let us note that if S contains a zero element, and I is an ideal of S, then the zero
element always belongs to I.

A significant role is played by the idempotent elements of S, that is, elements
satisfying the equation e2 = e. The set of idempotents contained in a subset X ⊆
S is denoted by E(X). For any e ∈ E(S), eSe is a monoid with respect to the
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multiplication inherited from S, where e is the identity element. The set of elements
of eSe which are invertible with respect to e (i.e. x ∈ eSe for which ∃y ∈ eSe

such that yx = xy = e) form a subgroup of eSe ⊆ S, and are called the maximal
subgroups of S. Note that these subgroups are indeed maximal, and every maximal
subgroup is of this form.

There is a partial order on E(S) defined by e ≤ f ⇔ ef = fe = e, or equivalently,
if eSe ⊆ fSf . An idempotent is called primitive if it is minimal with respect to the
partial order restricted to non-zero idempotents. We shall use the notation Em(X) to
denote the set of maximal elements of the previous partial order restricted to X ⊆ S.

Next, we mention a few important classes of semigroups. We start by discussing
some basic properties of cyclic semigroups, i.e semigroups generated by a single
element. Let S be a finite semigroup and let s ∈ S. Since S is finite, there exists a
smallest integer c > 0, called the index of s, such that sc = sc+d for some integer
d > 0. The smallest such d is called the period of s. Clearly sc = sc+qd for every
q ≥ 0. It can be proved that for any s ∈ S with index c and period d we have
si = sj (i, j ∈ N) if and only if i = j or i, j ≥ c and i ≡ j (d). Then it follows that
⟨s⟩ = {sn : n ≥ 1} the cyclic subsemigroup generated by s is, in fact, identical
to {s, s2, . . . sc+d−1} with the original product, where c is the index and d is the
period of s, and that these elements are all different. Moreover, the subsemigroup
C = {sn : n ≥ c} of ⟨s⟩ is a cyclic group of order d, and the identity of C, denoted as
sω, is the unique idempotent in ⟨s⟩, and moreover, sω = sm where m ≥ c and m ≡ 0

(d). The proof of these facts is elementary and can be found in [Ste16] chapter 1.2.
For us, the most important corollary of the above discussion is the following.

Corollary 2.1.1. In a finite semigroup, any subsemigroup generated by an element
contains an idempotent.

Definition 2.1.2. Let 0 ∈ S be a semigroup. S is a null or zero semigroup if
and only if S2 = 0.

Definition 2.1.3. Let S be a semigroup. S is a regular semigroup if and only if
for every element a ∈ S there exists at least one element b ∈ S such that a = aba

and b = bab.

An important subclass of regular semigroups is formed by inverse semigroups.
They abstract the notion of partial symmetry analogous to how groups abstract the
notion of symmetry.

Definition 2.1.4. Let S be a semigroup. S is called an inverse semigroup if and
only if for every element m ∈ M there exists a unique element m∗ ∈ S such that
m = mm∗m and m∗ = m∗mm∗.
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A "generic" example of an inverse semigroup is the monoid formed by the partial
bijections of a set. Let X be a set and define

IX := {α : A −→ B : A,B ⊆ X,α is a bijection}

Then it can be proved that the product

α ∗ β := (β ◦ α)
∣∣
α−1(imα∩domβ)

α, β ∈ IX

defines an inverse semigroup on IX . It is called the symmetric inverse semigroup
on X. Furthermore, it can also be proved that every inverse semigroup can be
embedded into a symmetric inverse monoid, in the same way that every group can
be embedded into a symmetric group. The proof of this fact can be found in [CP61],
Theorem 1.20.

Matrix type semigroups and (0-)simple semigroups

Let S be a semigroup, let I,M be two index sets and let P = (pmi)m∈M,i∈I be
a generalized (having finitely many non-zero elements) M × I matrix with entries
from S0. Consider the set of generalized I ×M matrices over S0 with at most one
non-zero entry and their product defined as

A ∗B := APB, with the usual matrix product on the right hand size.

This defines a semigroup called a semigroup of matrix type over S or Rees ma-
trix semigroup over S with sandwich matrix P , and is denoted by MS0(S0, I,M, P ).
Since any non-zero element of MS0(S0, I,M, P ) is uniquely determined by its non-
zero entry and may be identified with (i, s,m) this construction can be treated as
the semigroup on the set I × S0 ×M with the following product:

(i, s,m)(j, t, n) := (i, spmjt, n) i, j ∈ I,m, n ∈M, s, t ∈ S0

identifying elements of the form (i, 0,m) with the zero element of MS0(S0, I,M, P ).
An important modification is the semigroup MS(S0, I,M, P ) with the same prod-
uct but with matrices having exactly one nonzero entry. We will use the notation
MS(S, I,M, P ) when there is no need to distinguish between the cases of having
a zero element or not. Our interest will lie in the case when S is a group, as we
shall see, by the Rees Theorem2.1.10, these semigroups play an important role in
the theory of semigroups. For more results on Rees matrix semigroups, the reader
should consult [Okn90], beginning of chapter 1, where the above construction can
also be found. We continue by investigating some simple semigroups (in the most
literal sense), for which we need to recall some basic definitions.

A proper ideal M of a semigroup S is called maximal if there is no ideal in S

(S-ideals for short) strictly between M and S. Analogously, we can define a minimal

5



ideal of a semigroup. An ideal M is called minimal if and only if M does not contain
any proper S-ideal and called a 0-minimal if and only if M ̸= {0} and M does not
properly contain any ideal of S except {0}.

A semigroup is called simple if and only if the only ideal of S is S itself and
called 0-simple if and only if S2 ̸= 0 and S contains no other ideal than {0} and
itself. As we shall see the purpose of the condition S2 ̸= 0 is only to omit the null
semigroup on two elements. Moreover, this condition also implies S2 = S, since S2

is an ideal of S. The following results can be found in [CP61], chapter 2.5.

Lemma 2.1.5. Let S ̸= 0 be a semigroup with zero having {0} and S as its only
ideals. Then S is either 0-simple or the null semigroup on 2 elements.

Proof. Either S2 = S or S2 = 0. In the former case, S is 0-simple. In the latter case
S is a null semigroup. Since S ̸= 0 there must be a nonzero element a ∈ S, and
{0, a} is an ideal, implying that there cannot be more elements in S.

Next, we derive a practical condition to check 0-simplicity.

Lemma 2.1.6. Let S ̸= 0 be a semigroup with zero. Then S is 0-simple if and only
if SaS = S for every nonzero a ∈ S.

Proof. Assume that S is 0-simple. For every element a ∈ S either SaS = 0 or
SaS = S. Let B ⊆ S be the set of all elements for which SbS = 0. Clearly B is an
ideal of S, hence either B = 0 or B = S. From B = S it would follow that S3 = 0

which contradicts S2 = S, S ̸= 0. Therefore B = 0 and one implication is proved.
For the other direction, choose a non-zero ideal A of S, and pick 0 ̸= a ∈ A. Then
from the assumption S = SaS ⊆ A ⊆ S, proving the other direction.

Theorem 2.1.7. Let M be a 0-minimal ideal of a semigroup S with zero. Then
either M2 = 0 or M is a 0-simple subsemigroup of S.

Proof. If M2 ̸= 0 then, as mentioned earlier, M2 =M . Choose an 0 ̸= a ∈M. Then
S1aS1 is a nonzero ideal contained in M implying that S1aS1 = M . Therefore,
M = M3 = MS1aS1M ⊆ MaM ⊆ M , hence MaM = M and M is 0-simple by
Lemma 2.1.6.

An important subclass of (0-)simple semigroups is formed by completely (0-)
simple semigroups.

Definition 2.1.8. A (0-)simple semigroup S is called completely (0-)simple if
and only if it contains a primitive idempotent, that is, a minimal nonzero idempotent
with respect to the natural partial order on idempotents.
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The structure of such semigroups is well understood. The following results will
be used later in the text, but since their proofs do not align with the main stream of
the thesis, we shall omit them. They can be found in [CP61] as Lemma 3.1, Theorem
3.3, Theorem 3.5 and Theorem 3.9.

Theorem 2.1.9. The Rees matrix semigroup MS(G, I,M, P ) is regular if and only
if each row and each column of P contains a non-zero entry. Furthermore, a Rees-
matrix semigroup is 0-simple if and only if it is regular, and in that case it is com-
pletely 0-simple.

Theorem 2.1.10 (Rees). A semigroup is completely 0-simple if and only if it is
isomorphic to a regular semigroup of matrix type over a group with zero.

Theorem 2.1.11. Let S be a semigroup with zero. Then the following conditions
are equivalent:
1) S is a completely 0-simple inverse semigroup
2) S is isomorphic with a (regular) semigroup of matrix type MS(G, I, I, E) over a
group with zero G0 and E the I × I identity matrix as sandwich matrix.

Congruences, factor semigroups

Let S be a semigroup and let ≡ be an equivalence relation on S. ≡ is called
a congruence if and only if a ≡ b implies uav ≡ ubv for all u, v ∈ S1. Since
every equivalence relation on S is a subset of S × S, there is a natural partial order
between equivalence relations, and consequently between congruences. Let us denote
the set of all congruences on S by Cong(S). Then Cong(S) is closed under taking
intersections and unions over chains.

A partially ordered set (L,≤) is a complete lattice if and only if every subset
A of L admits a greatest lower bound (infimum or meet) and least upper bound
(supremum or join). Defining infA :=

⋂
A∈A

A and supA :=
⋂⋃

A⊆B∈Cong(S)

B

for A ⊆ Cong(S), Cong(S) becomes a complete lattice with the natural partial
order.

The importance of congruences lies in the property that by taking the quotient or
factor modulo a congruence ≡, i.e. the set of equivalence classes, we get a structure
of the same type, i.e. the equivalence classes of a semigroup congruence form a
semigroup with the product:

[s1]≡[s2]≡ := [s1s2]≡

Furthermore, the surjection π : S −→ S/≡ becomes a semigroup homomorphism.
Next, we introduce two important cases of semigroup congruences. The proof that
these examples do indeed give congruences is straightforward.
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First, let S and T be semigroups, and let φ : S −→ T be a homomorphism
between them. Then the equivalence relation a ≡ b⇔ φ(a) = φ(b) defines a congru-
ence on S. We will denote this congruence by ker φ, i.e. a kerφ b⇔ φ(a) = φ(b).

Next, let S be a semigroup and I an ideal in it. The equivalence relation
x I y⇔ x = y or x, y ∈ I defines a congruence on S. The quotient by this congruence
is called the Rees quotient on S by I. This quotient can also be identified with
the following semigroups:

If I = ∅ then S/I ∼= S. If S = I ̸= ∅ then S/I = {I}, the semigroup on one
element. Finally, in case ∅ ≠ I ̸= S let us define a semigroup structure on (S\I)∪{0},
with 0 adjoined externally by:

s ∗ t =

st s, t, st ̸∈ I

0 otherwise

Then, since I is an ideal, the following map is a surjective semigroup homomorphism:

σ : S −→ ((S\I) ∪ {0}, ∗) s 7−→

s if s /∈ I

0 if s ∈ I

for which the congruence ker σ coincides with I, thus S/I ∼= S/ker σ ∼=
((S\I) ∪ {0}, ∗).

The above constructions allow us to state theorems analogous to the isomorphism
theorems for groups. The results are from [CP61] chapter 2.6. As an illustration, we
prove the first theorem; the second theorem can be found as Theorem 2.37.

Theorem 2.1.12. Let J be an ideal and T be a subsemigroup of a semigroup S.
Then J∩T is an ideal of T , J∪T is a subsemigroup of S and (J∪T )/J ∼= T/(J∩T ).

Proof. (J ∪ T )2 = (J2 ∪ JT ∪ TJ) ∪ T 2 ⊆ J ∪ T , thus J ∪ T is a subsemigroup of
S. It is clear that J ∩ T is an ideal in T , and J is an ideal in T ∪ J . Therefore,
the quotients (J ∪ T )/J and T/(J ∩ T ) are well defined. Let us denote their zero
elements as 0 and 0′, respectively. Then

(J ∪ T )/J ∼= ([(J ∪ T )\J ] ∪ {0}, ∗) = (T\J ∪ {0}, ∗)
T/(J ∩ T ) ∼= ([T\(J ∩ T )] ∪ {0′}, ∗) = (T\J ∪ {0′}, ∗)

which are clearly isomorphic.

