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1. Introduction

An ordered graph is a graph together with a total ordering on its vertices. Let H be
an ordered k-uniform hypergraph. We say thatH contains a monotone path of length n if
there is an ordered sequence of vertices of length n + k − 1 for which H contains every
k-tuple (i.e. edge) of consecutive vertices in the sequence. Let Nk(q, n) be the smallest inte-
ger N so that every q-coloring of the edges of the ordered complete k-uniform hypergraph
on N vertices contains a monochromatic monotone path of length n. The Ramsey-type
problem of bounding Nk(q, n) was studied by Fox, Pach, Sudakov and Suk [4]; however,
it goes back (implicitly) to the seminal 1935 paper of Erdős and Szekeres [3].

In the first part of the thesis, we present two of the most well-known results in combi-
natorics, that appeared in the paper of Erdős and Szekeres mentioned above.

Then, in the second part, we present a construction by Moshkovitz and Shapira [5]
that improves the bound of Fox et al. and, as a by-product, provides a new proof of the
Erdős–Szekeres Theorem. Furthermore, we investigate how Nk(q, n) changes if the col-
oring is restricted to stricter properties, and we present a construction by Balko [1] that
addresses this case.

For the sake of clarity of presentation, we maintain some conventions throughout the
thesis. For a positive integer n, we use [n] to denote the set {1, . . . , n}. For a set A, let

(
A
k

)
be the set {S ⊆ A : |S | = k}. We write v ≤ w for two vectors v,w ∈ [n]d if vi ≤ wi for all
coordinates. For v,w ∈ [n]d, we say that v is lexicographically smaller than w if for the
smallest i ∈ [d] such that vi , wi we have vi < wi. Let towh(x) be the tower function of
height h, that is, tow1(x) = x and towh(x) = 2towh−1(x) for every h ≥ 2.
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2. Erdős-Szekeres Lemma and Theorem

In the seminal 1935 paper of Erdős and Szekeres, in addition to establishing explicit
bounds for graph and hypergraph Ramsey numbers, they also proved two fundamental
results in combinatorics, which have become known as the Erdős-Szekeres Lemma and
Theorem. In this section, we provide proof for both well-known results.

Let f (a, b) be the smallest integer such that every sequence of f (a, b) distinct real num-
bers contains either an increasing subsequence of length a or a decreasing subsequence
of length b (the elements of the subsequences do not have to be adjacent in the given
sequence). Then, the Erdős-Szekeres Lemma is the following:

Lemma 2.1 (Erdős-Szekeres Lemma). f (a, b) ≤ (a − 1)(b − 1) + 1.

Steele [7] collected seven proofs of the lemma; the one presented below is by Seiden-
berg [6].

Proof. Label the i-th number in the sequence with (xi, yi) ∈ Z2, where xi and yi are the
lengths of the longest monotone increasing and decreasing subsequences ending with the
i-th number, respectively.

Note that every label is distinct. If we suppose to the contrary that there exist indices
i < j such that (xi, yi) = (x j, y j), then, by adding the j-th number to the longest increasing
or decreasing subsequence ending at the i-th number − depending on whether the j-th
number is greater or smaller than the i-th − the corresponding coordinate in the label
would increase, contradicting our assumption.

If there is no increasing subsequence of length a or decreasing sequence of length b,
then for all labels, we have 1 ≤ xi ≤ a− 1 and 1 ≤ yi ≤ b− 1. Therefore, there are at most
(a− 1)(b− 1) distinct labels, which means that we can have at most (a− 1)(b− 1) distinct
numbers without the required subsequences. □

Before continuing with the proof of the Erdős–Szekeres Theorem, we introduce a few
definitions and a preliminary observation that will be used in the proof. A finite set of
points in the plane is in general position if no three points are collinear and no two
points share the same x-coordinate. A set of a points in general position (a ≥ 2), la-
beled p1, . . . , pa with increasing x-coordinates is called an a-cap (respectively, a-cup) if
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Figure 2.1: Connecting a-cap and b-cup can be extended.

the slopes of the segments (p1, p2), (p2, p3), . . . , (pa−1, pa) are decreasing (respectively,
increasing).

Observation 2.2. If the first point of a b-cup and the last point of an a-cap are the same,
one of them can be extended by one point.

Proof. Let q be the common point of the a-cap and the b-cup, also p and r be the point
before and after q in the a-cap and the b-cup, respectively. The points p, q, r form a 3-cap
or a 3-cup. In the first case r can be added to the a-cap, in the second case, p to the b-cup
(Fig. 2.1). □

Let g(a, b) be the smallest integer so that every set of g(a, b) points in the plane in
general position contains either an a-cap or a b-cup. The Erdős-Szekeres Theorem states
the following:

Theorem 2.3 (Erdős-Szekeres Theorem). g(a, b) ≤
(

a+b−4
b−2

)
+ 1.

The following is the original proof by Erdős and Szekeres [3]; later in Section 3, we
present an alternative proof of the theorem.

Proof. First, we will show that g(a + 1, b + 1) ≤ g(a, b + 1) + g(a + 1, b) − 1. Suppose
to the contrary that we have g(a, b + 1) + g(a + 1, b) − 1 points with no (a + 1)-cap nor
(b + 1)-cup. Let S be the set of all endpoints of the a-caps.

If |S | ≥ g(a + 1, b), then, by definition, there must be either an (a + 1)-cap or a b-cup
among the points. In the first case, we have an immediate contradiction. In the second
case, we found a b-cup starting with the endpoint of an a-cap, so with Observation 2.2 we
are done.

If |S | < g(a+1, b), then, in the complement of S there are at least g(a, b+1) points. So,
there must be a (b+1)-cup or an a-cup. The first case contradicts the original assumption,
the second with the definition of S , since we found an endpoint of an a-cap outside of S .

If G(a, b) :=
(

a+b−4
b−2

)
+ 1, then the recursion G(a, b) = G(a, b− 1)+G(a− 1, b)− 1 holds

by Pascal’s rule. To complete the proof by induction, we note that g(2, b) = G(2, b) and
g(a, 2) = G(a, 2). Thus, the result follows. □

Note that the bounds on both f (a, b) and g(a, b) are tight. The papers from which we
presented the proofs contain examples of tight examples.
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3. Ramsey-number of paths in ordered graphs

Let k ≥ 2 be an integer and H = (H,≺) be an ordered k-uniform hypergraph. Recall
that, we say H contains a monotone path of length n if there is an ordered sequence
of n + k − 1 vertices vi1 ≺ · · · ≺ vin+k−1 for which H contains every k-tuple (i.e. edge)
{vi j , . . . , vi j+k−1} for all j ∈ [n]. We denote the ordered complete k-uniform hypergraph on
n vertices by K k

n . A coloring C of an ordered k-unirofm hypergraph H is a function that
assigns to each edge ofH an element from a fixed finite C set. If |C| = q, we say that C is
a q-coloring. A monotone path is monocromathic in C if every edge of the path receives
the same color.

Fox, Pach, Sudakov and Suk [4] introduced the number Nk(q, n) that is the smallest
integer N such that every q-coloring of the edges ofK k

N contains a monochromatic mono-
tone path of length n. We can call this number the ordered multicolor Ramsey-number
of monotone paths as its definition aligns with the original Ramsey-number. Observe that
this framework of Fox et al. puts the Erdős-Szekeres Lemma and Theorem under one
roof:

In the case of the Erdős-Szekres Lemma, for a given sequence of N distinct numbers
{a1, . . . , aN}, we define a complete ordered graph in the following way: Let the vertex
set of the graph be the given set of numbers. The vertices are ordered according to their
position in the sequence, that is, if i < j, then ai ≺ a j (this is the ≺ order on the vertices).
For ai ≺ a j, we color the edge {ai, a j} blue if ai < a j (this is the ordinary < order on
the numbers), and red otherwise. If N ≥ N2(2, n), then by the definition of the number
N2(2, n) there must be a monochromatic monotone path of length n in the coloring we
defined above. That is, we have a subsequence of length n + 1 of the given numbers such
that for each consecutive term in the subsequence the numbers grow if the color of the
path is blue and decrease if its color is red. Therefore, we obtain f (n+1, n+1) ≤ N2(2, n).

Similarly, in the case of the Erdős-Szekres Theorem, a given set of N points in gen-
eral position in the plane {(x1, y1), . . . , (xN , yN)}, we define a complete ordered 3-uniform
hypergraph in the following way: Let the vertex set of the graph be the given point set.
The vertices are ordered according to the x-coordinates of the corresponding points, that
is, if xi < x j, then (xi, yi) ≺ (x j, y j). For (xi, yi) ≺ (x j, y j) ≺ (xk, yk), we color the edge
{(xi, yi), (x j, y j), (xk, yk)} blue if the points {(xi, yi), (x j, y j), (xk, yk)} form a 3-cap, and red
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if they form a 3-cup. If N ≥ N3(2, n), then by the definition of the number N3(2, n) there
must be a monochromatic monotone path of length n in the coloring we defined above.
That is, we have a sequence of points of length n + 2 for which each consecutive triple
of points forms a 3-cap if the color of the path is blue and a 3-cup if its color is red.
Therefore, we obtain g(n + 2, n + 2) ≤ N3(2, n).

Hence, we can prove both Erdős-Szekeres Lemma and Theorem by bounding Nk(q, n).
For k = 3, Fox et al. showed that

2(n/q)q−1
≤ N3(q, n) ≤ nnq−1

.

In this section, we first go through the constructions that Moshkovitz and Shapira [5] gave
to prove the following better bounds on the number Nk(q, n).

Theorem 3.1. For every k ≥ 3, q ≥ 2, and sufficiently large n, we have

towk−1(nq−1/2
√

q) ≤ Nk(q, n) ≤ towk−1(2nq−1).

Then, in Subsection 3.5, we examine how the number Nk(q, n) changes when it is
restricted to special types of colorings. We present the construction that Balko gave in
[1], which resolves the problem of asymptotically bounding Nk(q, n) restricted to those
special colorings.

3.1 High-dimensional integer partitions
For the case k = 3 in Theorem 3.1, Moshkovitz and Shapira established a surprising

connection between the problem of bounding N3(q, n) and the problem of enumerating
high-dimensional integer partitions. In their proof, they used a subset of these partitions
that they could identify with the vertex set of the graph that they construct for the lower
bound or get for the upper bound. In this subsection, we define high-dimensional integer
partitions and present some of their key properties.

Definition 3.2. A sequence of nonnegative integers a1, a2, . . . , am is called a line partition
if a1 ≥ a2 ≥ · · · ≥ am.

One can visualize a line partition in 2-dimensions as a sequence of stacks of height ai

each (see Fig. 3.1a).

Definition 3.3. A matrix of nonnegative integers A is called a plane partition if Ai, j ≥

Ai+1, j and Ai, j ≥ Ai, j+1 for all possible pairs of (i, j).

One can visualize a plane partition in 3-dimensions as stacks of height Ai, j at location
(i, j) (see Fig. 3.1b).

Following this pattern, we can define higher-dimensional partitions in general:
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(a) Line partition (b) Plane partition

Figure 3.1: Partitions

Definition 3.4. A d-dimensional (hyper)matrix of nonnegative integers A is called a d-
dimensional partition if Ai1,...,it ,...id ≥ Ai1,...,it+1,...id for all possible i1, . . . , id and 1 ≤ t ≤ d.

One can visualize a d-dimensional partition in (d + 1)-dimensions as stacks of height
Ai1,...,id at location (i1, . . . , id).

Note that Definition 3.4 means that for i, j ∈ [n]d if i ≤ j, then Ai ≥ Aj; however, if we
only know that i is lexicographically smaller than j, then we do not know anything about
the relation between Ai and Aj.

To identify each vertex with a d-dimensional partition, we must define a total order
on the partitions. We order the partitions lexicographically. For two d-dimensional par-
titions A , B, denote by δ(A, B) the lexicogripically smallest (i1, . . . , id) ∈ [n]d where
Ai1,...,id , Bi1,...,id . Then, we define the lexicographical order on the d-dimensional parti-
tions as follows.

