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2 Notation

• Let a · b denote the standard dot product of a and b.

• For a vector v denote the projection onto it by

pv(X) = {x · v | x ∈ X}.

• B(x, r) denotes the open ball centred at x with radius r. If the centre is understood
to be the origin then B(r) = B(0, r).

• Measure always refers to the Lebesgue measure, which we denote by λ.

• For sets A, B let A + B denote their Minkowski sum.

• Isom+(Rn) is the set of orientation preserving isometries of Rn equipped with the
natural topology. If n = 2 then a metric can be easily defined by writing each
isometry as the composition of a rotation and a translation.

• A (continuous) motion is a continuous map M : [0, 1] −→ Isom+(Rn).

• For a motion M and a set E the area swept by E during M is

λ({Mt(e))|t ∈ [0, 1], e ∈ E}).

• For a translation α, by vector v, let Mα(t) be the translation by tv. Similarly for a
rotation α, around P and by angle φ, let Mα(t) be the rotation around P by angle
tφ.

• We refer to the Kakeya property as property (K) and the strong Kakeya property
as (KS). For definitions see Section 3.
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3 Introduction

In 1917, Kakeya posed a question now known as the Kakeya needle problem: Among
planar sets, in which a line segment of unit length can be fully rotated, which one
has minimal area? This seemingly simple question turned out to have very deep
implications and sparked a wide area in geometric measure theory. The first break-
through came when Besicovitch [2] showed that there is no such minimum, the area of
such a set can be arbitrarily small.

In the process, Besicovitch showed that there exists a compact planar set, which
contains a unit line segment in every direction and has measure zero.

Definition 3.1. A set is a Besicovitch set if it contains a unit line segment in every
direction.

The next natural question on how small Besicovitch sets can be is to ask if they must
have Hausdorff dimension n. This is a very central open question to this day, with it
being proven true for n = 2 by Davies in 1971 [11] and proven true by Wang and Zahl
for n = 3 [5] just this year.

This thesis will mostly deal with problems similar to the original question of Kakeya.
In Section 4 we will look at some constructions for the rotation of the unit line segment
and we will construct a compact Besicovitch set of measure zero.

Section 5 and Section 6 deals with two properties first defined by Csörnyei, Héra,
and Laczkovich in [8].

Definition 3.2. A set E in Rn has the Kakeya property (or shortly property (K)) if there
exists a non-identity ϕ ∈ Isom+(Rn) such that E can be moved to ϕ(E) in an arbitrarily
small n-volume.

Definition 3.3. A set E in Rn has the strong Kakeya property (or shortly property (KS)) if
for every ϕ ∈ Isom+(Rn) E can be moved to ϕ(E) in an arbitrarily small n-volume.

In Section 5 we will look at results regarding the characterization of planar sets with
the Kakeya property. We will show that nice enough sets with the Kakeya property are
concentric circles or lines (or their subsets).

In Section 6 we show that some sets have the strong Kakeya property, for example
the union of a finite number of parallel line segments or a circle missing diametrically
opposite arcs.

Section 7 and Section 8 exclusively contains results due to the author [9]. In Section 7
we discuss a result regarding the rotation of a square. In Section 8 we show how this
theorem can be used to show that a wide family of sets in R3 have the strong Kakeya
property.
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4 Rotating a line segment

This section deals with different versions and proofs of the following theorem, first
proved by Besicovitch in [2].

Theorem 4.1 (Besicovitch). For every ε there exists a continuous motion of the unit line
segment during which it does a full rotation and sweeps an area less than ε.

Observation 4.2 (Pál). The first important observation is that we can translate the unit
line segment in an arbitrarily small area. To do this we rotate the segment by a small
angle and then we translate the segment in its own direction and when we reach the
desired line we rotate the segment back to its original direction and translate it to the
desired position (see Fig. 1). Such movements are called Pál joins.

Figure 1: A Pál join from AB to A′B′, with the swept area marked red.