Theorem 2.1.13. Let J be an ideal of a semigroup S and let π : S −→ S/J be the
natural homomorphism. Then π induces an inclusion-preserving bijection between
the set of ideals of S containing J and the set of ideals of S/J . Furthermore, if A
is an ideal of S containing J , then (S/J)/(A/J) ∼= S/A.
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Corollary 2.1.14. Let J and J ′ be ideals of a semigroup S with J ⊂ J ′. Then J is
a maximal ideal in J ′ if and only if J ′/J is a minimal ideal of S/J . Moreover, from
2.1.7 J ′/J is either a 0-simple semigroup or a null semigroup.

Corollary 2.1.15. Let J be an ideal of a semigroup S. J is a maximal ideal of S
if and only if S/J has no proper nonzero ideals, according to Lemma 2.1.5, if and
only if S/J is either 0-simple or null on two elements.

Principal factors

The results of this section can be found in [CP61] Chapter 2.6. Let S be a semigroup
and s ∈ S an element of it. The ideal S1sS1 is called the principal ideal generated
by s and is denoted by Js; the subset of Js consisting of the elements that do not
generate Js (as an ideal) is denoted by Is. We note that any (0-)minimal ideal is a
principal ideal by the following argument. Let J be a (0-)minimal ideal of S, and
choose a ∈ J . S1aS1 is an ideal in J , therefore, it is (either) J (or {0}.) If there is
an a for which S1aS1 = J , then we are done; otherwise J = S1JS1 = 0, which is a
contradiction.

Proposition 2.1.16. In case Js is a minimal ideal (with respect to inclusion), then
Is = ∅; in any other case, Is is an ideal of S.

Proof. If Is ̸= ∅ then for any a ∈ S and b ∈ Is, S1(ab)S1 = S1a(bS1) ⊆ S1aS1 ̸= Js,
but since Js is an ideal, ab ∈ Js, hence S1(ab)S1 ⊆ Js, which means that ab belongs
to Is. If Js is a minimal ideal, it cannot contain any proper subideals, but in the
case Is ̸= ∅ we just showed that there exists a non-trivial subideal.

Remark 2.1.17. If 0 ̸= S contains a zero element, then the condition Is ̸= ∅ is
automatically fulfilled. It is clear that for any 0-minimal principal ideal Is = 0, the
converse is true by Lemma 2.1.6.

The factor Ss:=Js/Is is called the principal factor at s. We make the conven-
tion that the quotient with the empty set means just the semigroup itself. The set
Js := Js\Is is called the J -class of s. It is the same as the equivalence classes
of the congruence x J y ⇔ S1xS1 = S1yS1. The congruences R and L can be
defined similarly, with elements being equivalent if they generate the same right
and left principal ideals, respectively. The above congruences are known as Green’s
relations (with two additional ones, not mentioned explicitly) and they play a
fundamental role in semigroup theory. We proceed to prove some basic results on
principal factors.

Theorem 2.1.18. Let S be a semigroup. Any principal factor of S is either 0-simple,
simple or null.

9



Proof. Let a ∈ S. The first claim is that Ia is a maximal ideal (of S) in Ja. Suppose
that B is an ideal of S such that Ia ⊂ B ⊆ Ja, and choose an element b ∈ B\Ia.
Then b ∈ Ja\Ia = Ja meaning that Jb = Ja. Since Jb ⊆ B, we get B = Ja. If
Ia = ∅, then by the previous argument, Ja is a minimal ideal of S, hence a simple
semigroup, and the quotient, by convention, is just itself. If Ia ̸= ∅ then by Corollary
2.1.14 Ja/Ia must be 0-simple or a null semigroup.

Definition 2.1.19. Let S be a semigroup. S is called a (completely) semisimple
semigroup if and only if every principal factor of S is (completely) 0-simple or
(completely) simple.

Definition 2.1.20. Let S be a semigroup. A principal series of S is a chain of
ideals of S (and the empty set)

∅ = S0 ⊂ S1 ⊂ · · ·Sr−1 ⊂ Sr = S

such that no ideal of S is strictly between consecutive terms. If we know a priori that
S contains a zero element, then we will omit the empty set and replace it with the
zero ideal.

It is clear that any finite semigroup admits a principal series. Moreover, the
factors of such a series are precisely the J -classes of S in some order.

Proposition 2.1.21. Let S be a semigroup that admits a principal series. Then
the factor semigroups Sk/Sk−1 are isomorphic in some order to the principal factors
of S. Furthermore, each difference Sk\Sk−1 for 1 ≤ k ≤ r is a J -class and every
J -class arises for exactly one choice of k.

Proof. Choose a factor Sk/Sk−1, and let a ∈ Sk\Sk−1. Then Sk−1 ∪ Ja is an ideal
of S between Sk and Sk−1 strictly containing Sk−1. Hence, by the definition of the
series Sk−1 ∪ Ja = Sk. For any b ∈ Ia it must be the case that b ∈ Sk−1, otherwise
we would have Sk−1 ∪ Jb = Sk implying a ∈ Jb which contradicts the choice of b.
Equivalently, we have Ia ⊆ Sk−1. Furthermore, for any c ∈ Ja ∩ Sk−1, since Sk−1 is
an ideal, Jc ⊆ Sk−1, which implies that Ia = Ja ∩ Sk−1. From this and 2.1.12, the
following isomorphisms follow:

Ja/Ia ∼= Ja/(Ja ∩ Sk−1) ∼= (Ja ∪ Sk−1)/Sk−1
∼= Sk/Sk−1

In addition, the following sets are equal:

Ja = Ja\Ia = (Ja ∪ Sk−1)\(Ia ∪ Sk−1) = Sk\Sk−1

Hence, for any a′ ∈ Sk\Sk−1, Ja = Ja′ , implying that the principal factor Ja/Ia is
independent of the choice of a in Sk\Sk−1. On the other hand, for any a ∈ S there
exists a k (1 ≤ k ≤ r) such that a ∈ Sk but a /∈ Sk−1, which implies that the
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correspondence Sk/Sk−1 −→ Ja/Ia is a bijection between the set of the factors of
the principal series and the set of principal factors. (We have the analogous bijection
between the J -classes and the differences).

Corollary 2.1.22. Any two principal series of S have isomorphic factors in some
order.

2.2 Representation theory

Most of the time, we assume that our algebras contain an identity element. Al-
though this assumption could seem too strong in the case of semigroup algebras, as
it turns out, adjoining an identity to the semigroup, thus making its algebra unital,
does not change the property we will be interested in.

Semigroup algebras

The results of this section can be found in [Okn90] chapter 4. For any semigroup
S and field K, we can construct the semigroup algebra KS (or K[S]) in the fol-
lowing way. Consider the |S| dimensional free vector space over K with the elements
of S forming a basis. The multiplication of KS is given by the multiplication of S
for the elements of S, and since these elements form a basis, we can extend the
multiplication linearly to linear combinations. One can easily check that this gives
an associative algebra over K. Additionally, we will identify the elements 1Ks with
their counterparts in the semigroup.

There is an important modification of the above construction. If S contains a
zero element, then we want to identify it with the zero of the vector space. It can
be achieved by factoring out with the two-sided ideal K0S. This new algebra K0S

is called the contracted semigroup algebra of S. Explicitly:

K0S := KS/K0S.

We can identify K0S with the algebra having S\{0} as a basis and the multipli-
cation of basis elements given by

s ∗ t =

st st ̸= 0S

0 st = 0S

In view of this, it is clear that K0[S
0] ∼= K[S0]/K0S ∼= KS.

We proceed to prove some useful isomorphisms for semigroup algebras.
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Proposition 2.2.1. Let S be a semigroup and let I be an ideal of S. Then the
following isomorphism holds

KS/KI ∼= K0(S/I)

Proof. Denote the factor homomorphism between S and S/I by σ. Using this, we
can define the following algebra homomorphism:

π : KS −→ K0(S/I)

Σλixi 7−→ Σλiσ(xi)

It is easy to see that it is indeed an algebra homomorphism. The kernel is precisely
the ideal KI, hence we have the desired isomorphism.

In order to clarify the relation between KS and K0S, we recall the following:

Proposition 2.2.2. If R is a ring with unity, then for any central idempotent e,
the ring can be decomposed as

R ∼= eR⊕ (1− e)R

Proof. If e commutes with every element, then so does (1−e), implying that the two
components are two-sided ideals. Clearly, the summands generate the whole ring,
and the fact that their intersection is zero can be seen from

er1 = (1− e)r2 ⇒ er1 = e(er1) = e(1− e)r2 = 0.

If J is an ideal of an algebra R and J contains an identity e, then for any x ∈ R

we have: ex = e(ex) = e(xe) = (xe)e = xe since xe, ex ∈ J . Hence e is a central
idempotent and R ∼= eR⊕ (1− e)R.

Corollary 2.2.3. Let S be a semigroup and let I be an ideal of S such that KI is
an algebra with identity e. Then

KS ∼= KI ×K0[S/I].

Proof. Let e denote the identity of KI. Since I is an ideal of S, KI is also an ideal of
KS and KI = eKS. From the previous discussion, e must be a central idempotent,
hence KS = KI ⊕ (1− e)KS. With the homomorphism

φ : KS −→ (1− e)KS, φ(x) = (1− e)x

we get that KS/KI ∼= (1− e)KS. Finally, from 2.2.1 KS/KI ∼= K0[S/I].

Corollary 2.2.4. If S has a zero element 0S, then K0S is an ideal of KS with
identity, and it follows that KS = K0S ⊕K(1− 0S) ∼= K ×K0S.
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Proposition 2.2.5. Let K ⊆ L be a field extension and S and T be semigroups.
The following isomorphisms hold:

LS ∼= L⊗K KS and KS ⊗K KT ∼= K[S × T ]

Furthermore if S and T have zero elements 0S, 0T then

L0S ∼= L⊗K K0S and K0S ⊗K K0T ∼= K0[(S × T )/I],

where I = {(s, t) : s = 0S or t = 0T}.

The statement follows from the universal property of the tensor product, using (in
the finite case, a dimension argument), and the structure of the semigroup algebra.

Representations and modules

Definition 2.2.6. Let S be a semigroup, let K be a field, and let V be a K-vector
space. A semigroup homomorphism φ : S −→ EndK(V ) is called a representation
of S over K. We say that dimKV is the degree of the representation.

Two representations φ : S −→ EndK(V ) and ψ : S −→ EndK(W ) are called
equivalent if there exists a K-vector space isomorphism T : V −→ W such that
T−1ψ(s)T = φ(s) for every s ∈ S. By fixing a basis, one can also think of rep-
resentations as maps to Mn(K); then equivalent representations correspond to the
same representations written in different bases. There is an equivalent way to view
representations and their equivalences using modules. We assume familiarity with
the usual definition of a module. We note that a module (over a ring R) can also
be viewed as an abelian group M , with an R-action given on it by a ring homomor-
phism λ : R −→ End+(M). If 1 ∈ R then we assume λ(1) = idM . In some cases,
when we do not have an identity in R, we shall make use of certain idempotents
which will act as so-called local identities, i.e. identities on some subset of M . We
will also write rm for λ(r)m. The kernel of λ is denoted as AnnR(M).

If 1 ∈ A is an algebra over K, then we clearly have the ring homomorphism
K

k1
↪−→ A

λ−→ End+(M) from K to End+(M), hence M also becomes a K-vector
space. Furthermore, with this embedding, K is central in A which implies that
a(km) = (ak)m = (ka)m = k(am) ∀ ∈M,k ∈ K, a ∈ A, therefore we can assume λ
to map into EndK(M).

The following proposition shows the connection between representations, modules
and equivalences of representations. Its proof is straightforward.

Proposition 2.2.7. Let K be a field, let φ : S −→ EndK(V ) be a representation of
a semigroup S, and let ψ : KS −→ End+(V ) define a module over KS. Then:
1) φ uniquely extends to an algebra homomorphism Φ : KS −→ EndK(V ).

2) ψ restricted to S gives a representation of S.
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3) Two representation of S are equivalent if and only if the corresponding KS-
modules are isomorphic.

Example 2.2.8. Let K be a field, and take the semigroup S = (N,+). Then KS

is isomorphic to the polynomial algebra K[x]. The elements 0, 1 ∈ N generate the
semigroup. To define a representation, it is enough to prescribe the image of 1 ∈ N
in EndK(V ), since 0 is the identity element of N, hence its image is equal to the
identity map. Then, from the previous proposition, we get the well-known example
that the modules over K[x] are in bijective correspondence with vector spaces with a
linear transformation given on them. These modules will be denoted by Vα, where V
is a vector space and α ∈ EndK(V ).