Definition 3.5. A ⋖ B ⇐⇒ Aδ(A,B) < Bδ(A,B).

Now we define the subset of partitions that will serve as the vertex set of the graph.
Let pd(n) denote the set of d-dimensional partitions such that 1 ≤ i j ≤ n for all 1 ≤ j ≤ d
and 0 ≤ Ai1,...,id ≤ n for all possible i1, . . . , id. That is, if the partition is visualized in
(d + 1)-dimension, then it can fit in a (d + 1)-dimensional (hyper)cube with edge length
of n. Denote the cardinality of pd(n) with Pd(n).

As it turns out, the number Pd(n) can be estimated well.

Proposition 3.6. P1(n) =
(

2n
n

)
.

Proof. Using the visualization above, a line partition in pd(n) can be represented as a
lattice path from (0, n) to (n, 0) where in each step the path moves either one unit to the
right or one unit downward (see Fig. 3.1a). Since each such path consists of exactly n right
steps and n down steps (in some order), the total number of such paths is

(
2n
n

)
, because that

is the number of ways we can choose which n are downward from the 2n steps. □
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Proposition 3.7. Pd(n) ≤
(

2n
n

)nd−1

.

Proof. Observe that in a d-dimensional partition A, if we fix an index t ∈ [d] and fix all co-
ordinates of (i1, . . . , it, . . . , id) except for it, then the sequence

(
Ai1,...,it ,...,id

)
, where it ranges

over [n], is a line partition. In this way, the d-dimensional partition can be decomposed
into nd−1 line partitions, as there are nd−1 ways to fix the remaining d − 1 coordinates

of the tuple (i1, . . . , id). Therefore, we obtain the upper bound Pd(n) ≤
(

2n
n

)nd−1

by inde-
pendently choosing an arbitrary line partition for each of the nd−1 possible coordinate
configurations. □

We simply mention the following lower bound on Pd(n); the proof can be found in [5].

Theorem 3.8. For every d ≥ 1 and n ≥ 1 we have

Pd(n) ≥ 2
2
3 nd/

√
d+1.

To prove the lower bound on the number N3(q, n), Guy Moshkovitz and Asaf Shapira
establish the connection between the vertex set of the graph and the pd(n) subset of parti-
tions through the following definition and observation:

Definition 3.9. A set S ⊆ [n]d is a down-set if s ∈ S implies x ∈ S for every x ≤ s.

Observation 3.10. The number of down-sets S ⊆ [n]d is Pd−1(n).

Proof. We construct a bijection between pd−1(n) and the down-sets in [n]d.
Let S ⊆ [n]d be a down-set. For every 1 ≤ i1, . . . , id−1 ≤ n define

Ai1,...,id−1 := max {i ∈ [n] : (i1, . . . , id−1, i) ∈ S }

with the convention that Ai1,...,id−1 = 0 if no such i exists. We claim that the array A we
get is a (d − 1)-dimensional partition. Suppose the contrary, that there exists a tuple
(i1, . . . , it, . . . , id−1) ∈ [n]d−1 such that

Ai1,...,it ,...,id−1 < Ai1,...,it+1,...,id−1 .

By the definition of A we know that for the points

x = (i1, . . . , it, . . . , id−1, Ai1,...,it ,...,id−1) and y = (i1, . . . , it + 1, . . . , id−1, Ai1,...,it+1,...,id−1)

we have x, y ∈ S and x ≤ y. Since S is a down-set, any point less than or equal to y must
also lie in S . In particular, by our assumption, the point (i1, . . . , it, . . . , id−1, Ai1,...,it+1,...,id−1)
is also in S . However, this is a contradiction with the choice of Ai1,...,it ,...,id−1 .

Let A ∈ pd−1(n). For every 1 ≤ i1, . . . , id−1 ≤ n define

S i1,...,id−1 :=
{
x ∈ [n]d : x ≤ (i1, . . . , id−1, Ai1,...,id−1)

}
9



with the convention that S i1,...,id−1 = ∅ if Ai1,...,id−1 = 0. We claim that the set S defined as⋃
1≤i1,...,id−1≤n S i1,...,id−1 is a down-set in [n]d. To prove this, let s ∈ S and suppose x ∈ [n]d

satisfies x ≤ s. By definition of S , there exists a tuple i1, . . . , id−1 such that

s ≤ (i1, . . . , id−1, Ai1,...,id−1)

since the relation ≤ between the ponts in [n]d is transitive, it follows that

x ≤ s ≤ (i1, . . . , id−1, Ai1,...,id−1),

and hence x ∈ S i1,...,id−1 ⊆ S . Therefore, S is a down-set. □

3.2 3-uniform hypergraphs
Now we are ready to show the following connection between N3(q, n) and the set

pq−1(n).

Theorem 3.11. For every q ≥ 2 and n ≥ 2 we have

N3(q, n) = Pq−1(n) + 1.

We begin by proving the case q = 2. Observe that, with Proposition 3.6, it provides an
alternative proof of Theorem 2.3 in the case a = b = n. Then, we proceed to prove the
theorem for general q in two steps: first by establishing the upper bound in Lemma 3.14,
and then by proving the lower bound in Lemma 3.15.

Lemma 3.12. N3(2, n) ≤ P1(n) + 1.

Proof. Fix a blue-red coloring of the edges of K3
N without monochromatic monotone path

of length n. We need to show that N ≤ P1(n). Let us define C(u, v) for every u < v
pair of vertices as (nb + 1, nr + 1), where nb (respectively nr) is the length of the longest
blue (respectively red) monotone path ending with the vertices {u, v}. Note that by our
assumption, that there is no monochromatic monotone path of length n, C(u, v) ∈ [n]2.
Define

D(v) :=
{
x ∈ [n]2 : ∃u < v : x ≤ C(u, v)

}
.

Notice that D(v) is a downset in [n]2, therefore using Observation 3.10, it is enough to
prove that D(v) , D(u) for every pair of vertices, since then, if we would have more than
P1(n) vertecies the pigeonhole principle implies a contradiction with D(v) , D(u).

So suppose to the contrary that u < v and D(u) = D(v). Then, C(u, v) ∈ D(u), so
by definition of D(u) there exists a vertex such that C(u, v) ≤ C(t, u). However, this is
a contradiction, because the longest monotone path ending with (t, u) that has the same

10
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a) δ(B,C)

b) δ(B,C)<

< <

≤

<

δ(A, B)(i)

δ(B,C)(i) δ(A, B)

Figure 3.2: The coloring rule for {A, B,C}.

color as {t, u, v} can be extended with {t, u, v}, so in the corresponding i ∈ [2] coordinate
C(u, v)i ≰ C(t, u)i. □

Lemma 3.13. N3(2, n) > P1(n).

Proof. We need to construct a coloring of the edges of K3
P1(n) that has no monochromatic

path of length n. Identify each vertex with a distinct element of p1(n) and order them
lexicographically. For given A ⋖ B ⋖C vertices, color the edge {A, B,C} blue if δ(A, B) ≥
δ(B,C) and red otherwise (Fig. 3.2).

It is enough to show that for a monochromatic monotone path of length l ending with
B ⋖C vertices, if its color is red, then δ(B,C) > l; if it is blue, then Cδ(B,C) > l. Since both
Cδ(B,C) and δ(B,C) are, by definition, at most n, the previous claim follows that n − 1 ≥ l.

In the first case, if its color is red, then, between every three consecutive vertices (an
edge of the path), the δ index grows by one at least by the definition of the coloring (Fig.
3.2 left side); therefore, on the whole path (containing l+ 2 vertices) it grows by l at least,
so on the last two vertices δ must be greater than l.

In the second case, if its color is blue, then for every three consecutive vertices {A, B,C}
(an edge of the path) we have:

Aδ(A,B) < Bδ(A,B) ≤ Bδ(B,C) < Cδ(B,C),

where the middle inequality comes from the definition of the elements of p1(n), and
the other two from the definiton of the δ indices (Fig. 3.2 right side). Hence, the sequence
of the corresponding coordinates increase by at least one between every two consecutive
vertices, so, on the whole path by l + 1 at least. Therefore, the corresponding coordinate
of the last vertex must be greater than l + 1. □

We can generalize the previous two lemmas for q-colorings:

Lemma 3.14. N3(q, n) ≤ Pq−1(n) + 1.

11



Proof. Fix a q-coloring of the edges of K3
N without a monochromatic monotone path of

length n. We need to show that N ≤ Pq−1(n). Let us define C(u, v) for every u < v pair of
vertices as (n1+1, . . . , nq+1), where ni is the length of the longest monotone path colored
with the i-th color ending with the vertices {u, v}. Note that by our assumption, that there
is no monochromatic monotone path of length n, C(u, v) ∈ [n]q. Define

D(v) := {x ∈ [n]q : ∃u < v : x ≤ C(u, v)} .

Notice that D(v) is a downset in [n]q, therefore using Observation 3.10, it is enough to
prove that D(v) , D(u) for every pair of vertices, since then, if we would have more than
P1(n) vertecies the pigeonhole principle implies a contradiction with D(v) , D(u).

So suppose the contrary that u < v and D(u) = D(v). Then C(u, v) ∈ D(u), so by
definition, there is a t vertex such that C(u, v) ≤ C(t, u). However, this is a contradiction,
because the longest monotone path ending with the vertices {t, u} that has the same color
as {t, u, v} can be extended with {t, u, v}, so in the corresponding i-th (i ∈ [q]) coordinate
C(u, v)i ≰ C(t, u)i. □

Lemma 3.15. For every q ≥ 2 and n ≥ 2 we have

N3(q, n) > Pq−1(n).

Proof. Let d = q − 1. We need to construct a coloring of the edges of K3
Pd(n) that has

no monochromatic path of length n. Identify each vertex with a distinct d-dimensional
partition for which 1 ≤ i j ≤ n for all 1 ≤ j ≤ d and 0 ≤ Ai1,...,id ≤ n for all possible
i1, . . . , id. Order the vertices lexicographically. For given A ⋖ B ⋖ C vertices, color the
edge {A, B,C} with the j-th color if δ(A, B) j < δ(B,C) j (if there are several such j we
choose the minimal), otherwise use the q-th color.

It is enough to show that for a monochromatic monotone path of length l ending with
B ⋖ C vertices, if its color is the j-th color, that is 1 ≤ j ≤ q − 1, then δ(B,C) j > l; if
it is the q-th color, then Cδ(B,C) > l. Since Cδ(B,C) and δ(B,C) j for each j ∈ [d] are, by
definition, at most n, from the previous claim follows that n − 1 ≥ l.

If the color of the path is j that is 1 ≤ j ≤ q− 1, then, between every three consecutive
vertices of the graph (an edge of the path), the j-th coordinate of the δ index grows at least
by one by the definition of the coloring (see Fig. 3.2 left side); therefore, on the whole
path (containing l + 2 vertices) it grows by l at least, so on the last two vertices the j-th
coordinate of δ must be greater than l.

If the color of the path is q, then for every three consecutive vertices of the path
{A, B,C} (an edge of the path) we have:

Aδ(A,B) < Bδ(A,B) ≤ Bδ(B,C) < Cδ(B,C).

12



The middle inequality comes from the definition of the elements of pd(n) because we
know that if the color is q, then δ(A, B) ≥ δ(B,C) (see def. 3.4 and the remark afterwards).
The other two inequality hold by the definiton of the δ indices (Fig. 3.2 right side). Hence,
the corresponding coordinate increases by at least one between every two consecutive
vertices, so, on the whole path by l + 1 at least. Therefore, the corresponding coordinate
of the last vertex must be greater than l + 1. □

From Theorem 3.11 and from the bounds in Proposition 3.7 and Theorem 3.8, we
obtain:

Corollary 3.16. For every q ≥ 2 and n ≥ 2 we have

2
2
3 nq−1/

√
q ≤ N3(q, n) ≤ 22nq−1

.

