
Eötvös Loránd University

Faculty of Science

Gergely Márton Szathmári

Kernel Ridge Regression in image
reconstruction

BSc Thesis
Mathematics

Supervisor:
Balázs Csanád Csáji

Department of Probability Theory and Statistics

Budapest, 2025

Acknowledgements

I would like to thank to my thesis supervisor, Balázs Csanád Csáji, for introducing me
the topic and pointing out new perspectives for this thesis. I would also like to express
my gratitude towards my family for their patience and constant support.

2

Contents

1 Introduction 5

2 Regression 6

2.1 Ridge regression . 8
2.1.1 Regularized linear regression . 8

3 Reproducing kernel Hilbert spaces 10

3.1 Properties of RKHSs . 13
3.2 Kernel functions . 15
3.3 Solving ride regression in an RKHS . 19

4 Properties of kernels 22

4.1 Kernels as inner products . 22
4.2 Reduce computational costs . 24

4.2.1 Approximating the kernel matrix 25
4.2.2 Nyström method . 25
4.2.3 Speeding up KRR . 26

4.3 The RKHS of a Mercer kernel . 27
4.4 Choosing a kernel . 28

5 Another perspective, Gaussian process regression 30

6 Image processing 34

6.1 Basics of image processing . 34
6.2 Tasks . 35
6.3 Image quality metrics . 36

3

7 Experiments 37

7.1 Image inpainting . 37
7.2 Image denoising . 38
7.3 Super-resolution . 39

Bibliography 43

4

Chapter 1

Introduction

In the last few decades machine learning has become one of the most rapidly developing
fields in science. Its main focus is to extract patterns from the observations to make
accurate and robust predictions on previously unseen data. The learning process relies
heavily on statistics and mathematical optimization.
The aim of this thesis is to review the theoretical foundations of kernel ridge regression.
As we will see we will have to solve a regression problem. In most cases the simple linear
regression is not sufficient to make proper predictions since the relation of the data points
is nonlinear. When this is the situation we have to take a more sophisticated approach.
Kernel methods enable us to transform the data into high, even infinite dimensional,
spaces, where we can learn complicated relationships, and still, the computations the
process requires remain manageable.
Beyond the theoretical foundations, I will demonstrate the practical applications of kernel
regression in image denoising, missing pixel estimation and super-resolution.

5

Chapter 2

Regression

Let X be a non-empty set and n ∈ N. In a regression problem, we are given a (x1, y1), . . . ,

(xn, yn) ∈ X × Y training set (Y is typically assumed to be R). Furthermore we assume
that there exists a function f ∗ : X −→ Y such that ∀i : yi = f ∗(xi) + ξi, where ξi is a
0 mean random variable for all i. By including such random variables we may represent
noise in the input or variability of the target values, which are not due to the input. Our
goal is to find a function f̂ : X −→ Y that not only performs well on the training data but
also makes reasonable predictions on unseen points of X . To assess the performance of a
function at a given training point we introduce the notion of the loss function.

Definition 2.0.1 (1, Definition 3.1)
Denote by (x, y, f(x)) ∈ X ×Y ×Y the triplet consisting of a pattern x, an observation y
and a prediction f(x). Then the map c : X×Y×Y −→ [0,∞) with the property c(x, y, y) = 0

for all x ∈ X and y ∈ Y is called a loss function.

Remark 2.0.2 The loss function may depend on the input x (for instance, in image
reconstruction we may require higher accuracy in the center of the image than at the
edges). However for the sake of simplicity it is often assumed that the loss function is
location-independent and it is generally a function of y − f(x).

Remark 2.0.3 For practical learning applications the loss function must satisfy addi-
tional properties to its definition: It should be cheap to compute, continuously differen-
tiable and robust in a sense that it is resistant to outliers. Convexity is also desirable to
ensure uniqueness of the optimal solution.

6

In regression the most frequently used loss function is the squared error:

c(x, y, f(x)) = (y − f(x))2

Now we want to find a way to combine the computed errors, so that we can assess
how good a given estimate f is. In the following, we assume that there is a probability
distribution P (x, y) on X × Y , that captures the randomness of the data generation and
how the y values depend on the x values. Moreover we assume that P (x, y) has a density
function p(x, y) and that the data (xi, yi), i ∈ [m] are drawn independently and identically
distributed from P (x, y).

Definition 2.0.4 (1, Definition 3.3)
The expected risk with respect to P (x, y) and the loss function c is:

R(f) = E(c(X, Y, f(X))) =

∫
X×Y

c(x, y, f(x))p(x, y)dxdy

Naturally this is not a practical definition, as if we knew p(x, y), we would be able to make
the best possible predictions without learning. However we can approximate p(x, y) with
the empirical density pemp(x, y) =

1
m

∑m
i=1 δxi

(x)δyi(y) and thus arrive at the concept of
empirical risk.

Here informally δxi
(x) =

∞ if xi = x

0 if xi ̸= x
and formally δxi

satisfies
∫
δxi

(x)f(x)dx = f(xi).

Definition 2.0.5 (1, Definition 3.4)
The empirical risk of the function f is defined as:

Remp(f) =

∫
X×Y

c(x, y, f(x))pemp(x, y)dxdy =
1

m

m∑
i=1

c(xi, yi, f(xi))

Remark 2.0.6 If we let c be the squared error, then Remp(f) =
1
m

∑m
i=1(yi − f(xi))

2 and
we call it the mean squared error (MSE).

During the learning process we wish to minimize the empirical risk. However, it is easy
to construct functions that are optimal for this minimization, but perform very poorly on
the unseen data. For example for all i let f̂(xi) = yi and let f̂(x) = 0 otherwise. Although
this function has 0 empirical risk, f̂ would not be able to generalize to yet unseen data.
For this reason the following 2 methods play an important role in regression.

7

• Restricting the space of functions, where we do the minimization (the restriction
should be done prior to seeing the data).

• Regularization: introducing a punishing term for functions that are too complex or
not smooth enough.

Often the above methods are used simultaneously and referred to as inductive bias.
The above mentioned regularization will be carried out by the regularization func-

tional Ω : F −→ R≥0, where F is the set of functions from X to Y .

Now we introduce a method that aims to minimize the sum of the empirical risk and
the regularization functional over a specific space of functions.

2.1 Ridge regression

Let (xi, yi) ∈ X ×Y , i ∈ [n], F be a subset of the set of functions from X to Y , Remp(f) be
the empirical risk of f with respect to a loss function c and λ ∈ R≥0. Then ridge regression
is the following minimization problem:

min
f∈F

Remp(f) + λΩ(f)

Remark 2.1.1 The coefficient λ enables us to control the effect of the regularization term.

2.1.1 Regularized linear regression

Let X = Rd, Y = R, (xi, yi) ∈ Rd+1, i = 1, . . . , n a training set and F = {⟨ω, ·⟩|ω ∈ Rd},
so we use linear functions for prediction.
In this case it is natural to choose Ω(f) as ||ω||2. One way to argue for this could be that
in linear regression the predictor function is f(x) =

∑n
i=1 ωixi and if for a particular j ωj

was large, then a little change in xj could cause a big change in f(xj) and thus f would not
perform well on noisy data. By penalizing large euclidean norm of ω we enforce smoother
and more stable predictions.
Let us choose the loss function as c(x, y, f(x)) = (y − f(x))2. This way the optimization
problem becomes:

argmin
ω∈Rd

1

n

n∑
i=1

(⟨ω, xi⟩ − yi)
2 + λ⟨ω, ω⟩

8

Note that the function we want to optimize depends only on inner products. This obser-
vation will be very important, because in the next section we will introduce the concept
of a reproducing kernel Hilbert space and by using a kernel function we will be able to
map the data points into this space, where the inner product of two such functions will be
determined by the kernel function. The kernel function will be easy to compute and thus
we will be able to use a very similar learning algorithm to regularized linear regression,
but with the difference that we will be able to uncover non-linear relationships.

9

Chapter 3

Reproducing kernel Hilbert spaces

In this chapter we will state definitions and results that hold for both spaces R and C,
so F will be used to represent them. Let X be an arbitrary set and F(X ,F) be the set
of functions from X to F. The set F(X ,F) is a vector space over the field F with the
following 2 operations: (f+g)(x) = f(x) + g(x) and (λf)(x) = λf(x).