Next, we prove some general results on modules. The results of this section are
from [EH18].

Lemma 2.2.9. Let I be an ideal of an algebra A. Then the modules over A/I

are in bijective correspondence with those A modules M for which I ⊆ AnnA(M).
Moreover, if M and N are such modules, then a map φ :M −→ N is an A-module
homomorphism if and only if it is an A/I-module homomorphism.

Proof. Let M be an A-module given by λ : A −→ End+(M) such that I ⊆ ker(λ).
Take two elements a and b of an equivalence class of the factor with I. We need to
show that λ(a) = λ(b). Since the elements are from the same equivalence class we
know that there exists i ∈ I such that a = b+ i, but then since λ is (A-)linear and
its kernel contains I we have λ(a) = λ(b+ i) = λ(b) + 0.

Now let N be an A/I-module given by µ : A/I −→ End+(N). This map com-
posed with the natural factor map π : A −→ A/I gives λ := µ ◦π : A −→ End+(N)

an A-module structure on N , and since π(I) = 0 we also have λ(I) = 0, which
completes the first part of the proof. The proof of the second statement is straight-
forward.

One way to study modules is to decompose them into the direct sum of simpler
modules. In this case, the fundamental building blocks will be the indecomposable
modules. The ’ultimate’ goal is to decompose a module into the direct sum of inde-
composable modules.

Definition 2.2.10. Let R be a ring and let M be a non-zero R-module. M is called
indecomposable if and only if it cannot be written as M =M1 ⊕M2 for non-zero
submodules M1 and M2 of M .

We note that in the case of modules over an algebra, finding a direct sum de-
composition is equivalent to finding a direct sum decomposition as a vector space,
in which the summands are invariant under the action of the algebra. Similarly, we
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can define the indecomposability of representations as a direct sum decomposition
of the underlying vector spaces into invariant summands of the representation of the
semigroup.

Direct sum decompositions are strongly tied to idempotents inEndR(M). Namely,
if M = M1 ⊕M2 then the projections e1 : M −→ M1 and e2 : M −→ M2 are non-
zero idempotents in EndR(M), such that idM = e1 + e2 and e1e2 = e2e1 = 0. (Note
that if the latter equalities are satisfied, then the idempotents are called orthog-
onal.) This works the other way around as well, if we have non-zero idempotents
e1, e2 ∈ EndM(R) such that idM = e1 + e2 and e1e2 = e2e1 = 0, then by setting
M1 := Im(e1) and M2 := Im(e2) we obtain a direct sum decomposition of M .
Of course, the same logic carries over to decomposition with more than two con-
stituents, in the case a decomposition to non-zero submodules M =M1⊕ . . .⊕Mk is
equivalent to the existence of a system of orthogonal non-zero idempotents such that
idM = e1+ . . .+ek. We call such a system a complete set of orthogonal idempotents.
This argument, with the remark that if e is idempotent then e and (idM − e) are
orthogonal idempotents, gives an equivalent characterisation of indecomposability:

Lemma 2.2.11. Let R be a ring and let M be a non-zero R-module. M is indecom-
posable if and only if the only idempotents in EndR(M) are 0 and idM .

Next, we show an application of this lemma, which will be useful later on.

Lemma 2.2.12. Let A := K[x]/(f), where f ∈ K[x] is a non-constant polynomial,
and let Vα be a finite-dimensional cyclic A-module (generated by one element) such
that the minimal polynomial of Vα is equal to gt for some irreducible g ∈ K[x]. Then
Vα is an indecomposable A-module.

Proof. The map T : Vα −→ Vα, v 7→ α(v) is an A-module homomorphism (K-
linear and commutes with α, the action of x) that also has minimal polynomial gt.
Let ϕ : Vα −→ Vα be an arbitrary A-module homomorphism. Let us denote the
generator of the module as w. Since the module is finite-dimensional there exists
an m ∈ N such that w, T (w), . . . , Tm(w) form a K-basis of Vα, hence the image of
w can be expressed as ϕ(w) =

∑
i aiT

i(w) for some ai ∈ K. Moreover any v ∈ Vα

can be uniquely written in the form v =
∑

j cjT
j(w) for cj ∈ K, and since ϕ is an

A-module homomorphism it commutes with T , thus with T j as well; implying that
the following equation holds:

ϕ(v) = ϕ(
∑

j cjT
j(w)) =

∑
j cjT

j(ϕ(w)) =
∑

j cjT
j(
∑

i aiT
i(w)) =∑

j

∑
i cjaiT

i+j(w) =
∑

i aiT
i(
∑

j cjT
j(w)) =

∑
i aiT

i(v)

Therefore ϕ =
∑

i aiT
i =: h(T ) is a polynomial in T . Now suppose that ϕ2 = ϕ.

Equivalently, h(T )(id − h(T )) = 0 in the endomorphism ring. Since the minimal
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polynomial of T is gt, it must divide h(h−1), moreover,K[x] is a unique factorisation
domain, g is irreducible and h and h − 1 are coprime, implying that either gt|h or
gt|h− 1. In the first case, h must be the zero map, and in the second case, h must
be the identity of Vα; thus, by the previous lemma, Vα is indecomposable.

Corollary 2.2.13. If α has Jordan matrix Jn(λ) (with the 1-s on the subdiagonal)
with respect to some basis, then Vα is indecomposable.

Proof. The minimal polynomial of Jn(α) is (x − λ)n, hence A = K[x]/((x − λ)n).
Let us denote the basis from the proposition as w1, . . . , wn. Then we have α(wi) =

λwi + wi+1 for 1 ≤ i ≤ n − 1 and α(wn) = λwn, implying that Aw1 contains
w1, . . . , wn, and therefore Vα is a cyclic A-module generated by w1. Since (x− λ) is
irreducible, the indecomposability of Vα follows from the previous lemma.

It is well known from linear algebra that (over an algebraically closed field) every
matrix is similar to a block matrix with Jordan blocks corresponding to eigenvalues.
Another way to interpret this result is that every module over the polynomial alge-
bra of the field can be written as the direct sum of modules whose defining linear
transformations are given by Jordan blocks Jni

(λi) for some ni ∈ N and λi ∈ K. We
have seen that these modules are indecomposable, hence, we obtained a direct sum
decomposition of every module into indecomposable ones. Such a decomposition can
be acquired for any algebra, but perhaps with ’wilder’ indecomposables. (But more
on that in the next chapter...) Let us continue with two theorems formalising this
idea.

Theorem 2.2.14. Let K be a field, let A be a K-algebra and let M be a non-zero
finite-dimensional A-module. Then M can be written as the direct sum of finitely
many indecomposable A-modules.

Proof. We use induction on dimKM . If dimKM = 1, then M is a simple A-module,
hence indecomposable. Now suppose that the theorem holds up to dimension k − 1

and let M be an A-module with dimKM = k. If M is indecomposable, then we
are done; if not, then there exist submodules U, V , with strictly smaller dimensions,
such that M = U ⊕ V , for which the induction hypothesis is true, and the proof is
complete.

Moreover, this decomposition is unique in the following way. (We shall omit the
proof of the theorem, but it can be found in [EH18] as Theorem 7.18.)

Theorem 2.2.15 (Krull-Schmidt). Let K be a field, let A be a K-algebra and let
M be a non-zero finite-dimensional A-module. Suppose that M has two direct sum
decompositions to indecomposable A-submodules
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M = U1 ⊕ . . .⊕ Uk and M = V1 ⊕ . . .⊕ Vl

then k = l and there exists a permutation σ such that Ui
∼= Vσ(i) for all i = 1, . . . , r.

Representation type

We have reached the main topic of the thesis. The results of this section are from
[EH18], except tame and wild algebras, and the last four theorems. In the previous
section, we have seen that modules over an algebra can be built up, essentially
uniquely, from indecomposables. Next, the natural question to consider is if there
is some way to systematically classify these indecomposables. We distinguish three
different types of rings based on the number and structure of isomorphism classes
of indecomposable modules. The simplest one, the type we will discuss in depth for
group and semigroup algebras, is the following.

Definition 2.2.16. Let R be a ring. R is of finite representation type if and only
if there is a finite number of isomorphism classes of indecomposable R-modules.

Example 2.2.17. Let R be a semisimple ring. Then R has finite representation
type.

Proof. The proof uses well-known results on semisimple rings, which can be found,
for example, in [EH18]. Take the direct sum decomposition of RR into (finitely many)
simple modules: RR

∼= S1 ⊕ . . . ⊕ Sk. Every module is semisimple over R, hence it
is enough to show that every simple module is isomorphic to one of the Si-s. Any
simple module is a quotient of RR, hence it is also a direct summand of RR. Then the
Krull-Schmidt Theorem (which stays true for modules of finite composition length)
implies that any simple module is isomorphic to one of the Si-s.

Otherwise, we say that the ring has infinite representation type. The class of
infinite representation type rings can be further divided into tame and wild rings.
Since their precise definition is technical, we shall only include the general ideas
behind them (in the case of algebras). The definition of tame algebras is inspired by
how the indecomposable modules over the polynomial algebra correspond to Jordan
blocks, which can be parameterised by size and eigenvalue. From the module cate-
gories of tame algebras, we require a similar property, that indecomposable modules
in every dimension can be ’parameterised’ by a finite number of ’one-parameter’
families (possibly missing finitely many indecomposable modules). Wild algebras
are defined by the property that their module categories contain a copy of the
module category of the free algebra on two generators K⟨x, y⟩. In the latter, the
module category of any algebra can be embedded, which roughly means that if we
could understand the module category of a wild algebra, we could understand the
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module category of any algebra. (Which seems to be a hopeless task.) It is a fa-
mous dichotomy theorem due to Drozd that every finite-dimensional algebra, over
an algebraically closed field, is either representation tame or representation wild. A
reference to the theorem and the topic can be found in [SS07]. Let us continue with
an example of a ’small’ algebra with infinite representation type.

Lemma 2.2.18. Let K be a field and let

A := K[x, y]/(x2, y2, xy)

be the 3-dimensional commutative K-algebra. Then A has infinite representation
type.

Proof. Any A-module V is determined by two K-linear maps αX : V −→ V and
αY : V −→ V satisfying the equations:

α2
X = 0, α2

Y = 0, αXαY = αY αX = 0

Define the 2n-dimensional A-modules Vn specified by block matrices

αX :=

[
0 0

In 0

]
, αY :=

[
0 0

Jn 0

]
where In and Jn stand for the n-dimensional identity and n-dimensional Jordan
block Jn(0), respectively. (It is easy to verify that these matrices satisfy the above
equations, thus define A-modules.) It is only left to show that for every n ∈ N+

these modules are indecomposable since their dimensions differ, hence they are
non-equivalent. By Lemma 2.2.11, it suffices to show that the only idempotents
in EndA(Vn) are the zero and identity maps. Let φ ∈ EndA(Vn), in particular it is
also a K-linear map, hence we can write in block matrix form

φ =

[
A1 A2

A3 A4

]
with n × n block sizes (in the basis of the defining matrices of the module). φ is
an A-module homomorphism iff it commutes with the matrices αX and αY . From
the former we get that A2 = 0 and A1 = A4, and from the latter we know that
JnA1 = A4Jn = A1Jn. In conclusion

φ =

[
A1 0

A3 A1

]
, where A1 commutes with the Jordan matrix Jn.

Suppose that φ2 = φ, in particular A2
1 = A1. Let A := K[x]/(f) be the algebra with

f(x) = (x− 1)n and let Vα be an A-module with the action of x given by Jn. Since
A1 commutes with the Jordan matrix, it defines an A-module endomorphism of Vα.
Moreover, A2

1 = A1, hence by 2.2.11 and 2.2.13 A1 is either the zero or the identity
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matrix. Either way, from φ2 = φ it follows that A3 = 0, and hence φ is either zero
or the identity. This means that Vn is indecomposable for every n ∈ N.

Next, we collect some properties of representation finite algebras.

Proposition 2.2.19. Let K be a field, KA an algebra and I ̸= A a two sided ideal of
A. If the factor algebra A/I has infinite representation type, then A also has infinite
representation type.

Proof. Let M be an A-module such that IM = 0. By lemma 2.2.9 M can also
be seen as an A/I-module with the action given by (a + I)m = am. From this
it follows that for any such module the A and A/I-submodules are the same, and
such modules are indecomposable over A and A/I at the same time. Moreover, from
the second part of Lemma 2.2.9 it follows that such modules are isomorphic over
A if and only if they are isomorphic over A/I. All together, this implies that the
infinitely many non-isomorphic indecomposable A/I-modules give rise to infinitely
many non-isomorphic indecomposable A-modules.