3.3 Higher-order line partitions
As the numbers N3(q, n) turn out to have a close relation to high-dimensional integer

partitions in the framework of down-sets, the numbers Nk(q, n) for general k are related
to some kind of higher-order generalization of partitions. For an easier presentation, we
consider the case q = 2, but we mention a possible generalization later.

Recall that with Observation 3.10 we get a bijection between the down-sets of [n]2 and
the elements of the set p1(n). We will generalize this in the following way. Let P2(n) be
the set [n]2, and P3(n) be the family of down-sets in [n]2 = P2(n) (so P3(n) is in bijection
with p1(n)). For a set S in P3(n) we know that if x ∈ S , then for all x′ ≤ x we have x′ ∈ S .
For easier generalization, we think of each x ∈ [n]2 as a down-set, so for x, x′ ∈ [n]2 if we
have x′ ≤ x, then we can say x′ ⊆ x.

Following this pattern, we define P4(n) as the family of down-sets in P3(n) (i.e. family
of down-sets of line partitions in [n]2). Observe that with the definition above of x′ ⊆ x
for x, x′ ∈ [n]2, we can say that a line partition is a subset of an other.

In general, we inductively define Pk(n), whose members are down-sets in Pk−1(n) as
follows.

Definition 3.17. Let P2(n) = [n]2 and suppose we have already defined Pk−1(n). A set
F ⊆ Pk−1(n) is in Pk(n) if S ∈ F implies S ′ ∈ F for any S ′ ⊆ S .

We refer to these sets as higher-order line partitions; for a specific k, we call them
order-k line partitions. Note that the elements of a set from Pk(n) are themselves elements
in Pk−1(n). Also, if we denote the cardinality of Pk(n) by ρk(n), then by the definition
above we can easily get the following:

ρ1(n) = n2, ρ2(n) =
(
2n
n

)
, ρk(n) ≤ 2ρk−1(n) for k ≥ 3.
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To identify each vertex with a higher-order line partition, we must define a total order
on the set of higher-order line partitions. For this purpose, we extend the lexicographical
order to Pk(n). As the sets Pk(n) are defined recursively, we also define the extension of
the lexicographical order recursively.

For k = 2, let ⋖ be the standard lexicographical order on [n]2 = P2(n). Suppose that ⋖
has already been defined on Pk−1(n). Then, for Pk(n), we say that an order-k partition A is
lexicographically smaller than an order-k partition B, denoted A⋖B, if the lexicographical
minimum (with respect to the previously defined lexicographical order on Pk−1(n)) of the
elements in the symmetric difference A△B is in B.

For two sets A and B from Pk(n) such that A ⊉ B, we define δ(A, B) as the lexicograph-
ically smallest element in B \ A.

Observation 3.18. For any sequence of order-k line partitions F1 ⊉ F2 ⊉ · · · ⊉ Ft we
have δ(F1,F2) ⊉ δ(F2,F3) ⊉ · · · ⊉ δ(Ft−1,Ft).

Proof. It is enough to show that for t = 3 it holds, because then we can use it for every
consecutive triples in F1 ⊉ F2 ⊉ · · · ⊉ Ft and get the claim of the observation.

By definiton δ(F1,F2) ∈ F2 and δ(F2,F3) < F2. However, if δ(F1,F2) ⊇ δ(F2,F3),
then δ(F2,F3) would be in F2, since F2 is closed under taking subsets; therefore, we get
δ(F1,F2) ⊉ δ(F2,F3). □

Notice that this observation can be used itaretively, because the elements of an order-k
line partition are order-(k − 1) line partitions and we get exactly the necessary strating
conditions with δ(F1,F2) ⊉ δ(F2,F3) ⊉ · · · ⊉ δ(Ft−1,Ft).

3.4 k-uniform hypergraphs
Now we can characterize Nk(2, n) as follows:

Theorem 3.19. For every k ≥ 2 and n ≥ 2 we have

Nk(2, n) = ρk(n) + 1.

We prove Theorem 3.19 in two steps: first by establishing the upper bound in Lemma
3.20, and then by proving the lower bound in Lemma 3.21.

Lemma 3.20. Nk(2, n) ≤ ρk(n) + 1.

Proof. Fix a blue-red coloring of the edges of Kk
N with no monochromatic monotone

path of length n. Our goal is to show that N ≤ ρk(n). To do this, we need to establish a
relationship between the vertices and the elements of Pk(n). For every set of k−1 vertices
x1 < · · · < xk−1, define D(x1, . . . , xk−1) := (nb + 1, nr + 1), where nb (respectively, nr) is
the length of the longest blue (respectively, red) monotone path ending with the vertices
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{x1, . . . , xk−1}. By assumption, we have D(x1, . . . , xk−1) ∈ [n]2. Similarly to the proof of
Lemma 3.14, we now define D(v) for all vertices using the same idea, taking the downset,
but this time k − 2 times. For r ∈ {k − 2, . . . , 1} and vertices xk−r, . . . , xk−1, we recursively
define:

D(xk−r, . . . , xk−1) :=
{
S ∈ Pk−r(n) : S ⊆ D(x, xk−r, . . . , xk−1) for some x < xk−r

}
.

Therefore, D(v) ∈ Pk(n), as desired, so it is enough to show that D(u) , D(v) for every
pair of {u, v} vertices. To prove this, we use the following observation:

D(x, xk−1) ⊆ D(xk−r, x)⇒ ∃x < xk−r : D(xk−r, x, xk−1) ⊆ D(x, xk−r, x)

for any 2 ≤ r ≤ k − 1 and vertices xk−r, . . . , xk−1, where x is the short form of xk−r+1, . . . ,

xk−2. By definition, D(xk−r, x, xk−1) is in D(x, xk−1). Furthermore, by our assumption, it is
also in D(xk−rx). Thus, using the definition of D(xk−r, x), there is an x < xk−r such that
D(xk−r, x, xk−1) ⊆ D(x, xk−r, x).

Now we are ready to prove that D(u) , D(v) for every pair of vertices {u, v}. Suppose
the contrary, that there exist vertices u < v such that D(u) = D(v). By applying our
observation to D(v) ⊆ D(u) there exists an xk−2 < u such that D(u, v) ⊆ D(xk−2, u).
We can continue iteratively using our observation k − 3 more times, to get vertices x1 <

· · · < xk−3 < xk−2 such that D(x2, . . . , xk−2, u, v) ⊆ D(x1, x2, . . . , xk−2, u). However, consider
the longest monotone path ending with the vertices {x1, x2, . . . , xk−2, u} that has the same
color as the edge {x1, x2, . . . , xk−2, u, v} to it. This path can be extended by adding the
edge {x1, x2, . . . , xk−2, u, v}. This contradicts the assumption that D(x2, . . . , xk−2, u, v) ⊈
D(x1, x2, . . . , xk−2, u), which completes the proof. □

Lemma 3.21. Nk(2, n) > ρk(n).

Proof. We need to construct a blue-red coloring of the edges of Kk
ρk(n) that has no mono-

chromatic path of length n. To do so, identify each vertex with a distinct element of
Pk(n) and order lexicographically. For the edge {F1, . . . ,Fk}, we define its color using
the previous observation as follows: the sets Fi are ordered lexicographically, so we have
F1 ⋖ F2 ⋖ · · · ⋖ Fk. This implies, by definition, that F1 ⊉ F2 ⊉ · · · ⊉ Fk. By the previous
observation, we obtain δ(F1,F2) ⊉ δ(F2,F3) ⊉ · · · ⊉ δ(Fk−1,Fk). We can continue using
the observation itaretively as we noticed it previously. By applying it i times, we obtain a
k − i long sequence of order k − i line partitions. In particular, for i = k − 2, we get a pair
of order-2 line partitions X1 and X2 such that X1 ⊉ X2. Notice that X1, X2 ∈ P

2(n) = [n]2,
so we can write (x1, y1) and (x2, y2) instead of X1 and X2, respectively. We color the edge
{F1, . . . ,Fk} blue if x1 < x2; otherwise, we color it red. Notice that for the red edges we
must have y1 < y2; otherwise, we would get (x1, y1) ⊇ (x2, y2).

Suppose that we have a monochromatic monotone path of length l on the vertices
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F1 ⋖F2 ⋖ · · ·⋖Fk+l−1. For each edge in the path {Fi, . . . ,Fk+i−1} we have a pair from [n]2.
Notice that the l edges together determine l + 1 distinct elements from [n]2, and since
the path is monochromatic, these elements strictly increase in either the first or second
coordinate. Therefore, we get l + 1 ≤ n because the coordinates cannot be greater than n,
which completes the proof. □

We can generalize the approach above by using higher-order d-dimensional partitions
instead of higher-order line partitions to obtain a characterization for any q > 2 colors as
follows. Let P2

d(n) be the set [n]d. Then for k ≥ 3 we define Pk
d(n) as the family of down-

sets in Pk−1
d (n). Note that in this case, by Observation 3.10 we have P3

d(n) in bijection with
pd−1(n). If we denote the cardinality of Pk

d(n) by ρk,d(n), then we get the following:

ρ2,d(n) = nd, ρ3,d(n) = Pd−1(n), ρk,d(n) ≤ 2ρk−1,d(n) for k ≥ 3.

Using the same arguments as in the previous two lemmas, but now for higher-order d-
dimensional partitions, we get the following characterization:

Theorem 3.22. For every k ≥ 2 and n ≥ 2 we have

Nk(q, n) = ρk,q(n) + 1.

Observe that the coloring defined in Lemma 3.15 coincides with the coloring defined
in Lemma 3.21 for k = 3 (this is also true with the previous generalization for q-colorings
in Lemma 3.21).

To establish the bounds on Nk(q, n) in general for Theorem 3.1, we reduce the problem
to the k = 3 case using the following Theorem 3.23 and Theorem 3.24 and then apply the
bounds from Corollary 3.16.

Theorem 3.23. For every k ≥ 3, q ≥ 2, and n ≥ 2, we have

Nk(q, n) ≤ towk−2(N3(q, n)).

Proof. It is enough to prove that for k ≥ 4 the following holds:

Nk(q, n) ≤ Nk−2(N3(q, n) − 1, 2). (3.1)

Indeed, if the previous is true, then we can use induction in the following way.
For k = 3, there is nothing to prove.
For k = 4:

N4(q, n) ≤ N2(N3(q, n) − 1, 2) ≤ 2N3(q,n)−1 + 1 ≤ tow2(N3(q, n)).

The first inequality comes from (3.1). For the second, we use Theorem 3.22 for k = 2 (i.e.
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N2(q, n) ≤ nq + 1). The third inequality trivially holds.
For k ≥ 5 :

Nk(q, n) ≤ Nk−2(N3(q, n) − 1, 2) ≤ towk−4(N3(q′, 2)) ≤ towk−3(2 · 2q′−1) ≤ towk−2(N3(q, n)),

where q′ = N3(q, n) − 1. The first inequality comes from 3.1. For the second, we use the
induction hypotesis. The third follows from N3(q, n) ≤ 22nq−1

, which is the corollary of
Proposition 3.7 and Lemma 3.14.

Now, we prove 3.1. Fix a q-coloring of Kk
N that has no monochromatic monotone path

of length n. We need to show that N < Nk−2(N3(q, n) − 1, 2). For vertices v1 < · · · <

vk−1, let us define C(v1, . . . , vk−1) := (n1 + 1, . . . , nq + 1), where ni (1 ≤ i ≤ q) is the
length of the longest path colored by i ending with the vertices v1, . . . , vk−1. Notice that,
by our assumption, C(v1, . . . , vk−1) is in [n]q. We continue by defining D(v2, . . . , vk−1) for
vertices v2 < · · · < vk−1 as the set {x ∈ [n]q : ∃u < v2 : x ≤ C(u, v2, . . . , vk−1)}. Observe
that D(v2, . . . , vk−1) is a down-set in [n]q. Therefore, we obtain by Lemma 3.14 that:∣∣∣∣{D(v2, . . . , vk−1) : v2 < · · · < vk−1 vertices of Kk

N

}∣∣∣∣ ≤ N3(q, n) − 1. (3.2)

Now we consider the (k − 2)-uniform hypergraph on the same vertex set as Kk
N and

color the edge {v2, . . . , vk−1} where v2 < · · · < vk−1 with D(v2, . . . , vk−1). We claim that
there is no monochromatic monotone path of length 2.

