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1 Introduction

A very natural question in dynamics is the following: given a topological
group G that acts continuously on a compact space X, when can we find a fixed
point of this action? Let us pose an even more stronger question, when is is
it true that every action of a group G on any compact space X has a fixed
point? Such groups are called extremely amenable groups. In [3] this question
was solved for a wild variety of groups, namely for the Polish non-Archimedean
groups.

It turns out that Polish non-Archimedean groups can be realized as the
automorphism groups of countable ultrahomogeneous structures and every such
structure can be realized as a so-called Fräısse limit of a Fräısse class.

The first part of the thesis will introduce the reader in the world of Fräısse
limits and we give some examples of Fräısse limits.

The second part of the thesis gives the proof the Kechris, Pestov, Todorcevic
correspondence that roughly states that an automorphism group of a Fräısse
limit is extremely amenable if and only if the Fräısse class it satisfies some
Ramsey property.
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2 Preliminaries

Notation 2.1. For groups A and B, if A is a subgroup of B we write A ≤ B

Notation 2.2. Suppose G is a group and H ≤ G. Then G acts on the left-cosets
of H in the usual way, that is g·hH = ghH for all g, h ∈ G.

Notation 2.3. The symmetric group on some set X will be denoted by SX .

Notation 2.4. The action of a group G on a set X is denoted by G ↷ X.
Furthermore, the action of an element g ∈ G on an element x ∈ X will be
written as: a(g, x) = g·x.

Definition 2.5. If G is a group acting on a set X, then G also acts on Xn

diagonally as follows: g·(x1, . . . , xn) = (g·x1, . . . , g·xn). We refer to this action
as the diagonal action of G on Xn.

Notation 2.6. Consider the group SX for some countable set X, and suppose
F ⊆ X. The pointwise stabilizer of F in SX will be denoted by

H(F ) = {g ∈ SX | g·x = x for all x ∈ F},

and the setwise stabilizer of F in SX will be denoted by

HF = {g ∈ SX | g·F = F}.

Specifically, if F = {x} we write

Hx = {g ∈ SX | g·x = x}.

Notation 2.7. Similarly, suppose G ≤ SX for some countable set X and sup-
pose F ⊆ X. The pointwise stabilizer of F in G will be denoted by

G(F ) = {g ∈ G | g·x = x for all x ∈ F},

and the setwise stabilizer of F in G will be denoted by

GF = {g ∈ G | g·F = F}.

Specifically, if F = {x} we write

Gx = {g ∈ G | g·x = x}.

Notation 2.8. Using the previous two statements, we can write

G(F ) = H(F ) ∩G
GF = HF ∩G
Gx = Hx ∩G

Notation 2.9. If X is a topological space and G ⊆ X, then the closure of G in
X is denoted by G.
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Notation 2.10. Suppose A and B are L-structures. If A is a substructure of
B we will write A ⪯ B.

Notation 2.11. We denote graphs in the usual way, for a graph G = (VG, EG),
the set of vertices of G is VG, and the set of edges of G is EG.

We will assume that the reader is familiar with the following theorems. The
interested reader can find the proofs of these theorems in [1], [4]:

Theorem 2.12. The product of countably many separarable topological spaces
is separable.

Theorem 2.13. The product of countably many completely metrizable topolog-
ical spaces is complete metrizable.

Theorem 2.14. Tychonoff’s theorem, which states that the product of compact
topological spaces is compact.

Theorem 2.15. If a topological space X is compact and Hausdorff, then X is
normal.

Theorem 2.16. (Uryhson’s lemma) If X is a normal, then any two disjoint
closed subset Z1, Z2 ⊆ X can be separated by a continuous function, that is, there
exists a continuous function f : X → [0, 1] such that f |Z1

≡ 0 and f |Z2
≡ 1.

Definition 2.17. A topological space X is said to be Polish, if it is separable
and completely metrizable.

Definition 2.18. A topological space X satisfies the countable chain condition
if the are at most countably many disjoint open sets in X.

Theorem 2.19. A Polish space always satisfies the countable chain condition.

Theorem 2.20. If a topological space X is Polish, then a subspace Y of X is
Polish if and only if Y is Gδ.

Theorem 2.21. The group Sω is a topological group with the pointwise con-
vergence topology, where basic open sets are of the form gH(F ), for g ∈ Sω and
F ∈ ω finite, i.e., the left-cosets of pointwise stabilizers of finite subsets of ω.

Theorem 2.22. The group Sω is a Gδ subspace of the Polish space ωω, therefore
Sω is Polish.

Theorem 2.23. A subgroup H of a Polish group G is Polish if and only if the
subgroup H is closed in G.

Theorem 2.24. A homomorphism φ between topological groups G and H is
continuous if and only if φ is continuous at 1G.
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3 Automorphism groups of countable structures

Lemma 3.1. Suppose X is a countable set and consider the topological group
SX . Let F be some subset of Xn for some n ∈ ω. Then the setwise stabilizer
of F is closed in SX . Written formally:

HF = {g ∈ SX | g·F = F}

is a closed set in SX .

Proof. Fix an arbitrary F ⊆ Xn for some n. The complement of HF is HC
F =

{g ∈ SX | g·F ̸⊆ F or g·F ̸⊇ F}. Let A := {g ∈ SX | g·F ̸⊆ F} and let g ∈ A.
This means there is some x ∈ F , such that g·x /∈ F . The set gHx is a basic open
neighborhood of g. for all g′ ∈ gHx g

′
·x = g·x /∈ F , therefore g′·F ̸⊆ F . This

shows that A is open. Similarly, we can show that B := {g ∈ SX | g·Y ̸⊇ Y } is
open, and HC

F = A ∪B is also open, so HF is closed.

Lemma 3.2. Suppose X is a countable set and G ≤ SX , then the closure of G
is the set of all elements in SX that fix all G-orbits on Xn for all n. Written
formally:

G = {g ∈ SX | ∀n g·O = O for all G-orbits O on Xn} (1)

Proof. Let G′ be the group on the right-hand side of (1). The set G′ is the
intersection of the sets HO = {g ∈ SX | g·O = O} for all G-orbits O on Xn for
all n. By Lemma 3.1, All of these sets are closed, therefore their intersection
is closed. This means G′ is a closed set which clearly contains G, so it must
contain G.

On the other hand, suppose g ∈ G′, and B is an open neighborhood of g.
We need to show that B ∩ G ̸= ∅. We can find a basic open neighborhood of
g of the form gH(F ) with gH(F ) ⊆ B, where F ⊆ X is finite, and H(F ) = {g ∈
SX | g·x = x for every x ∈ F}. Enumerate F as a tuple x in X |F |. Since g fixes
all G-orbits, on all Xn for all n, g·x is in the same G-orbit as x. This means
there is some h ∈ G for which g·x = h·x, therefore h ∈ gH(F ) ⊆ B. It follows

that g ∈ G and G ⊇ G′, so we have G = G′.

We are now ready to prove the following theorem, which characterizes closed
subgroups of Sω. Notice that the following theorem combines the fields of group
theory, first-order logic, and topology.

Theorem 3.3. Let G be a topological group, then the following are equivalent:

(1) G is isomorphic (as a topological group) to a closed subgroup of Sω,

(2) G is of the form Aut(A), where A is a countable structure,

(3) G is a non-Archimedean and Polish group.
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Proof. (1) ⇒ (2): We need to find a structure A, with some language L, such
that G = Aut(A). Let the universe of A be ω. We construct the language L
using the orbits of G on ωn for all n, adding a different n-ary relation symbol for
every orbit: for n ≥ 1 let kn be the number of G-orbits on ωn, let (On,i)1≤i≤kn

denote the G-orbits on ωn, and let (Rn,i)1≤i≤kn
be n-ary relation symbols. We

want Rn,i to be interpreted as which orbit the tuple (k1, k2, . . . , kn) ∈ ωn belongs
to, that is, RA

n,i = On,i ⊆ ωn. This gives us a structure A, which is usually
referred to as the canonical structure of G. Now we must show G = Aut(A).
The set Aut(A) is the set of permutations of ω that preserve every relation in
L, which is the set of permutations of ω that fix all G-orbits on ωn for all n. By
Lemma 3.2, we have Aut(A) = G and since G is closed Aut(A) = G = G.