Corollary 2.2.20. Consider the algebra A := K[x, y]/(xr, yr), (r ≥ 2), and take I
the ideal generated by the cosets of x2, y2 and xy. Then A/I ∼= K[x, y]/(x2, y2, xy),
which has infinite representation type by 2.2.18, hence A also has infinite represen-
tation type.

Proposition 2.2.21. Let A1, . . . , An be K-algebras with identity elements ei respec-
tively. Then A := A1 × . . .× An has finite representation type if and only if Ai has
finite representation type for every 1 ≤ i ≤ n.

Proof. Let M be a non-zero A-module. Then by setting εi := (0, . . . , 0, ei, 0, . . . , 0)

(1 ≤ i ≤ n), the εiM -s become submodules, and we have the decomposition
M = ε1M ⊕ . . . ⊕ εnM . Suppose that M is an indecomposable A-module. Then
there exists a k, (1 ≤ k ≤ n) such that M = εkM and for every i ̸= k : εiM = 0.

In this case εkM is also an indecomposable A-module, furthermore let I :=

(ε1, . . . , εk−1, εk+1, . . . , εn) then Ak
∼= A/I and IεkM = 0, hence ekM can also be

viewed as an Ak-module. Using the argument in the previous lemma, we know that
εKM is simultaneously indecomposable over A and Ak, hence it is indecomposable
as an Ak module as well. Furthermore, as above, such modules are isomorphic over A
and Ak at the same time. By the proposition, there are finitely many indecomposable
Ak modules up to isomorphism for every k, and there are finitely many options for
k; hence A has finite representation type.

Every Ai in the direct sum is a factor algebra of A by the canonical projection,
as above. If any Ai had infinite representation type, then so would A; thus, if A has
finite representation type, then every Ai also has finite representation type.
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Proposition 2.2.22. Let K be a field and let 1 ∈ A be a finite-dimensional K-
algebra. If A has finite representation type, then A has finitely many ideals.

Proof. Take an arbitrary ideal I of A. Take a decomposition of A/I over A to inde-
composable A-modules Mi (1 ≤ i ≤ k): AA/I =

⊕k
i=1Mi. Similar to the previous

propositions, this decomposition is also valid over A/I: A/IA/I =
⊕k

i=1Mi. Since
A/I has an identity element AnnA/I(A/I) = 0 which implies that AnnA(A/I) = I.

Furthermore, the former annihilator can also be written as I = AnnA(A/I) =⋂k
i=1AnnA(Mi), hence every ideal can be written as the intersection of annihilators

of indecomposable modules. Since there is only a finite number of such modules
(up to isomorphism), there can only be a finite number of ideals. (Annihilators of
isomorphic modules coincide.)

Let us list some additional results about finite representation type. For example,
it is a famous result that every finite-dimensional algebra of finite representation
type admits a multiplicative basis, meaning that there exists a (K-)basis of the
algebra such that the product of any two elements from the basis is either a basis
element or 0. This theorem is due to R. Bautista, P. Gabriel, A. V. Roiter and
L. Salmerón [Bau+85]. Another way to interpret this result is that every finite-
dimensional algebra of finite representation type can be considered as a semigroup
algebra. It is also worth noting that, in some special cases, it is not a hopeless task to
classify algebras of finite representation type. Gabriel acquired a classification in the
case of quiver algebras, which play a decisive role for algebras over an algebraically
closed field. A proof can be found, for example, in [EH18].
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3.0 Semigroup algebras of finite repre-
sentation type

Although the representation type of semigroup algebras is in general less under-
stood than their group algebra counterpart, in the case of a few important classes
a definitive answer has been acquired. A recurring theme is the connection between
the representation type of a semigroup algebra and the representation types of its
maximal subgroups. In this chapter, equivalent (internal) conditions will be given in
the case of commutative and inverse semigroups for their algebras to have finite rep-
resentation type. For more results on other types of semigroups, the reader should
consult [Pon93].

If the field used is clear from the context, we will sometimes refer to the represen-
tation type of the semigroup algebra as the representation type of the semigroup.
Our first observation is that we only have to deal with finite semigroups. If the semi-
group algebra KS has finite representation type, then Lemma 2.2.22 tells us that
KS must have finitely many ideals. In particular, KS has to be Artinian. But then,
according to Zelmanov’s Theorem [Zel77], if a semigroup algebra KS is Artinian,
then S must be finite.

Furthermore, as a corollary of 2.2.4 and 2.2.21 KS and K0S are of finite repre-
sentation type at the same time, so when it is more convenient, we can switch to
the contracted semigroup algebra without changing the representation type.

Another assumption we can make without changing the representation type is
that the semigroup contains a zero or an identity element. If S does not contain
a zero element, then, as we have mentioned at the beginning of the section on
semigroup algebras, K0[S

0] ∼= KS, and the contracted semigroup algebra has the
same representation type as its original semigroup algebra. Similarly, in the case
when S does not contain an identity element, then from every KS-module λ :

KS −→ EndK(V ) we obtain a K[S1]-module by defining the image of 1 ∈ S1 as idV .
By switching to matrix representations of S (which is essentially the same), it can
easily be seen that such pairs of representations are equivalent and indecomposable
at the same time since the identity map is invariant under conjugation (basis-change
transformations) and is compatible with any block matrix decomposition. It turns
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out that essentially we have covered every K[S1]-module. We have not dealt with the
case when the image of the identity of S1 is mapped to a non-identity idempotent e ∈
EndK(V ). In this case, we have the vector space decomposition V = eV ⊕(idv−e)V .
Clearly for any s ∈ S1 s(idV − e)V = 0, and if for some s ∈ S; v, w ∈ V we have
sev = (idV − e)w, then esv = sev = (idV − e)w ∈ eV ∩ (idV − e)V = 0. Where
the second equality holds since e is the image of the identity of K[S1], hence it
commutes with the image of any element of the algebra. Thus, eV and (idV − e)V

are K[S1]-invariant subspaces, hence the decomposition is also valid for V viewed
as a K[S1]-module. Moreover, (idV − e)V further decomposes into K[S1]-modules
on which the action of the algebra is zero (every element is mapped to zero). Since
the action is zero, any decomposition as an Abelian group is valid as a module
decomposition, with the restriction that (idV −e)V is also a vector space. Therefore,
the isomorphism types of indecomposables in this decomposition come from Zp or Q
(as an abelian group), depending on the characteristic of K. Therefore, we obtained
a direct sum decomposition into a module, for which 1 ∈ S acts as an identity, and
a number of copies of either Zp or Q. Then it is clear that KS and K[S1] are of
finite representation type at the same time.

Now we understand what happens when we interfere with the semigroup, but
what about the base field? As it is mentioned in [Pon93], the semigroup algebra
of a semigroup S over a field K is of finite representation type if and only if the
semigroup algebra of S over a field L is of finite representation type, where K ⊆ L

is a field extension of finite degree or it is the algebraic closure of K. We close the
introduction of the chapter with an argument that unifies some previous results.

Lemma 3.0.1. Suppose I is an ideal in a semigroup S. If S/I, the factor semigroup,
has infinitely many non-equivalent r,epresentations then so does S.

Proof. The assumption of the proposition is equivalent to K[S/I] having infinite
representation type. As we have mentioned at the beginning of the chapter this is
further equivalent to K0[S/I] having infinite representation type. According to 2.2.1
K0[S/I] is isomorphic to KS/KI, hence KS has a factor algebra with infinite repre-
sents,tion type. Finally from proposition ?? this implies the infinite representation
type of S.

3.1 Group algebras

In the case of group algebras, there are two main theorems characterising finite
representation type. The problem can be separated into two cases: First, if we con-
sider group algebras over a field whose characteristic does not divide the order of the
group, the key is Maschke’s theorem, which tells us that these algebras are semisim-
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ple; therefore, by Proposition 2.2.17 are of finite representation type. In the second
case, we have to deal with so-called modular representations, meaning that p, the
characteristic of the field, divides the order of the group. As we shall see, the answer
will solely depend on the p-Sylow subgroup(s) of the group, by Higman’s theorem.
In the following we shall present the necessary tools to deal with the modular case,
then at the end of the chapter we state the two branches in one theorem, giving a
definitive answer for a group algebra to be of finite representation type. The results
on group algebras are from [EH18] Chapter 8.2.

p-groups

To understand general modular representations we will first investigate the sim-
plest case, when the order of the group is a prime power. As we will see, the group
algebra will be of finite representation type only for the cyclic p-groups. Every other
group will have a ’bad’ factor with infinite representation type, therefore being of
infinite representation type itself. Let us begin with a definition.

Definition 3.1.1. Let G be a finite group and let p be a prime number. G is called
a p-group if and only if G = pa for some a ∈ N.

An important example of a p-group are the p-Sylow subgroups of a general finite
group.

Definition 3.1.2. Let p be a prime and let H be a subgroup of a finite group G

with |G| = pαm, where p ∤ m. H is called a p-Sylow subgroup of G if and only if
|H| = pα.

It is well known that such a subgroup exist and all such subgroups are isomorphic,
therefore sometimes we will only refer to them as the p-Sylow subgroup of G without
further distinction between them. Next, we prove some isomorphism, which will show
the representation types of the modular group algebras of Cpa and Cp × Cp.

Proposition 3.1.3. Let p > 0 be a prime, Cpa be the cyclic group of order pa,
where a ∈ N+, and K be a field. Then for the group algebra we have the following
isomorphism: KG ∼= K[x1]/((x

pa

1 − 1)). Furthermore if charK = p, then KG ∼=
K[x]/(xp

a
)

Proof. Let g ∈ G be a generator of the group. Define the surjective evaluation
algebra homomorphism:

ϕ : K[x1] −→ KG∑
aix

i
1 7−→

∑
aig

i
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We have (xp
a

1 − 1) ⊆ kerϕ because gpa is the unit of G, and therefore of KG. Since
K[x1]/kerϕ ∼= KG, we know that the left hand side is at most pa dimensional and
we get that kerϕ = (xp

a

1 − 1) and the proposed isomorphism. In the modular case,
by the binomial theorem xp

a

1 − 1 = (x1 − 1)p
a , and with substituting x = x1 − 1 we

get the proposed isomorphism.

Proposition 3.1.4. If K is a field then the algebra K[x]/(xn) has finite represen-
tation type.

Proof. A module over the polynomial ring is equivalent to a vector space with the
action of x given on it by a linear transformation. This is also true for any factor
algebra K[x] with the action satysfing the polynomial. Then the action of x is
nilpotent implying that there exists a basis such that the matrix of x is the direct
sum of Jordan blocks. For any indecomposable module there can be only one block
in their matrix form, i.e. the matrix describing the action of x is similar to Jn(0).

Corollary 3.1.5. The two propositions imply that in characteristic p > 0 the algebra
of any cyclic p-group is of finite representation type.

Proposition 3.1.6. Let p > 0 be a prime, Cp × Cp be the direct product of two
cyclic groups of order p. Then we have the following isomorphism:

K[Cp × Cp] ∼= K[x1, x2]/(x
p
1 − 1, xp2 − 1)

Futhermore if charK = p, then: K[Cp × Cp] ∼= K[x, y]/(xp, yp)

Proof. Choose generators a and b in the two copies of Cp. By defining the following
map on a basis of K[x1, x2] and extending it linearly we get a surjective algebra
homomorphism to K[Cp × Cp]

x1 7−→ (g1, 1), x2 7−→ (g2, b).

Since in the cyclic group gpi = 1 the ideal (xp1 − 1, xp2 − 1) is part of the kernel of the
map. Furthermore K[Cp × Cp] is p2 dimensional, and the elements xi1x

j
2 (0 ≤ i, j ≤

p− 1) form a basis in K[x]/(xp1− 1, xp2− 1), hence from the homomorphism theorem
the two algebras are isomorphic.
The second isomorphism follows from the binomial formula in characteristic p and
by substituting x1 − 1 for x and x2 − 1 for y. This substitution yields a well defined
isomorphism.

Corollary 3.1.7. By Corollary 2.2.20 K[x, y]/(xp, yp) is of infinite representation
type, and therefore K[Cp × Cp] as well.