Suppose the contrary, that there are vertices v1 < · · · < vk−1 for which the edges
{v1, . . . , vk−2} and {v2, . . . , vk−1} have the same color, e.i. D(v1, . . . , vk−2) = D(v2, . . . , vk−1).
Notice that C(v1, . . . , vk−1) is in D(v2, . . . , vk−1). By the definition of D(v1, . . . , vk−2) and
our assumption, there exists a vertex u < v1 such that C(v1, . . . , vk−1) ≤ C(u, v1, . . . , vk−2).
However, this is a contradiction, because the longest monotone path ending with the
vertices {u, v1, . . . , vk−2} that has the same color as {u, v1, . . . , vk−1} can be extended with
{u, v1, . . . , vk−1}, so in the corresponding i-th (i ∈ [q]) coordinate we get C(v1, . . . , vk−1)i ≰

C(u, v1, . . . , vk−2)i.
We conclude that our coloring of Kk−2

N has no monochromatic monotone path of length
2. Therefore, N < Nk−2(c, 2) must hold, where c is the number of colors that we used.
Since, by inequality (3.2), we have c ≤ N3(q, n) − 1, and because the value of Nk(q, n)
increases as the number of colors increases, the proof is complete. □

We do not present the full proof of the following theorem, which establishes a recursive
lower bound on Nk(q, n); instead, we provide the part of the proof in Lemma 3.25, where
we make use of the characterization given in Theorem 3.19. The complete proof can be
found in [5].

Theorem 3.24. There is an absolute constant n0 so that for every k ≥ 3, q ≥ 2, and
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n ≥ n0, we have
Nk(q, n) ≥ towk−2(N3(q, n)/3nq).

Lemma 3.25. For every k ≥ 4, q ≥ 2, and n ≥ 2, we have

Nk(q, n) ≥ 2Nk−1(q,n)/Nk−2(q,n).

Proof. By Theorem 3.22, it is enoungh to show that ρk,q(n)+1 ≥ 2ρk−1,q(n)+1/ρk−2,q(n)+1. Let Li

be the set
{
S ∈ Pk−1

q (n) : |S | = i
}

for 0 ≤ i ≤ ρk−2,q(n). Recall that the elements of Pk−1
q (n)

are subsets of Pk−2
q (n) so the upper bound on i is well-defined. Denote li := |Li|. We claim

that every collection {S 1, . . . , S t} ⊆ Li determines a distinct element of Pk
q(n) and thus

ρk,q(n) ≥ 2li . To prove the claim, consider for any {S 1, . . . , S t} ⊆ Li the set

F =
{
S ∈ Pk−1

q (n) : ∃1 ≤ j ≤ t such that S ⊆ S j

}
.

This set indeed belongs to Pk
q(n) because the subset relation is transitive. Observe that

elements in Li cannot be subsets of one other (since all have the same size i), so S 1, . . . , S t

are maximal in F . Thus, for any other collection
{
S ′1, . . . , S

′
t′

}
⊆ Li, the determined set F′

differs from F, because the sets of maximal elements are different. This proves the claim.
Now, let lmax be the maximum among the li values. Then,

ρk−1,q(n) =
ρk−2,q(n)∑

j=0

l j ≤ lmax · (ρk−2,q(n) + 1),

since Pk−1
q (n) =

⋃ρk−2,q(n)
j=0 L j. Moreover, the previous inequality is stirct, because 1 = l0 <

l3. Thus, we get
ρk−1,q(n) + 1
ρk−2,q(n) + 1

≤ lmax,

This completes the proof. □

Now we can complete the proof of Theorem 3.1 using Theorem 3.23 and Theorem
3.24 with Corollary 3.16.
Proof of Theorem 3.1.

Nk(q, n)
3.23
≤ towk−2(N3(q, n))

3.16
≤ towk−2

(
22nq−1)

= towk−1

(
2nq−1

)
Nk(q, n)

3.24
≥ towk−2

(
N3(q, n)

3nq

)
3.16
≥ towk−2

2
2
3 nq−1/

√
q

3nq

 ⪆ towk−1

(
nq−1

2
√

q

)
. □

3.5 Transitive and k-monotone colorings
In this subsection, we investigate the problem of how the number Nk(2, n) changes if

the coloring is restricted to special colorings that satisfy stricter properties.
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Definition 3.26. A coloring C of (Kk
n;≺) is called transitive if for every (k + 1)-tuples of

vertices {v1, . . . , vk+1} that satisfies v1 ≺ · · · ≺ vk+1 and C(v1, . . . , vk) = C(v2, . . . , vk+1) it
holds that all k-tuples from

(
{v1,...,vk+1}

k

)
have the same color in C.

To motivate the definition above, observe that the colorings we defined in order to
establish the connection between the number Nk(q, n) and the Erdős-Szekeres Lemma
and Theorem at the beginning of Section 3 are transitive.

Consider first the case of the Erdős-Szekeres Lemma. Suppose v1 ≺ v2 ≺ v3 are vertices
such that the edges {v1, v2} and {v2, v3} receive the same color. Then, by the transitivity of
the natural ordering of the numbers, the edge {v1, v3} must also receive the same color.

Similarly, consider the case of the Erdős-Szekeres Theorem. Suppose v1 ≺ v2 ≺ v3 ≺ v4

are vertices such that the edges {v1, v2, v3} and {v2, v3, v4} receive the same color. Then,
because {v1, v2, v3, v4} forms either a 4-cup or a 4-cap, the edges {v1, v2, v4} and {v1, v3, v4}

must also receive the same color.
Denote by N trans

k (q, n) the variant of Nk(q, n) restricted to transitive colorings. The ques-
tion of bounding the number N trans

k (q, n) was raised by Eliáš and Matušek in [2]. Clearly,
we have N trans

k (q, n) ≤ Nk(q, n) and with Theorem 3.1 we have:

Corollary 3.27. N trans
k (q, n) ≤ towk−1(2nq−1).

Problem 1. What is the growth rate of N trans
k (q, n)?

Moshkovitz and Shapira [5] note that it may be the case that N trans
k (q, n) = Nk(q, n), as

this equality holds for their construction when k = 2, 3.

Remark 3.28. For k = 2, 3 the coloring defined in Lemma 3.21 (and its generalization
for Theorem 3.22) is transitive.

Proof. For k = 2, the vertex set is P2
q(n) = [n]q and ⋖ is the regular lexicographical order

on [n]q. Suppose that we have vertices A ⋖ B ⋖ C such that C(A, B) = C(B,C) = i ∈ [q].
We have to show that C(A,C) = i. By our assumption and the definition of the coloring C
we know that Ai < Bi, Bi < Ci and A j = B j, B j = C j for j < i. Thus, Ai < Ci and A j = C j

for j < i, i.e. C(A,C) = i.
For k = 3, the vertex set is P3

q(n) = {S ⊆ [n]q : S is a down-set in [n]q}, the order is ⋖,
and if we write minimal, we mean that it is minimal in the ⋖ order. Suppose that we have
vertices A ⋖ B ⋖ C ⋖ D in P3

q(n) such that C(A, B,C) = C(B,C,D) = i ∈ [q]. We have to
show that C(A,C,D) = C(A, B,D) = i. We only prove it for the edge {A,C,D} as the case
of {A, B,D} is symmetric.

Notice that we have to apply γ only once to obtain elements in [n]q and determine the
coloring. Thus, we have to show

γ(A,C)i < γ(C,D)i and γ(A,C) j = γ(C,D) j for 1 ≤ j < i. (3.3)
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Therefore, we have to determine γ(A,C). We claim that γ(A,C) is the minimum of
γ(A, B) and γ(B,C). From that we are done, since if γ(A,C) = γ(B,C), then (3.3) trivially
holds; otherwise, we can argue similarly to the case k = 2 and obtain (3.3) as well.

By the definition of the order ⋖ and the function γ, γ(A, B) ∈ B and γ(B,C) ∈ C is
the minimal element of A△B (filled area) and B△C (hatched area), respectively. Denoting
γ(A, B) as ♠ and γ(B,C) as ♣, we can distinguish the following four cases based on the
positions of ♠ and ♣:

A B

C

♣

♠

(a) min{♠,♣} = ♣

A B

C

♣

♠

(b) This cannot occure, since we get ♠ ⋖ ♣ and ♣ ⋖ ♠
at the same time - contradiction

A B

C

♣

♠

(c) min{♠,♣}

A B

C

♣ ♠

(d) min{♠,♣} = ♠

Figure 3.3: The four cases based on the location of ♠ = γ(A, B) and ♣ = γ(B,C).

Observe that, in the possible cases (Fig. 3.3 a, c, d), if we choose the minimum of
γ(A, B) and γ(B,C), then it is the minimal element in (A ∪ B ∪C) \ (A ∩ B ∩C) since the
⋖ order is transitive. Furthermore, in all three cases, the minimum of γ(A, B) and γ(B,C)
is in C \ A. Therefore, it follows that γ(A,C) is the minimum of γ(A, B) and γ(B,C). □

As it turn out, for k ≥ 4 the colorings defined in Lemma 3.21 (and its generalization
for Theorem 3.22) are not transitive.

Let us consider the case k = 4 and q = 2, meaning we have vertices A1 ⋖ · · · ⋖ A5 such
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that C(A1, . . . , A4) = C(A2, . . . , A5) = c. We aim to show that C(A1, . . . , Ai−1, Ai+1, . . . , A5)
is also c for 2 ≤ i ≤ 4. To do this, we always have to determine γ(Ai−1, Ai+1). Con-
sider the case i = 2. By the same argument used in Remark 3.28 for k = 3, we have
γ(A1, A3) = min⋖(γ(A1, A2), γ(A2, A3)). If this minimum is γ(A2, A3), then the sequence
γ(A1, A3), γ(A3, A4), γ(A4, A5) that determines C(A1, A3, A4, A5) is the same as the sequence
γ(A2, A3), γ(A3, A4), γ(A4, A5), which determines C(A2, A3, A4, A5). Therefore, we get that
C(A1, A3, A4, A5) = c. However, if γ(A1, A3) = γ(A1, A2), then we have to determine
γ(γ(A1, A2), γ(A3, A4)). By the definition of γ, we know that γ(γ(A2, A3), γ(A3, A4)) is the
minimum in γ(A3, A4) \ γ(A2, A3), γ(γ(A1, A2), γ(A3, A4)) is the minimum in γ(A3, A4)\
γ(A1, A2), and since γ(A2, A3) ⋖ γ(A1, A2), it follows that γ(γ(A1, A2), γ(A2, A3)) is the
minimum in γ(A1, A2)△γ(A2, A3). We use the following notations for simplicity:

♠ := γ(γ(A1, A2), γ(A2, A3)), ♣ := γ(γ(A2, A3), γ(A3, A4)), ♦ := γ(γ(A1, A2), γ(A3, A4)).

We can distinguish several cases based on the location of ♠,♣, and ♦. Observe the case
in Fig. 3.4.

γ(A1, A2) γ(A2, A3)

γ(A3, A4)

♣

♠

♦

Figure 3.4: The problematic case.

Here ♣ ⋖ ♠ ⋖ ♦, that is, it can be the case that ♦ = γ(γ(A1, A2), γ(A3, A4)) is even larger
than γ(γ(A3, A4), γ(A4, A5)) in ⋖, and that can contradict with transitive property. Observe
the following example in Fig. 3.5.