(2) ⇒ (1): First, suppose G is finite. By Cayley’s theorem, G is isomorphic
to a subgroup of SG and therefore G is isomorphic to a subgroup of Sω. Since
G is finite and Sω is Hausdorff, G is closed, so we are done. Now, assume G is
infinite. Clearly A must be countably infinite, so we can say that the universe
of A is ω. The set Aut(A) is the set of permutations of ω which preserve all
relations and functions of A. For a relation RA ⊆ ωn with arity n to be preserved
by a permutation g is means that

(a1, . . . , an) ∈ RA iff (g·a1, . . . , g·an) ∈ RA.

This means g preserves RA if and only if g stabilizes the set RA. For a
function fA with arity n, we can consider the relation Rf ⊆ ωn+1 for which
fA(a1, . . . , an) = an+1 iff (a1, . . . , an+1) ∈ Rf . An element g preserves fA if
and only if it stabilizes the set Rf . Therefore Aut(A) is the set of permutations
of ω, which stabilize certain subsets of ωn for various n. By Lemma 3.1, this is
a closed subgroup.

(1) ⇒ (3): The group Sω is Polish, and is a closed subgroup of Sω, therefore
G is Polish. If F is a finite subset of ω, then G(F ) is a subgroup and an open
neighborhood of the identity 1G. Therefore {G(Fi) | Fi = {0, 1, . . . , i}, i ∈ ω} is
a system of subgroups which forms an open neighborhood basis at the identity,
thus G is non-Archimedean.

(3) ⇒ (1): Since G is non-Archimedean, we can find a system of subgroups
which forms an open neighborhood basis at the identity 1G. We may suppose
this basis is of the form {Ni | i ∈ ω}, where Ni ⊇ Ni+1 for all i. The group G is
separable, so it satisfies the countable chain condition. It follows that |G : Ni|
is countable for all i, therefore the set

H := {gNi | g ∈ G, i ∈ ω}

is countable. We would like to show that G is isomorphic, as a topological
group, to a subgroup of SH . Consider the function

ϕ : G→ SH

ϕ(g)(hNi) = hgNi.

For any g ∈ G the image ϕ(g) is an element of SH , because multiplication by g
from the right is an automorphism of G, therefore for a fixed Ni, the function
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ϕ(g) is a permutation of {hNi | h ∈ G}. We can also see that ϕ is a group
homomorphism, since

ϕ(gh)(kNi) = kghNi = ϕ(h)(kgNi) = ϕ(g)ϕ(h)(kNi).

Suppose g, h ∈ G, g ̸= h. This means g−1h ̸= 1G, so there is some i such that
g−1h /∈ Ni. For any k ∈ G, we have

g−1hNi ̸= Ni ⇒ hNi ̸= gNi ⇒ khNi ̸= kgNi

⇒ ϕ(h)(kNi) ̸= ϕ(g)(kNi) ⇒ ϕ(h) ̸= ϕ(g),

thus ϕ is injective.
To show that ϕ is continuous it is enough to show it is continuous at 1G.

Suppose ∀n ∈ ω gn ∈ G and gn → 1G. We must show that ϕ(gn) → ϕ(1G) =
1SH

. Let B be an open neighborhood of 1SH
. We can find a basic open set

B′ ⊆ B of the form B′ = {h ∈ SH | h·x = x for all x in F}, the pointwise

stabilizer of F , where F = {h1Ni1 , . . . , hkNik} ⊆ H finite. Let M =
k⋂

j=1

Nij ,

which is an open neighborhood of 1G. Therefore only finitely many gn /∈ M ,
which means there are only finitely many n for which ϕ(gn)(M) ̸= M . Every
other ϕ(gn) fixes M , and therefore fixes F pointwise, thus ϕ(gn) → 1SH

.
We will show that ϕ−1 is continuous in a similar way. Suppose ϕ(gn) → 1SH

and B is an open neighborhood of 1G. There is some i ∈ ω such that Ni ⊆ B.
Let B′ = {h ∈ SH | hNi = Ni}, which is a basic open neighborhood of 1SH

,
therefore there are only finitely many n for which ϕ(gn) /∈ B′. Thus there are
only finitely many n for which ϕ(gn)(Ni) ̸= Ni, which means only finitely many
gn /∈ Ni, so ϕ

−1 is continuous.
This shows that ϕ : G → ϕ(G) is a topological group isomorphism with

ϕ(G) ≤ SH . Since H is countable, SH is isomorphic to a subgroup of Sω,
therefore G is isomorphic to a subgroup of Sω. Furthermore, since G is Polish,
ϕ(G) is a Polish subgroup of Sω, therefore ϕ(G) is closed.

Mentioned in the previous proof, we now define the notion of a canonical
structure.

Definition 3.4. Suppose G ≤ Sω is closed. The canonical structure of G,
denoted by AG, is the structure with universe ω and language

L = {RO | O is a G-orbit on ωn for some n = 1, 2, . . . },

where RAG

O = O ⊆ Rn for all n = 1, 2, . . . and all G-orbits O on ωn. As seen
in the proof of Theorem 3.3 (1) ⇒ (2), G = Aut(AG).

Theorem 3.5. Suppose G ≤ Sω is closed and AG is the canonical structure of
G. If we have finitely generated substructures A ⊆ AG and B ⊆ AG and an
isomorphism f : A → B, then f extends to an automorphism g : AG → AG,
meaning g|A = f .
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Proof. Notice that since L is a relational language, the structure generated by
a subset H ⊆ AG is H. List the elements of A and B as A = {a1, . . . , an} and
B = {b1, . . . , bn}. We can assume that f(ak) = bk for all 1 ≤ k ≤ n. Since f is
an isomorphism, f preserves relations, therefore

(a1, . . . , an) ∈ RAG

O ⇐⇒ (f(a1), . . . , f(an)) ∈ RAG

O

for every G-orbit O on ωn for all n. This means (a1, . . . , an) and (b1, . . . , bn)
are in the same G-orbit, so there exists some g ∈ G for which g·ak = bk for all
1 ≤ k ≤ n. This means g extends f , and clearly g is an automorphism, since
G = Aut(AG).
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4 Fräıssé limits

We define the nice property that appeared in Theorem 3.5.

Definition 4.1. An L-structure M is said to be ultrahomogeneous, if for any
two finitely generated substructures A,B ⪯M with an isomorphism ϕ : A→ B,
there exists an automorphism ψ ∈ Aut(M) which is an extension of ϕ.

Remark. With this definition, the canonical structure AG of some closed G ≤
Sω is said to be ultrahomogeneous.

Definition 4.2. For an L-structure M , we denote by Age(M) the class of L-
structures isomorphic to a finitely generated substructure of M .

Definition 4.3. (Extension Property, EP) Suppose M is an L-structure. We
say that M has the Extension Property if for any finitely generated A ⪯M and
an embedding f : A → B with B ∈ Age(M), there is an embedding g : B → M
for which g(f(a)) = a for all a in A.

An equivalent definition is the following: Suppose M is an L-structure. We
say that M has the Extension Property if for any A,B ∈ Age(M) with A ⪯ B
and an embedding f : A→M , there is an embedding g : B →M which extends
f .

Lemma 4.4. If M is a countable ultrahomogeneous structure, then M has the
Extension Property.

Proof. Suppose A ⪯ M is finitely generated and f : A → B is an embedding
with B ∈ Age(M). First, suppose B ⪯ M . Since f is an embedding, f :
A → f(A) is an isomorphism between finitely generated substructures of M .
By ultrahomogeneity of M , this extends to an automorphism h : M → M .
Therefore g = h−1|B : B →M is an embedding with g(f(a)) = a for all a in A.

Now, for an arbitrary B ∈ Age(M) we can find a finitely generated B̂ ⪯M

and an isomorphism ϕ : B → B̂. the function f̂ := ϕ ◦ f : A → B̂ is an
embedding, therefore, by the previous argument, there exists an embedding
g : B̂ → M with g(f̂(a)) = a for all a ∈ A. This gives us an embedding

g ◦ϕ : B →M with (g ◦ϕ)(f(a)) = g(f̂(a)) = a for all a ∈ A, which proves that
M satisfies EP.

Lemma 4.5. Suppose M and H are countable structures with the Extension
Property where Age(M) = Age(H), and suppose f : M0 → H0 is an isomor-
phism between the finitely generated substructures M0 ⪯M and H0 ⪯ H. Then
there is an isomorphism g :M → H, which is an extension of f .