Observation 4.3 (Pál). Let B be a set which is the finite union of triangles such that for
every direction d, there is a triangle that contains a unit line segment in direction d. We
can fully rotate a line segment in a way that it sweeps small area outside of B, since we
can rotate the segment as much as we can inside a triangle and then move to a triangle,
in which we can rotate it further, by a translation. By Observation 4.2 the segment can
sweep an arbitrarily small area during the translations.

Therefore, if we construct a set of measure less than ε such that it is the finite union
of triangles and contains a unit line segment in every direction than we have proved
Theorem 4.1.

Now we present the full original proof.

Lemma 4.4. Let ABC be any triangle. There exists a set of measure less than ε which is the
finite union of triangles and contains a unit line segment in every direction between CA and
CB.

Proof. We can suppose that A and B lie on the x-axis. Let ω be the length of the segment
AB and a = λ(ABC), and let h be the second coordinate of C. For any given n we
can draw rays from C such that they divide the segment AB into n equal parts. In
whatever way we (horizontally) translate the n new triangles, their union retains the
property that it contains a unit line segment in every direction between the directions
of CA and CB. Therefore, it is enough to show that for every k there exists n such that
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Figure 2: The case of n = 8 and L = 4.

if we cut ABC into n triangles as outlined then we can horizontally translate these
triangles such that their union has area less then a

k
.

For every i ∈ N draw line li = {y = h(1 − (2k−1
2k

)i)} (see Figure 2). Let L be such that
(2k−1

2k
)2L < 1

2k
. The reason for defining L this way is that the part of ABC above lL has

area less than a
2k

, so we can ignore it (horizontal translations cannot increase the area
above lL).

We have broken up ABC into a triangle above lL and L horizontal strips S1, . . . , SL

each containing n trapezia. Note that Si lies between li−1 and li. Let ti,j denote the j-th
trapezoid in the i-th strip. By similarity it is clear that the lower base of every trapezia
in Si has the same length, namely ai = ω

n
(2k−1

2k
)i.

Take m consecutive trapezia in i-th strip: ti,j, ti,j+1, . . . , ti,j+m−1. Take a trapezoid
T in Si such that its left side is parallel to the left side of ti,j+m−1 and its right side is
parallel to the right side of ti,j . If we translate any of the m trapezia so that their lower
base is in the lower base of T then the whole trapezoid will be in T . Therefore, we will
take many consecutive trapezia and translate them into such a trapezoid (as we will
see, this greater reduces their area). Naturally we need the lower base of T to be larger
than ai, denote their ratio by r ≥ 1.

The top of T has length rai + (m−2)ai

2k
, this can be most easily seen by considering

the fact that the rightmost point of ti,j ∩ li−1 is (m − 2)ai from the leftmost point of
ti,j+m−1 ∩ li−1, while on li the same distance is (m − 2)ai+1 = (m − 2)2k−1

2k
ai, see Figure 3.

Therefore, the area of T is (
2r + (m − 2)

2k

)
ai

hi

2 ,
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Figure 3: The case of m = 4.

where hi is the height of Si. While the sum of the areas of the m trapezia is

m
4k − 1

2k
ai

hi

2 .

It is easy to see that for a fixed r, as m grows the ratio of these to numbers tends to 1
4k−1 .

In fact, if
m >

8k2

2k − 1r,

then the area of T will be less than 1
2k

times the area of the trapezia.

The plan is the following: We will translate m1 consecutive triangles (m1 is to be
chosen later), using the technique outlined above, so that their area in S1 becomes small.
This results in a set which is the union of triangles. "Glue" these triangles together, in
the following steps these triangles will always be translated together. Group triangles
so that each group contains m1 consecutive triangles and perform this operation on
each group. Now we get a few of these glued sets, which contain some consecutive
triangles. In whatever way we horizontally translate these sets we cannot increase their
area in S1, so in the next step we only need to consider their area in S2, and so on.