Lemma 3.1.8. Let p be a prime and let G be a p-group. If G is not cyclic, then it
has a factor group isomorphic to Cp × Cp.
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Proof. If G is abelian, then by the fundamental theorem of finite abelian groups the
desired quotient follows. Now we proceed with the case when G is non-abelian. It is
well known that conjugacy classes partition the group, hence we have the conjugacy
class equation

|G| = |Z(G)|+
∑

Gxconj.c.
|Gx|≥2

|Gx|

where Z(G) is the center of the group (equivalently the set of elements with con-
jugacy classes of one element). It is also known that class sizes divide the order of
the group; therefore, in the case of p-groups the size of any class with at least two
elements must be divisible by p. Since G is not abelian Z(G) ̸= G, hence there exists
an element with conjugacy class of at least size two. Then from the equation above,
by divisibility, it follows that |Z(G)| must be divisible by p.
Z(G) is always a normal subgroup (union of conjugacy classes and subgroup), and

from the above the factor G/Z(G) is a p-group with strictly less elements. Indirectly
suppose that the factor is cyclic. This would mean that the factor is generated by the
coset xZ(G) for some x /∈ Z(G). Therefore every element would belong to a coset
xrZ(G) for some r. Then for any g1, g1 ∈ G : g1 = xr1z1 and g2 = xr2z2 for some
r1, r2 ∈ N and z1, z2 ∈ Z(G). But this would imply that every element commutes,
which is a contradiction.

From here we can proceed by induction on n ≥ 2, the power of p. (For n = 0, 1 the
groups are cyclic.) If n = 2 then G must be commutative, otherwise the center would
have p elements, by Lagrange’s theorem, hence the factor would be cyclic. In this case
from the classification of finite abelian groups G must be Cp×Cp itself, therefore the
claim follows with N = {1}. If n > 2 then the factor G/Z(G) is a non-cyclic p-group
with fewer elements, hence by the induction hypotesis and the bijection between
appropriate normal subgroups, there exists a normal subgroup Z(G) ⊆ N � G

such that (G/Z(G)/(N/Z(G)) ∼= Cp × Cp. From the second isomorphism theorem
(G/Z(G)/(N/Z(G)) ∼= G/N and the lemma follows.

Theorem 3.1.9. Let p be a prime and G be a p-group. Furthermore, let K be a
field with char(K) = p. Then KG is of finite representation type if and only if G is
cyclic.

Proof. We have already seen in corollary 3.1.5 that for cyclic p-groups KG has
finite representation type. For the other direction we define the surjective algebra
homomorphism ϕ : KG −→ K(G/N) defined on the basis formed by the elements
of G as ϕ(g1) = g1N and extending it linearly. It is clear that this map is surjective
and since (g1g2)N = (g1N)(g2N) it is an algebra homomorphism. But K(G/N) ∼=
K(Cp × Cp) which has infinite representation type by corollary 3.1.7. Finally from
2.2.19 it follows that KG also has infinite representation type.
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Connection between representations of subgroups and the entire group

To determine the representation type of a modular group algebra, we require
new tools to relate the modules over the algebra of a subgroup and the entire group
algebra. Let us denote the group by G, a subgroup of G by H, and let K be a field.
One direction is easy to see:

Let M be a module over KG. If we restrict the set of scalars to the subalgebra
KH, we get a KH module. We are going to denote this KH-module as ResKHM .
(We will only write ResM when it is clear which subgroup we are referring to.)

In the other direction, we need a bit more complicated construction. Take an
arbitrary KH module W . Since both KG and W are vector spaces over K we can
take their tensor products over K. This becomes a KG module by defining

x · (g ⊗K w) := (xg)⊗K w for x, g ∈ G, w ∈ W and extending it linearly.

Consider the K-subspace

H = spanK{gh⊗ w − g ⊗ hw : g ∈ G, h ∈ H,w ∈ W}

Moreover, it is a KG-submodule of KG⊗K W . The factor module

KG⊗H W := (KG⊗K W )/H

is called the KG-module induced from the KH-module W . The action of KG
on the induced module is the same as above, but additionally, by the choice of H ,
we take into account the action of KH on the original module, namely,

gh⊗H w = g ⊗H hw for all g ∈ G, h ∈ H,w ∈ W

where, for clarity, g⊗Hw denotes the coset g⊗Kw+H . It can be proven that the map
ι : W −→ KG⊗HW , w 7→ 1⊗Hw is an injective KH-module homomorphism, hence
if we identify W with its image ι(W ) the KG-action on the induced module extends
the KH-action on W . An explicit basis can also be constructed for the induced
module. Let T be a set of representatives of left H-cosets, that is, G =

⋃
t∈T tH.

without loss of generality we can assume that 1 ∈ T . Let W be a finite-dimensional
KH-module with K-basis {w1, . . . wn}. Then a K-basis of KH ⊗H W is given by

{t⊗H wi : t ∈ T, i = 1, . . . n}

The proof of this fact can be found in the appendix of [EH18].

Lemma 3.1.10. Let K be field, G a finite group and H a subgroup of G. Then we
have the following three properties of the restriction and induction operations:
1) If KGM and KGN are finite-dimensional KG modules then

Res(M
⊕

N) = ResM
⊕

ResN
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2) If W is a finite-dimensional KH-module then W is isomorphic to a direct sum-
mand of Res(KG⊗H W )

3) If M is a finite-dimensional KG-module then via the map

µ : KG⊗H ResM −→M , g ⊗H m 7−→ gm

(extended linearly) it is a factor module of KG⊗H ResM .

Proof. 1) Straightforward.
2) As we have seen KG ⊗H W has a K-basis {t ⊗H wi : t ∈ T, i = 1, . . . n} where
1 ∈ T is a system of representatives of left H-cosets and {w1, . . . wn} is a K-basis of
W . In addition let Wt := span{t ⊗H wi : i = 1, . . . n}. For any element h ∈ H and
t ∈ T ht ∈ G belongs to exactly one left H-coset, i.e. there exist unique elements
s ∈ G, h ∈ H such that ht = sh. The action of KG is defined with multiplication
from the left on the first part of the tensors, so the action of the restriction to KH
acts the same way, thus from the previous argument

h(t⊗H wi) = ht⊗H wi = sh⊗H wi = s⊗H hwi

From this it is clear that W1 is a KH-submodule of Res(KG ⊗H W ). Moreover
for any h ∈ H\{1} and t ∈ T\{1} we must have s ̸= 1 (the s from the previous
argument), otherwise we would have ht = 1h = h, thus t ∈ H, a contradiction.
This shows that (

∑
t∈T\{1}Wt) is also a submodule of Res(KG⊗H W ). Since these

submodules are spanned by elements of a basis of KG ⊗H W this gives us the
decomposition

Res(KG⊗H W ) = W1

⊕
(
∑

t∈T\{1}Wt)

By extending linearly the map defined on a basis of W

φ : W −→ W1, wi 7−→ 1⊗H wi

we obtain an isomorphism of KH-modules.
3) Let {mi : i = 1, . . . n} be a K-basis of M , and by definition, {gj : gj ∈ G} is a
K-basis of KG. First we want to prove that the map

µ : KG⊗K ResM −→M , gj ⊗H mi 7−→ gjmi (extended linearly)

is a KG-module homomorphism. Since the map is defined on a basis of the tensor
product it extends uniquely to a K-linear map, furthermore

µ(g(f ⊗K m)) = µ(gf ⊗K m) = gfm = gµ(f ⊗K m)

giving us that µ is a KG-module homomorphism. It is clear that the map is surjec-
tive. In order to show that µ is also a homomorphism from the factorKG⊗HResM =

(KG ⊗K ResM)/H we need to show that µ(H ) = 0. Using the definition of H

(above)
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µ(gh⊗K w − g ⊗K hw) = ghw − ghw = 0.

proving the last point of the lemma.

Next, a small lemma before an important theorem. The poof can be found in
[EH18], Lemma 2.30.

Lemma 3.1.11. Let K be a field, let A be a K-algebra, and let M,N,N
′ be non-

zero A-modules. Suppose that j : N −→ M and π : M −→ N
′ are A-module

homomorphism, such that π ◦ j : N −→ N
′ is an isomorphism. Then j is injective,

π is surjective and M = im(j)⊕ ker(π)

Theorem 3.1.12. Let K be a field and let H be a subgroup of a finite group G.
Then the following hold:
1) If KG has finite representation type then KH also has finite representation type.
2) Suppose further that the index |G : H| is invertible in K then the following holds:
i) Every finite-dimensional KG-module M is isomorphic to a a direct summand of
the induced module KG⊗H ResM .
ii) If KH has finite representation type then KG has finite representation type too.

Remark 3.1.13. The condition of invertibility cannot be ommited for statement ii).
Take a field K with char(K) = p > 0 and consider Cp as a subgroup of Cp ×Cp. As
it was proved above, in spite of the former having finite representation type over K
the latter has infinite representation type over K.

Proof. 1) Let M1, . . . ,Mr be representatives of the isomorphism classes of finite-
dimensional indecomposable modules over KG. Their restrictions can be written as
direct sums of a finite number of finite-dimensional indecomposable KH-modules;
putting them together we obtain a list of finitely many finite-dimensional indecom-
posable KH-modules. We want to show that every finite-dimensional indecompos-
able KH-module is on this list up to isomorphism.

Let W be a finite-dimensional indecomposable KH-module, then KG ⊗H W is
a KG-module, hence

KG⊗H W ∼=
⊕t

i=1M
W
i where each MW

i is from the set {M1, . . . ,Mr}.

From the first part of the previous lemma the restriction of direct sums is the direct
sum of restrictions, hence

Res(KG⊗H W ) ∼=
⊕t

i=1Res(M
W
i )

which further decomposes to the direct sum of indecomposable KH-modules from
the above list. From the second part of the previous lemmaW is a direct summand of
Res(KG⊗HW ), and since W is indecomposable, the Krull-Schmidt Theorem 2.2.15
implies that there exists a KH-module from the list such that W is isomorphic to
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it.
2) Let 1 ∈ T = {g1, g2 . . . , gr} be a system of representatives of left H-cosets in G,
as in the previous lemma.
i) First consider the map

σ :M −→ KG⊗H Res(M), m 7−→
∑r

i=1 gi ⊗H g−1
i m

From the K-bilinearity of the tensor product it follows that σ is K-linear. Next,
we show that σ does not depend on the coset representatives chosen, which will be
used deduce that σ is a KG-module homomorphism. Take T , defined above, then
every system of representatives ofH-cosets has the form g1h1, g2h2, . . . , grhr for some
h1, . . . , hr ∈ H. With this new system the image of an m ∈M reads as∑r

i=1 gihi ⊗H h−1
i g−1

i m =
∑r

i=1 gihih
−1
i ⊗H g−1

i m =
∑r

i=1 gi ⊗H g−1
i m

by using the definition of the induced module. For any g ∈ G

σ(gm) =
∑r

i=1 gi ⊗H g−1
i gm =

∑r
i=1 gi ⊗H (g−1gi)

−1m = ∗

We obtain a new set of representatives by setting gi := g−1gi. Since it does not
matter which representatives we choose the equation continues the following way

∗ =
∑r

i=1 gi ⊗H (g−1gi)
−1m =

∑r
i=1 ggi ⊗H g−1

i m = g(
∑r

i=1 gi ⊗H g−1
i m) = gσ(m)

concluding that σ is a KG-module homomorphism.
Take the map µ : KG ⊗H Res(M) −→ M defined in the previous lemma. The

composition µ ◦ σ :M −→M looks the following way for all m ∈M :

(µ ◦ σ)(m) = µ(
∑r

i=1 gi ⊗H g−1
i m) =

∑r
i=1 gig

−1
i m = |G : H|m

Now by the invertibility of the index of H we can set κ := 1
|G:H|σ, which gives µ◦κ =

idM , thus the previous Lemma implies that KG ⊗H Res(M) ∼= im(κ)
⊕

ker(µ).