Therefore, the question of deciding whether N trans
k (q, n) = Nk(q, n) remains an interest-

ing open problem.
Balko, in [1], resolves Problem 1 by constructing a transitive coloring of K k

N that con-
tains no monochromatic monotone path of length 2n, where N ≥ towk−1((1 − o(1))n). In
fact, the coloring he constructs satisfies a property even stricter than transitivity.

For its definition, we use the folling notation: let B be a sequence with cardinality n,
for {i1, . . . , ir} ⊆ [n] we use B(i1,...,ir) to denote the subsequence of B that we obtain by
deleting the i j-th elements ( j ∈ [r]) from B.
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A1 :

A2 : A3 :

A4 : A5 :

+A1

+A3

+A2

+A4

A4 A5A3A2A1

δ :

δ : (1, 3) (2, 2) (3, 2)

(4, 1)

Figure 3.5: Observe that, here γ(A1, A3) = γ(A1, A2), ♣ = (1, 3), ♠ = (2, 2), ♦ = (4, 1), and
γ(γ(A3, A4), γ(A4, A5)) = (3, 2), furthermore, C(A1, A2, A3, A4) and C(A2, A3, A4, A5) are blue, since (1, 3) ⋖
(2, 2) and (2, 2)⋖ (3, 2), however, (4, 1) ̸ ⋖(3, 2), that is, C(A1, A2, A3, A4) is red - contradicting the transtitive
property.
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Definition 3.29. A 2-coloring C of (Kk
n;≺) that assigns −1 or +1 to every edge is called

k-monotone if for every (k+1)-tuples of vertices S = {v1, . . . , vk+1} that satisfies v1 ≺ · · · ≺

vk+1 we have C(S (1)) ≤ · · · ≤ C(S (k+1)) or C(S (1)) ≥ · · · ≥ C(S (k+1)).

Remark 3.30. Every k-monotone coloring is transitive.

Denote with Nmon
k (q, n) the variant of Nk(q, n) restricted to k-monotone colorings. From

the previous remark, we clearly have Nmon
k (q, n) ≤ N trans

k (q, n). In the remaining part of the
thesis, we present the construction of Balko [1] that gives us the following lower-bound
on Nmon

k (q, n).

Theorem 3.31. For positive integers k and n with k ≥ 3, we have

Nmon
k (2, 2n) ≥ towk−1((1 − o(1))n).

We will construct a coloring ck of the edges of K k
N such that it contains no mono-

chromatic monotone path of length 2n, where N > towk−1((1 − o(1))n). First, we define
the coloring and verify that it contains no monochromatic monotone path of length 2n.
Afterwards, we prove that the coloring ck is a k-monotone coloring.

Let us start with a brief overview of the construction of the coloring ck.

• For every k ≥ 3 and positive integer n, we define a set Fk(n) to serve as our vertex
set, such that the elements in Fk(n) are subsets of Fk−1 and |F1(n)| = 2, |F2(n)| = 2n,
and |Fk(n)| = 2|Fk−1(n)|/2 for k ≥ 3.

• We also partition Fk(n) into two subsets: F+k (n) and F−k (n), and define a bijection σk

between F+k (n) and F−k (n).

• Furthermore, we introduce an equivalence relation on Fk(n) by declaring A, B ∈
Fk(n) equivalent in ≡k, denoted A ≡k B if A = B, A = σk(B), or σk(A) = B.

• We define <k, a linear order on the vertex set.

• Every element in F−k (n) will precede the elements in F+k (n).

• We also define ◁k, a linear order on the equivalence classes of the relation ≡k.

• The σk bijection will be <k order-reversing.

• Furthermore, if we regard the ◁k order on F−k (n) and F+k (n), we will have (F−k (n),◁k

) = (F−k (n), <k) and (F+k (n),◁k) = (F+k (n), >k) (see Fig. 3.6).

• We define a function γ that assigns to each pair of sets A, B ∈ Fk(n) an element
γ(A, B) ∈ Fk−1(n), which is the first element (according to the order ◁k−1) at which
A and B differ.
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F−k (n)

F+k (n)

<k

>k

<k

>k

<k

>k

<k

>k

. . .

. . .

◁k◁k◁k◁k . . . <
k

■ ■ ■ ■

■ ■ ■ ■

Figure 3.6: The <k and ◁k orders - the vertical rectangles denote the equivalence classes of ≡k, and the black
squares are the elements of Fk(n).

• We obtain the color of the edge {A1, . . . , Ak}, where Ai ∈ Fk(n) and A1 <k · · · <k Ak,
by applying γ to consecutive terms Ai and Ai+1 iteratively.

For k = 1, we define F−1 (n) := {−}, F+1 (n) := {+}, F1(n) := {−,+}, and − <1 +. The
bijection σ1 : F−1 (n)→ F+1 (n) simply let be σ1(F−1 (n)) := F+1 (n). Thus, − ≡1 +.

For k = 2, let

F−2 (n) := {(2n − i + 1, i) : i ∈ [n]} ⊆ [2n]2 and

F+2 (n) := {(i, 2n − i + 1) : i ∈ [n]} ⊆ [2n]2.

Furthermore, F2(n) := F−2 (n)∪ F+2 (n) (note that this is indeed a disjoint union). We define
the linear order <2 on F2(n) as (2n, 1) <2 (2n − 1, 2) <2 · · · <2 (1, 2n). Let σ1 : F−1 (n) →
F+1 (n) be the one to one correspondence that maps (2n − i + 1, i) to (i, 2n − i + 1). The
elements A and B are equivalent in ≡2 if A = B, A = σ1(B), or B = σ1(A). We now define
a linear order ◁2 on the equivalence classes of F2(n) under ≡2. Identify the equivalence
classes with the elements of F−2 and let the ◁2 order on (F2(n))≡2 be the <2 order on F−2 (n).
Slightly abusing the notation we can consider ⊴2 as a linear order on F2(n) if we let two
equivalent elements equal in ⊴2.

Let k ≥ 3 and assume that we have already constructed Fk−1(n). We define Fk(n) as the
collection of sets such that every set in Fk(n) contains exactly one set from each equiv-
alence class of Fk−1(n) over ≡k−1. Since there are two choices in each equivalence class
and Fk−1(n) has |Fk−1(n)|/2 equivalence classes, it follows that |Fk(n)| = 2|Fk−1(n)|/2. Notice
that the maximal and minimal elements of Fk−1(n) with respect to <k−1 are equivalent
over ≡k−1. Thus, we can distinguish the sets in Fk(n) based on whether the sets contain
the maximum or the minimum (since exactly one of these conditions holds for every set).
In this way, we obtain a partition of Fk(n) into two disjoint subsets: F−k (n) and F+k (n),
consisting of those sets that contain the minimal element and the maximal element of
Fk−1(n) in <k−1, respectively. For two distinct sets A and B from Fk(n), define γ(A, B) to
be the element of B ∩ E, where E is the first equivalence class in (Fk−1(n))≡k−1 (with re-
spect to the order ◁k−1) on which A and B differ. We define the linear order <k on Fk(n)
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by letting A <k B if γ(A, B) ∈ F+k−1(n). Notice that γ(A, B) ∈ F+k−1(n) if and only if
γ(B, A) ∈ F−k−1(n) and thus <k is assymetric and connected. It remains to show that <k is
also transitive. Suppose that we have A, B,C in Fk(n) such that A <k B and B <k C, we
have to show that A <k C. Let N := |Fk−1(n)|/2 and denote the equivalence classes of
Fk−1(n) with Ei, where 1 ≤ i ≤ N and E1 ◁k−1 · · · ◁k−1 EN . There exist Ei and E j, such
that γ(A, B) = B∩ Ei and γ(B,C) = C ∩ E j; furthermore, for every l ∈ [N] such that l < i,
we have A ∩ El = B ∩ El (i.e. A and B differ in Ei first), and similarly for every m ∈ [N]
such that m < j, we have B∩ Em = C ∩ Em (i.e. B and C differ in E j first). Note that i , j,
otherwise B ∋ γ(A, B) = γ(B,C) < B is a contradtiction. If j < i, then B ∩ E j = A ∩ E j,
thus γ(A,C) = γ(B,C) and A <k C. If i < j, then B ∩ Ei = C ∩ Ei, thus γ(A,C) = γ(A, B)
and A <k C. Observe that if A ∈ F−k (n) and B ∈ F+k (n), then A <k B, since the maximal
and minimal element in Fk−1(n) are equivalent in ≡k−1 and also the minimum in the ◁k−1

order, and A and B differ in these elements.
Let us define γ for k = 2 and show that the definition of the <2 order is equivalent to

the general definition of the order <k for k = 2. If A = (a1, a2) and B = (b1, b2) are distinct
elements of F2(n), we define γ(A, B) = − if a1 < b1, and similarly γ(A, B) = + if a1 > b1

where < is the standard ordering of R. Thus, by the original definition of <2, for distinct
A, B ∈ F2(n), we have A <2 B if and only if γ(A, B) ∈ F+2 (n) = {+}, which coincides with
the general definition of the order <k for k = 2.

Now, let us move to the definition of the bijection σk : F−k (n) → F+k (n), for k ≥ 3.
For a set

{
A1, . . . , A|Fk−1(n)|/2

}
∈ Fk(n), where each Ai belongs to the i-th equivalent class of

Fk−1(n) over <k−1, define:

σk(
{
A1, . . . , A|Fk−1(n)|/2

}
) :=

{
σk−1(A1), . . . , σk−1(A|Fk−1(n)|/2)

}
.

Observe that σr is indeed a bijection. Two elements A, B are equivalent over ≡k if A = B,
A = σk(B), or B = σk(A). We identify each A ∈ F−k (n) with σk(A) ∈ F−k (n), and define the
total order ◁r on (Fk(n))≡k as the ordering <r on F−k (n). Slightly abusing the notation we
can consider ⊴k as a linear order on Fk(n) if we let two equivalent elements equal in ⊴k.

For r, k ≥ 2 and a sequence A1, . . . , Ar in Fk(n) in which each consecutive term is
distinct, let Γ(A1, . . . , Ar) be the sequence γ(A1, A2), . . . , γ(Ar−1, Ar). Observe that for 2 ≤
i ≤ r each term γ(Ai−1, Ai) is in Fk−1(n). By the definition of the γ function γ(Ai−1, Ai) ∈ Ai

and < Ai−1, thus, any two consecutive terms of the sequence γ(A1, A2), . . . , γ(Ar−1, Ar) are
distinct (otherwise Ai ∋ γ(Ai−1, Ai) = γ(Ai, Ai+1) < Ai is a contradiction). Therefore, if
k ≥ 3, Γ can be applied on the sequence γ(A1, A2), . . . , γ(Ar−1, Ar) in Fk−1(n). In general,
applying Γ on the sequence A1, . . . , Ar in Fk(n) i times (1 ≤ i ≤ min(r − 1, k − 1)) we
obtain a sequence Γ(Γ(· · · Γ(A1, . . . , Ar))) =: Γi(A1, . . . , Ar) of r − i elements in Fk−i(n).
For convinience, denote the sequence A1, . . . , Ar with Γ0(A1, . . . , Ar).

Let K k
|Fk(n)| be the k-uniform complete hypergraph on the vertex set Fk(n) with the or-
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dering <k. For vertices A1 <k · · · <k Ak color the edge {A1, . . . , Ak}with ck({A1, . . . , Ak}) :=
Γk−1(A1, . . . , Ak).

Lemma 3.32. For all positive integers n and k with k ≥ 3, there is no monochromatic
monotone path of length 2n in K k

|Fk(n)| colored with ck.

Proof. Let P be a monochromatic monotone path of length l in ck. We aim to show that
l < 2n. Let the vertices of P be A1 <k · · · <k Al+k−1. Since P is monochromatic in ck, we
know that

Γk−1(A1, . . . , Ak) = Γk−1(A2, . . . , Ak+1) = · · · = Γk−1(Al, . . . , Al+k−1). (3.4)

For each 1 ≤ i ≤ l we can rewrite the term in (3.4) as

Γk−1(Ai, . . . , Ai+k−1) = γ
(
Γk−2(Ai, . . . , Ai+k−2) , Γk−2(Ai+1, . . . , Ai+k−1)

)
.