To achieve this, we will need to specify how many neighbouring sets we want to
unite at every level, for the i-th level call this number mi. Therefore, the number of
triangles is n = m1m2 . . . mL and in Si we will construct sets containing m1m2 . . . mi

triangles.

Let r1 = 1 and m1 be greater than 8k2

2k−1r1. In the first step group the triangles so
that each group contains m1 consecutive triangles. For each group translate every
triangle in the group so that its base coincides with the base of the first triangle. We
have constructed sets A1, A2, . . . , Am2...mL

, now denote Ti = Ai ∩ Si. As we have seen,
we now have

λ(
⋃

Ti) <
1
2k

λ((ABC) ∩ S1).

Since we do not have perfect control over Ai (and its intersection with l1), we will
need to increase the the interval into which we can pack the consecutive triangles. Let
r2 = (r1 + (m1−2)

2k
) 2k

2k−1 , this is the ratio between the length of the segment Ai ∩ l1 and a2.
Naturally let m2 be such that m1m2 > 8k2

k−1r2 (we will group together m1m2 consecutive
triangles). Now group the sets Ai so that each group contains m2 consecutive sets. In
each group translate every element left so that the corresponding Ti trapezia have the
same base on l1. Now we get sets Bi containing m1m2 triangles, and their intersections
with l1 is contained in a segment of length r2a1. Therefore,

8



λ(
⋃

Bi ∩ S2) <
1
2k

λ((ABC) ∩ S2).

We can continue such steps, where the general formula in the i-th step is

ri =
(

ri−1 + m1m2 . . . mi−1 − 2
2k

) 2k

2k − 1 ,

and mi is such that m1m2 . . . mi >
8k2

2k − 1ri.

By induction, in the previous step we have constructed sets R1, R2, . . . , Rmimi+1...mL
for

which

• We get Rj by translating m1m2 . . . mi−1 consecutive triangles.

• The ratio of the area of ⋃Rj and ABC under li−1 is less than 1
2k

.

• Rj ∩ li−1 is contained in a line segment of length riai, denote it by ej .

Group Rj so that each group contains mi consecutive elements. In each group
translate every element left so that the corresponding ej move to the same segment
(leave the first element in place).

This way we have constructed R′
1, R′

2, . . . , R′
mi+1mi+2...mL

, all of which we got by
translating m1m2 . . . mi triangles. The intersection of all of these triangles with li−1 is
contained in a segment of length riai. As such their area is suitable by the choice of mi.
The last property follows as well.

After L steps we are left with a single set. This set has area less than a
2k

under the
line lL, the original triangle had area less than a

2k
above lL therefore, this set has area

less than a
k
.

Remark 4.5. Note that in the above construction the base of every triangle stays in AB
and we only use horizontal translations to the left.

Proof of Theorem 4.1. Draw a regular hexagon with an inscribed circle of radius 1 and
partition it into 6 triangles using neighbouring vertices of the hexagon and the centre
as vertices. By applying Lemma 4.4 to each triangle with ε

6 we get a set of measure less
than ε which satisfies the conditions of Observation 4.3.

Theorem 4.6. There exists a Besicovitch set of Jordan measure zero.

Proof relying on the details of the proof of Lemma 4.4. Similarly, we will only prove that
for a triangle ABC of height 1 there is such a set containing a unit line segment in every
direction between CA and CB. Let a be the area of ABC. Roughly speaking we will
apply Lemma 4.4 to ABC, which results in a set of triangles. We will then apply the
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Figure 4: The operations on a triangle of T1.

lemma again to these smaller triangles. Let D be the set of segments connecting a point
of the segment AB to C. We can think about these operations as acting on D, always
translating them left, while their lower endpoint remains in the segment AB (to avoid
ambiguity we can assume that every segment which is the side of a triangle during an
operation sticks to the triangle on its left). Therefore, every element of D has a limit
position after completing infinite such operations.