Proof. Suppose we have M,H, f,M0, H0 as above. We will construct an iso-
morphism Φ : M → H using a back-and-forth argument. We will construct
a sequence of partial isomorphisms (Φk)k∈ω by induction on k, where each
partial isomorphism extends the previous one. First, we list the elements of
M and H so we have M = {m0,m1, . . . } and H = {h0, h1, . . . }. Suppose
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Φk : Mk → Hk is an isomorphism with Mk ⪯ M,Hk ⪯ H both finitely gener-
ated, {m0, . . . ,mk−1} ⊆Mk and {h0, . . . , hk−1} ⊆ Hk.

If mk ∈Mk, then let M̂k :=Mk and Ĥk := Hk and Φ̂k := Φk. If mk /∈Mk,
then let M̂k be the structure generated by Mk ∪ {mk}, which is clearly finitely

generated. The function Φ−1
k : Hk → M̂k is an embedding. By the Extension

Property, there is an embedding Φ̂k : M̂k → H with Φ̂k(Φk(h)) = h for all

h ∈ Hk, therefore Φ̂k is an extension of Φk. The range of Φ̂k is clearly finitely
generated, and will be denoted by Ĥk. We achieved that mk ∈ dom(Φ̂k)

We do a similar step to get Φk+1 in a way such that hk ∈ ran(Φk+1). If hk ∈
Ĥk, then let Mk+1 := M̂k and Hk+1 := Ĥk and Φk+1 := Φ̂k. If hk /∈ Ĥk, then

let Hk+1 be the structure generated by Ĥk ∪ {hk}, which is finitely generated.

The function Φ̂k : M̂k → Hk+1 is an embedding. By the Extension Property,

there is an embedding Ψ : Hk+1 → M with Ψ(Φ̂k(m)) = m for all m ∈ M̂k,

therefore Ψ−1 is an extension of Φ̂k. The range of Ψ is finitely generated, and
will be denoted byMk+1. Now we let Φk+1 = Ψ−1 :Mk+1 → Hk+1. This means
Φk+1 is an isomorphism between Mk+1 and Hk+1, where Mk+1 and Hk+1 are
both finitely generated, {m0, . . . ,mk} ⊆ M and {h0, . . . , hk} ⊆ H, and Φk+1

extends Φk. This proves the induction step.
For the base case, we let Φ0 := f , since f :M0 → H0 is an isomorphism with

M0 ⪯M and H0 ⪯ H both finitely generated, and we have no restriction on the
domain and range of f . In the sequence of functions Φ0,Φ1, . . . each function
extends the previous one, so the union is well-defined and we let Φ :=

⋃
k∈ω

Φk.

Clearly Φ is an isomorphism, dom(Φ) must include all elements of M , and
ran(Φ) must include all elements of H, therefore Φ :M → H is an isomorphism
that extends f .

Corollary 4.6. As a special case of the previous lemma, suppose M = H is a
countable structure with the Extension Property. The lemma states that given
finitely generated substructures M1 ⪯ M and M2 ⪯ M and an isomorphism
f : M1 → M2, we can extend f to an automorphism g : M → M , therefore M
is ultrahomogeneous. This fact, along with Lemma 4.4 gives us the following
corollary:

Corollary 4.7. For a countable structure M , the following are equivalent:

(1) M is ultrahomogeneous,

(2) M has the Extension Property.

Definition 4.8. A Fräıssé class/amalgamation class is a nonempty class K of
finitely generated, countable L-structures of countably many isomorphism types,
for which the following are true:

1. (Isomorphism Property, IP) K is closed under isomorphisms,

2. (Hereditary Property, HP) K is closed under finitely generated substruc-
tures,
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3. (Joint Embedding Property, JEP) For any A1, A2 ∈ K, there exists some
B ∈ K and embeddings f1 : A1 → B and f2 : A2 → B,

4. (Amalgamation Property, AP) For any A,B1, B2 ∈ K and embeddings
f1 : A → B1 and f2 : A → B2, there exists some C ∈ K and embeddings
g1 : B1 → C and g2 : B2 → C such that g1(f1(a)) = g2(f2(a)) for all
a ∈ A.

We will now state the famous theorem of Fräıssé.

Theorem 4.9. We state the following:

(1) IfM is an ultrahomogeneous countable structure, then Age(M) is a Fräıssé
class,

(2) If K is a Fräıssé class, then there is an ultrahomogeneous countable struc-
ture M for which Age(M) = K,

(3) If K is a Fräıssé class, and M is a countable structure with the Extension
property where Age(M) = K, then M is determined up to isomorphism.

Corollary 4.10. This means that for a Fräıssé class K, there exists an ultraho-
mogeneous countable structure M for which Age(M) = K, and M is determined
up to isomorphism. We call this structure M the Fräıssé limit of K.

Proof. (1) Since M is countable, it has countably many finitely generated sub-
structures, therefore Age(M) contains countably many isomorphism types. By
the definition of Age(M) it is easy to see that Age(M) consists of finitely gen-
erated structures, and satisfies IP and HP.

To prove that Age(M) satisfies JEP suppose A,B ∈ Age(M). Our goal is
to find a structure C ∈ Age(M) and embeddings fA : A→ C amd fB : B → C.

Since A,B ∈ Age(M), the structure A is isomorphic to some substructure Â ⪯
M , generated by some finite set {a1, . . . , ak} ⊆ M . Similarly, B is isomorphic

to B̂ ⪯ M generated by some finite set {b1, . . . , bl} ⊆ M . Therefore, let ϕA :

A→ Â and ϕB : B → B̂ be isomorphisms. Let C be the structure generated by
the finite set {a1, . . . , ak, b1, . . . , bl} ⊆M . Clearly C ∈ Age(M) and fA = id|Â :

Â → C is an embedding and fB = id|B̂ : B̂ → C is an embedding. Therefore
fA ◦ ϕA : A → C and fB ◦ ϕB : B → C are embeddings, thus Age(M) satisfies
JEP.

To prove that Age(M) satisfies AP suppose A0, A1, A2 ∈ Age(M) and f1 :
A0 → A1 and f2 : A0 → A2 are embeddings. Our goal is to find a structure
C ∈ Age(M) and embeddings g1 : A1 → C and g2 : A2 → C with g1(f1(a)) =
g2(f2(a)) for all a ∈ A0.

First, assume A0, A1, A2 ⪯ M . Since f1 is an embedding, f1 : A0 → f1(A0)
is an isomorphism between finitely generated substructures of M . By ultraho-
mogeneity of M , this extends to an automorphism h1 : M → M . Similarly, we
can extend f2 to an automorphism h2 : M → M . Let C := A1 ∪ h1 ◦ h−1

2 (A2),
which is a finitely generated substructure of M . Let g1 := idA1 : A1 → C
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and g2 := h1 ◦ h−1
2 : A2 → C, which are embeddings. For all a ∈ A0 we have

g2 ◦ f2(a) = h1 ◦ h−1
2 ◦ f2(a) = h1(a) = f1(a) = g1 ◦ f1(a).

Now suppose we have A0, A1, A2 ∈ Age(M) arbitrary. There exist finitely

generated Â0, Â1, Â2 ⪯ M , and isomorphisms ϕ0 : A0 → Â0, ϕ1 : A1 → Â1,
ϕ2 : A2 → Â2. We can construct embeddings f̂1 = ϕ1 ◦ f1 ◦ ϕ−1

0 : Â0 → Â1 and

f̂2 = ϕ2◦f1◦ϕ−1
0 : Â0 → Â2. By the previous case, we know there is some C ⪯M

and embeddings g1 : Â1 → C and g2 : Â2 → C with g1 ◦ f̂1(a) = g2 ◦ f̂2(a)
for all a ∈ Â0. Let h1 := g1 ◦ ϕ1 : A1 → C and h2 := g2 ◦ ϕ2 : A2 → C,
which are embeddings. For all a ∈ A0 we have h2 ◦ f2(a) = g2 ◦ ϕ2 ◦ f2(a) =

g2 ◦ϕ2 ◦ f2 ◦ϕ−1
0 ◦ϕ0(a) = g2 ◦ f̂2 ◦ϕ0(a) = g1 ◦ f̂1 ◦ϕ0(a) = h1 ◦ f1(a), therefore

Age(M) satisfies AP.
(2) For the construction of M , which will be the Fräıssé limit of K, we will

use a standard bookkeeping argument. First, we will construct a sequence of
structures (Ak)k∈ω for which the following are true:

(a) Ak ∈ K for all k ∈ ω,

(b) Ak ⪯ Ak+1 for all k ∈ ω,

(c) Every A ∈ K can be embedded into some Ak,

(d) Suppose A,B ∈ K, and we have embeddings f1 : A→ An and f2 : A→ B
for some n ∈ ω. Then there is some m ∈ ω with m > n and an embedding
g : B → Am with f1(a) = g(f2(a)) for all a ∈ A.