Definition 3.0.1 Let H be a Hilbert-space. Then the functional f : H −→ F is bounded if
there exists M ∈ R>0 such that ||f(x)||F ≤M ||x||H.

Definition 3.0.2 (2, Definition 1.1)
H ⊂ F(X ,F) is a reproducing kernel Hilbert space (from now on RKHS) on X , if:

(i) H is a vector subspace of F(X ,F)

(ii) H is endowed with an inner product, ⟨·, ·⟩H, with respect to which H is a Hilbert
space

(iii) for every x ∈ X the linear evaluation functional Ex : H → F, defined by Ex(f) :=

f(x), is bounded.

Remark 3.0.3 Ex is indeed linear since for λ1, λ2 ∈ F and f1, f2 ∈ H:

Ex(λ1f1 + λ2f2) = (λ1f1 + λ2f2)(x) = λ1f1(x) + λ2f2(x) = λ1Ex(f1) + λ2Ex(f2)

Theorem 3.0.4 (Riesz representation theorem)(3, Theorem 9.3.)
Let H be a Hilbert space over the field F and f : H −→ F be a continuous linear functional.
Then there exists a unique y ∈ H, such that:

f(x) = ⟨x, y⟩H,∀x ∈ H

10

Remark 3.0.5 If f : H −→ F is a bounded linear functional on a Hilbert space H, then it
is continuous.

Corollary 3.0.6 As a result of the Riesz representation theorem it follows that if H is
an RKHS over X , then for each x ∈ X the evaluation functional, Ex, can be represented
with a unique vector kx ∈ H, which means that f(x) = Ex(f) = ⟨f, kx⟩H, ∀x ∈ X .

Definition 3.0.7 (2, Definition 1.2)
The function kx is called the reproducing kernel of the point x.

Definition 3.0.8 (2, Definition 1.2)
The function K : X × X −→ F defined by:

K(x, y) = ky(x)

is called the reproducing kernel for H. The notation ky = K(·, y) will be often used.

For the previously defined K, the following simple properties hold:

• K(x, y) = ky(x) = Ex(ky) = ⟨ky, kx⟩H

• K(x, y) = ⟨ky, kx⟩H = ⟨kx, ky⟩H = Ey(kx) = kx(y) = K(y, x)

• ||Ey||2 = ||ky||2H = ⟨ky, ky⟩H = Ey(ky) = ky(y) = K(y, y), the first equality is true
because the functional Ey is represented by the vector ky and using the Cauchy-
Schwarz inequality it can be shown that they have the same norm.

• ∀f ∈ H : f(x) = Ex(f) = ⟨f, kx⟩H = ⟨f,K(·, x)⟩H

In the following we give an equivalent definition for an RKHS.

Definition 3.0.9 (RKHS 2nd Definition)(4, Definition 1)
Let X be a nonempty set and H a Hilbert-space of functions f : X −→ R. Then H is an
RKHS, with the inner product ⟨·, ·⟩H if there exists a function K : X ×X −→ R such that:

(i) for all x ∈ X K(·, x) ∈ H

(ii) K has the reproducing property: ⟨f,K(·, x)⟩H = f(x) for all f ∈ H and for all x ∈ X

11

Remark 3.0.10 The 2 definitions for the RKHS are indeed equivalent since the Riesz
representation theorem 3.0.4 ensures that the 2nd definition follows from the first and for
the other direction ∀x ∈ X , ∃K(·, x) ∈ H :

|Ex(f)| = |f(x)| = |⟨f,K(·, x)⟩H| ≤ ||f ||H||K(·, x)||H = ||f ||H
√
K(x, x)

where we used the Cauchy-Schwarz inequality. We can let the constant in the definition
of boundedness equal

√
K(x, x).

Example 3.0.11 (Cn as an RKHS) (2, Example 1.2.1)
Let X = {1, ..., n}. We can identify each v ∈ Cn with a function v′ : X −→ C, v′(j) := vj.
This way Cn is a vector space of all functions on X , endowed with the usual inner product
of Cn:

v′, u′ : X −→ C : ⟨v′, u′⟩ = ⟨v, u⟩Cn =
n∑

i=1

viui

Let {ej}nj=1 be the canonical orthonormal basis for Cn, the corresponding functions are
e′j(i) = δij, where δij is the Kronecker delta. The set of functions {e′j}nj=1 is precisely the
set of reproducing kernels for the set X because:

v′(j) = vj = ⟨v, ej⟩Cn = ⟨v′, e′j⟩

For Cn to be an RKHS, the linear evaluation functional Lj(v
′) must be bounded. This is

indeed the case because ∀v′ : X −→ C:

|Lj(v
′)| = |v′(j)| = |⟨v, ej⟩Cn|

C−S.ineq.

≤ ||v||Cn · ||ej||Cn = ||v||Cn = ||v′||

Non-example 3.0.12 (2, 1.2.2)
L2[0, 1] is not an RKHS because the evaluation functional Ex(f) = f(x) is not bounded.
Let x ∈ (0, 1) and define

fn(t) =


(
t
x

)n if 0 ≤ t ≤ x(
1−t
1−x

)n if x < t ≤ 1

then

lim
n→∞

∥fn∥L2[0,1] = 0, but fn(x) = 1 ∀n.

thus there can not exist a C ∈ R such that |Ex(fn)| = |fn(x)| ≤ C||fn||L2[0,1] for all n.

12

3.1 Properties of RKHSs

The first important property of an RKHS is that the linear span of the reproducing kernels
for all x ∈ X is dense in H. We start by defining the notion of density.

Definition 3.1.1 Let H be a Hilbert-space and S ⊂ H a subset. We say that S is dense

in H if S = H, where S is the closure of S and consists of all the limit points of Cauchy-
sequences of S - with respect to the norm induced by the inner product of H.

Proposition 3.1.2 (2, Proposition 2.1)
Let H be an RKHS on the set X with kernel K. Then for f ∈ H

f ⊥ S ⇐⇒ f = 0

where S is the linear span of the functions ky = K(·, y).

Proof. ⇐= if f(y)=0, for all y ∈ X , then 0 = f(y) = ⟨f, ky⟩, so f ⊥ S

=⇒ ∀y ∈ X : 0 = ⟨f, ky⟩ = f(y), so f=0. □

Theorem 3.1.3 (Riesz Orthogonal Theorem)(5, Theorem 2.16.)
Let H be a Hilbert-space and M ⊂ H a closed subspace. Then for any x ∈ H, there is a
unique x1 ∈M and x2 ∈M⊥ such that x = x1 + x2.

With the help of Proposition 3.1.2 and the Riesz Orthogonal Theorem 3.1.3 we can prove
that any element of an RKHS can be approximated arbitrarily well - in the norm induced
by the inner product of H - with functions from S = span{ky|y ∈ X}, formally S is dense
in H.

Corollary 3.1.4 (5, Proposition 2.20; 2, Proposition 2.1.)
Let H be an RKHS on the set X with kernel K. Then S, the linear span of the functions
ky = K(·, y), is dense in H.

Proof. We saw that S⊥ = {0}. Moreover S⊥ = S
⊥, because S⊥ ⊇ S

⊥ trivially and if
f ⊥ S, then for any g ∈ S, there is a sequence {hn} ⊆ S such that hn −→ g, and by
the continuity of the inner product 0 = ⟨f, hn⟩ −→ ⟨f, g⟩, so f ∈ S

⊥. Since S is a closed
subspace of H and S⊥

= {0}, by the Riesz Orthogonal Theorem H = S. □

Lemma 3.1.5 (2, Proposition 2.2.)
Let H be an RKHS on X and let {fn} ⊆ H. If fn −→ f , as n −→ ∞, i.e., ||fn − f ||H −→ 0,
as n −→ ∞, then fn(x) −→ f(x), as n −→ ∞ for every x ∈ X .

13

Proof.

|fn(x)− f(x)| = |(fn − f)(x)| = |⟨fn − f, kx⟩|
C−S.ineq.