Let ki = 2i, as in Lemma 4.4 these will denote the ratio by which we decrease the
area of our triangles in each step.

Apply the proof of Lemma 4.4 to ABC with k = k1, denote the resulting set by T1.
If we would just apply the lemma to every triangle we would have no upper bound to
the size of the resulting set, since segments will be moved too far from their current
position. Let n1 be the number of triangles in T1. For every triangle in T1 extend it to
the left by a parallelogram with a base of length |AB|

2k1n1
, as seen on Figure 4. Call this

enlarged set P1. Easy calculation shows that the area of P1 is less than 2a
k1

. Cut every
triangle in T1 into triangles with equal base length less than |AB|

4k1n1
with C as their third

vertex.

Now apply the lemma to these new triangles with k = k2. Every segment moves
at most |AB|

4k1n1
and therefore remains in P1. Call the resulting set T2 with n2 triangles.

Now again extend each triangle of T2 with a parallelogram of base of |AB|
2k2n2

. Call the
resulting set P2. The area of P2 is less than 2a

k2
. Now we need to cut every triangle in

T2 into smaller triangles with bases shorter than |AB|
4k2n2

. If we apply the lemma again
to these triangles then not only will every segment remain in P2 they will also remain
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inside P1.

Repeat this process of cutting the triangles of the previous step, then slightly
enlarging the set and then cutting the triangles into even smaller ones.

In the i-th operation every segment will move at most |AB|
4ki−1ni−1

. Therefore, after the
i-th step it will move at most

|AB|
4kini

+ |AB|
4ki+1ni+1

+ |AB|
4ki+2ni+2

+ · · · <
|AB|
4ni

( 1
ki

+ 1
2ki

+ 1
4ki

+ . . . ) = |AB|
2kini

.

Therefore, the limit position of every segment lies in Pi for all i. Since the Jordan
measure of Pi is less than 2a

2ki
, the Jordan measure of the union of the limit positions

must be zero.

Originally Besicovitch used Theorem 4.6 to answer a seemingly unrelated question.
Consider a Riemann integrable function f on [0, 1]2. If for example f is continuous then

∫
[0,1]2

fdA =
∫

[0,1]

(∫
[0,1]

f(x, y)dx

)
dy.

This of course does not hold for general Riemann integrable functions as ∫[0,1] f(x, y)dx
may not exist for all y. A natural question is whether this is the fault of our coordinate
system, can we always choose a coordinate system in which this Fubini-like statement
holds?

Corollary 4.7. There exists a Riemann integrable function f such that its repeated integral is
undefined in every coordinate system.

Proof. Since the set given in Theorem 4.6 is Jordan measurable it is also bounded. As
such there exits an n ∈ N such that the set can be shrunk into [0, 1]2 and it contains a line
segment of length 1

n
in every direction. Using translations we can also assume that there

are vertical and horizontal segments in our set which are at an irrational distance from
the corresponding axes. Let this modified set be E. Let E0 = E ∩ ((Q×R)∪ (R×Q)) and
let f be the characteristic function of E0. Since E has Jordan measure zero f is Riemann
integrable. Suppose that in our new coordinate system the x-axis is in direction v. There
exists a segment e in E parallel to v. Since f is equal to 1 on a dense subset of e and
0 on a dense subset, the repeated integral is undefined (for a given y we are asked to
integrate f on e).

The proof of Theorem 4.6 constructed a compact Besicovitch set of measure zero.
As an intermediate step we constructed a continuous rotation of the unit line segment
during which it sweeps an area less than ε. Now we will present the other direction,
given a compact Besicovitch set of measure zero, we will rotate the unit line segment
in an arbitrarily small area. This shows a strong connection between the two problems,
a Besicovitch set can be thought of as a set in which the unit line segment can be fully
rotated (reaching all directions) in a discontinuous manner.
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Proof of Theorem 4.1 supposing Theorem 4.6. The closure of the set given in Theorem 4.6
is a compact Besicovitch set of measure zero, call it A. Therefore, for every ε there exists
a δ such that λ(A + B(δ)) < ε. For every unit line segment e contained in A the set
e + B(δ) ⊂ A + B(δ) contains a triangle containing e. By Observation 4.3 we are done.