In addition κ must be injective, since µ ◦ κ = idM , therefore KG ⊗H Res(M) ∼=
M

⊕
ker(µ), and i) is proved.

ii) Let W1, . . .Wr be representatives of the finitely many isomorphism classes of
finite-dimensional indecomposable KH-modules. The KG-modules KG⊗H Ws de-
compose into finitely many finite dimensional indecomposables overKG. Alltogether
we obtain finitely many indecomposable KG-modules from this process. It is enough
to show that every finite-dimensional indecomposable KG-module is isomorphic to
a direct summand of KG⊗H Ws for some 1 ≤ s ≤ r, since then it will also be iso-
morphic to an indecomposable direct summand of which, up to isomorphism, there
are only finitely many. Let M be a finite-dimensional indecomposable KG-modules.
Then the restriction of M to a KH-module can be written as

Res(M) ∼= W⊕a1
1 ⊕ . . .⊕W⊕ar

r
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Distributivity of tensor products over direct sums stay true for ⊗H as well. Let V
and W be two KH-modules. Then

H = spanK{gh⊗(v+w)−g⊗h(v+w)} = spanK{gh⊗v+gh⊗w−g⊗hv−g⊗hw} =

spanK{(gh⊗ v − g ⊗ hv)}+ spanK{(gh⊗ w − g ⊗ hw)} =: H1 + H2

and the intersection of H1 and H2 is clearly zero, thus H = H1 ⊕ H2. Hence we
have

KG⊗H (V ⊕W ) = [KG⊗ (V ⊕W )]/H ∼= [(KG⊗ V )⊕ (KG⊗W )]/(H1 ⊕H2) ∼=
(KG⊗ V )/H1 ⊕ (KG⊗W )/H2

∼= KG⊗H V ⊕KG⊗H W

Using this distributivity the following holds

KG⊗H Res(M) ∼= (KG⊗H W1)
⊕a1 ⊕ . . .⊕ (KG⊗H Wr)

⊕ar

By part i) we know that M is isomorphic to a direct summand of KG⊗H Res(M),
hence by the Krull-Schmidt Theorem 2.2.15 it is isomorphic to some indecomposable
direct summond of one of KG⊗H Wi for some 1 ≤ i ≤ r.

The only thing left before the main theorem of the chapter is to state Maschke’s
Theorem. Since it is a well-known theorem, we shall omit its proof.

Theorem 3.1.14 (Maschke). Let K be a field and let G be a finite group. If
char(K) ∤ |G| (e.g. char(K) = 0), then the group algebra KG is semisimple.

Theorem 3.1.15 (Higman). Let K be a field and let G be a finite group. The group
algebra KG is of finite representation type if and only if either char(K) = 0 or
char(K) = p > 0 and the p-Sylow subgroup of G is cyclic.

Proof. First, suppose that KG is of finite representation type. In case char(K) = 0

there is nothing to prove. Suppose that char(K) = p > 0, and let H be a p-Sylow
subgroup of G. Since KG has finite representation type, by theorem 3.1.12 KH

must have finite representation type as well. Moreover, KH is a p-group, hence by
3.1.9, can only be cyclic.

For the other direction first suppose that char(K) = 0. Then Maschke’s theorem
implies that KG is semisimple, therefore, by 2.2.17, it is of finite representation
type.

The only case left to prove is when char(K) = p > 0 andH, the p-Sylow subgroup
of G, is cyclic. Then |G : H| is invertible in K, and Remark 3.1.5 implies that KH is
of finite representation type. Now, from the second part of Theorem 3.1.12 it follows
that KG has finite representation type.
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3.2 Commutative semigroup algebras

The results on commutative semigroup algebras are due to Ponizovskii, the
chapter is based on his paper [Pon70]. From now on S will denote a commutative
finite semigroup. As we have mentioned before, without loss of generality, we can
assume that S contains an identity and a zero element. First we will construct the so
called normal series, an ideal series, of S, and as it will turn out, the representation
type of the whole semigroup will only depend on conditions involving the factors of
this series.

Normal series for commutative semigroups

We start by constructing an ideal series of S, called the normal series. We
construct the series

0 = S0 ⊂ S1 ⊂ . . . ⊂ Sn = S

from right to left recursively, in the following way:

The first ideal in our series is S, the whole semigroup. We define Sn−1 as the union of
the ideals of all the idempotents besides 1 in S. Now suppose that Sk+1 has already
been constructed and pick a maximal idempotent ek+1 with respect to the natural
partial order in it. Sk will be the union of the ideals of all idempotents except ek+1

in Sk+1. Using the notation of 2.1 we can write the series in the following way:

Sn = S, Sn−1 =
⋃

e∈E(S)\{1}

Se, . . . , Sk =
⋃

e∈E(Sk+1)\{ek+1}

Se, S0 = 0

Next, we prove some important properties of the series.

Proposition 3.2.1. For every k (1 ≤ k ≤ n) the following hold:
1) Sk\Sk−1 ⊆ Sek

2) Gek ⊆ Sk\Sk−1 , in particular ek ∈ Sk\Sk−1

3) ∀r ∈ Sk\(Sk−1 ∪Gek) ∃nr : rnr ∈ Sk−1

Proof. 1) For k = n it is trivial, because 1 is an identity for every element. For k < n

it is clear from the definition.
2) For any x ∈ Gek we have x ∈ Sek, therefore x ∈ Sk. If x is contained in Se for
some idempotent e in Sk, then we know that x = ye with y ∈ S. Multiplying this
equation with the inverse we get ek = x−1

ek
x = (x−1

ek
y)e, but then e ∈ Gek . In a group

the only idempotent is the identity of the group implying e = ek.
3) Take ⟨r⟩, the subsemigroup generated by r, by Corollary 2.1.1 it contains an
idempotent. If it was ek, then we would either have r = ek or r ∈ Gek , since
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rnr−1r = rrnr−1 = ek. (Note that the converse is also true, no element in Gek can
have a power in Sk−1, otherwise we would have ek ∈ Sk−1.)

Corollary 3.2.2. From the first statement we have that ek is an identity for every
element in the difference Sk\Sk−1.

As a consequence of the previous proposition, the difference of the ideals can be
written as Sk\Sk−1 = Gk ∪Rk, where Gk is the maximal subgroup associated to ek,
and ek acts as an identity for every element in the difference. Since Sk−1 is an ideal
in S we can take the Rees factor with it. Let σk−1 denote the homomorphism from
S onto the quotient. Then we also deduced the structure of the factor semigroup,
namely Sk := σk−1(Sk) = Gk ⊔ Rk, where Gk = σk−1(Gk) and Rk = σk−1(Rk).
Gk

∼= Gk, and Rk is a nilpotent ideal of the factor (it is an ideal because the original
exponent sending an element to zero also sends its product with an arbitrary element
to zero). Since ek acts as an identity for the whole difference, its image ek does as
well in the factor. These types of semigroups play the most significant role in the
theory, so we give them a name.

Definition 3.2.3. A commutative semigroup E is called elementary if and only
if E = G ⊔ N , where G is a subgroup of E with unit e, which acts as an identity
for the whole semigroup; 0 ∈ N is a nilpotent ideal of E, and the 0 of N is the zero
element of the whole semigroup.

Our final interest is in the set Lk = Rk\R2
k. The reason is that we will prove that

the group Gk acts on it via (left) multiplication.

Proposition 3.2.4. Gk acts on Lk.

Proof. In Sk, the image of Lk is Rk\R
2

k. Rk being an ideal of Sk implies that R2

k is
an ideal as well. The unit ek acts as an identity for R2, therefore the elements, that
are invertible with respect to ek, act as bijections on the ideal. Hence we have the
following implications:

g ∈ Gk, r ∈ Rk, gr ∈ R
2

k ⇒ g
(−1)
ek

gr ∈ g
(−1)
ek

R
2 ⇒ ekr = r ∈ g

(−1)
ek

R
2
= R

2

Therefore,

g ∈ Gk, r ∈ Rk\R
2

k ⇒ gr ∈ Rk\R
2

k.

From this it follows that

g ∈ Gk, l ∈ Lk ⇒ gl ∈ Lk.
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Now we turn to the representations of the above semigroups. It turns out that
as far as finite representation type is concerned we only have to understand the
representations of the elementary factor semigroups in the normal series. Let ϕk be
an indecomposable representation of Sk over some field K. From this we construct
a representation of S with the following map:

ϕ(s) := ϕk(σk−1(sek)) (3.1)

By the definition of Sk we know that sek ∈ Sk, so the expression above makes sense,
and it is easy to verify that it gives a homomorphism, and therefore a representation
of S over K.

Proposition 3.2.5. ϕ is an indecomposable representation of S over K.

Proof. From 3.2.2 we know that for any s ∈ Sk\Sk−1: sek = s. Therefore ϕ(s) =

ϕk(σk−1(s)). Any non zero element of Sk has the form σk−1(s) for some s ∈ Sk\Sk−1,
so we have ϕ(Sk\Sk−1) = ϕk(Sk\0). Therefore ϕ(Sk\Sk−1) is an indecomposable set
of matrices, but then ϕ is an indecomposable representation of S.

Proposition 3.2.6. Let ϕ be an indecomposable representation of S over K. Then
there exists a Sk from the normal series such that 3.1 holds.

Proof. Since S0 = {0}, there exists k ≥ 1 such that ϕ(Sk−1) = 0, but ϕ(Sk) ̸= 0.
Take KSM the left KS module corresponding to ϕ. Then we know that

Sk−1M = 0 and ekM ̸= 0

The latter is true, because if ek annihilated the module then every element of Sek
would annihilate it too, which would mean ϕ(Sk) = 0. Take the following two subsets
of M :

M ′ = {m ∈M : ekm = m} M ′′ = {m ∈M : ekm = 0}.

Both of these are closed with respect to addition, and because S is commutative
also for multiplication with ring elements, hence they form submodules of M . Fur-
thermore M = M ′ ⊕M ′′, because M ′ ∩ M ′′ = {0} and every m ∈ M can be
written as m = ekm + (1− ek)m ∈ M ′ +M ′′. Now since M is indecomposable and
{0} ≠ ekM ⊆M ′ we deduce that for every m ∈M ekm = m.

Let S = σk−1(S), s = σk−1(s), m ∈ M . Since we know that Sk−1M = 0 and
ekM ̸= 0, by defining

sm := sm
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we get a KS-module structure on M . From this we get a KSk module structure as
well. This affords a representation ϕk, of Sk overK. From the fact that multiplication
with ek acts as an identity for the module and the definition we see that:

sm = s(ekm) = (sek)m = σk−1(sek)m ∀m ∈M, s ∈ S

But σk−1(sek) ∈ Sk, thus ϕ(s) = ϕk(σk−1(sek)). The equation above shows that the
set of matrices ϕ and ϕk coincide. Since the former is indecomposable so is the latter
and we are done with the proof.

It follows that S is of finite representation type if and only if all of its normal
factors (i.e. factors of the normal series) are.

Representations of elementary semigroups

Here, E will denote an elementary semigroup, G and R will stand for its unique
subgroup and nilpotent ideal, respectively. Equivalent conditions will be formulated
for an elementary semigroup to have finite representation type both in the standard
and modular cases.

Proposition 3.2.7. Let E = G∪R be an elementary semigroup with, |G| = n, and
let K be a field, containing the n-th roots of unity (e.g. algebraically closed), whose
characteristic does not divide the order of G. Suppose that ϕ is an indecomposable
representation of E over K. Then ϕ(G) consists only of scalar matrices and ϕ(R)

is an indecomposable representation of R.

Proof. Let n ∈ N be the order of the group, and pick a g ∈ G. Since gn = 1, it
is also true for ϕ(g), and therefore the minimal polynomial mϕ(G) of ϕ(g) divides
xn − 1. From K containing the roots of unity it follows that mϕ(G) splits over K,
and since char(K)∤ n these roots are distinct, implying that ϕ(g) is diagonalizable.
By collecting the same scalars next to each other, for every g ∈ G we can suppose
that the image of g looks like the following block diagonal matrix:

ϕ(g) =


λg1Eg1 0 · · · 0

0 λg2Eg2 · · · 0
...

... . . . ...
0 0 · · · λgmEgm

 (3.2)

where λgi ∈ K, i ̸= j ⇒ λgi ̸= λgj and Egi denotes the appropriate unit matrix.
Consequently we want to prove that m=1. Suppose that it is not true and choose
an r ∈ R and write the matrix in block matrix form with the same block sizes as
before:
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ϕ(r) =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
... . . . ...

Am1 Ap2 · · · Amm

 (3.3)

Since S is commutative we know that

(λgiEi)Aij = Aij(λgjEj)

Therefore i ̸= j ⇒ Aij = 0, which would imply that ϕ(R) is decomposable.
Then, since the elements of ϕ(G) consist of scalar matrices with the same block
sizes, we would get a decomposition for the whole semigroup, which contradicts
the assumption. By the same logic, if ϕ(R) were decomposable, the (now known to
be) scalar matrices of G would decompose the same way and this would give us a
decomposition of the representation of E.

Theorem 3.2.8. Let E = G ∪ R be an elementary semigroup and K a field with
characteristic not dividing the order of G. Then E is of finite representation type if
and only if one of the following holds:
1) R = {0} (i.e. E = G ∪ {0})
2) R\R2 ̸= ∅ and G acts transitively on R\R2.