≤ ||fn − f || · ||kx|| −→ 0

□

Remark 3.1.6 This property makes an RKHS very well-behaved for machine learning,
as norm convergence of functions ensures the convergence of their evaluations. In other
words, by approximating a function in the RKHS norm we are approximating its pointwise
values, which makes learning more stable and reliable.

As a consequence of the previous lemma, the following proposition states that if 2 RKHSs
on X have the same reproducing kernel then they are, in fact, equal.

Proposition 3.1.7 (2, Proposition 2.3.)
Let Hi, i=1, 2 be RKHSs on X with kernels Ki, i=1, 2. Let || · ||i denote the norm on the
space Hi. If K1(x, y) = K2(x, y) for all x, y∈ X , then H1 = H2.

Proof. Let K(x, y) = K1(x, y) = K2(x, y) and Wi =span{kx ∈ Hi : x ∈ X}, i=1,2. Then
for any f ∈ Wi, we have that f(x) =

∑
j αjkxj

(x) =
∑

j αjK(x, xj), thus the values of f
are independent of wether we regard f as an element of W1 or W2.
Also for any f ∈ W1 = W2: ||f ||21 =

∑
i,j αiαj⟨kxi

, kxj
⟩ =

∑
i,j αiαjK(xj, xi) = ||f ||22.

Now consider the case when f ∈ H1, then since W1 is dense in H1 (Corollary 3.1.4) we
have a sequence {fn} ⊆ W1 such that fn −→ f , as n −→ ∞. Since {fn} is Cauchy in W1

it is also Cauchy in W2, because the norms are equal. Consequently there exists g ∈ H2

with fn −→ g, as n −→ ∞. By the above Lemma f(x) = limn fn(x) = g(x), so f ∈ H2. The
same can be done the other way around resulting in H1 = H2. □

Since we already know that the reproducing kernel of an RKHS is a kernel function,
we prove that it is unique.

Proposition 3.1.8 (Uniqueness of the reproducing kernel)

Let H be an RKHS on X . Assume that the kernel functions K1 and K2 are reproducing
kernels of H. Then K1 = K2.

Proof. For any x ∈ X :

||K1(·, x)−K2(·, x)||2H = ⟨K1(·, x)−K2(·, x), K1(·, x)−K2(·, x)⟩H

14

= ⟨K1(·, x)−K2(·, x), K1(·, x)⟩ − ⟨K1(·, x)−K2(·, x), K2(·, x)⟩H

= K1(x, x)−K2(x, x)−K1(x, x) +K2(x, x) = 0

The equalities followed from the linearity of the inner product and the reproducing prop-
erties of K1 and K2.
Since || · ||H is a norm K1(·, x) = K2(·, x) are equal as functions, so K1(y, x) = K2(y, x),
∀y ∈ X , proving the proposition. □

3.2 Kernel functions

Up to this point we always started with an RKHS and we examined the properties of
the corresponding reproducing kernel. In the next section our main goal is to characterize
when a function K : X × X −→ C is the reproducing kernel for some RKHS. Since the
concept of positive semi-definiteness of a matrix will be of high importance we start by
defining it.

Definition 3.2.1 Let A = (ai,j) be a complex Hermitian matrix. A is positive semi-

definite if and only if for every α1, ..., αn ∈ C we have that
∑n

i,j=1 αiαjai,j = ⟨Aα, α⟩ ≥ 0.

Definition 3.2.2 (2, Definition 2.12.)
Let X be a set and K : X × X −→ C. Then K is called a kernel function if for every n
and for every choice of n distinct points, {x1, ..., xn} ⊆ X , the kernel matrix K, Ki,j =

K(xi, xj) is positive semi-definite.

For later purposes we define a kernel function also in the case when the target space of K
is R.

Definition 3.2.3 If K : X ×X −→ R, then K is a kernel function if K is a symmetric
positive semi-definite matrix.

The following proposition states that the reproducing kernel of an RKHS is always a
kernel function.

Proposition 3.2.4 (2, Proposition 2.13.)
Let X be a set and let H be an RKHS on X with reproducing kernel K. Then K is a kernel
function.

15

Proof. Fix {x1, ..., xn} ⊆ X and α1, ..., αn ∈ C. Then

n∑
i,j=1

αiαjK(xi, xj) =
n∑

i=1

αi⟨kxi
,

n∑
j=1

αjkxj
⟩ = ⟨

n∑
i=1

αikxi
,

n∑
j=1

αjkxj
⟩

= ||
n∑

j=1

αjkxj
||2 ≥ 0

□

In the following theorem we start with a kernel function and we build an RKHS such
that its reproducing kernel is the kernel function.

Theorem 3.2.5 (Moore) (2, Theorem 2.14.)
Let X be a set and K : X × X −→ C be a function. If K is a kernel function, then there
exists an RKHS H of functions on X such that K is the reproducing kernel of H.

Proof. For y ∈ X let ky : X −→ C be the function defined by ky = K(·, y). Let W be the
vector space that is the span of the set {ky : y ∈ X}. Let f, g ∈ W . Now we can define a
function B : W×W −→ C such that B(f, g) = B(

∑
j αjkyj ,

∑
i βikyi) =

∑
i,j αjβiK(yi, yj),

where αj and βi are scalars. Our first goal is to show that B is an inner product on W.
1)
Since a function in W can be expressed many different ways as a linear combination of
the functions ky, we must check whether the function B is well-defined. Firstly assume
that g =

∑
i βikyi and choose 2 distinct expressions of f, f =

∑
j αjkyj =

∑
l γlkyl , then:

B(
∑
j

αjkyj , g) =
∑
i,j

αjβiK(yi, yj) =
∑
i

βi
∑
j

αjK(yi, yj) =
∑
i

βi
∑
j

αjkyj(yi)

=
∑
i

βif(yi) =
∑
i

βi
∑
l

γlkyl(yi) =
∑
i

βi
∑
l

γlK(yi, yl) =
∑
i,l

γlβiK(yi, yl)

= B(
∑
l

γlkyl , g)

Now let f =
∑

j αjkyj and choose 2 distinct expressions for g =
∑

i βikyi =
∑

l γlkyl .

B(f,
∑
i

βikyi) =
∑
i,j

αjβiK(yi, yj) =
∑
j

αj

∑
i

βiK(yi, yj) =
∑
j

αj

∑
i

βiK(yj, yi)

=
∑
j

αj

∑
i

βikyi(yj) =
∑
j

αjg(yj) =
∑
j

αj

∑
l

γlkyl(yj)

16

=
∑
j

αj

∑
l

γlK(yl, yj) = B(f,
∑
l

γlkyl)

During the second calculation we used the fact that K(x, y) = K(y, x), which is true since
K is Hermitian. Overall, we showed that the value of B does not depend on the chosen
expression of the functions, so it is well-defined.
2)
Furthermore we have to show that B is sesquilinear. It is linear in the first variable:

B(λ1f1 + λ2f2, g) = B(λ1
∑
j

αjkyj + λ2
∑
j

γjkyj ,
∑
i

βikyi)

= B(
∑
j

(λ1αj + λ2γj)kyj ,
∑
i

βikyi)

=
∑
i,j

(λ1αj + λ2γj)βiK(yi, yj)

= λ1
∑
i,j

αjβiK(yi, yj) + λ2
∑
i,j

γjβiK(yi, yj)

= λ1B(f1, g) + λ2B(f2, g)

To show that it is linear in the second variable we show first that B(f, g) = B(g, f) :

B(f, g) =
∑
i,j

αjβiK(yi, yj) =
∑
i,j

αjβiK(yj, yi) = B(g, f)

And thus:

B(f, λ1g1 + λ2g2) = B(λ1g1 + λ2g2, f) = λ1B(g1, f) + λ2B(g2, f)

= λ1B(f, g1) + λ2B(f, g2)

3)
B(f, f) ≥ 0 for all f ∈ W , because B(f, f) =

∑
i,j αjαiK(yi, yj) ≥ 0, since K positive

semi-definite.
4)
B(f, f) = 0 ⇐⇒ f = 0

if f = 0, then:

B(f, f) =
∑
i,j

αjαiK(yi, yj) =
∑
i

αi

∑
j

αjkyj(yi) =
∑
i

αif(yi) = 0

17

as for the other direction firstly note that for all x ∈ X :

B(f, kx) = B(
∑
i

αikyi , kx) =
∑
i

αiK(x, yi) = f(x)

Moreover the Cauchy-Schwarz inequality already holds for B, as its proof does not depend
on the last, yet unproven, requirement for an inner product. Thus for all x ∈ X :

|f(x)| = |B(f, kx)| ≤
√
B(f, f) ·B(kx, kx) = 0

which means that f=0.