Now we will give a different proof to Lemma 4.4, which is a yet unpublished result
of A. Gáspár.

Lemma 4.8. Let ABC be a triangle with base length w. As before, ABC can be cut, with lines
through C, into 2n smaller triangles so that their bases have length w

2n . These triangles can be
horizontally translated so that their union U has the following properties:

1. The intersection of U with the segment AB is contained in a line segment of length w
n+1 .

2. The intersection of U with any horizontal line segment has total length less than w
n+1 .

Proof. We will proceed with induction on n, going from n − 1 to n. The case of n = 0 is
trivial. Using affine transformations, we can assume A = (−n − 1, −1), B = (n + 1, −1),
and C = (0, n), therefore w = 2(n + 1). Also denote the points A′ = (−n, 0), B′ = (n, 0),
and O = (0, 0). We can now apply the inductive hypothesis to A′OC and B′OC, giving
us sets U ′

1 and U ′
2 respectively. The intersection of U ′

1 and any horizontal line segment
has length less than n

n−1+1 = 1 = w
2(n+1) , similarly for U ′

2. This means that if we translate
U ′

1 and U ′
2 horizontally then their union will always intersect every horizontal line in a

set of length less than w
n+1 .

The cutting and translating of A′OC and B′OC naturally induces cuts and a set
of translations on ABC, which cuts the triangle into 2n triangles. Call the resulting
sets U1 and U2. From the above argument we only need to pay attention to the strip
S = {y ∈ [−1, 0]}. Let the intersection of U1 and the x-axis be contained in a segment e1,
from the hypothesis we know that the length of e1 is less than 1, we get e2 for U2 similarly.
Translate U1 by vector v1 so that e1 becomes a part of [0, 1] on the x-axis, and translate
U2 by v2 so that e2 becomes a part of [−1, 0] (note that they "switched sides"). Since U1 is
the union of segments with slope at least 1, (v1 + U1) ∩ S is contained in the trapezoid
defined by the points (−1, −1), (1, −1), (1, 0), (0, 0). Similarly (v1 + U1) ∩ S is contained
in the trapezoid defined by the points (−1, 0), (0, 0), (−1, −1), (1, −1). Therefore, it is
easy to verify that (U1 + v1) ∪ (U2 + v2) satisfies both conditions.

We now present results about whether there are sets in which a unit line segment
can be rotated while possessing some additional property. These results are due to
Cunningham [3].

The use of Pál joins in the previous section results in the diameter of the sets we
construct rapidly increasing as ε tends to zero, and their fundamental group also
becomes large. It is natural to ask if the area scraped can tend to zero if we have an
absolute bound on the diameter of the sets or a bound on their fundamental group.
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It is easy to verify that a unit line segment cannot be rotated inside a circle of radius
less than 1 in a way such that its swept area is arbitrarily small. Thus, the following
theorem is the best we can hope for.

Theorem 4.9 (Cunningham). For every ε there exists a simply connected subset of the unit
circle of measure less than ε in which the unit line segment can be rotated.

Call a set A star-shaped if it has a point O such that for every P ∈ A the segment
OP is contained in A.

Theorem 4.10 (Cunningham). Let A be a star-shaped set in which the unit line segment can
be rotated. Then A has measure at least π

108 .

Remark 4.11. It is not known whether this lower bound is optimal.
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5 Kakeya property

Recall Definition 3.2 and Definition 3.3 for the definition of the Kakeya property and
the strong Kakeya property respectively. We will often refer to the Kakeya property as
property (K) and the strong Kakeya property as property (KS)

This section will contain fewer proofs, its main purpose is to build the readers
intuition for the Kakeya property. First, I would like to present an argument by Davies
[11], showing that the union of two non-parallel line segments does not possess the
strong Kakeya property. This argument gives a strong intuition about which sets can
have the Kakeya property. We will later see that this intuition does in fact hold for nice
enough sets but unfortunately fails in the general case.