Since K has countably many isomorphism types, we can pick a structure from
each isomorphism type and list them, so we let T := {T1, T2, . . . } be the set
of representatives of the isomorphism types. We will construct the sequence
(Ak)k∈ω by induction on k. For the base case, A0 := T0.

Suppose we have Ak ∈ K for some odd number k ∈ ω. By the Joint

Embedding Property of K, there is a structure Âk+1 ∈ K and embeddings

f1 : Ak → Âk+1 and f2 : T(k+1)/2 → Âk+1. Formally, this does not mean

Ak ⪯ Âk+1, but notice that since Ak can be embedded into Âk+1 we can build

a structure isomorphic to Âk+1 by adding elements to the universe of Ak and

defining the relations and functions on these new elements according to Âk+1.
This gives us a structure Ak+1 for which Ak ⪯ Ak+1, and T(k+1)/2 can be
embedded into Ak+1.

Given A,B ∈ K, there are only countably many ways to embed A into B,
since A is finitely generated and an embedding is already determined by the
images of the generating elements. This means that there are only countably
many 6-tuples of the form (A,n,B, f, C, g), where A,B,C ∈ T, n ∈ ω, f :
A → B is an embedding, and g : A → C is an embedding. We can construct
a countable sequence S = (Ai, ni, Bi, fi, Ci, gi)i∈ω in which every such 6-tuple
appears infinitely many times.

Now suppose we have Ak ∈ K for an even number k ∈ ω. Take the
ith element of the sequence S where i = k/2 + 1, and denote it by Si =
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(Ai, ni, Bi, fi, Ci, gi). If k < ni then we simply let Ak+1 := Ak. If k ≥ ni, but
Ani does not have isomorphism type C, then we let Ak+1 := Ak also. If k ≥ ni
and there is an isomorphism ϕ : C → Ani

, then we let g′i := ϕ ◦ gi : A → Ani
,

which is an embedding. We will construct Ak+1 in a way such that it satisfies
property (d) for the structures Ai and Bi and the embeddings fi : Ai → Bi and

g′i : Ai → Ani
. By the Amalgamation Property of K there is some Âk+1 ∈ K and

embeddings h1 : Ani
→ Âk+1 and h2 : Bi → Âk+1 with h1(g

′
i(a)) = h2(fi(a))

for all a ∈ Ai. Again, formally we do not have Ak ⪯ Âk+1, but by the same argu-

ment as before we can construct Ak+1 isomorphic to Âk+1, for which Ak ⪯ Ak+1

and h1 : Ani → Ak+1 is the identity. This gives us a structure Ak+1 with
Ak ⪯ Ak+1 and an embedding h2 : B → Ak+1 with g′i(a) = h2(fi(a)) for all
a ∈ Ai, which is what we wanted.

We have now constructed the sequence of structures (Ak)k∈ω and we want
to prove this sequence satisfies properties (a)-(d). Clearly we have Ak ∈ K and
Ak ⪯ Ak+1 for all k ∈ ω. Suppose we have an arbitrary A ∈ K with isomorphism
type Tn for some n ∈ ω. By our construction, Tn can be embedded into A2n,
therefore A can also be embedded into A2n, which means our sequence satisfies
property (c).

Suppose we have A,B ∈ K, and embeddings f1 : A→ An and f2 : A→ B for
some n ∈ ω. We let C := An, and we suppose A,B,C have isomorphism types
TiA , TiB , TiC respectively. During our construction, we encountered the 6-tuple
(TiA , n, TiB , f

′
2, TiC , f

′
1) infinitely many times, where f ′1 = f1 and f ′2 = f2 up to

isomorphism. This means we encountered the 6-tuple (TiA , n, TiB , f
′
2, TiC , f

′
1)

on some step number k, where k is an even number k ∈ ω and k ≥ n. We
constructed Ak+1 in a way such that there exists an embedding g′ : B → Ak+1

with f ′1(a) = g′(f ′2(a)) for all a ∈ A. Formally, we do not have an embedding
g : B → Ak+1, but up to isomorphism g′ : B → Ak+1 satisfies f1(a) = g(f2(a))
for all a ∈ A, so our sequence satisfies property (d).

Since Ak ⪯ Ak+1 for all k ∈ ω, the union is well-defined and we let M :=⋃
k∈ω

Ak, which is clearly countable. To show that Age(M) = K, suppose A ∈ K.

We knowA can be embedded into someAk ⪯M with an embedding f : A→ Ak.
Since A is finitely generated, f(A) is also finitely generated. This means that A
is isomorphic to a finitely generated substructure of M , therefore A ∈ Age(M),
proving K is a subset of Age(M).

On the other hand, suppose A ∈ Age(M). The structure A is isomorphic to
some finitely generated B ⪯ M . The finitely many elements that generate B
must all appear in some Ak, therefore B is a finitely generated substructure of
some Ak ∈ K. This means A is isomorphic to a finitely generated substructure
of an element of K, and since K satisfies HP and IP, A ∈ K. This proves Age(M)
is a subset of K, so we have Age(M) = K.

To show thatM is ultrahomogeneous, we will show that it has the Extension
Property. Suppose A ⪯M is finitely generated and f1 : A→ B is an embedding
for some B ∈ Age(M). The finitely many elements that generate A all appear in
some Ak, so we have A ⪯ Ak. In other words, the identity f2 = id|A : A→ Ak is
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an embedding. Clearly A ∈ Age(M), and since Age(M) = K, we have A,B ∈ K.
By property (d), for some m > n there exists an embedding g : B → Am with
g(f1(a)) = f2(a) = a for all a ∈ A, which proves that M satisfies EP. Therefore,
by Corollary 4.7, M is ultrahomogeneous, thus we have successfully constructed
the Fräıssé limit of K.

(3) Suppose M and H are both countable structures with the Extension
Property and Age(M) = Age(H) = K. We want to show that M is isomorphic
to H. Let M0 ⪯M be the structure generated by the empty set in M , which is
clearly finitely generated. Since M0 ∈ Age(M) = Age(H), there is an isomor-
phism f : M0 → H0 for some finitely generated H0 ⪯ H. By Lemma 4.5 there
is an extension of f which is an isomorphism g : M → H. This proves that M
and H are isomorphic and that M is determined up to isomorphism.

4.1 Examples

4.1.1 The set of rationals with the standard ordering

One of the most basic examples of a Fräıssé limit is the Fräıssé limit of the class
of finite ordered sets.

Theorem 4.11. We state the following:

(1) The class of finite ordered sets, denoted by K, is a Fräıssé class,

(2) The Fräıssé limit of K is the set of rational numbers with the standard
ordering, denoted by (Q, <).

Proof. (1): Clearly every structure in K is countable and finitely generated, and
K satisfies IP and HP. The class K contains only countably many isomorphism
types, since for every finite n, there exists a unique ordered set on n elements,
up to isomorphism. For any two finite ordered sets, the one with smaller or
equal size can be embedded into the other one, thus K satisfies JEP.