Now that we have a vector space W endowed with an inner product (from now on:
B(·, ·) = ⟨·, ·⟩), we can make it complete by taking equivalence classes of Cauchy se-
quences from W and thus we get the abstract Hilbert space H.
Using the above H, now our goal is to define Ĥ ⊆ F(X ,C), that will be the RKHS. We
will introduce a linear map from H to Ĥ and we will prove that it is a bijection between
the two sets. With the help of this result we will be able to equip Ĥ with an inner product
so that it becomes a Hilbert space. Finally we will show that this Ĥ is, in fact, an RKHS
with the reproducing kernel K.
Let ĥ(x) = ⟨h, kx⟩ for a given h ∈ H and Ĥ = {ĥ : h ∈ H}, so Ĥ ⊆ F(X ,C). Since the
map: L : H −→ Ĥ, h 7→ ĥ is trivially linear, Ĥ is a vector space. Note that for any f ∈ W ,
we have that f̂(x) = f(x). Furthermore the linearity of L ensures that if we want to prove
that it is an injective map, it is enough to show that if ĥ(x) = 0,∀x ∈ X , then h = 0.
Suppose that ĥ(x) = 0 for all x. By definition this means that ⟨h, kx⟩ = 0 for every x,
so h ⊥ W . Since W is dense in H, we have that h=0. L is of course a surjection by
the definition of Ĥ. Thus L is a bijection and if we define an inner product on Ĥ by
⟨f̂ , ĝ⟩Ĥ = ⟨f, g⟩H, then Ĥ will be a Hilbert space of functions on X .
Finally for Ĥ to be an RKHS the evaluation functional Ey,∀y ∈ X must be bounded.

Ey(ĥ) = ĥ(y) = ⟨h, ky⟩ = ⟨ĥ, k̂y⟩Ĥ

Thus the boundedness follows from the Cauchy-Schwarz inequality. Moreover the re-
producing kernel for the point y is k̂y = ky, and so the reproducing kernel for Ĥ is
k̂y(x) = ⟨ky, kx⟩ = K(x, y). □

Moore’s theorem 3.2.5, proposition 3.2.4 and proposition 3.1.7 and proposition 3.1.8 about
the uniqueness of the reproducing kernel show that there is a one-to-one correspondence
between RKHSs on a set and kernel functions on the set.

18

3.3 Solving ride regression in an RKHS

The following theorem states that the minimizer of the regularized risk over an RKHS
with the reproducing kernel K is in the linear span of the functions kxi

= K(·, xi), where
the xi-s are our training samples. This property ensures that an RKHS can be used for
learning purposes, because instead of having to solve an optimization problem possibly
in infinite dimensions, we can simply determine the coefficients in the linear combination
that gives the minimizer function.

Theorem 3.3.1 (Representer Theorem) (1,Theorem 4.2)
Let H be an RKHS on X with the reproducing kernel K and (xi, yi) ∈ X × R, i ∈ [m] be
a training set.
Denote by Ω : [0,∞) −→ R a strictly monotonic increasing function and by c : (X×R2)m −→
R ∪ {∞} an arbitrary loss function. Then each minimizer of the regularized risk:

c(x1, y1, f(x1), . . . , xm, ym, f(xm)) + Ω(||f ||2H)

admits a representation of the form:

f(x) =
m∑
i=1

αiK(x, xi)

Proof. Any f ∈ H can be decomposed into a part f||, that is in the linear span of the
functions S = {kxi

: xi ∈ X} and into a part f⊥, that is orthogonal to S. Thus

f =
m∑
i=1

αiK(·, xi) + f⊥

Using the representing property of H we get the following for all xi ∈ X , j ∈ [m]:

f(xj) = ⟨f,K(·, xj)⟩H = ⟨
m∑
i=1

αiK(·, xi) + f⊥, K(·, xj)⟩H

=
m∑
i=1

αiK(xj, xi) + ⟨f⊥, K(·, xj)⟩H =
m∑
i=1

αiK(xj, xi)

As a result we see that the orthogonal component has no effect on f(xj) for any j ∈ [m],
so we have to choose f⊥ such that Ω(||f ||2H) is minimal. Using the Pythagorean theorem
we get:

Ω(||f ||2H) = Ω(||f⊥||2H + ||f||||2H) ≥ Ω(||f||||2H)

Thus f⊥ must be the function 0, resulting in f(x) =
∑m

i=1 αiK(x, xi) for the f that
minimizes the regularized risk. □

19

Remark 3.3.2 The following simple calculation motivates why it is sensible to include
the norm of the function in the regularized risk. For any x, x′ ∈ X and f ∈ H:

|f(x)− f(x′)| = |⟨f,K(·, x)−K(·, x′)⟩H|
C−S.ineq.

≤ ||f ||H · ||K(·, x)−K(·, x′)||H

Thus the norm of the function can be interpreted as a smoothness measure that controls
how fast the value of the function changes with respect to a perturbation of x in the
geometry defined by the kernel.

Based on the definition of general ridge regression now we define kernel ridge regression
(KRR)

Definition 3.3.3 Let (xi, yi) ∈ X×R, i ∈ [n] be a training set and K be a kernel function.
By H denote the RKHS over X , that is reproduced by K. Remp(f) =

1
n

∑n
i=1 c(xi, yi, f(xi))

is the empirical risk of f with respect to the loss function c(x, y, f(x)) = (y−f(x))2 and let
λ ∈ R>0. Then kernel ridge regression (KRR) is the following minimization problem:

f̂ = arg min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ||f ||2H

Remark 3.3.4 Since λ > 0 the function Ω(||f ||2H) = λ||f ||2H is strictly monotonic in-
creasing, which, by the representer theorem 3.3.1, implies that f̂(x) =

∑n
i=1 αiK(x, xi)

for some αi ∈ R.

Using this remark we can explicitly find f̂ by computing αi. To proceed let K ∈ Rn×n,
Ki,j = (K(xi, xj)) be a matrix; α ∈ Rn, α = (α1, . . . , αn); y ∈ Rn, y = (y1, . . . , yn) be
column vectors. Then (f̂(x1), . . . , f̂(xn))

T = Kα and ||f̂ ||2H = αTKα.
As a result the minimization problem reduces to:

arg min
α∈Rn

1

n
||(Kα− y)||22 + λαTKα

This is equivalent to:

arg min
α∈Rn

1

n
(αTKTKα− 2yTKα) + λαTKα

This is a convex function of α since K is symmetric, positive semi-definite and thus KTK

is also positive semi-definite. By differentiating and setting the derivative equal to zero
we can find α∗, the optimal point.

2

n
(KKα−Ky) + 2λKα = 0

20

K((K + λnI)α− y) = 0

Since λ > 0, the matrix (K + λnI) is positive definite and thus invertible. α∗ = (K +

λnI)−1y is a solution, so f̂(x) can be computed explicitly the following way:

f̂(x) =
n∑

i=1

α∗
iK(x, xi) (3.1)

21

Chapter 4

Properties of kernels

4.1 Kernels as inner products

In the previous chapter we proved that if we take a kernel function, we can construct a
reproducing kernel Hilbert-space, that consists of functions that map the input space X
to R. Over this space we could solve the kernel ridge regression problem explicitly and
found a function f̂ . Now we turn our attention to how a kernel function K can be written
as an inner product in a Hilbert-space H. To achieve this we use the map Φ : X −→ H and
write K(x, y) = ⟨Φ(x),Φ(y)⟩H. We call H the feature space and Φ the feature map. The
following proposition states that such an expression of a function K exists if and only if
it is a kernel function.