Theorem 5.1 (Davies). The union of two non-parallel line segments cannot be fully rotated in
an arbitrarily small area.

Argument. Call the segments A1A2 and B1B2, and their union E. Suppose that for
every ε there exists a motion Mε, that rotates E in area less than ε. Let the intersection
of lines of A1A2 and B1B2 be C. Without loss of generality we can suppose that C is
disjoint from the segments (we can decrease E if necessary). Now take a very small
disk D centred at C. If C does not leave D during a rotation then E must sweep a
complete ring almost the the width of A1A2. Therefore, for small enough ε, during the
motion Mε, the point C must leave D. Take the first moment this happens and let the
new position of E be E ′ = A′

1A
′
2 ∪ B′

1B
′
2. Depending on the radius of D, there exists

an ε0 such that either the area of the quadrilateral A1A2A
′
1A

′
2 or of B1B2B

′
1B

′
2 is greater

than ε0. If D is small enough then E must sweep almost all of these quadrilaterals, and
we get a lower bound on the area swept up to this moment.

To more deeply understand this argument, we must define free movements.

Definition 5.2. We say that an α ∈ Isom+(R2) is a free movement of a set E if during the
motion Mα the set E sweeps zero area.

Sets with property (K) are almost characterized in [8] by Marianna Csörnyei,
Kornélia Héra, Miklós Laczkovich. We now present some of their results.

If a set has a free motion, then it trivially possesses the Kakeya property. In particular,
it is easy to see that if a set can be covered by a nullset consisting of concentric circles
or parallel lines then it has a free motion and thus has property (K), we will call these
trivial (K)-sets.

The main idea of the above argument can be generalized the following way: Let
E be a set with no free movement. Take the first moment t0 when the motion M(t)
leaves the ε neighbourhood of the identity. Let α = M(t0). The movement up to this
moment can be approximated by a rotation or a translation, namely Mα. If E has no
free movements then it must sweep a positive area during Mα. If ε is small and E is

14



nice enough then E must also sweep most of this area during M . This suggests that if
a nice enough set has no free motions then it cannot have the Kakeya property.

Unfortunately this intuition does not hold for all sets.
Remark 5.3 (Csörnyei, Héra, Laczkovich [8]). There exists a compact set which possesses
property (K), but is not a trivial (K)-set.

Sketch of proof. If the set A has λ(pv(A)) > 0 for all directions v, where pv denotes the
projection in direction v, and its distance set

D(A; p) = {|x − p| ∈ R : x ∈ A}

has positive measure for every point p then A is not a trivial (K)-set. Let en be a
sequence of distinct directions with limit e. By Talagrand’s theorem detailed in [10]
we can construct A such that λ(pen(A)) = 1

n
and λ(pv(A)) > 0 for all directions v. This

means that A cannot be covered by a nullset of parallel lines. Guaranteeing that the
distance set has positive measure requires more exact details of the construction but is
not difficult.

The set A has the (K) property, since it can be moved to its translated copy in
direction e in an arbitrarily small area. We can achieve this by translating it by the same
amount in direction en, sweeping an arbitrarily small area if n is large enough, and
finishing the movement with a small translation.

Nonetheless the previous intuition yields true results in the case of highly connected
sets.
Theorem 5.4 (Csörnyei, Héra, Laczkovich [8]). Let A ⊂ R2 be a closed set having property
(K) such that all of its connected components contain at least 2 points. Then A is a trivial
(K)-set. In particular if A is connected then it is a line segment, a half line, a line, a circular
arc, a circle or a singleton.