Proof. 1) In the first case suppose that R\R2 = ∅. Equivalently R = R2 which, by
the nilpotency of R, means that R = {0}. Consequently we are dealing with the
representation type of a group with an externally adjoined 0. Then by 2.2.1

KE ∼= K(G ∪ 0) ∼= K ×K0(G ∪ 0) ∼= K ×KG.

Therefore, by 3.1.5 KE has finite representation type if and only if KG has. But by
Maschke’s Theorem, KG is semisimple, and as such, by 2.2.17, is of finite represen-
tation type.

2) Now we deal with the case R\R2 ̸= ∅. We can partition E by taking the ’cosets’
with respect to G. Explicitly:

E = G ⊔Gr2 ⊔ ... ⊔Grm

It is easy to check that, as in the case of groups, we have Gri ∩ Grj ̸= ∅ ⇒
Gri = Grj and clearly we get every element of E. Since for any u ∈ E we know that
Ga = Gb ⇒ (Ga)u = (Gb)u ⇒ G(au) = G(bu) this decomposition also defines a
congruence on the semigroup by the equivalence relation:

a G b⇐⇒ Ga = Gb a, b ∈ E
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Because G acts on R\R2 the cosets also interact nicely with this set, namely:
Gri ∩ (R\R2) ̸= ∅ ⇒ Gri ⊂ (R\R2).

First, suppose that G does not act transitively on R\R2. Then there are at least
two ’G-cosets’ in R\R2; we can assume them to be Gr1 and Gr2. Now we would like
to prove that the following set is an ideal:

I := R\(Gr1 ⊔Gr2)

We see that I ⊂ R and I ⊇ R\(R\R2) = R2 , hence R2 ⊆ I ⊂ R. In particular this
implies that I is closed with respect to multiplication with elements from R. Let
g ∈ G and r ∈ R, then:

gr ∈ Gr1 ⊔Gr2 ⇒ r = g−1gr ∈ Gr1 ⊔Gr2

which implies that I is also closed with respect to multiplication with group elements
and therefore an ideal.
Let us denote the join of the ideal congruence of I and G in the congruence lattice
as τ . In the factor E/τ I is ’compressed’ to zero and the elements of G-cosets are
’united’, this gives us a four element semigroup

E/τ = e ∪ r1 ∪ r2 ∪ 0

With multiplication:

e is the identity of E/τ 0 is the zero of E/τ r21 = r22 = r1r2 = 0

By Lemma 2.2.18 the three element semigroup with zero multiplication has infinitely
many nonequivalent indecomposable representations over any field. For any of these
by adjoining the identity matrix we obtain an indecomposable representation of E/τ .
(Since the identity matrix is compatible with any decomposition, if by adjoining it
the representation became decomposable, then it would have been decomposable
originally as well.) Then, by 3.0.1, these representations composed with the factor
map, give infinitely many nonequivalent indecomposable representations of E.

Now suppose that G acts transitively on R\R2. Then we know that the set
consists of only one ’G-coset’ for example Gr∗. Since R\R2 is a generating set for R
we know that every element of R has the form:

(r∗)ng for some n ∈ N, g ∈ G

As we have mentioned in the introduction of the chapter, representation type is
invariant under finite extensions of the base field, hence we can suppose the base
field to contain the roots of unity equal to the order of G, since otherwise we could
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adjoin them. This means we are allowed to use Proposition 3.2.7, which tells us
that for any indecomposable representation ϕ of E: ϕ(G) consist only of scalar
matrices and ϕ(R) is an indecomposable representation of R. Since scalar matrices
are compatible with any decomposition the indecomposability of R and the form of
elements in R implies that ϕ(r∗) is an indecomposable matrix. Hence ϕ(⟨r∗⟩) is an
indecomposable representation of the subsemigroup generated by r∗. Furthermore,
since ϕ(G) consists only of scalar matrices we can recover the representation of it
just by storing a one dimensional representation, namely which scalars we used.
Then the dimension of the vector space of ϕ fully determines ϕ(G). This works vice
verse, the pair (δ, ψ), where δ is a one dimensional representation of G and ψ is
an idecomposable representation of ⟨r∗⟩ uniquely defines (because of the form of
elements) an indecomposable representation of E. Let us call such pairs equivalent
if δ ∼ δ′ and ψ ∼ ψ′ as representations. We see that equivalent pairs describe
equivalent indecomposable representations of E, therefore the number of equivalence
classes of indecomposable representations of E is at most the number of equivalence
classes of such pairs. Here the number of one-dimensional representations of G is
finite (they map G into the set of roots of xn−1, where |G| = n). On the other hand
r∗ is nilpotent (say, (r∗)k = 0), and since ψ is an indecomposable representation,
ψ(r∗) is similar to a nilpotent Jordan block of size at most k× k. This gives finitely
many equivalence classes of pairs (δ, ψ).

Now we turn to the modular case. Here we will use the Kronecker-product of
matrices, defined the following way:

Definition 3.2.9. Let K be a field and let A ∈ Km×n, B ∈ Kp×q. Then the
Kronecker-product A×B is defined as

A×B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

... . . . ...
am1B ap2B · · · ammB

 ∈ Kpm×qn.

Remark 3.2.10. It can be verified that the Kronecker-product of matrices with
appropriate sizes is associative, distributive on both sides and (A × B)(C × D) =

AC ×BD.

In the next theorem we will also use the following notations: In is the n-dimensional
unit matrix, Jn denotes the n-dimensional nilpotent Jordan block, and

∆ =

[
1 0

1 1

]
, δ =

[
0 0

1 0

]
.

(Note that ∆ = I2 + δ = I2 + J2)
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Lemma 3.2.11. If S ∈M2m(K) commutes with Im ×∆, then

S = S0 × I2 + S1 × δ

where S0, S1 ∈Mm(K). Furthermore if S is invertible then S0 is invertible as well.

Proof. Write S as a block matrix partitioned by 2× 2 square matrices Sij. Since S
commutes with Im ×∆ we know that ∆Sij = Sij∆. By substituting ∆ = I2 + δ we
get δSij = Sijδ. Multypling these matrices shows that every block can be written
as:

Sij =

[
s11ij 0

s21ij s11ij

]
=s11ij I2 + s21ij δ

Defining S0 := (s11ij ) and S1 := (s21ij ) gives us the desired form of S.

Now suppose that S is invertible. Then S−1 also commutes with Im ×∆, which by
the first part implies S−1 = T0 × I2 + T1 × δ. From the properties of the Kronecker-
product and δ2 = 0 we have

I2m = SS−1 = S0T0 × I2 + (S0T1 + S1T0)× δ

Hence it follows that S0T1+S1T0 = 0 and S0T0 = Im, which gives us a (right) inverse
of S0. (Left inverse can be shown the same way.)

Lemma 3.2.12. Let K be a field with characteristic p > 0, E = G ∪ R an elemen-
tary semigroup with maximal subgroup isomorphic to a cyclic p-group. In addition
suppose that R ̸= 0. Then E is of infinite representation type.

Proof. Let us denote the generator of the cyclic p-group as g. We are going to define
the following 2m-dimensional representations of E:

Dm : E −→M2m(K)

Dm(g
k) := Im ×∆k, Dm(r) := Jm × δ (r ∈ R\R2), Dm(R

2) := 0

By the properties of the Kronecker-product it can be checked that it is indeed a
semigroup homomorphism. (Note that if r ∈ R\R2, g ∈ G then gr = rg ∈ R\R2,
and δ∆ = ∆δ = δ.) We prove that this is an indecomplosable representation for
every m. Fix an m and suppose that this is not an indecomposable representation.
Then there exists an invertible matrix T , such that:

T−1DmT =

[
M1 0

0 M2

]
(3.4)

In particular
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T−1Dm(g)T =

[
M1(g) 0

0 M2(g)

]
By definition Dm(g) = Im × ∆ = Im × (Im + δ) = I2m + (Im × δ), from which it
follows that:

T−1(Im × δ)T =

[
M1(g)− I ′ 0

0 M2(g)− I ′′

]
for some identity matrices I ′, I ′′. Since (Im × δ)2 = 0 we know that
(M1(g)− I ′)2 = 0 and (M2(g)− I ′′)2 = 0. Every nilpotent matrix, over an arbitrary
field, is similar to a Jordan matrix, furthermore in our case the block sizes are at
most 2, since the squares of the matrices are zero. Consequently there exist invertible
matrices U1, U2 such that:

U−1
1 (M1(g)− I ′)U1 and U−1

2 (M2(g)− I ′′)U2

are Jordan matrices. Define

U :=

[
U1 0

0 U2

]
It is clearly invertible, furthermore

U−1T−1Dm(g)TU =

[
U−1
1 M1(g)U1 0

0 U−1
2 M2(g)U2

]
is a Jordan matrix similar to Dm(g), so its Jordan blocks are all ∆. It follows that

U−1T−1Dm(g)TU =

[
Dr(g) 0

0 Dm−r(g)

]
= Dm(g)

Equivalently we have that S := TU is invertible and commutes withDm(g) = Im×∆,
which by 3.2.11 implies that

S = S0 × I2 + S1 × δ

with the appropriate matrices and S0 is also invertible. Choose an r ∈ R, from the
commutativity of E we see that

(S−1Dm(r)S)(S
−1Dm(g)S) = (S−1Dm(g)S)(S

−1Dm(r)S),

but since S−1Dm(g)S = Dm(g) the equation implies that S−1Dm(r)S commutes
with Dm(g), therefore by 3.2.11 we know that

S−1Dm(r)S = A× I2 +B × δ (3.5)

with appropriate matrices A and B. This yields Dm(r)S = S(A × I2 + B × δ). By
substituting Dm(r) = Jm × δ and S = S0 × I2 + S1 × δ
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(Jm × δ)(S0 × I2 + S1 × δ) = (S0 × I2 + S1 × δ)(A× I2 +B × δ)

Using δ2 = 0 we get

JmS0 × δ = S0A× I2 + S1A× δ + S0B × δ

Multiplying this equation with Im×δ yields 0 = S0A×δ, which means that S0A = 0.
Since S0 is invertible we must have A = 0. Then JmS0 × δ = S0B × δ implying
JmS0 = S0B. Because S0 has an inverse

S−1
0 JmS0 = B (3.6)

But by equation 3.4 and by definition U being a diagonal block matrix with the
same block sizes

S−1Dm(r)S = U−1T−1Dm(r)TU =

[
U−1
1 M1(r)U1 0

0 U−1
2 M2(r)U2

]

Comparing this with 3.5 and remembering that A = 0[
U−1
1 M1(r)U1 0

0 U−1
2 M2(r)U2

]
= B × δ

But this can only happen if

B =

[
B1 0

0 B2

]
(3.7)

Now we have our contradiction by 3.7 and 3.6, since Jm is a Jordan square matrix,
hence indecomposable. For m ̸= n Dm and Dn cannot be equivalent since the di-
mensions of their vector spaces differ. So we obtained infinitely many non-equivalent
indecomposable representations of E over K.

Lemma 3.2.13. Let E = G∪R be an elementary semigroup and K a field with char-
acteristic p > 0. If KE is of finite representation type, then the p-Sylow subgroup
of G is cyclic.

Proof. If the p-Sylow subgroup ofG is not cyclic we are going to show infinitely many
nonequivalent indecomposable modules over KE. The factor with R is isomorphic
to G ∪ {0} the group with externally adjoined zero. Then by 2.2.1 we have

KE/KR ∼= K0(E/R) ∼= K0(G ∪ 0) ∼= KG

By Higman’s theorem if the p-Sylow subgroup of G is not cyclic then KG has an
infinite number of nonequivalent indecomposable modules, and since KG is a factor
of KE by 2.2.19 KE has infinitely many as well.
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Theorem 3.2.14. Let E = G ∪ R be an elementary semigroup and K a field with
characteristic p > 0. Suppose that p divides the order of G. Then E is of finite
representation type if and only if the following conditions hold simoultaneously:
1)R = 0 (i.e. E is a group with an externally adjoined zero)
2)the p-Sylow subgroup of G is cyclic.

Proof. If R = 0 holds, we have the following isomorphisms 2.2.4:

KE ∼= K ×K0E ∼= K ×KG

Which means that KE is of finite representation type ⇐⇒ K ×KG is of finite
representation type ⇐⇒ KG is of finite representation type ⇐⇒ the p-Sylow sub-
group of G is cyclic, where the second equivalence holds because of 2.2.21 and the
final one is due to Higman’s Theorem.