Proposition 4.1.1 Let K : X × X −→ R be a function, n ∈ N and {x1, x2, . . . xn} ⊆ X .
Then K is a kernel function if and only if there exists an inner product space H and a
map Φ : X −→ H such that K(x, y) = ⟨Φ(x),Φ(y)⟩H.

Proof. If there exists such a map then we need that
∑n

i,j=1 αiαjK(xi, xj) ≥ 0 for every
n ∈ N and α1, ..., αn ∈ R. Since K(xi, xj) = ⟨Φ(xi),Φ(xj)⟩H we have that:

n∑
i,j=1

αiαjK(xi, xj) =
n∑

i,j=1

αiαj⟨Φ(xi),Φ(xj)⟩H = ||
n∑

i=1

αiΦ(xi)||2H ≥ 0.

For the other direction we can use the reproducing kernel map that appeared in the proof
of Moore’s theorem: Φ(x) = K(·, x) and thus the theorem guarantees that K(x, y) =

⟨Φ(x),Φ(y)⟩H, where H is the RKHS associated with the kernel function K. □

22

Remark 4.1.2 (Kernel trick)

Given an algorithm that depends only on a kernel function K, we can construct an alter-
native algorithm by replacing K with an other kernel function K’.

Due to the previous proposition the kernel trick is a sensible method since we can think
of the original algorithm as an inner product based algorithm operating on the data
Φ(x1), . . . ,Φ(xn) and by replacing K with K’ we have the same inner product based
algorithm, with the modification that it now acts on Φ′(x1), . . . ,Φ

′(xn).

Remark 4.1.3 Observe that kernel ridge regression is just the kernelized version of the
simple regularized linear regression.

Although the RKHS belonging to a kernel function is unique, there are more feature
spaces, where the kernel function computes the inner product. In the following we will
construct another Hilbert-space that accomplishes this. To motivate the infinite dimen-
sional case, first we assume that the input space X is finite, so X = {x1, x2, . . . , xN}.
In this case the kernel function K : X × X −→ R is completely defined by the N × N

symmetric positive semi-definite matrix K. We know that such a matrix can be diag-
onalized on an orthonormal basis with non-negative eigenvalues. Let the eigenvalues be
0 ≤ λ1 ≤ · · · ≤ λN and let the eigenvectors be u1, . . . , uN . Then

K(xi, xj) =
N∑
k=1

λk[uk]i[uk]j

= ⟨(
√
λ1[u1]i, . . . ,

√
λN [uN]i), (

√
λ1[u1]j, . . . ,

√
λN [uN]j)⟩RN

thus with the feature map Φ(xi) = (
√
λ1[u1]i, . . . ,

√
λN [uN]i) we have expressed K as the

inner product in RN .
Moving on to the case where X is not finite first we define eigenfunctions and eigenvalues
and then state Mercer’s theorem.

Definition 4.1.4 Let T be a linear operator on a vector space V. 0 ̸= ψ ∈ V is an
eigenfunction, corresponding to the eigenvalue λ, of T if

Tψ = λψ

Theorem 4.1.5 (Mercer) (13, page 338.)
Let X be a compact metric space and µ be a nondegenerate Borel measure on X , i.e for

23

any nonempty open set S ⊂ X : µ(S) > 0. Suppose that K : X × X −→ R is a continuous
kernel function. Let us define the integral operator:

TK : L2(X) −→ L2(X)

(TKf)(x) =

∫
X
K(x, x′)f(x′)dµ(x′)

Let ψj ∈ L2(X), j = 1, . . . , NH be the normalized orhtogonal eigenfunctions of TK (it
can be proven that they exist and can be chosen this way), with the eigenvalues λj > 0,
sorted in non-increasing order.
Then

1.
NH∑
j=1

λj <∞

2.

K(x, x′) =

NH∑
j=1

λjψj(x)ψj(x
′) holds for all x, x′ ∈ X

NH, the number of eigenfunctions is either finite or countably infinite. In the second case
the series converges absolutely for each x, x′ ∈ X and uniformly on X × X .

Remark 4.1.6 From the second statement of Mercer’s Theorem 4.1.5 it follows that
K(x, x′) = ⟨Φ(x),Φ(x′)⟩

ℓ
NH
2

for all x, x′ ∈ X with

Φ : X −→ ℓNH
2

x 7→ (
√
λjψj(x))j=1,...,NH

where ℓNH
2 denotes the Hilbert-space of finite vectors or sequences with finite 2-norm.

A kernel that satisfies the conditions of Mercer’s theorem is called a Mercer kernel. In
the following section we look at a method that can be used to approximate the kernel
matrix of a Mercer kernel. This way we can reduce the computational cost of kernel ridge
regression, which is normally O(n3), due to the computation of the inverse of K + λnI.

4.2 Reduce computational costs

This section is based on [6] Christopher Williams and Matthias Seeger (2000).

24

4.2.1 Approximating the kernel matrix

Let x1, . . . , xn be an input set from X , K a Mercer kernel and K be the corresponding
kernel matrix. The main idea of the approximation is to drop all but the first p terms
of the expansion of K(x, x′) in Mercer’s Theorem 4.1.5. This is sensible, because we saw
that λn −→ 0, as n −→ 0. Let us assume that we know the eigenfunctions ψi of the integral
operator TK (defined at Mercer’s Theorem 4.1.5) and they are sorted so that the corre-
sponding eigenvalues are in non-increasing order. Let U ∈ Rn×p be a matrix, whose ith
column is the vector (ψi(x1), . . . , ψi(xn))

⊤ ∈ Rn and let Λ = diag(λ1, . . . , λp). This way
we have K ≈ UΛU⊤, based on K(x, x′) ≈

∑p
j=1 λjψj(x)ψj(x

′).

Note that the above described method assumes that we have the eigendecomposition
available. If we wanted to compute it directly, the computational cost would be O(n3),
so we would not be able to achieve any acceleration of the KRR algorithm. Therefore we
approximate the eigenvalues and the eigenfunctions evaluated at the training points using
the Nyström method.

4.2.2 Nyström method

ψi is an eigenfunction of the integral operator TK , with an eigenvalue λi, if we have for
all y ∈ X : ∫

X
K(y, x)ψi(x)dµ(x) = λiψi(y)

Let us assume that there is a probability density function p(x), such that:∫
K(y, x)ψi(x)p(x)dx = λiψi(y)

We want to approximate this eigenfunction equation with an i.i.d. sample {x1, . . . , xq}
drawn from p(x), so we replace p with the empirical density and approximate the integral
with the following sum:

1

q

q∑
k=1

K(y, xk)ψi(xk) ≈ λiψi(y) (4.1)

If we plug xj for j = 1, . . . , q for the y into this approximation, we get the following:

1

q
K(q)ψi ≈ λiψi

25

where K(q) is the kernel matrix of the q input points and ψi = (ψi(x1), . . . , ψi(xq))
⊤ ∈ Rq.

This motivates us to calculate the eigendecomposition of K(q) (it can be done, because it
is symmetric):

K(q) = U (q)Λ(U (q))⊤

where U is orthonormal and Λ is diagonal with entries λ(q)1 ≥ λ
(q)
2 ≥ · · · ≥ λ

(q)
q ≥ 0.

As a result we get the following approximations:

ψi(xj) ≈
√
qU q

j,i, λi ≈
λ
(q)
i

q

This is a valid approximation, because:

1

q
K(q)ψi ≈

1

q
K(q)√qU q

.,i =
1
√
q
λ
(q)
i U q

.,i =
1

q
λ
(q)
i ψi ≈ λiψi

Plugging this back to equation 4.1, we can approximate ψi(y) for any y ∈ X by:

ψi(y) ≈
√
q

λ
(q)
i

q∑
k=1

K(y, xk)U
(q)
k,i =

√
q

λ
(q)
i

K(y, .)U
(q)
.,i (4.2)

where K(y, .) = [K(y, x1), . . . , K(y, xk)]
⊤.