If a set has the property (K), then an isometry naturally belongs to this set from the
definition. The definition does not guarantee anything about the motions that sweep
small area while arriving at this position. The following lemma shows that we can
"stay close" to a fixed isometry, while the area swept tends to zero. Recall that for an
α ∈ Isom+(R2) the natural motion induced by α is denoted by Mα(t), see Section 2.
Lemma 5.5. If E ⊂ R2 has property (K), then there exists an α ∈ Isom+(R2) such that
α2 is not the identity, and the following condition is satisfied. For every ε > 0 there is a
continuous motion M such that M(1) = α, the area swept by E during M is less than ε, and
|M(t) − Mα(t)| < ε for every t ∈ [0, 1].

The proof is technical, and as such it is omitted.

We will prove a special case of theorem 5.4, where each connected component of A
is a curve. The more general case requires statements of topological nature, and do not
add much to our intuition.
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Theorem 5.6. Let E ⊂ R2 be a closed set having property (K) such that all of its connected
components are curves. Then E is a trivial (K)-set. In particular if E is a curve then it is a
line segment, a half line, a line, a circular arc, a circle or a singleton.

(Proof based on the original proof of Theorem 5.4). Let E1 be a connected component of E.
Lemma 5.5 yields an isometry α satisfying the conditions of the lemma. We will prove
that if α is a translation in direction v then every connected component of E can covered
by a line parallel to v. We can suppose v is horizontal.

Suppose {e · v⊥|e ∈ E1} has two distinct elements a1 < a2. We can reduce the curve
E1 so that {e · v⊥|e ∈ E1} achieves its unique extrema at the endpoints, and it becomes
a simple curve. Let B1 be the vertical ray upward from the upper endpoint of E1 and
similarly B2 be the vertical downward ray from the lower endpoint of E1. Let B be
the union of B1 and B2. Take b1, b2 ∈ (a1, a2). If the motion M is close enough to Mα

then the strip S = {(x, y)|(x, y) · v⊥ ∈ [y1, y2]} stays disjoint from B. It is easy to see that
E1 ∪ B cuts the plane into two connected components. The subset of the strip S which
changes components between M0(E1 ∪ B) and M1(E1 ∪ B) has area (y2 − y1)||α||. All
of these points must be swept by E1 during M .

A similar argument proves that if α is a rotation around c then every connected of
A can be covered by a circle centred at c.

This completes the proof as every α ∈ Isom+ R2 is either a translation or a rotation.
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6 Strong Kakeya property

6.1 Classical results

We have seen in the previous section that there are quite few natural sets with the
Kakeya property, and as such we only need to check a few cases to characterize sets
with the strong Kakeya property (KS). In section 4 we already saw that a single line
segment has property (KS). In [11] R. Davies proved a more general result.

Theorem 6.1 (Davies). A finite union of parallel line segments has property (KS).

We will present the full original proof of this theorem as it uses a wide range of
classical techniques.

Lemma 6.2. For every rectangle R and δ > 0 there exists a closed set of arbitrarily small
measure which contains a translate of every segment in R at most δ distance from the original
segment.

Proof. Such a set can be easily obtained from Lemma 4.4 and Remark 4.5.

Definition 6.3. Call a set an n-set if it is the union of n line segments. Note that they do
not have to be parallel.

Lemma 6.4. Let F be a compact set and G be an open neighbourhood of F . Given an integer n
there exists a compact set F ′ ⊂ G of measure less than ε such that F ′ contains a translate of
every n-set in F .

Proof. Let

R4 ⊃ S(F ) = {(a, b)|a, b ∈ F ⊂ R2, the segment between a and b is contained in F}.

It is easy to verify that S(F ) is a compact set. For a closed rectangle R ⊂ G the set
S(int(R)) is an open set and sets of this form form an open covering of S(F ). Therefore,
by the compactness of S(F ) we can select a finite number of rectangles

R1, . . . , RN ⊂ G

such that every segment in F is also contained in one of the rectangles. Choose closed
rectangles R′

i such that Ri ⊂ int(R′
i) ⊂ G, where int(R′

i) denotes the interior of R′
i.