To prove that K satisfies AP, suppose we have finite ordered sets A,B,C and
embeddings f1 : A→ B and f2 : A→ C. We need to find a finite ordered set D
and embeddings g1 : B → D and g2 : C → D, for which g1(f1(a)) = g2(f2(a))
for all a ∈ A. We can assume that A ⪯ B and A ⪯ C, the functions f1 and f2
are the identity, and the universe of B and the universe of C intersect precisely
in the universe of A. Let D be B ∪ C, and let the functions g1 : B → D and
g2 : C → D be the identity. Say A = {a1, . . . , an}, then the n elements of A
define n+ 1 intervals of the forms:

{x < a1}, {ak < x < ak+1}, {an < x},

some of which may be empty. We define the ordering on D the following way:
two elements of the set B ⊆ D will have the same relation as they had in the
structure B, and two elements of the set C ⊆ D will have the same relation as
they had in the structure C. If an element of the set B ⊆ D and an element of
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the set C ⊆ D are in different intervals, the one in the ”lower” interval will be
defined to be smaller. If an element of the set B ⊆ D and an element of the set
C ⊆ D are in the same interval, the element from B will always be defined to be
smaller. This gives us an ordering on the set D for which g1, g2 are embeddings
and g1(f1(a)) = g2(f2(a)) for all a ∈ A because f1, f2, g1, g2 are all the identity.
This proves that K satisfies AP, thus K is a Fräıssé class.

(2): Since (Q, <) is a relational structure, the structure generated by a finite
subset F ⊆ Q is simply F . It is easy to see that any structure isomorphic to a
finite substructure of (Q, <) is a finite ordered set, and that every finite ordered
set is isomorphic to a finite substructure of (Q, <), therefore Age((Q, <)) = K.

To show that (Q, <) is ultrahomogeneous, suppose we have two finite sub-
structures {p1, . . . , pn} ⪯ Q and {q1, . . . , qn} ⪯ Q which are isomorphic. We
can assume p1 < . . . pn and q1 < · · · < qn. We must find an automorphism
of (Q, <), in other words, an order-preserving function f : Q → Q, for which
f(pi) = qi for i = 1, . . . , n. This is an easy task, as we can define f(pi) := qi for
i = 1, . . . , n and linearly interpolate everywhere else.

Since (Q, <) is countable, ultrahomogeneous, and Age((Q, <)) = K, it fol-
lows from Theorem 4.9 (3) that (Q, <) is the Fräıssé limit of K, up to isomor-
phism.

It is important to mention here that countability is crucial in determining
the Fräıssé limit up to isomorphism, since the real numbers with the stan-
dard ordering, denoted by (R, <), is also an ultrahomogeneous structure with
Age((R, <)) = K, but (R, <) is clearly not isomorphic to (Q, <).

4.1.2 The random graph

The Random graph is a well-known infinite graph with multiple equivalent def-
initions. The following theorem gives us three equivalent definitions, combining
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the fields of first-order logic, graph theory, and probability theory.

Theorem 4.12. We state the following:

(1) The class of finite graphs, denoted by K, is a Fräıssé class. We will let G
be the Fräıssé limit of K,

(2) Suppose H is a graph with VH = ω with the property that for any two sets
A ⊆ ω and B ⊆ ω with A ∩ B = ∅, there is some v ∈ ω where v /∈ A ∪ B
and v is connected to all vertices in A, and v is not connected to any
vertices in B. Then H is isomorphic to G,

(3) Suppose we create a graph R with VR = ω by connecting every pair of
vertices with probability 1/2 independently. Then R has the property in
(2) with probability 1, and therefore R is isomorphic to G with probability
1.

Proof. (1): Similarly to the class of finite ordered sets, every structure in K is
countable and finitely generated, K contains only countably many isomorphism
types, and K satisfies IP and HP. For any two graphs A and B, which we can
assume to be disjoint, A and B can be embedded into the disjoint union of A
and B by the identity function, therefore K satisfies JEP.

We will prove that K satisfies AP similarly to how we proved that the class
of finite ordered sets satisfies AP. Suppose we have finite graphs A = (VA, EA),
B = (VB , EB), C = (VC , EC) and embeddings f1 : A→ B and f2 : A→ C. We
need to find a finite graph D and embeddings g1 : B → D and g2 : C → D,
for which g1(f1(a)) = g2(f2(a)) for all a ∈ A. We can assume that A ⪯ B
and A ⪯ C, the functions f1 and f2 are the identity, and VB ∩ VC = VA. The
universe of the structure D will be VD := VB ∪ VC , the edges of D will be
ED = EB ∪ EC and the embeddings g1 : B → D and g2 : C → D will be the
identity. Clearly D is a finite graph and we have g1(f1(a)) = g2(f2(a)) for all
a ∈ VA since f1, f2, g1, g2 are all the identity. This proves K satisfies AP, thus
K is a Fräıssé class.

(2): Suppose that H is a graph on ω with the property in (2), and G is the
Fräıssé limit of K as above. We would like to show that H is isomorphic to G.
Since H is clearly countable, by Theorem 4.9 (3), it is enough to show that H
has the Extension Property and Age(H) = K.

Since the language of H is relational, the structure generated by a finite
subset F ⊆ H is simply F . To prove thatH has the Extension Property, suppose
we have A,B ∈ Age(H) with A ⪯ B and an embedding f0 : A → H0 ⪯ H.
Clearly A and B are both finite graphs, so we will let VA = {a1, . . . , am} and
VB = {a1, . . . , am, b1, . . . , bn}. We must find an embedding g : B → H that
extends f0 and we will do so by induction on n. Suppose we have an isomorphism
fk : Ak → Hk between the graphs Ak and Hk for some 1 ≤ k ≤ n, where
VAk

= VA ∪ {b1, . . . , bk} and VHk
= {h1, . . . , hm+k}. We define the set of

vertices in Ak which are connected to bk+1, and the set of vertices in Ak which
are not connected to bk+1 as follows:

A
(1)
k = {v ∈ Ak | (v, bk+1) ∈ EB} and A

(2)
k = {v ∈ Ak | (v, bk+1) /∈ EB}.
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Notice that A
(1)
k and A

(2)
k are disjoint, and since fk is an isomorphism, f(A

(1)
k )

and f(A
(2)
k ) are disjoint as well. By the property in (2), we can find a vertex

hm+k+1 ∈ ω = VH , which is connected to all vertices in fk(A
(1)
k ) and not con-

nected to any vertices in fk(A
(2)
k ). This gives us an isomorphism fk+1 : Ak+1 →

Hk+1, where VAk+1
= VA ∪ {b1, . . . , bk+1} and VHk+1

= {h1, . . . , hm+k+1} and
ϕk+1(ak+1) = hm+k+1. The isomorphism fk+1 extends fk, so this proves the
induction step. Therefore we can find an isomorphism fn : B → Hn which
extends f0, so H satisfies EP.

To show that Age(H) = K, it is easy to see that every finite substructure
of H is a finite graph, so we have Age(H) ⊆ K. Now suppose A ∈ K is a finite
graph. Pick any two points a ∈ A and h ∈ H. The function f : {a} → {h}
between the one-vertex graphs {a} and {h} is clearly an isomorphism. By the
Extension Property, we can extend f to an isomorphism g : A → H0, for some
finite subgraph H0 of H. This shows K ⊆ Age(H), so we have Age(H) = K.
By Theorem 4.9 (3), the graphs H and G are isomorphic.

(3): We want to prove that the graph R has the property in (2) with prob-
ability 1. Suppose we have finite sets A ⊆ ω and B ⊆ ω with A ∩ B = ∅,
|A| = n, |B| = m, and some vertex v /∈ A ∪ B. Denote the event that v is
connected to all vertices in A and no vertices in B by QA,B,v. Since every pair
of vertices is connected with probability 1/2 independently, the probability of
QA,B,v is P(QA,B,v) = (1/2)n(1/2)m = 2−(n+m) > 0. Therefore, the comple-
ment of QA,B,v has probability P(QC

A,B,v) = 1− 2−(n+m) < 1. For every v ̸= v′

with v, v′ /∈ A ∪ B, the events QA,B,v and QA,B,v′ are independent, thus the
probability that the event QA,B,v does not occur for any v /∈ A ∪B is

P(
⋂

v/∈A∪B

QC
A,B,v) =

∏
v/∈A∪B

P(QC
A,B,v) = lim

i→∞
(1− 2−(n+m))i = 0.

Therefore, there is a vertex v /∈ A ∪ B, which is connected to all vertices in A
and not connected to any vertices in B with probability 1. This is true for all
finite subsets A ⊆ ω and B ⊆ ω with A ∩ B = ∅, so we have shown that R
satisfies the property in (2) with probability 1.
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5 Extreme amenability - Kechris, Pestov, Todor-
cevic

5.1 The KPT correspondence

In this section we will be following section 4. of Kechris, Pestov, Todorcevic [3]

Definition 5.1. Suppose G is a Hausdorff topological group and X is a compact
Hausdorff space. A G-flow is a continuous action of G on X. For simplicity of
notation, we will say X is a G-flow, instead of saying G↷ X is a G-flow.