Observe that the terms Γk−2(Ai, . . . , Ai+k−2) are in F2(n), and each consecutive pair from
(3.4) share a common term like that. Hence, we obtain a series

{
Γk−2(Ai, . . . , Ai+k−2)

}l+1

i=1
in

F2(n). Furthermore, by the definition of the γ function for k = 2 and by the coloring of
P we obtain that

{
Γk−2(Ai, . . . , Ai+k−2)

}l+1

i=1
is strictly increasing or decreasing in <2 (i.e. the

terms are distinct), thus we get l + 1 ≤ |F2(n)| = 2n and that completes the proof. □

It remains to prove that the coloring is k-monotone, that is for every (k + 1)-tuples of
vertices S = {A1, . . . , Ak+1} ⊆ Fk(n) that satisfies A1 <k · · · <k Ak+1 we have ck(S (1)) ≤
· · · ≤ ck(S (k+1)) or ck(S (1)) ≥ · · · ≥ ck(S (k+1)). Observe that to determine the color of S (i)

for each 2 ≤ i ≤ k, we always have to determine γ(Ai−1, Ai+1) when we apply Γ to S (i).
The following lemma gives the answer for this problem.

Lemma 3.33. For positive integers n and k with k ≥ 2, let A, B,C be a sequence of distinct
sets from Fk(n). For k ≥ 3, γ(A,C) = min◁k−1 {γ(A, B), γ(B,C)} if γ(A, B) .k−1 γ(B,C)
and γ(A, B), γ(B,C) ◁k−1 γ(A,C) otherwise. For k = 2, γ(A,C) ∈ {γ(A, B), γ(B,C)} if
γ(A, B) , γ(B,C) and γ(A,C) = γ(A, B) = γ(B,C) otherwise.

Proof. Let k ≥ 3, N := |Fk−1(n)|/2 and denote the equivalence classes of Fk−1(n) with Ei,
where 1 ≤ i ≤ N and E1 ◁k−1 · · · ◁k−1 EN . First, suppose that γ(A, B) .k−1 γ(B,C). There
exist Ei and E j (i , j by our assumption), such that γ(A, B) = B∩Ei and γ(B,C) = C∩E j;
furthermore, for every l ∈ [N] such that l < i, we have A∩ El = B∩ El (i.e. A and B differ
in Ei first), and similarly for every m ∈ [N] such that m < j, we have B ∩ Em = C ∩ Em

(i.e. B and C differ in E j first). If i < j (i.e. γ(A, B) ◁k−1 γ(B,C)) the previous follows
that A ∩ El = C ∩ El for every l ∈ [N] such that l < i and A ∩ Ei , B ∩ Ei = C ∩ Ei,
which follows that γ(A,C) is γ(A, B). If j < i (i.e. γ(B,C) ◁k−1 γ(A, B)) it follows that
γ(A,C) = γ(B,C).
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Now, suppose that γ(A, B) ≡k−1 γ(B,C), then γ(A, B) , γ(B,C), since γ(A, B) ∈ B but
γ(B,C) < B. There exists Ei, such that γ(A, B) = B∩Ei, γ(B,C) = C∩Ei, and for j ∈ [N],
such that j < i, we have A ∩ E j = B ∩ E j = C ∩ E j. Therefore, A ∩ Ei = C ∩ Ei and we
get γ(A, B), γ(B,C) ◁k−1 γ(A,C).

For k = 2, by using Γ once we get elements in {+,−}. Thus, if γ(A, B) , γ(B,C)
we clearly have γ(A,C) ∈ {γ(A, B), γ(B,C)} = {+,−}. If γ(A, B) = γ(B,C) = +, we
have A <2 B <2 C. And since the <2 order is transitive, it follows that A <2 C, that is
γ(A,C) = +. If γ(A, B) = γ(B,C) = −, we have A >2 B >2 C, and so γ(A,C) = −. □

The following lemma is a technical one that we need for the proof of Lemma 3.35.

Lemma 3.34. For positive integers n and k with k ≥ 2, let A, B, A′, B′ be sets from Fk(n)
such that A , B.

(i) Assume A′ , B. If A ≤k A′, then γ(A′, B) ≤k−1 γ(A, B).

(ii) Assume A , B′. If B ≤k B′, then γ(A, B) ≤k−1 γ(A, B′).

Proof. We start with part (i). We can assume that A <k A′, otherwise (i) clearly holds.
For k = 2, with obtaining γ once we get elements in {+,−}. Thus, we only have to

check the case γ(A, B) = −, otherwise γ(A′, B) ≤k−1 γ(A, B) clearly holds. If γ(A, B) = −,
we have B <2 A, therefore B <2 A <2 A′, and since the <2 order is transitive, we have
B <2 A′. Therefore, γ(A′, B) = − and then, γ(A′, B) ≤k−1 γ(A, B) holds.

Consider the case k ≥ 3. There are three possibilities where to place B with respect to
A and A′:

1. If A <k B <k A′, then γ(A, B) is in F+k−1(n) and γ(A′, B) is in F−k−1(n), therefore, by
the <k−1 order we have γ(A′, B) ≤k−1 γ(A, B).

2. If B <k A <k A′, then γ(B, A) and γ(A, A′) are both in F+k−1(n), and since γ(B, A) ∈ A
and γ(A, A′) < A we have γ(B, A) , γ(A, A′), thus γ(B, A) .k−1 γ(A, A′). Therefore,
by Lemma 3.33, we obtain that γ(B, A′) is the minimum of γ(B, A) and γ(A, A′) in
◁k−1, in particular, we obtain that γ(B, A′) ⊴r−1 γ(B, A). Observe that γ(B, A′) is
also in F+k−1(n), because <k is transitive (e.i. we have B <k A′). Since (F+k−1(n),◁k−1

) = (F+k−1(n), >k−1), we have γ(B, A′) ≥k−1 γ(B, A). Using the fact that γ(X,Y) =
σk−1(γ(Y, X)) and σk−1 is ≤k−1 order-reversing, it follows that γ(A′, B) ≤r−1 γ(A, B).

3. If A <k A′ <k B, then γ(A, A′) and γ(A′, B) are both in F+k−1(n), and as before
γ(A, A′) .k−1 γ(A′, B). Using Lemma 3.33 again, we obtain that γ(A, B) is the mini-
mum of γ(A, A′) and γ(A′, B), in particular γ(A, B) ◁k−1 γ(A′, B). Since (F+k−1(n),◁k−1

) = (F+k−1(n), >k−1), we have γ(A, B) >r−1 γ(A′, B).

Thus, part (i) is done.
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A : = · · · = ≤ = · · · = ≤ = · · · =

i2(A)
↓

i1(A)
↓

Figure 3.7: Definition of the i1(A) and i2(A) indices.

Observe that, except for the case k = 2, we see that γ(A′, B) and γ(A, B) are always of
type +. Thus, using part (i) for k ≥ 3 and B ≤k−1 B′ we obtain γ(B′, A) ≤k−1 γ(B, A), where
γ(B′, A) and γ(B, A) are both of type +. Therefore, using (F+k−1(n),◁k−1) = (F+k−1(n), >k−1

), we get γ(B′, A) ▷k−1 γ(B, A). From which we obtain γ(A, B′) ▷k−1 γ(A, B) since
γ(A, B) ≡k−1 γ(B, A) and γ(A, B′) ≡k−1 γ(B′, A). Now we can use (F−k−1(n),◁k−1) =
(F−k−1(n), <k−1), and it follows that γ(A, B′) ≥k−1 γ(A, B).

For k = 2, we only have to check the case γ(A, B) = +, otherwise γ(A, B) ≤k−1 γ(A, B′)
clearly holds. If γ(A, B) = +, we have A <2 B, therefore A <2 B <2 B′, and since the
<2 order is transitive, we have A <2 B′. Therefore, γ(A, B′) = − and then γ(A′, B) ≤k−1

γ(A, B) holds. □

Note that ck(S (1)), . . . , ck(S (k+1)) is the sequence Γk−1(S (k+1)), . . . ,Γk−1(S (1)) by the defi-
nition of the coloring. Therefore, to prove the monotone property of the coloring, we have
to determine the relation between each consecutive term in Γk−1(S (k+1)), . . . ,Γk−1(S (1)). It
turns out that we can obtain those relations recursively from the relations of consecutive
terms in the sequences Γk−2(S (k,k+1)), . . . ,Γk−1(S (1,k+1)) and Γk−2(S (1,k+1)), . . . ,Γk−1(S (1,2)).
In the last lemma we show this recursion by induction.

But first, we introduce some definitions that we need for the proof. For two sequences
S 1 and S 2 denote the concatenation of S 1 and S 2 by S 1 · S 2. We call a sequence of ≤,≥,
and = symbols a profile. Let Ol := (≤,=,≤,=, . . . ) and El := (=,≥,=,≥, . . . ) be two
profiles of length l. We call a P profile of length l odd or even if it can be obtained from
Ol or El by changing some symbols ≤ or ≥ to =, respectively. For two profiles P1 and P2,
we say that P1 and P2 have the same parity if both profiles are even or odd, otherwise, we
say P1 and P2 have distinct parity. The opposite profile P of a profile P is the profile that
is obtained from P by changing each term ≤ to ≥ and each term ≥ to ≤. Let the profile
of the A = A1, . . . , Ak sequence from Fk(n) be the k − 1 long p(A) sequence, such that
whenever A j <k A j+1, or A j >k A j+1, or A j = A j+1, then the j-th term of p(A) is ≤, or
≥, or =, respectively. Let i1(A) be the smallest i ∈ [k] such that the i-th term of p(A) is
not =. Similarly, let i2(A) be the smallest i ∈ [k] such that for every i ≤ j ≤ k − 1 the
j-th term of p(A) is = (see Fig. 3.7). Note that from the previous definition it follows that
i1(A)+ 1 ≤ i2(A). In the following definition, the lower right j index denotes the j-th term
of the profiles. For two profiles of length k − 1, p(R1) and p(R2) for which there is no
j ∈ [k − 1] such that p(R1) j is ≤ and p(R2) j is ≥ (or vice versa), we define the j-th term
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H = (Γ2(A1, A2, A3),Γ2(A1, A2, A4),Γ2(A1, A3, A4),Γ2(A2, A3, A4))

Γ2(A1, A2, A3) Γ2(A1, A2, A4) Γ2(A1, A3, A4) Γ2(A2, A3, A4)
γ(A1, A2) γ(A2, A3) γ(A1, A2) γ(A2, A4) γ(A1, A3) γ(A3, A4) γ(A2, A3) γ(A3, A4)

H1 = (γ(A1, A2), γ(A1, A3), γ(A2, A3)) H2 = (γ(A2, A3), γ(A2, A4), γ(A3, A4))

Figure 3.8: Recursion for H if k = 4 and S = {A1, A2, A3, A4}.

( j ∈ [k − 1]) of the profile p(R1) ◦ p(R2) as follows:

(p(R1) ◦ p(R2)) j :=


= if p(R1) j and p(R1) j is = ,
≤ if p(R1) j is = and p(R1) j is ≤ or vice versa,
≥ if p(R1) j is = and p(R1) j is ≥ or vice versa.

(3.5)

Lemma 3.35. For positive integers n, k, and s with k ≥ 3 and 3 ≤ s ≤ k + 1, let S :=
(A1, . . . , As) be a sequence of s set from Fk(n) with A1 <k · · · <k As. Then the sequence
H := (Γs−2(S (s)), . . . ,Γs−2(S (1))) has either odd or even profile.

Proof. We will use induction on the size of S . For this, we need to obtain the sequence H
from smaller cases, to which we can apply the induction hypothesis. We will define two
sequences, H1 and H2, for which the induction hypothesis applies, and from which we
can reconstruct H and determine the profile of H from their profiles.