Going back to the previous subsection, where we approximated the kernel matrix for an
input set of size n, now we have the approximation of the eigenfunctions evaluated at
these points, so we can give an explicit formula for U and Λ. For the approximation of
the eigenfunctions we use a sample set of size q with p ≤ q < n. Let the ith column of U
be U.,i and the corresponding eigenvalue be λi Then by using equation 4.2 we obtain the
following approximations:

U.,i ≈
1√
n

√
q

λ
(q)
i

Kn,qU
(q)
.,i , λi ≈

n

q
λ
(q)
i

where U (q)
.i is the ith eigenvector and λ

(q)
i is the ith eigenvector of the eigenproblem de-

scribed above, Kn,q is the appropriate n× q submatrix of K.

Now that we can calculate a low-rank approximation for K, we look at how it can be
used to reduce the computational cost of KRR.

4.2.3 Speeding up KRR

During KRR the most computationally expensive task is to invert the matrix K + λnI.
Using the approximation described in section 4.2.1, we have to invert the matrix UΛU⊤+

26

λnI, which is still of size n×n, but the Woodbury matrix identity will allow us to compute
the inverse faster.

Proposition 4.2.1 (Woodbury matrix identity) Let A be an n×n, U be an n× p, C be a
p× p and V be a p×n matrix. Assume that the matrices A+UCV , A, C, C−1+V A−1U

are invertible. Then

(A+ UCV)−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1

In the Woodbury identity we can let A = λnI, U = U , C = Λ, V = U⊤. This way instead
of a O(n3) inverse calculation we have to do O(np2) calculations, where p≪ n.

4.3 The RKHS of a Mercer kernel

Proposition 4.3.1 Any Mercer kernel is also a kernel function.

Proof. Let α ∈ Rn. Then we have∑
i,j

αiαjK(xi, xj) =
∑
i,j

αiαj⟨Φ(xi),Φ(xj)⟩ = ||
∑
i

αiΦ(xi)||2 ≥ 0

□

Since every Mercer kernel is a kernel function, by Moore’s theorem 3.2.5 we know that
there is a unique RKHS belonging to each. The following theorem gives a construction
for this RKHS using the eigenfunctions and eigenvalues of the integral operator defined
by the Mercer kernel.

Theorem 4.3.2 Let K be a Mercer kernel and let ψj, j = 1, 2, . . . be the eigenfunctions
and λj, j = 1, 2, . . . be the positive eigenvalues of the integral operator defined in Mercer’s
theorem. Then

H =

{
f =

∞∑
j=1

ajψj, with
∞∑
j=1

a2j
λj

<∞
}

is an RKHS with the inner product

⟨f, g⟩H =
∞∑
k=1

akbk
λk

where f =
∑

k akψk, g =
∑

k bkψk.

27

Proof. It is technical to prove that it is a Hilbert space of functions from X to R, so we
will only prove the 2 points of definition 3.0.9.
(i) K(·, x) ∈ H for all x ∈ X part: Let x ∈ X and aj = λjψj(x) for all j. Then

∞∑
j=1

a2j
λj

=
∞∑
j=1

λjψj(x)ψj(x) = K(x, x) <∞

where the last equality followed from Mercer’s theorem. Therefore we know that there is
a ϕx ∈ H such that ϕx =

∑∞
j=1 ajψj. By lemma 3.1.5 we know that convergence in the

RKHS norm implies point-wise convergence, so for any y ∈ X we have

ϕx(y) =
∞∑
j=1

ajψj(y) =
∞∑
j=1

λjψj(x)ψj(y) = K(y, x)

thus ϕx = K(·, x) ∈ H.
(ii) The reproducing property part: Let f ∈ H, so we can write it as f =

∑∞
j=1 ajψj. Let

x ∈ X , we have seen that K(·, x) =
∑∞

j=1 λjψj(x)ψj. Thus

⟨f,K(·, x)⟩H =
∞∑
j=1

ajλjψj(x)

λj
=

∞∑
j=1

ajψj(x) = f(x)

□

Remark 4.3.3 If some eigenvalues are equal to 0 then H is the subspace spanned by the
eigenfunctions with positive eigenvalues.

Remark 4.3.4 Note that the eigenfunctions depend on the choice of the measure µ over
X , but since we know that the RKHS of a kernel function is unique, H does not depend
on µ.

The concrete choice of the kernel has a significant effect on our algorithm, so it is important
to choose one that has a lot of "expressive power", in a sense that we can learn a wide
range of functions with it.

4.4 Choosing a kernel

Let K be a kernel function and xi, i = 1, . . . N be a training set in the input space.
We saw that due to the representer theorem, the functions we learn have the following
form f =

∑N
i=1 cjK(·, xi). The following definition encapsulates the idea that we want

to approximate any target function arbitrarily well as the number N increases without
bound. The approximation will be done in the uniform norm.

28

Definition 4.4.1 (Universal kernel) (7)
Let X be a metric space, K be a continuous kernel function on X × X , Z be a compact
subset of X and C(Z) be the set of continuous functions from Z to R equipped with the
maximum norm || · ||Z . For any y ∈ Z define Ky : X −→ R, Ky(x) = K(x, y) for all x ∈ X .
K(Z) := span{Ky : y ∈ Z}, i.e., the set of all functions which are uniform limits of linear
combinations of Ky functions. K is universal if for any compact subset Z of X , for any
ϵ > 0 and for any f ∈ C(Z), there is a function g ∈ K(Z) such that ||f − g||Z ≤ ϵ.

A significant example of a universal kernel is the Gaussian kernel.

Definition 4.4.2 (Gaussian kernel)

K(x, x′) = exp(−||x− x′||2

2σ2
)

where σ ∈ R>0.

In the following chapter we introduce Gaussian process regression, which is deeply con-
nected to kernel ridge regression, but instead of the deterministic, optimization-based
approach, we saw at KRR, we will look at regression from a probabilistic, Bayesian point
of view.

29

Chapter 5

Another perspective, Gaussian process

regression

This chapter is based on the 2nd chapter of [8] Gaussian processes for machine learning
by Christopher Williams and Carl Edward Rasmussen (2006) and our goal is to establish
a connection between Gaussian process regression and the KRR method.

The main idea of Gaussian process (GP) regression is that we describe a prior distri-
bution over functions, where we give higher probabilities to functions that we consider
more likely. In most cases smooth functions will be preferred. Then with the Bayesian
mindset, we update the prior distribution so that it fits better to the observed data and
thus we get the posterior distribution. Although the proposed method sounds promising,
the fact that there are uncountably infinite many functions could cause computational
difficulties. This is where it comes in handy that we use a Gaussian process, that is the
generalization of a Gaussian probability distribution, to describe random functions, be-
cause if we ask for the properties of the function only for a finite number of points - as
we would do in a regression problem - then inference in the GP gives the same answer,
as if we would have taken all the infinitely many points into account. However, the draw-
back of this method is that we assume Gaussian data, which sometimes turns out to be
unrealistic.

Definition 5.0.1 (Gaussian process)[Dudley 2002 p 443] Let X be a non-empty set, K :

X×X −→ R be a kernel function and m : X −→ R be any function. Then a random function
f : X −→ R is said to be a Gaussian process (GP) with mean function m and covariance

30

function K, denoted by f ∼ GP(m,K), if for any finite set X = {x1, . . . , xn} ⊂ X of any
size n ∈ N, the random vector

(f(x1), . . . , f(xn)) ∈ Rn

follows the multivariate normal distribution with covariance matrix K(X,X) = (K(xi, xj))
n
i,j=1 ∈

Rn×n and mean vector (m(x1), . . . ,m(xn)) ∈ Rn.

Remark 5.0.2 From now on the mean function m will be chosen to be 0. This implies
that K(x, x′) = cov(f(x), f(x′)) = E(f(x)f(x′))

Example 5.0.3 Let X ⊂ R. In this case the covariance function is often chosen to be
the Radial Basis Function, so

cov(f(x1), f(x2)) = K(x1, x2) = exp(−1

2
|x1 − x2|2)

Note that the covariance is almost 1 if the input points are close to each other and it gets
closer and closer to 0 as the distance of the input points increases.

The choice of a covariance function K implies a prior distribution over functions, which we
can sample for a set X = {x1, . . . , xn}, by calculating the covariance matrix K and sam-
pling the normal distribution N (0, K(X,X)). This way we get the sample pairs (xi, f(xi)).