Remark. For the rest of this section, we will always assume that G is Hausdorff.

Definition 5.2. A topological group G is said to be extremely amenable if every
G-flow has a fixed point, in other words, if X is a compact Hausdorff space and
X is a G-flow, there is some x ∈ X for which g·x = x for all g ∈ G.

Lemma 5.3. Suppose G is a topological group, and X is a G-flow, then the
following are equivalent:

(1) The G-flow X has a fixed point,

(2) For every n = 1, 2, . . . , continuous function f : X → Rn, ε > 0, and finite
F ⊆ G, there is some x ∈ X such that |f(x)−f(g·x)| ≤ ε for every g ∈ F ,
where | | is the Euclidean norm.

Proof. (1) ⇒ (2): Clearly, if x ∈ X is a fixed point, x = gx for every g ∈ G,
therefore |f(x)− f(g·x)| = 0 for every function f .

(2) ⇒ (1): First, for fixed n, f, ε, F as in (2), we define the set

Hf,ε,F := {x ∈ X | |f(x)− f(g·x)| ≤ ε for every g ∈ F} ⊆ X.

Notice that if F = {g}, the function f ′ : X → Rn, where f ′(x) = |f(x)−f(g·x)|,
is continuous. Therefore, Hf,ε,{g} is the preimage of the closed set {x ∈ Rn |
|x| ≤ ε}, so Hf,ε,{g} is closed. The set Hf,ε,F is the intersection of Hf,ε,{g} for
all f ∈ F , where F is finite, thus Hf,ε,F is closed as well. Since X is compact,
Hf,ε,F is also compact. We would like to show that the intersection of Hf,ε,F

for all f, ε, F is nonempty. By a compactness argument, it is enough to show
that the intesection of finitely many {Hfi,εi,Fi

}1≤i≤n is nonempty. Suppose
fi : R → Rmi , then we let

f ′ := (f1, . . . , fn) : R → Rm1+···+mn

ε′ := min(ε1, . . . , εn)
F ′ := F1 ∪ · · · ∪ Fn.

By our assumption, Hf ′,ε′,F ′ is nonempty, therefore
n⋂

i=1

Hfi,εi,Fi
̸= ∅. This

shows that the intersection of Hf,ε,F for all f, ε, F is nonempty. But notice that
an element x ∈

⋂
f,ε,F

Hf,ε,F must be a fixed point.
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If x was not a fixed point, there would be some g ∈ G with g·x ̸= x. Since X
is compact and Hausdorff, X is T4. By Urysohn’s lemma there is a continuous
function f : X → R with f(x) = 0 and f(g·x) = 1. This means, for F = {g}
and 0 < ε < 1, the set Hf,ε,F is empty, since |f(x) − f(g·x)| = 1 > ε, which
would be a contradiction.

We will now prove the following technical lemma, as we will need it for the
proof of Theorem 5.5.

Lemma 5.4. Suppose G is something, X is a G-flow, and f : X → Rn for
some n ∈ ω. Then there is an open neighborhood V of the identity 1G, such that
for every v ∈ V and every x ∈ X we have |f(x) − f(v·x)| ≤ ε, where | | refers
to the Euclidian norm.

Proof. First, fix some x ∈ X. Since f is continuous, we can find some Wx

neighborhood of x, for which |f(x) − f(w)| ≤ ε/2 for all w ∈ Wx. Since the
action a : G ×X → X is continuous, we can find an open neighborhood Ux of
x and an open neighborhood Vx of 1G such that a(Vx ×Ux) ⊆Wx. This means
that for every v ∈ Vx and every y ∈ Ux we have |f(x)− f(v·y)| ≤ ε/2. Now we
will use a compactness argument. Since X is compact, it can be written as the

union of Ux for finitely many x, so we say X =
n⋃

i=1

Uxi
. We let V =

n⋂
i=1

Vxi
,

which is a neighborhood of 1G. For any v ∈ V and x ∈ X where x ∈ Uxi
for

some xi, we have

|f(x)− f(v·x)| ≤ |f(x)− f(xi)|+ |f(xi)− f(v·x)| ≤ ε/2 + ε/2 = ε,

because x, xi ∈ Uxi
and v ∈ V ⊆ Vi, so we are done.

Theorem 5.5. Suppose G ≤ Sω is closed, then the following are equivalent:

(1) The group G is extremely amenable,

(2) For any open subgroup V ≤ G, any k-coloring c : G/V → {1, . . . , k} of
the left-cosets of V , and any finite set of left-cosets A ⊆ G/V , there is an
element g ∈ G, for which g·A is monochromatic. In other words, there is
a color 1 ≤ i ≤ k for which c(g·a) = i for every a ∈ A, where G acts on
G/V in the usual way g·hV = ghV .

Proof. (1) ⇒ (2): Suppose we have V, c, A as above. Consider the set C =
{1, . . . , k}G/V of k-colorings of the left-cosets of V . The space C is the product of
Hausdorff spaces, so C is Hausdorff. Furthermore, by Tychonoff’s theorem, the
space C is compact (with respect to the natural topology), as it is the product
of compact spaces. Consider the action (g·p)(x) = p((g−1)·x) for g ∈ G, p ∈ C,
and x ∈ G/V , which is associative since

g·(h·p)(x) = (h·p)((g
−1)·x) = p((h−1)(g−1)·x) = (gh)·p(x),

where h ∈ G. This gives us that C is a G-flow, and the closed subset X := G·c ⊆
C is also a G-flow. Since G is extremely amenable, we can find a fixed point
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c∗ ∈ X. The coloring c∗ must be constant, since c∗(x) = g·c
∗(x) = c∗((g−1)·x)

for all g ∈ G, and G acts transitively on G/V , so we have c∗(x) = i for all
x ∈ G/V . Since A is finite and c∗ ∈ G·c we can find some g ∈ G for which
(g−1)·c|A = c∗|A. Therefore, c(g·a) = c∗(a) = i for all a ∈ A, so we are done.

(2) ⇒ (1): Let X be a G-flow, we want to show that X has a fixed point.
By Lemma 5.3, it is enough to show that if we have n ∈ ω, f : X → Rn

continuous, ε > 0, and F ⊆ G finite, then there exists an x ∈ X for which
|f(x) − f(g·x)| ≤ ε for all g ∈ F . Using Lemma 5.4, we can find an open
neighborhood V ′ of the identity 1G, for which ∀v ∈ V ′, ∀x ∈ X, ∀ε > 0 we have
|f(x)−f(v·x)| ≤ ε/3. Recall Theorem 3.3, which gives us that there is a system
of subgroups which form an open neighborhood basis at the identity 1G, since
G must be non-Archimedean. This means there is an open subgroup V ⊆ V ′,
for which ∀v ∈ V , ∀x ∈ X, ∀ε > 0 : |f(x)− f(v·x)| ≤ ε/3 holds.

We will partition the set f(X) ⊆ Rn into finitely many subsets A1, . . . , Ak ⊆
Rn of diameter at most ε/3. For a fixed x′ ∈ X, let

Ui := {g ∈ G | f(g·x′) ∈ Ai}, and Vi := V Ui = {V u ∈ G/V | u ∈ Ui}.

Since
k⋃

i=1

Vi = G/V we can define a coloring on all of G/V . , we can find a

k-coloring c of the left-cosets of V such that c−1(i) ⊆ Vi for all 1 ≤ i ≤ k. Let

F̂ be the finite set F ∪ {1G}. It is easy to see that property (2) is equivalent
to the analogous statement for the space of right-cosets of V , where G acts in
the usual way g·V h = V hg−1. For V , c, F̂ V ⊆ V/G, we can use this statement
about right-cosets to get that there is a color 1 ≤ i ≤ k and some g ∈ G such
that c((g−1)·V F̂ ) = i for all a ∈ F̂ . This means that V F̂g ⊆ Vi, and since

1G ∈ V , we have that F̂ g ⊆ Vi.
Now we will show that x := gx′ works, so we fix some h ∈ F̂ , and we want

to show that |f(x) − f(hx)| ≤ ε for all h ∈ F̂ . Since hg ⊆ Vi = V Ui, we can
write hg = v′1ui for some v′1 ∈ V . Since V is a subgroup, (v′1)

−1 = v1 ∈ V , so
we have v1hg = ui ∈ Ui. Therefore,

f(v1hgx
′) ∈ Ai ⇒ f(v1hx) ∈ Ai.