Before we define H1 and H2, observe that for a sequence (A1, . . . , Ar) from Fk(n) we
have Γr−1(A1, . . . , Ar) = γ(Γr−2(A1, . . . , Ar−1),Γr−2(A2, . . . , Ar)). In particular,

Γs−2(S (s)) = γ(Γs−3(S (s−1,s)),Γs−3(S (1,s))),

Γs−2(S (1)) = γ(Γs−3(S (1,s)),Γs−3(S (1,2))),

Γs−2(S (i)) = γ(Γs−3(S (i,s)),Γs−3(S (1,i))) for 1 < i < s.

Now, define H1 as the sequence (Γs−3(S (s−1,s)), . . . ,Γs−3(S (1,s))) and H2 as the sequence
(Γs−3(S (1,s)), . . . , Γs−3(S (1,2))). Denote by G1 the sequence (Γs−3(S (s−1,s)) ·H1 and by G2 the
sequence H2 ·(Γs−3(S (1,2))). In this way, we can obtain the i-th term of H as γ(Xi,Yi), where
Xi and Yi are the i-th terms of G1 and G2, respectively (see Fig. 3.8).

For the base case s = 3, we have H = (γ(A1, A2), γ(A1, A3), γ(A2, A3)),H1 = (A1, A2),
H2 = (A2, A3),G1 = (A1, A1, A2),G2 = (A2, A3, A3). Since A1 <k A2 <k A3, it follows that
γ(A1, A2) ∈ A2 and γ(A2, A3) < A2 both have type + so γ(A1, A2) .k γ(A2, A3). Therefore,
by Lemma 3.33 and (F+k−1(n),◁k−1) = (F+k−1(n), >k−1), we have

γ(A1, A2) = γ(A1, A3) >k−1 γ(A2, A3) if γ(A1, A2) ◁k−1 γ(A2, A3) and

γ(A1, A2) <k−1 γ(A1, A3) = γ(A2, A3) if γ(A2, A3) ◁k−1 γ(A1, A2).

Thus, we choose p(H) to be the even profile (=,≥) if Γ(S (3)) ◁k−1 Γ(S (1)) or the odd profile
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(≤,=) if Γ(S (1)) ◁k−1 Γ(S (3)). We also let p(H1) := (≤), p(H2) := (≤), p(G1) := (=,≤),
and p(G2) := (≤,=). Observe that, if Γ(S (3)) ◁k−1 Γ(S (1)), then p(H) is p(G1) and if
Γ(S (1)) ◁k−1 Γ(S (3)), then p(H) is p(G2). Also, notice that p(H1) and p(H2) have the same
parity and i1(G1) = i2(G2).

For the induction step, we assume that s ≥ 4. Briefly, we will define the sequences
H1,1,H1,2,H2,1, and H2,2 to which we can apply the induction hypothesis to construct H1

and H2 similarly, as we obtained H from H1 and H2. Furthermore, we will define the
profile p(H) based on p(H1) or p(H2) and, as part of the induction step, we will prove that
this is indeed the profile of H.

We define

H1,1 := (Γs−4(S (s−2,s−1,s)), . . . ,Γs−4(S (1,s−1,s))) and

H1,2 := (Γs−4(S (1,s−1,s)), . . . ,Γs−4(S (1,2,s))).

By setting G1,1 := (Γs−4(S (s−2,s−1,s))) · H1,1 and G1,2 := H1,2 · (Γs−4(S (1,2,s))), we can obtain
the i-th term of H1 as γ(Xi,Yi), where Xi and Yi are the i-th terms from G1,1 and G1,2,
respectively. Similarly, define

H2,1 := H1,2 and

H2,2 := (Γs−4(S (1,2,s)), . . . ,Γs−4(S (1,2,3))),

and let G2,1 := (Γs−4(S (1,s−1,s))) · H2,1 and G2,2 := H2,2 · (Γs−4(S (1,2,3))). Then, the i-th term
of H2 is again of the form γ(Xi,Yi), where Xi and Yi are the i-th terms of G2,1 and G2,2,
respectively.

Now we continue with the definition of p(H), and we will prove later that p(H) is, in
fact, the profile of H.

1. If p(H1) and p(H2) have the same parity let p(H) be the profile

p(G1) if Γs−2(S (s)) ◁k−s+2 Γ
s−2(S (1)) or

p(G2) if Γs−2(S (1)) ◁k−s+2 Γ
s−2(S (s)).

We will also prove that i1(G1) ≥ i2(G2).

2. If p(H1) and p(H2) have distinct parity, we define p(H) as the profile p(G1) ◦ p(G2)
and will also show that i1(G1) ≥ i1(G2) and i2(G1) ≥ i2(G2).

Remark that if p(H1) and p(H2) have distinct parity, then there is no i ∈ [s − 1]
such that the i-th term of p(G1) is ≤ and the i-th term of p(G2) is ≥ (or vice versa),
thus, p(G1) ◦ p(G2) is correctly defined in this case (definition 3.5). Also note that
p(G1) ◦ p(G2) and p(H1) have distinct parity.

Observe that for k = 3 the definition above of p(H) and the additional claims on the
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indicies i1, i2 hold. Therefore, we are done with the base case. By the induction hypotesis,
for every j ∈ {1, 2} we get:

1. If p(H j,1) and p(H j,2) have the same parity, we have i1(G j,1) ≥ i2(G j,2) and p(H j) is
the profile

p(G j,1) if (the first term of H j) ◁k−s+3 (the last term of H j)

p(G j,2) if (the last term of H j) ◁k−s+3 (the first term of H j).

2. If p(H j,1) and p(H j,2) have distinct parity:

p(H j) = p(G j,1) ◦ p(G j,2) and i1(G j,1) ≥ i1(G j,2), i2(G j,1) ≥ i2(G j,2).

Notice that if the definition of p(H) holds, then it has the same parity as p(G1) or p(G2), in
particular, the profile p(H) of H is odd or even, which gives the statement of the lemma.

For the proof that p(H) is a profile of H and our additional claims hold for the indices
i1 and i2, assume first that p(H1) and p(H2) have the same parity.

We start with showing that i1(G1) ≥ i2(G2). First, consider the case when p(H1) and
p(H2) are odd. We will distinguish some cases. Note that for j ∈ {1, 2} we have (i):
i j(G1,2) = i j(G2,1) − 1 since H2,1 = H1,2 (i.e. p(H2,1) = p(H1,2)) and in p(G1,2) the pro-
file p(H1,2) is shifted one to the right; furthermore, by our induction hypothesis p(H1,2)
contains at least one term which is not =.

1. Assume that p(H1) < {p(G1,1), p(G1,2} or p(H2) < {p(G2,1), p(G2,2)}. Note that, by
the definition of p(H j) for j ∈ {1, 2}, if p(H j) < {p(G j,1), p(G j,2}, then p(H j) =
p(G j,1) ◦ p(G j,2) and p(H j,1) and p(H j,2) have distinct parity. Also observe that the
parity of p(G j,1)◦ p(G j,2) is the opposite of the parity of p(H j,1) as we discussed after
the definition of p(H).

(a) if p(H1) < {p(G1,1), p(G1,2)} and p(H2) ∈ {p(G2,1), p(G2,2)}, then p(H1) =
p(G1,1)◦p(G1,2) so p(H1,1) is even. Therefore, p(H1,2) = p(H2,1) is odd. This fol-
lows that p(G2,1) is even, so it must be the case p(H2) = p(G2,2). Since p(G2,2)
and p(H2,2) have the same parity by the definition of G2,2, we get that p(H2,2) is
odd.

Since p(H1,1) and p(H1,2) have distinct parity, by the induction hypotesis, we
get i1(G1,1) ≥ i1(G1,2) and i2(G1,1) ≥ i2(G1,2).

Since p(H2,1) and p(H2,2) have the same parity, we get (ii): i1(G2,1) ≥ i2(G2,2).
From p(H1) = p(G1,1) ◦ p(G1,2) and i1(G1,1) ≥ i1(G1,2), we get (iii): i1(G1) ≥
i1(G1,2) + 1, since in G1 we have H1 shifted one to the right (def of G1) and i1 is
a minimum.
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Recall that p(H2) = p(G2,2). It follows that (iv): i2(G2) = i2(G2,2), since in G2

we have H2 shifted to the right. Thus we obtain:

i1(G1)
(iii)
≥ i1(G1,2) + 1

(i)
= i1(G2,1)

(ii)
≥ i2(G2,2)

(iv)
= i2(G2).

(b) if p(H1) ∈ {p(G1,1), p(G1,2)} and p(H2) < {p(G2,1), p(G2,2)}, then p(H2) =
p(G2,1) ◦ p(G2,2) so p(H2,1) is even. Therefore, p(H1,2) = p(H2,1) is even and
p(H2,2) is odd. Since p(H1,2) is even, thus p(G1,2) is even, so it must be the case
p(H1) = p(G1,1). This follows, p(H1,1) is even.

Since p(H1,2) and p(H2,2) have distinct parity, by the induction hypotesis, we
get i1(G2,1) ≥ i1(G2,2) and i2(G2,1) ≥ i2(G2,2).

Since p(H1,1) and p(H1,2) have the same parity, we get (ii): i1(G1,1) ≥ i2(G1,2).
From p(H2) = p(G2,1) ◦ p(G2,2) and i2(G2,1) ≥ i2(G2,2), we get (iii): i2(G2,1) ≥
i2(G2), since in G2 we have H2 shifted one to the left (def of G2).

Recall that p(H1) = p(G1,1). It follows that that (iv): i1(G1) = i1(G1,1) + 1, since
in G1 we have H1 shifted to the right. Thus we obtain:

i1(G1)
(iv)
= i1(G1,1) + 1

(ii)
≥ i1(G1,2) + 1

(i)
= i2(G2,1)

(iii)
≥ i2(G2).

(c) if p(H1) < {p(G1,1), p(G1,2)} and p(H2) < {p(G2,1), p(G2,2)}, then p(H1,1) and
p(H2,1) is even. However, this is a contradiction because we also know that
p(H1,1) and p(H1,2) have distinct parity, so p(H1,2) = p(H2,1) is odd.

2. Assume that p(H1) ∈ {p(G1,1), p(G1,2)} and p(H2) ∈ {p(G2,1), p(G2,2)}.

(a) if p(H1) = p(G1,1) and p(H2) = p(G2,2), then p(H1,1) is even and p(H2,2) is odd.
We also have by definition of G1 and G2 that (v): i1(G1) = i1(G1,1) + 1 and (vi):
i2(G2) = i2(G2,2). We have to deal with two cases, whether p(H1,2) = p(H2,1) is
odd or even.

If p(H1,2) = p(H2,1) is odd, then p(H1,1) and p(H1,2) have distinct parity, and
p(H2,1) and p(H2,2) have the same parity. It follows from the induction hypote-
sis, that (vii): i1(G1,1) ≥ i1(G1,2), i2(G1,1) ≥ i2(G1,2) and (viii): i1(G2,1) ≥ i2(G2,2).
Thus we obtain:

i1(G1)
(v)
= i1(G1,1) + 1

(vii)
≥ i1(G1,2) + 1

(i)
= i1(G2,1)

(viii)
≥ i2(G2,2)

(vi)
= i2(G2).

If p(H1,2) = p(H2,1) is even, then p(H1,1) and p(H1,2) have the same parity, and
p(H2,1) and p(H2,2) have distinct parity. It follows from the induction hypotesis,
that (viii): i1(G1,1) ≥ i2(G1,2) and (vii): i1(G2,1) ≥ i1(G2,2), i2(G2,1) ≥ i2(G2,2).
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Thus we obtain:

i1(G1)
(v)
= i1(G1,1) + 1

(vii)
≥ i1(G1,2) + 1

(i)
= i1(G2,1)

(viii)
≥ i2(G2,2)

(vi)
= i2(G2).