As a consequence of the previous lemma it is only left to show that if R ̸= 0

then E is of infinite representation type. First we can make a few simplifications by
taking factors of E. Then according to remark 3.0.1 if a factor semigroup of E has
infinite representation type then so does E. If R2 ̸= 0 then factoring with the ideal
gives us an elementary semigroup in which R is the nilpotent ideal and R2 is the
zero element. Let P be a p-Sylow subgroup of G. Since G is Abelian with p||G|,
there exists a non-trivial cyclic p-subgroup P and another subgroup N such that

PN = G and P ∩N = 1.

If N ̸= e then instead of G we can consider E/N , by taking the quotient with the
congruence of N -cosets, defined the same way as in 3.2.8. The factor is also an
elementary semigroup with non-zero maximal subgroup G/N ∼= P , as it was shown
in 3.2.8 that a coset is either disjoint from R\R2 or is contained in it. Finally, Lemma
3.2.12 implies that this semigroup is of infinite representation type.

Summing up the previous results we state the general theorem for an arbitrary
commutative semigroup algebra:

Theorem 3.2.15. Let K be a field with characteristic p, and let S be a commutative
semigroup admitting a normal series (Sk)

n
k=0, with elementary quotient semigroups

Ek = Gk ∪Rk. KS is of finite representation type if and only if for every k
1) if p ∤ |Gk|, then and either Ek = Gk ∪ {0} or R\R2 ̸= ∅ and G acts transitively
on R\R2.
2) if p | |Gk|, then Ek = Gk ∪ {0} and the p-Sylow subgroup of Gk is cyclic.
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3.3 Inverse semigroup algebras

In this section we determine which inverse semigroup algebras are of finite repre-
sentation type. Actually, combined with a result from [Pon93] we can determine the
representation type of an even broader class of semigroups, but since in that case
the result is not elegent (opposed to the case of inverse semigroups), we shall only
discuss the result informally.

The result will have a strong connection with completetely simple semigroups.
By 2.1.10, we have seen that these semigroup coincide with Rees matrix semigroups
over a group with zero. Due to this characterization, we begin with discussing the
tool to handle the algebras of these semigroups. This section is mostly based on
[Okn90], the beginning and end of chapter 5.

Algebras of matrix type

Let K be a field, and let R be an associative K-algebra. Fix two nonempty
index sets I,M and P = (pmi)m∈M,i∈I a generalized (having finitely many non-zero
elements) M × I matrix with pmi ∈ R. Consider A = (aim) and B = (bim) two
generalized I ×M matrices with finitely many non-zero entries over R, and define
operations between them as

A+B = ((aim + bim)im), i.e. element-wise addition
A ∗B = APB, with the usual product of matrices

λA = (λaim), for λ ∈ K.

The set of generalised I ×M matrices with finitely many non-zero entries over R
becomes an associative K-algebra with this product and is called the algebra of
matrix type over R. It is denoted as M(R, I,M, P ) or R̂ for brevity. An impor-
tant example and the motivation for this construction comes from the following
observation.

Lemma 3.3.1. Let S = MS(G, I,M, P ) be a semigroup of matrix type. Then

K0[MS(G, I,M, P )] ∼= M(KG, I,M, P )

Proof. In case S does not have a zero element we will mean the original semigroup
algebra under the notation K0S. The map

φ : MS(G, I,M, P ) −→ M(KG, I,M, P )

φ((i, g,m)) := (ajn) =

g (j, n) = (i,m)

0 otherwise
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defines a semigroup homomorphism from S to the multiplicative semigroup of the
algebra. Since the images of the non-zero elements of S generate the vector space of
the algebra and are linearly independent they form a basis of the algebra. Hence ex-
tending φ linearly to a homomorphism of K-algebras gives the desired isomorphism
K0[MS(G, I,M, P )] ∼= M(KG, I,M, P ).

A generalized matrix over R with only one non-zero element r at the i-th row
and m-th column is denoted as (r, i,m), furthermore R̂(m)

(i) := {(r, i,m) : r ∈ R}. For
nonempty sets J ⊆ I and N ⊆M we define R̂(N)

(J) :=
∑

i∈J
∑

m∈N R̂
(m)
(i) .

Let R,R′ be two K-algebras and let φ : R −→ R′ be a homomorphism between
them. The induced homomorphism φ̂ : M(R, I,M, P ) −→ M(R′, I,M, φ(P )),
where φ(P ) = ((φ(pim))im) is defined as φ̂((aim)):=((φ(aim))im).

Lemma 3.3.2. Let R be a finite-dimensional K-algebra and let P be a m×n matrix
over R. If m > n then there exists a non-zero n × m matrix X over R such that
XP = 0. If n > m then there exists a non-zero n ×m matrix Y over R such that
PY = 0.

For the proof of the Lemma, see [CP61], Theorem 5.11.

Proposition 3.3.3. Let R be an algebra with a non-zero finite-dimensional homo-
morphic image. Then the following conditions are equivalent:
1) The algebra R̂ has an identity.
2)I,M are finite sets, |I| = |M | and P is an invertible matrix in M|I|(R).
Moreover if 1) or 2) holds then R̂ ∼= M|I|(R)

Proof. First assume that R̂ has an identity. We shall denote it with E. Then there
exist finite sets J,N such that E ∈ R̂

(N)
(J) . Fix an i ∈ I, from E being a left identity

it follows that for any m ∈M

(1, i,m) = E ∗ (1, i,m) = EP (1, i,m) ∈ R̂
(M)
(J)

which means that i ∈ J , implying I = J is a finite set. Furthermore, the i-th column
of EP is zero except at the entry (i, i) which is 1, otherwise there either would be a
non-zero element elsewhere or a number other then 1 at the entry (i,m) in (1, i,m).
Hence EP is the I× I identity matrix. From E being a right identity it follows that
M = N is a finite set and PE is the M×M identity matrix. From here we only need
to prove |I| = |M | to establish 2), since then E is the inverse of P in the algebra
M|I|(R). Let φ : R −→ R′ be a homomorphism to a finite-dimensional algebra
R′. We can suppose that φ is surjective. Let φ̂ : R̂ −→ M(R′, I,M, φ(P )) = R̂′

be the induced homomorphism of φ. I and M are finite sets, hence R̂′ is a finite-
dimensional algebra as well, and φ(E) acts as an identity for it implying that for
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every X ∈ R̂′, X = φ(E)φ(P )X = Xφ(P )φ(E). If I > M were the case, then
applying the previous lemma to P would imply he existence of a non-zero X such
that Xφ(P ) = 0, further implying Xφ(P )φ(E) = 0, contradicting the the derived
equation. Hence M ≥ I, and by the same logic and the second part of the lemma it
follows that I ≥M implying |I| = |M |, and proving 2).

If 2) holds, then P is invertible, hence the inverse of P is an identity for the algebra
and ψ : R̂ −→M|I|(R), ψ(X):=XP is an isomorphism of algebras.

Corollary 3.3.4. Let S = MS(G, I,M, P ) be a finite semigroup of matrix type.
Then the following conditions are equivalent:
1) The algebra K0S has an identity
2) I and M are finite sets, |I| = |M | and P is an invertible matrix in M|I|(KG).
Moreover if 1) or 2) holds, then K0S ∼= M|I|(KG) and S is a completely 0-simple
semigroup.

Proof. According to Lemma 3.3.1 K0S ∼= M(KG, I,M, P ), and since KG is finite
dimensional, the previous proposition applies to the former algebra, proving the
equivalence. Moreover, the invertibility of P implies that it has no zero columns or
rows, so by theorem 2.1.9 S is completely 0-simple.

Strongly p-semisimple semigroups

Here, we define the wider class of semigroups mentioned in the introduction of
the section. Their definition is based on a common property they share, but to
decide whether a semigroup possesses it we are not aware of any accessible, explicit
condition.

Definition 3.3.5. Let p be zero or prime and let F be the prime field of characteristic
p. A semigroup S is strongly p-semisimple if and only if all the principal factor
algebras F0[St], t ∈ S have identity elements.

Remark 3.3.6. If char(K) = p then K0[St] ∼= K ⊗F0 F0[St] has an identity if and
only if F0[St] has one.

Remark 3.3.7. If S is strongly p-semisimple then S cannot have null semigroups
as principal factors, since algebras of null semigroups cannot contain an identity.
Therefore, S is a semisimple semigroup.

Theorem 3.3.8. Let S be a finite non-zero strongly p-semisimple semigroup and
let K be a field with char(K) = p. Then

K0S ∼= K0[T1]× . . . ×K0[Tr]

for non-zero principal factors Ti of S. Furthermore if S is completely semisimple
then
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K0S ∼= Mn1(K[G1])× . . . ×Mnr(K[Gr])

where Gi are maximal subgroups of S.

Proof. We only prove it for the case when S has a zero element, the proof is the same
if S does not have one with forgetting about the 0− prefix. Any finite semigroup
admits a principal series. The proof goes by induction on the number of constituents
of the series. It is clear if the series consists solely of 0 and the semigroup. Suppose
we have 0 ⊂ S1 ⊂ S as the series. It was noted in the section on principal factors that
a 0-minimal ideal is always principal. The first non-zero and nonempty term S1 in
the series must be a 0-minimal ideal of S, hence S1 = Ja for some a ∈ S. According
to 2.1.16 Ia = 0, hence the principal factor at a is T1 := S1/{0} ∼= S1. From the
conditions it is an algebra with identity hence by 2.2.3 K0S ∼= K0[T1] ×K0[S/S1].
Now suppose that the hypothesis is true for series with lengths at most k, and let S
be a semigroup such that it has principal series of length k+ 1, denoted as (Sk)

r
k=0.

Applying the previous case we get K0S ∼= K0[S1]×K0[S/S1], and from the bijection
between ideals of the original semigroup and the factor a principal series of S/S1 is

0 ⊂ S2/S1 ⊂ · · · ⊂ S/S1

which has less constituents, therefore the induction hypothesis applies and

K0[S/S1] ∼=
∏
K0[(Si+1/S1)/(Si/S1)]

Furthermore, from the isomorphism theorem 2.1.13, we get that

(Si+1/S1)/(Si/S1) ∼= Si+1/Si

which are precisely the principal factors of the original semigroup, and the propo-
sition is proved. Moreover, if the principal factors are completely 0-simple by the
previous corollary we have K[Ti] ∼= Mni

(K[Gi]).

The theorem also stays true with the condition "finite" replaced with "having
finitely many principal factors", but since only the algebras of finite semigroups can
have finite representation type, we can constrain ourselves to finite semigroups. Fur-
thermore, for finite semigroups semisimplicity, and complete semisimplicity coincide.
Hence we deduced that for every finite strongly p-semisimple semigroup S

K0S ∼= Mn1(K[G1])× . . . ×Mnr(K[Gr])

reducing the problem of finite representation type to the group case.

Corollary 3.3.9. Let K be a field with char(K) = p, and let S be a finite strongly
p-semisimple semigroup. Then KS is of finite representation type if and only if all
of its maximal subgroups are.
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Proof. K0S and KS are of finite representation type at the same time, and the
representation type of direct products of algebras is determined by the representation
type of its constituents 2.2.21. Moreover, it is well known, from Morita theory that
any ring R is Morita-equivalent to Mn(R), hence they are of finite representation
type at the same time. A discussion of these concepts can be found in [AF92].

Proposition 3.3.10. Let S be a nonzero finite inverse semigroup. For any p, prime
or zero, S is strongly p-semisimple.

Proof. First, we show that S is semisimple. Since any principal factor is either (0-)
simple or null we only have to rule out the possibility of a null principal factor.
Choose an a ∈ S, since any inverse semigroup is regular we have a∗ ∈ S1aS1 and
a ∈ S1a∗S1, implying that a, a∗ ∈ Ja\Ia. Moreover, since the pseudo-inverse was
unique in the original semigroup it is also unique in the factor,thus any principal
factor is also an inverse semigroup, and a non-zero regular semigroup cannot be null.
This proves that a finite inverse semigroup is semisimple. Finally, by theorem 2.1.11
and corollary 3.3.4, the algebras of the principal factors have identities.

Theorem 3.3.11. Let K be a field, and let S be an inverse semigroup. The semi-
group algebra KS is of finite represenation type if and only if the group algebras of
the maximal subgroups of S are of finite representation type.

This result on inverse semigroups of finite representation type is due to Poni-
zovskii, and is mentioned in [Pon93]. (In the survey the author states this theorem
without any particular reference.)

Remark 3.3.12. The above discussion also gives an equivalent condition for the
algebra of a finite inverse semigroup to be semisimple.
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