Since v1 ∈ V , we have
|f(v1hx)− f(hx)| ≤ ε/3,

so f(hx) is in the ε/3-neighborhood of Ai.

Similarly to before, since 1G ∈ F̂ , we can write g = v′2ui for some v′2 ∈ V .
Since V is a subgroup, (v′2)

−1 = v2 ∈ V , so we have v2g = ui ∈ Ui. Therefore,

f(v2gx
′) ∈ Ai ⇒ f(v2x) ∈ Ai.

Since v1 ∈ V , we have
|f(v2x)− f(x)| ≤ ε/3,

so f(x) is in the ε/3-neighborhood of Ai.
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Finally, since both f(hx) and f(x) are in the ε/3-neighborhood of Ai, we
have

|f(x)− f(hx)| ≤ ε/3 + ε/3 + ε/3 = ε,

so we are done.

Remark. By the proof of (2) ⇒ (1) above, it is easy to see that we can restrict
V to be from any given system of subgroups which from a neighborhood basis
at 1G. In particular, we can restrict V to be of the form G(F ), the pointwise
stabilizer of some finite F ∈ ω, since the system of subgroups {G(F ) | F ⊆ ω is
finite} forms a neighborhood basis at 1G. Furthermore, we can restrict F to be
from any cofinal (under inclusion) set of finite subsets of ω.

Definition 5.6. Suppose G ≤ Sω. A G-type σ is the G-orbit of some F ⊆ ω,
where F is finite and nonempty, formally σ = G·F

Notation 5.7. Suppose G ≤ Sω and σ and ρ are G-types. We write ρ ≤ σ if
there is some F ∈ σ and some F ′ ∈ ρ for which F ′ ⊆ F .
Equivalently, we write ρ ≤ σ if every F ′ ⊆ ρ is a subset of some F ⊆ σ.
Equivalently, we write ρ ≤ σ if every F ⊆ σ has some subset F ′ ⊆ ρ.

Consider a language L = {(Ri)i∈I , (fj)j∈J}. We will denote the space of all
L-structres with universe ω by XL. Given that the relation Ri has arity ni for
all i ∈ I, and the function fj has arity mj for all j ∈ J , we have

XL =
∏
i∈I

2ω
ni ×

∏
j∈J

ωωmj

If L is a relational language, then J = ∅, therefore XL is compact, since it is
the product of compact spaces. The group Sω acts canonically on XL in the
following way: Given A ∈ XL, we let g·A be the the structure B ∈ XL, such
that

(a1, . . . , ani
) ∈ RB

i ⇐⇒ ((g−1)·a1, . . . , (g
−1)·ani

) ∈ RA
i ,

fBj (a1, . . . , amj
) = fAj ((g−1)·a1, . . . , (g

−1)·amj
),

which means g : A → B is an isomorphism. This action of Sω on XL is called
the logic action, and we will quickly show why it is continuous:

It is enough to show that the logic action a : Sω × XL → XL is continuous
in (1, A) for some L-structure A. Fix a neighborhood W of A in XL. We must
find an open set in Sω ×X whose image lies entirely within W . We can find a
smaller, basic open neighborhood U of A, of the form

U = {B ∈ XL | Fi ∈ RB
ni

⇐⇒ Fi ∈ RA
ni
, where Fi is a tuple and i ∈ I finite},

i.e., the set of structures in XL, which act the same as A on a finite collection
of k-tuples for various k. Then, we can let F0 be the set of all numbers that
appear in these tuples. This gives us an open neighborhood of 1, namely H(F1),
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the pointwise stabilizer of F0. From here it is easy to see that H(F1) × U is an
open set in Sω ×X for which a(H(F1) × U) = U , therefore a is continuous.

This means that if L is relational, the space XL is a G-flow for any G ≤ Sω.
Now, consider that our language L consists of a single binary relation symbol
L = {<}. We will denote by LO ⊆ XL the subspace of linear orderings on ω,
where < is interpreted as a linear order. Clearly LO is Sω-invariant.

To see that LO is compact, it is enough to show that it is closed. Suppose A
is an L-structure with A /∈ LO. This means <A is not a linear order, therefore
it is either not irreflexive, not transitive, or it does not satisfy trichotomy. Then
it is easy to see that there must be finitely subset of ω where A already fails
to be a linear order. This means A has an open neighborhood in which every
structure fails to be a linear order, thus the complement of LO is open.

Therefore, LO is subflow of XL for any G ≤ Sω. This gives us the following
definition:

Definition 5.8. Let G be a subgroup of Sω. We say that G preserves an ordering,
if the G-flow LO has a fixed point, where LO is the space of linear orderings on
ω. In other words, G preserves an ordering if there is a linear order <∗ on ω,
for which a <∗ b ⇐⇒ g·a <

∗ g·b for all g ∈ G.

Theorem 5.9. Suppose G ≤ Sω is closed. Then the following are equivalent:

(1) G is extremely amenable,

(2) (a) For any F ⊆ ω, where F is finite and nonempty, we have G(F ) = GF ,
and (b) For any two G-types σ, ρ with ρ ≤ σ, and a k-coloring c : ρ →
{1, . . . , k}, there is some F ∈ σ and a color 1 ≤ i ≤ k for which c(F ′) = i
for all F ′ ⊆ F , F ′ ∈ ρ,

(3) (c) G preserves an ordering, and (b) as in (2) above.

Proof. (3) ⇒ (2): Clearly, it is enough to prove that (c) implies (a). Suppose G
preserves an ordering<∗, and suppose we have a nonempty finite set F ⊆ ω. List
the elements of F as F = {x1, . . . , xn}, and we can assume that x1 <

∗ · · · <∗ xn.
Since G preserves <∗, we have g·x1 <

∗ · · · <∗ g·xn for all g ∈ G. Then, clearly,
if some g ∈ G stabilizes F setwise, it must also stabilize F pointwise, since it
has the preserve the <∗-order of the elements, therefore GF = F(F ).
(1) ⇒ (3): Since G is extremely amenable, the G-flow LO has a fixed point. By
definition, this means that G preserves an ordering, so we have shown (c).
To prove (b), suppose we have σ, ρ, and c : ρ → {1, . . . , , k} as in (2). We
must find some F ∈ σ for which c(F ′) = i for every F ′ ⊆ F , F ′ ∈ ρ. Say ρ
is of the form ρ = G·F0, and consider the open subgroup V = G(F0). Since
(c) implies (a), V = G(F0) = GF0

, this gives us that c is a k-coloring of G/V ,
as the elements of ρ correspond to left-cosets of V = GF0 . Consider the finite
set A = {F ′

0 ∈ ρ | F ′
0 ⊆ F ∗} for some F ∗ ∈ σ. We can apply Theorem 5.5

to V, c, A, therefore there is some g ∈ G with c(g·a) = i for all a ∈ A. Now
we let F = g·F

∗ ∈ σ. For any F ′ ⊆ F , F ′ ∈ ρ, we have (g−1)·F
′ ⊆ F ∗ and

(g−1)·F
′ ∈ ρ, so (g−1)·F

′ ∈ A, therefore c(g·(g
−1)·F

′) = c(F ′) = i, thus we
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have shown (b).
(2)⇒ (1): We will show (2) of Theorem 5.5, for V of the formG(F ), where F ⊆ ω
is finite. Consider the G-type ρ = G·F . Since V = G(F ) = GF , the left-cosets
of V can be identified with elements of ρ. Fix a k-coloring c : ρ → {1, . . . , k}
and some finite A ⊆ ρ. Now we let

⋃
A = F0, and σ = G·F0. By the property

(b) there is some 1 ≤ i ≤ k and some F ∗ ∈ σ such that c(F ′) = i for every
F ′ ⊆ F ∗, F ′ ∈ ρ. If we write F ∗ = g·F0 for some g ∈ G, we have c(g·F

′) = i
for all F ′ ∈ A, since g·F

′ ⊆ F ∗ and g·F
′ ∈ ρ, so we have shown (2) of Theorem

5.5.