In the following we describe how the prior distribution can be updated, based on the
observed data.
Let f ∼ GP(0, K). We will assume that we have observations with additive Gaussian
noise, i.e., we have (xi, yi) pairs for i = 1, . . . , n, such that yi = f ′(xi) + ϵi, for a function
f ′ and independent ϵi-s, with ϵi ∼ N (0, σ2), for i = 1, . . . , n. Let y = (y1, . . . , yn) and
X = {x1, . . . , xn}. By E(ϵi) = 0 and the independence of the ϵi-s, we have

cov(yi, yj) = E(f(xi)f(xj)) + σ2δij = K(xi, xj) + σ2δij

where δij is the Kronecker delta or in matrix form

cov(y) = K(X,X) + σ2I

Let the test inputs (the inputs, for which we want to make predictions) beX∗ = {x∗1, . . . , x∗n∗}

31

and the corresponding test outputs f∗ = (f(x∗1), . . . , f(x
∗
n)) ∈ Rn∗ . Then the prior distri-

bution of the joint vector [y,f∗] ∈ Rn+n∗ becomes[
y

f∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗X∗)

])

where K(X,X∗) ∈ Rn×n∗ is the matrix containing the covariances evaluated at all pairs
of observed and test points.
Since y is already observed we only need those instantiations that agree with the ob-
servations. Mathematically this can be carried out by conditioning f∗ on y. To find the
resulting distribution we need a proposition.

Proposition 5.0.4 (8, Appendix A.2)
Let x and y be jointly Gaussian random vectors[

x

y

]
∼ N

([
µx

µy

]
,

[
A C

C⊤ B

])

then the conditional distribution of y given x is

y|x ∼ N
(
µy + C⊤A−1(x− µx), B − C⊤A−1C

)
.

Using this proposition we have
f∗|y ∼ N (µ,Σ) (5.1)

where
µ = K(X∗, X)[K(X,X) + σ2I]−1y

Σ = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2I]−1K(X,X∗)

Thus function values f∗, corresponding to the test inputs X∗, can be generated by evalu-
ating µ and Σ and generating samples from the distribution N (µ,Σ). The best prediction
for the output values can be obtained by evaluating the posterior mean µ at the input
values x∗1, . . . , x∗n.

Remark 5.0.5 In the case when we want to make a prediction for a single input x∗ ∈ X ,
the posterior mean µ simplifies to µ = K(x∗, X)[K(X,X) + σ2I]−1y, where K(x∗, X)

32

is the vector containing the covariances between value of the test point and the values
of the n observed input points. This way f(x∗) = µ =

∑n
i=1 αiK(x∗, xi), where α =

[K(X,X) + σ2]−1y. If we compare this expression with the solution of the KRR, which
we derived using the representer theorem, we find that if nλ = σ2 we obtain the same
predictive function, where λ was the regularization constant.

Note that 5.1 is true for any set of test inputs X∗ of any size n∗ ∈ N. This way we can
summarize the above calculations in a theorem.

Theorem 5.0.6 (9, Theorem 3.1)
Assume additive i.i.d., 0 mean Gaussian additive noise and let f ∼ GP(0, K). Let X =

(x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn)
⊤ ∈ Rn. Then we have

f |y ∼ GP(mposterior, Kposterior)

where
mposterior(x) = K(x,X)[K(X,X) + σ2I]−1y

Kposterior(x, x
′) = K(x, x′)−K(x,X)[K(X,X) + σ2I]−1K(X, x′)

K(x,X) and K(X, x′) are the row and column vectors containing the covariances between
f(x) and f(x’) and the value of the n observed input points respectively.

33

Chapter 6

Image processing

In the following section we introduce the basics of image processing based on the first
chapter of the book 10 Image processing: the fundamentals.

6.1 Basics of image processing

Definition 6.1.1 (Panchromatic image)

A panchromatic image is a bivariate real valued function f(x, y), where x and y are
spatial coordinates and the value of f at the point (x, y) is proportional to the brightness
of the depicted scene at that point.

Definition 6.1.2 (Multispectral image)

A multispectral image is a vector valued function f(x, y) −→ Rd, each component of
which indicates the brightness of the scene at (x, y) at the corresponding range of wave-
lengths of the electromagnetic spectrum. The components are called channels.

The difference between a panchromatic image and a multispectral image is that, in the
first case the sensor, which observes the scene, captures the intensity of light in a single
spectral band, while in the second there are multiple sensors calibrated to capture different
ranges of wavelengths.

Remark 6.1.3 In the case of multispectral images, d is often equal to 3, because we use
3 sensors to capture the intensity of light at the wavelength ranges: red, green, blue.

Remark 6.1.4 The processes we apply to images will be presented for panchromatic im-
ages, because they can be easily extended to multispectral images by doing the same process
in all 3 channels.

34

Based on Definition 6.1.1 we think of a digital image as an image, which has been discre-
tised both in spatial coordinates (pixels) and in brightness. It is represented by a matrix
I ∈ RH×W , where H and W are the height and width of the image respectively, and
Ii,j = f(i, j), with 0 ≤ f(x, y) ≤ G, for some integer G = 2n − 1. G is usually equal to
255 and denotes the maximum pixel value.

In the next section we will be concerned with 3 types of image processing tasks.

6.2 Tasks

The first two tasks can arise when we have to work with images that have been corrupted
during the data acquisition process. This can be due to a noisy sensor or transmission
errors. The 3rd task is super-resolution where our goal is to give more detail to an image.

1. Missing pixels/Image inpainting: We want to estimate the brightness values
of some missing pixels, by using the observed brightness values of pixels in their
vicinity.

2. Image denoising: In this case we received an image, where each pixel was corrupted
with some additive noise (modeled as i.i.d. 0 mean Gaussian noise) and our task is
to remove this noise as much as possible.

3. Super-resolution: Given a digital image, we want to refine the grid, it is defined
on. To achieve this we need to estimate f(x, y) at the pixel (x, y), that is not part
of our input data.

Remark 6.2.1 Super-resolution is not only useful when we want to make images aes-
thetically nicer, but also when we want to compress images, so that their storage requires
less memory. This is done by downsampling the data and when we want to use it we apply
the super-resolution method to obtain an image "close" to the original.

In the next section we define some ways to measure the "closeness" of images to each
other.

35

6.3 Image quality metrics

After performing the above mentioned image processing techniques we will want to mea-
sure how similar the obtained and the original images are.

Definition 6.3.1 Based on the Remark 2.0.6 we can define the mean squared er-

ror (MSE) between 2 images represented by the matrices A,B ∈ RH×W . MSE(A,B)
= 1

HW

∑H
i=1

∑W
j=1(Ai,j −Bi,j)

2.

The first metric we define is an MSE based similarity measure.

Definition 6.3.2 (11)
The peak-signal-to-noise ratio (PSNR) between 2 images represented by the matrices
A,B is defined as PSNR(A,B)=10 log10(

G2

MSE(A,B)
), where G is the maximum pixel value.

Remark 6.3.3 Note that as the MSE decreases to 0 the PSNR approaches infinity, so a
higher PSNR value indicates a better processing method. On the other hand a small PSNR
is caused by big numerical differences between the brightness values of the 2 pictures.

The second metric we will rely on, was designed in a way that it correlates with the quality
perception of our eyes. To demonstrate this we introduce all the 3 image distortion factors
that it is composed of.

Definition 6.3.4 (12)
The structural similarity index measure (SSIM) between 2 images represented by
the matrices A,B is the product of the following 3 quantities:

1. l(A,B) = 2µAµB+C1

µ2
A+µ2

B+C1
, where µA is the mean value of the matrix A and can be viewed

as the estimate for the luminance of the image.

2. c(A,B) = 2σAσB+C2

σ2
A+σ2

B+C2
, where σ2

A denotes the variance of the matrix A and can be
viewed as an estimate for the contrast of the image.

3. s(A,B) =
σA,B+C3

σAσB+C3
, where σA,B is the covariance of A and B, and it measures the

tendency of A and B to vary together, thus it indicates structural similarity.