(b) if p(H1) = p(G1,1) and p(H2) = p(G2,1), then p(H1,1) and p(H2,1) = p(H1,2) are
even. We also have by definition of G1 and G2 that (v): i1(G1) = i1(G1,1)+ 1 and
(vi): i2(G2) = i2(G2,1). Since p(H1,1) and p(H1,2) have the same parity, by the
induction hypotesis we get (vii): i1(G1,1) ≥ i2(G1,2). Thus we obtain:

i1(G1)
(v)
= i1(G1,1) + 1

(vii)
≥ i2(G1,2) + 1

(i)
= i2(G2,1)

(vi)
= i2(G2).

(c) if p(H1) = p(G1,2) and p(H2) = p(G2,2), then p(H1,2) = p(H2,1) and p(H2,2) are
odd. We also have by definition of G1 and G2 that (v): i1(G1) = i1(G1,2) + 1 and
(vi): i2(G2) = i2(G2,2). Since p(H2,1) and p(H2,2) have the same parity, by the
induction hypotesis we get (vii): i1(G2,1) ≥ i2(G2,2). Thus we obtain:

i1(G1)
(v)
= i1(G1,2) + 1

(i)
= i1(G2,1)

(vii)
≥ i2(G2,2)

(vi)
= i2(G2).

(d) if p(H1) = p(G1,2) and p(H2) = p(G2,1), then p(H1,2) is odd and p(H2,1) is even,
which is a contradiction, since p(H1,2) = p(H2,1).

Note that in the cases above, we only rely on the facts that the parity of the profiles
p(H1) and p(H2) is the same or different, we do not use the actual parity. Therefore, by
symmetry, the inequality i1(G1) ≥ i2(G2) holds if p(H1) and p(H2) are even.

Now using i1(G1) ≥ i2(G2), we show that p(H) is in fact the profile of H, and

p(H) = p(G1) if Γs−2(S (s)) ◁k−s+2 Γ
s−2(S (1)) or

p(H) = p(G2) if Γs−2(S (1)) ◁k−s+2 Γ
s−2(S (s)).

Since p(H1) and p(H2) have the same parity we have, by the definition of H1,H2:

Γs−3(S (s−1,s)) <k−s+3 Γ
s−3(S (1,s)) <k−s+3 Γ

s−3(S (1,2)) or

Γs−3(S (s−1,s)) >k−s+3 Γ
s−3(S (1,s)) >k−s+3 Γ

s−3(S (1,2)).

This implies that the first term Γs−2(S (s)) = γ(Γs−3(S (s−1,s)),Γs−3(S (1,s))) of H and the last
term Γs−2(S (1)) = γ(Γs−3(S (1,s)),Γs−3(S (1,2))) of H have the same type. Note that if s ≤
k, then the previous two terms are not equvivalent, since Γs−2(S (s)) ∈ Γs−3(S (1,s)) while
Γs−2(S (1)) < Γs−3(S (1,s)) (i.e. cannot be equal). Thus, we either have

Γs−2(S (s)) ◁k−s+2 Γ
s−2(S (1)) or Γs−2(S (1)) ◁k−s+2 Γ

s−2(S (s)).

1. If Γs−2(S (s)) ◁k−s+2 Γ
s−2(S (1)), notice that by Lemma 3.33 for A := Γs−3(S (s−1,s)), B :=
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G1 : = · · · = = = · · · = = ≤ = · · · = ≤ = · · · =

G2 : = · · · = ≤ = · · · = ≤ = = · · · = = = · · · =
↑

i1(G2)
↑

i2(G2)

i2(G1)
↓

i1(G1)
↓

Figure 3.9: i1(G1) ≥ i2(G2)

Γs−3(S (1,s)), and C := Γs−3(S (1,2)) we obtain that

γ(Γs−3(S (s−1,s)),Γs−3(S (1,2))) = Γs−2(S (s)) (i.e. 1-st term of H).

2. If Γs−2(S (1)) ◁k−s+2 Γ
s−2(S (s)), using Lemma 3.33 on the same terms follows that

γ(Γs−3(S (s−1,s)),Γs−3(S (1,2))) = Γs−2(S (1)) (i.e. s-th term of H).

Observe that if s = k+ 1, then the terms of H are from {+,−} = F1(n); therefore, applying
Lemma 3.33 if Γs−2(S (s)) = Γs−2(S (1)), we get:

Γs−2(S (1)) = γ(Γs−3(S (s−1,s)),Γs−3(S (1,2))) = Γs−2(S (s)).

Assume that Γs−2(S (s)) ◁k−s+2 Γ
s−2(S (1)). By the i1(G1) ≥ i2(G2) inequality (Fig. 3.9),

we get that the i1(G1)-th term of H is γ(Γs−3(S (s−1,s)),Γs−3(S (1,2))) = Γs−2(S (s)) (i.e. equal
to the 1-st term of H). For every i ≤ i1(G1), the i-th term of H is γ(Γs−3(S (s−1,s)),Yi),
where Yi is the i-th term of G2. Since G2 has an odd or even profile (i.e., it is monotone in
≤k−s+3) we can apply Lemma 3.34 (ii) part. It follows that the first i1(G1) terms of H are
monotone in ≤k−s+2. Notice that if we know the previous monotonicity and also that the
1-st and i1(G1)-th term are the same, it follows that the first i1(G1) terms of H are equal
to Γs−2(S (s)). Using the i1(G1) ≥ i2(G2) inequality again, we get that for every i > i1(G1),
the i-th term of H is γ(Xi,Γ

s−3(S (1,2))), where Xi is the i-th term of G1. Since G1 also has
an odd or even profile (i.e., it is monotone in ≤k−s+3), we can apply Lemma 3.34 (i) part
to the γ(Xi,Γ

s−3(S (1,2))) sequence. Consequently, we coclude that p(H) = p(G1), and it is
indeed a valid profile of H.

Finishing the proof, assume that p(H1) and p(H2) have distinct parity. First, consider
the case when p(H1) is odd and p(H2) is even. Then, by the definition of G1 and G2, the
pair consisting the i-th term of p(G1) and the i-th term of p(G2) can be {=,=}, {≤,=}, {=
,≥}, or {≤,≥}. In each case, we apply Lemma 3.34 for Xi, Xi+1 from G1 and Yi,Yi+1 from
G − 2:

1. In the case {=,=}, we have Xi = Xi+1 and Yi = Yi+1. Thus, for the i-th term γ(Xi,Yi)
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and (i + 1)-th term γ(Xi+1,Yi+1) of H, we get:

γ(Xi,Yi) = γ(Xi+1,Yi+1).

2. In the case {≤,=}, we have Xi ≤k−s+3 Xi+1 and Yi = Yi+1. Thus, for the i-th term
γ(Xi,Yi) and (i + 1)-th term γ(Xi+1,Yi+1) of H, we get:

γ(Xi,Yi) ≥k−s+2 γ(Xi+1,Yi+1).

3. In the case {=,≥}, we have Xi = Xi+1 and Yi ≥k−s+3 Yi+1. Thus, for the i-th term
γ(Xi,Yi) and (i + 1)-th term γ(Xi+1,Yi+1) of H, we get:

γ(Xi,Yi) ≥k−s+2 γ(Xi+1,Yi+1).

4. In the case {≤,≥}, we have Xi ≤k−s+3 Xi+1 and Yi ≥k−s+3 Yi+1. Thus, first, for the i-th
term γ(Xi,Yi) of H and γ(Xi+1,Y1), we get:

γ(Xi,Yi) ≥k−s+2 γ(Xi+1,Y1).

Then, for γ(Xi+1,Y1) and the (i + 1)-th term of H, we get:

γ(Xi,Yi) ≥k−s+2 γ(Xi+1,Yi+1).

Therefore, we obtain γ(Xi,Yi) ≥k−s+2 γ(Xi+1,Yi+1), since ≥k−s+2 is transitive.

These imply that p(H) = p(G1)◦ p(G2), and it is indeed a valid profile of H. Furthermore,
the resulting profile p(H) is even. In the other case, when p(H1) is even and p(H2) is odd,
by simmetry, we again have p(H) = p(G1) ◦ p(G2), and in this case, p(H) is odd.

It remains to show that i1(G1) ≥ i1(G2) and i2(G1) ≥ i2(G2). We know by induction that
p(H1) is in {p(G1,1), p(G1,2), p(G1,1) ◦ p(G1,2)} and p(H2) is in {p(G2,1), p(G2,2), p(G2,1) ◦
p(G2,2)}. It follows that i j(H1) is in {i j(G1,1), i j(G1,2)} and i j(H2) is in {i j(G2,1), i j(G2,2)} for
j ∈ {1, 2}. Now fix i ∈ {1, 2}.

If p(Hi,1) and p(Hi,2) have the same parity we have i1(Gi,1) ≥ i2(Gi,2) by the induction
hypotesis. Recall that, by the definition of i1, i2 indices we have i2(G j,k) ≥ i1(G j,k) for
j, k ∈ {1, 2}. Thus, we obtain: i2(Gi,1) ≥ i1(Gi,1) ≥ i2(Gi,2) ≥ i1(Gi,2). Which follows that
i2(Gi,1) ≥ i2(Gi,2) and i2(Gi,1) ≥ i2(Gi,2).

If p(Hi,1) and p(Hi,2) have distinct parity we have i1(Gi,1) ≥ i1(Gi,2) and i2(Gi,1) ≥
i2(Gi,2) by the induction hypotesis.

That is, we always get i1(Gi,1) ≥ i1(Gi,2) and i2(Gi,1) ≥ i2(Gi,2). Therefore, in all four
cases, whether p(H j,1) and p(H j,2) have distinct or the same parity for j ∈ {1, 2}, we have
ik(G1,1) ≥ ik(G1,2) and ik(G1,1) ≥ ik(G1,2) for k ∈ {1, 2}.
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Alltogeather, we obtain that ik(H1) ≥ ik(G1,2) and ik(H2) ≤ ik(G2,1) for k ∈ {1, 2}. Note
that, we also have for j ∈ {1, 2} that i j(G1,2) = i j(G2,1) − 1 (as we already discussed it, see
(i)). Thus, ik(H2) ≤ ik(G2,1) ≤ ik(H1) + 1. Since i j(G1) = i j(H1) + 1 and i j(G2) = i j(H2) by
the defintion of G1 and G2, i1(G1) ≥ i1(G2) and i2(G1) ≥ i2(G2) follows. □

Now, we can completet the proof of Theorem 3.31.
Proof of Theorem 3.31. We have to show that for a vertex set S = {A1, . . . , Ak+1} in Fk(n)
that satisfies A1 <k · · · <k Ak+1 we have C(S (1)) ≤ · · · ≤ C(S (k+1)) or C(S (1)) ≥ · · · ≥
C(S (k+1)). Notice that the sequence C(S (1)), . . . ,C(S (k+1)) is Γk−1(S (k+1)), . . . ,Γk−1(S (1)) by
the definition of the coloring. From Lemma 3.35 it follows that the previous sequence has
an odd or even profile, in particular, it is monotone in ≤1. □

Comparison with the construction by Moshkovitz and Shapira. The construction of Balko
builds on similar approach and ideas as the one by Moshkovitz and Shapira. The key
difference is that Moshkovitz and Shapira’s coloring is defined over a larger vertex set,
and it does not satisfy Lemma 3.35 since their construction is not transitive, as we showed
for k = 4.
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Alulírott Vizsy Domonkos nyilatkozom, hogy szakdolgozatom elkészítése során az
alább felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye Megjegyzés

Nyelvhelyesség
ellenőrzése

Writefull
GPT-4o

Teljes dolgozat

LaTeX kód írás GPT-4o Teljes dolgozat
18., 36. Oldalak

Figure 3.3, 3.4, 3.7
MI nyilatkozat

Fejezetszámozás
\customproof
parancs

Táblázat

A felsoroltakon túl más MI alapú eszközt nem használtam.
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