For ease of notation, we introduce the following:

Notation 5.10. Suppose G ≤ Sω and σ, ρ are G-types with σ ≤ ρ. For F ∈ σ
we write (

F
ρ

)
= {F ′ ∈ ρ | F ′ ⊆ F}

Notation 5.11. Suppose G ≤ Sω and σ, ρ, τ are G-types with ρ ≤ σ ≤ τ . For
k = 2, 3, . . . , we write

τ → (σ)ρk,

if for every F ∈ τ and k-coloring c :

(
F
ρ

)
→ {1, . . . , k}, there is some F ′ ⊆ F ,

F ′ ∈ σ for which

(
F ′

ρ

)
is monochromatic, in other words c(F0) = i for all

F0 ⊆ F ′, F0 ∈ ρ. Note that this is equivalent to saying there is some F ∈ τ with
this property.

Definition 5.12. Suppose G ≤ Sω. We say G has the Ramsey Property, if for
all G-types σ and ρ with σ ≤ ρ, and every k = 2, 3, . . . , there is a G-type τ with
σ ≤ τ for which τ → (σ)ρk.

Theorem 5.13. Suppose G ≤ Sω closed. Then the following are equivalent:

(1) G is extremely amenable,

(2) G preserves an ordering and G has the Ramsey Property.

Proof. (1) ⇒ (2): We have proven before that if G is extremely amenable, then
it preserves an ordering, so we must show that G has the Ramsey Property. It
can be shown that, by induction, we can restrict k to be 2 in Definition 5.12. By
contradiction, assume that there are G-types σ and ρ with ρ ≤ σ for which does
not exist a G-type τ with σ ≤ τ and τ → (σ)ρk. First, we will fix some F0 ∈ σ.
By our assumption, for every finite set E with F⊆E, there must be some coloring

cE :

(
E
ρ

)
→ {1, 2}, for which there is no monochromatic set F ∈

(
E
σ

)
. For

some finite F ⊆ ω, let CF be the collection of sets CF := {E ⊆ ω | F ⊆ E}. The
set C := {CF | F ⊆ ω finite} is a centered family of sets, since for any finitely
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many CFi
, the set

m⋃
i=1

Fi is contained in the intersection
m⋂
i=1

CFi
. Therefore C

can be extended to an ultrafilter U on the index set I of finite nonempty subsets
of ω. The ultrafilter U will help us define a coloring in the following way: for
some D ∈ ρ, either

{E ⊆ ω | D ∪ F0 ⊆ E, cE(D) = 1} ∈ U,

or

{E ⊆ ω | D ∪ F0 ⊆ E, cE(D) = 2} ∈ U .

Naturally, we let c(D) = I ⇐⇒ {E ⊆ ω | D ∪ F0 ⊆ E, cE(D) = i} ∈ U , which
gives us a 2-coloring c : ρ → {1, 2}. By Theorem 5.9 (b), there is some F ∈ σ,

which is monochromatic on

(
F
ρ

)
with color i. For some D ∈

(
F
ρ

)
, we know

that c(D) = i, so we let AD = {E ⊆ ω | D ∪ F ⊆ E, cE(D) = i = c(D)} ∈ U .

Since

(
F
ρ

)
is finite, the set ⋂

D∈

F
ρ


AD

is not empty, so we can pick some element of it, say E. Then we can see

that F0 ⊆ E, and for every D ∈
(
F
ρ

)
, we have cE(D) = c(D) = i, therefore

F ∈
(
E
σ

)
is monochromatic for cE , so we have arrived at a contradiction.

(2) ⇒ (1): Since G preserves an ordering, by Theorem 5.9 it is enough to
show that G satisfies (b) of (2) in Theorem 5.9. Clearly, since G has the Ramsey
Property, this is true.

Remark. Suppose G ≤ Sω. A set T of G-types is said to be cofinal if for any
G-type ρ, there is some σ ∈ T with ρ ≤ σ.

It can be shown that the previous theorem still holds if in Definition 5.12 we
restrict the G-types to by in a given cofinal set of G-types.

We define the two pieces of notation in Notation 5.10 and Notation 5.11, as
well as the Ramsey Property, for classes of L-structures:

Notation 5.14. Suppose K is a class of L-structures and we have A,B ∈ K
with A ⪯ B. We write(

B
A

)
= {C ∈ K | C ⪯ B and C is isomorphic to A}

Notation 5.15. Suppose K is a class of L-structures and we have A,B,C ∈ K
with A ⪯ B ⪯ C. For k = 2, 3, . . . , we write

C → (B)Ak
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if for every k-coloring c :

(
C
A

)
→ {1, . . . , k}, there is some B′ ∈

(
C
B

)
for

which

(
B′

A

)
is monochromatic, in other words c(A′) = i for all A′ ⪯ B′, A′

isomorphic to A.

Definition 5.16. Suppose K is a class of L-structures. We say K has the
Ramsey Property, if for any two structures A,B ∈ K with A ⪯ B, and every
k = 2, 3 . . . , there is some C ∈ K with B ⪯ C for which C → (B)Ak .

The pieces of notation in Notation 5.14 and Notation 5.15, and consequently
the Ramsey Property, are most interesting when K is a hereditary class of finite
structures. In particular, when K is a Fräıssé class consisting of locally finite
structures.

Definition 5.17. Suppose L is a language with a binary relation symbol <.
An order structure for L, is an L-structure in which the relation symbol < is
interpreted as a linear ordering.
If K is a class of L-structures, we say K is an order class if every structure in K
is an order structure. In particular, if K is a Fräıssé class, and every structure
in K is an order structure, we say K is a Fräıssé order class.

We now state the key theorem of Kechris, Pestoc, and Todorcevic:

Theorem 5.18. Suppose G ≤ Sω is closed. The following are equivalent:

(1) G is extremely amenable,

(2) G is of the form G = Aut(M), where M is the Fräıssé limit of a Fräıssé
order class with the Ramsey Property, and M is locally finite.

Proof. (1) ⇒ (2): Let AG be the canonical structure of G, which is ultrahomo-
geneous by Theorem 3.5. Since G is extremely amenable, G preserves a linear
order <∗ on ω. Let L be the language we get by adding a binary relation symbol
< to the language on AG. We will expand the structure AG by intepreting < as
<∗, and we will denote the resulting L-structure by A. Since G preserves <∗,
we can see that Aut(A) = G and that A is still ultrahomogeneous. Since the
language of A is relational, A is locally finite, thefore Age(A) is a locally finite
Fräıssé order class. Since A is ultrahomogeneous, a G-type of A is precisely the
set of all substructures of A isomorphic to some A0 ⪯ A, as an isomorphism
between A0 ∈ Age(A) and A1 ∈ Age(A) extends to an automorphism g ∈ G.
It is easy to see that G having the Ramsey Property is equivalent to Age(A)
having the Ramsey Property, so we are done by Theorem 5.13.

(2)⇒ (1): Since A is the Fräıssé limits of a locally finite Fräıssé order class, A
is a locally finite order structure. This means that G preserves an ordering, since
A is an order structure, and the G-types of finite substructures of A are cofinal
in all the G-types, since A is locally finite. the G-type of a finite substructure
of A0 ⪯ A is the set of all substructures of A isomorphic to A0. Similarly to
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before, by Theorem 5.13, G has the Ramsey Property, and since G preserves an
ordering, G is extremely amenable.

We can rephrase the previous theorem in the following way:

Theorem 5.19. Suppose K is a locally finite Fräıssé order class and M is the
Fräıssé limit of K. Then the following are equivalent:

(1) Aut(M) is extremely amenable,

(2) K has the Ramsey Property.

5.2 The extreme amenability of Aut(Q, <)

Using Theorem 5.19, we can show that Aut(Q, <) is extremely amenable. By
Theorem 4.12, we know that (Q, <) is the Fräıssé limit of the Fräıssé class
of finite linear orderings. This class is clearly an order class and all of its
elements are locally finite, so we just have to show is that the class of finite
ordered sets satisfies the Ramsey Property. This is exactly the statement of the
finite Ramsey theorem [5, Corollary 1.3], so we have proven that Aut(Q, <) is
extremely amenable.
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Aluĺırott Kozári Dominik nyilatkozom, hogy szakdolgozatom elkésźıtése során
nem használtam MI alapú eszközt. (ez angol legyen vagy magyar?)
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