The constants C1, C2, C3 are used to avoid a null denominator a are chosen as C1 =

(K1G)
2, C2 = (K2G)

2, C3 =
C2

2
, where K1, K2 ≪ 1 constants and G is the maximum pixel

value.
SSIM(A,B)=l(A,B)× c(A,B)× s(A,B) =

(2µAµB+C1)(2σA,B+C2)

(µ2
A+µ2

B+C1)(σ2
A+σ2

B+C2)

36

Chapter 7

Experiments

The images used in this chapter are from the Set12 dataset which contains 12 grayscale
images with resolution 256× 256.

Remark 7.0.1 A grayscale image is similar to a panchromatic image in the sense that
it has a single channel, but it is obtained by combining the channels of the multispectral
image with appropriately chosen weights.

7.1 Image inpainting

In this section we assume that we lost some percentage of the original image. To model
this, the "missing pixels" are chosen randomly from the image and we corrupt them by
turning them black. We slide a 4 × 4 patch over every ruined pixel and use the non-
corrupted pixels in the patch and their corresponding brightness values as a training set.
We calculate the α∗ in equation 3.1 and do the prediction for the brightness value of the
corrupted pixel. There was no need to do hyperparameter-optimization here, due to the
good initial results.

37

Original image Corrupted image

20% of pixels corrupted

After inpainting

λ = 0.01; σ = 2

SSIM=0.97; PSNR=34.56

Figure 7.1: Comparison of original, corrupted, and corrected images.

7.2 Image denoising

In this case we added Gaussian noise with 0 mean and 225 variance to each pixel’s intensity.
We implemented Gaussian kernel ridge regression by moving a 5 × 5 patch through the
image and using these pixels as a training set to estimate the intensity of the central pixel.
Neither the use of a smaller nor a bigger patch resulted in significant improvement of the
image quality metrics. The regularization constant λ and the σ parameter of the Gaussian
kernel was obtained with grid search with respect to the SSIM metric.

Original image Noisy image

N (0, 152) noise

Denoised result

λ = 0.05; σ = 2

SSIM=0.76; PSNR=23

Figure 7.2: Comparison of original, noisy, and denoised airplane images.

38

7.3 Super-resolution

In this section we start off with a low-resolution image, containing a lower amount of
pixels, and our goal is to multiply the number of pixels in the image. This can be done
by "naive" image upsampling methods like nearest neighbors or bicubic interpolation.
If we want to create an image that is not only high resolution, but also high-fidelity
and aesthetically pleasing we apply super-resolution. The first step is to downsample the
256× 256 image, by a factor of 2 to obtain the 128× 128 low-resolution image. Then we
sweep through the 256×256 grid with a 9×9 patch and the central pixel’s intensity value
is estimated based on the intensity values that correspond to those low-resolution pixels
that fall into the 9×9 square. By performing grid search with respect to the SSIM metric
we found:

Original image

256× 256

Low-res. image

128× 128

After super-resolution

λ = 0.05; σ = 2

SSIM=0.83; PSNR=21.67

Figure 7.3: Comparison of original, low-res., and reconstructed high-res. images.

We can observe some corrupted pixels in the picture at those areas where there are
thin black lines on a white background. This should come as no surprise because in these
pixels our method uses mostly white pixels for prediction. To fix this we can use the
super-resolved picture as an input for our image inpainting technique, although in that
section we assumed that we know which pixels were corrupted. To find these pixels we
can slide a 3× 3 patch through the image and if the difference of the average intensity in
the patch and the intensity of the central pixel is greater than a pre-specified threshold
then we mark the pixel as corrupted. We perform the image inpainting several times in a
row and we obtain:

39

After super-resolution

SSIM=0.83; PSNR=21.67

After inpainting

SSIM=0.83; PSNR=22.48

Figure 7.4: Comparison of high-res. and inpainted high-res. images

40

Conclusion

After the introduction, in the second chapter of the thesis we introduced the basic con-
cepts of regression and we defined the empirical risk, which gave us a way to quantify
how well a regression function performs on a training set. Then we introduced ridge re-
gression, where we added a term that penalized the complexity of the functions. In the
third chapter, motivated by regularized linear regression, we introduced RKHSs, which
had the important property that function evaluations could be written in the form of an
inner product. Since RKHSs provide the basis for kernel methods first we looked at some
properties of these function spaces, then defined kernel functions and ultimately arrived
at the conclusion that there is a one-to-one correspondence between kernel functions and
RKHSs. Then we proved the representer theorem and it enabled us to give an analytical
solution to kernel ridge regression, which is an optimization exercise in an infinite dimen-
sional space. In the fourth chapter we saw that kernel functions compute inner products
in feature spaces, which enables us to modify inner product based algorithms with the
kernel trick. Later we stated Mercer’s theorem, which not only granted another feature
space, where the kernel function computes the inner product, but also could be used to
reduce the computational costs of kernel ridge regression via the Nyström method. Finally
we gave another representation of the RKHS of a Mercer kernel and defined the Gaussian
kernel, which is a universal kernel. The next chapter contained the overview of Gaussian
process regression and it became clear that it is deeply connected to kernel ridge regres-
sion. In the following chapter we introduced the basics of image processing, formulated
the tasks that we want to experiment with and defined some image quality metrics. In the
last section we performed some experiments, the image inpainting and super-resolution
were relatively successful. The denoising task proved to be too difficult for our model, the
resulting image was blurred, low-fidelity. Some future improvements could be made by
experimenting with different kernels like the Paley-Wiener kernel. Using bigger patches
in the above mentioned tasks is also worth considering, however due to the increased

41

computational costs, this would require the implementation of an approximation method,
like the one described in Section 4.2.

The codes and images used in Chapter 7 are available in this Github repository.

42

https://github.com/progiball/Thesis-2025-BSc

Bibliography

[1] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, (2002).

[2] Vern I. Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproduc-
ing Kernel Hilbert Spaces. Cambridge University Press, (2016).

[3] Ferenc Izsák, Zsigmond Tarcsay, Dániel Tüzes. Analízis jegyzetek I-III. (2018).

[4] Berlinet, Alain, and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in
probability and statistics. Springer Science + Business Media, (2001).

[5] János Karátson. Numerikus Funkcionálanalízis., ELTE Institute of Mathematics,
(2014).

[6] Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed
up kernel machines. Advances in neural information processing systems 13, (2000).

[7] Charles A. Micchelli, Yuesheng Xu and Haizhang Zhang. Universal Kernels. Journal
of Machine Learning Research 7.12, (2006).

[8] Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning. (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press, (2006).

[9] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, Bharath K. Sriperumbudur.
Gaussian processes and kernel methods: A review on connections and equivalences.
arXiv preprint arXiv:1807.02582, (2018).

[10] Maria Petrou and Costas Petrou. Image processing: the fundamentals. John Wiley
and Sons, (2010).

43

[11] Alain Horé and Djemel Ziou. Image quality metrics: PSNR vs. SSIM. 2010 20th
international conference on pattern recognition. IEEE, (2010).

[12] Zhou Wang, Eero P. Simoncelli and Alan C. Bovik. Multiscale structural similarity
for image quality assessment. The Thrity-Seventh Asilomar Conference on Signals,
Systems and Computers, 2003. Vol. 2. Ieee, (2003).

[13] Hongwei Sun. Mercer theorem for RKHS on noncompact sets. Journal of Complexity
21.3 337-349., (2005).

44

Alulírott Szathmári Gergely Márton nyilatkozom, hogy szakdolgozatom elkészítése során
az alább felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye Megjegyzés

LaTeX kód generálása GPT-4-turbo 3., 4. és 5. Fejezet

Nyelvhelyesség ellenőrzése GPT-4-turbo Teljes dolgozat

A felsoroltakon túl más MI alapú eszközt nem használtam.

45

	Introduction
	Regression
	Ridge regression
	Regularized linear regression

	Reproducing kernel Hilbert spaces
	Properties of RKHSs
	Kernel functions
	Solving ride regression in an RKHS

	Properties of kernels
	Kernels as inner products
	Reduce computational costs
	Approximating the kernel matrix
	Nyström method
	Speeding up KRR

	The RKHS of a Mercer kernel
	Choosing a kernel

	Another perspective, Gaussian process regression
	Image processing
	Basics of image processing
	Tasks
	Image quality metrics

	Experiments
	Image inpainting
	Image denoising
	Super-resolution

	Bibliography