Denote by S1, . . . , SM the sequence we get by listing every rectangle R′
i n times

(M = nN ). For every Sk we will recursively define a closed set Fk and an open set Gk

such that Fk ⊂ Gk ⊂ Gk ⊂ Sk and F ′ = ∪kGk will be suitable.

Let δ0 be such that ∪Ri + B(δ0) ⊂ ∪R′
i and let δ1 = δ0

n
. Recursively define

δk = min
{

δ1,
d1

n
,
d2

n
, . . . ,

dk−1

n

}
,
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where di is the distance of Fi and the complement of Gi. For each Sk let Fk be a set
given by Lemma 6.2 for rectangle Sk, δ = δk, and measure less than ε

2M
and Gk be an

open neighbourhood of Fk such that its closure has measure less than ε
M

.

We will show that F ′ = ∪kGk is suitable. It is clear that it has measure less then
ε. Let E be an n-set in F . By the definition of R1, . . . , RN there exists a list, of length
n, consisting of distinct indices ji such that Ti, the i-th segment, is contained in the
rectangle corresponding to Sji

.

Since T1 ⊂ Sj1 there exists a translation ϕ1 which is shorter then δj1 and translates T1
in to Fj1 . Similarly if we have defined translations ϕ1, ϕ2, . . . , ϕk−1, where ϕi is shorter
than δji

, then ϕ1ϕ2 . . . ϕk−1Tk ⊂ Sji
, since ϕ1ϕ2 . . . ϕk−1 is shorter than

k−1∑
i=1

δji
< nδ1 ≤ δ0.

Therefore, there exists a translation ϕk shorter than δkj
that moves ϕ1ϕ2 . . . ϕk−1Tk into

Fk.

Our final translation will be ϕ1ϕ2 . . . ϕn. We only need to prove that for every k
the segment ϕ1ϕ2 . . . ϕnTk is within Gk. This follows from the fact that the translation
ϕk+1ϕk+2 . . . ϕn is shorter than

n∑
i=k+1

δji
≤ (n − k)

δkj

n
< δkj

.

Theorem 6.5 (Davies). Given an integer n there exists a compact set F of measure 0 such
that F contains a translate of every n-set with diameter less than n.

Proof. Let F0 be a closed set containing all n-sets of diameter less than n, for example
a large enough disk. Let G0 be a bounded neighbourhood of F0. Now by repeatedly
applying Lemma 6.4 we get Fi ⊂ Gi−1 such that Fi still contains every n-set of diameter
less than n and λ(Fi) < 1

i
and we can choose Gi such that Fi ⊂ Gi ⊂ Gi−1 and λ(Gi) < 1

i
.

It is easy to check that F = ⋂∞
i Gi is suitable.

Corollary 6.6. There exists an Fσ subset of the plane which contains a translate of every
polygonal arc.

Proof. Apply Theorem 6.5 for every n and take the union of the sets given by the
theorem. Every polygonal arc is an n-set for some n.

Proof of Theorem 6.1. Let E be the finite union of parallel line segments. Similarly to
the proof of Theorem 4.1, we can translate E in an arbitrarily small area using the
same idea as in Observation 4.2. Therefore, it is enough to show that E can be rotated
between any of its two orientations in an arbitrarily small area. We will show that it
can be fully rotated in an arbitrarily small area.
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By Theorem 6.5 there exists a compact null set which contains E in every direction.
Therefore, there exists and open set G of arbitrarily small measure which contains E
in every direction. For any position of E in G we can rotate it a small amount in both
directions. This defines open intervals on S1, which form an open cover, select a finite
cover. This corresponds to a finite number of positions of E, choose one of them as
the staring position. We can always rotate E until its direction reaches the interval
corresponding to the next position and we can translate it there.

6.2 Recent developments

A full circle does not possess property (KS) as to reach a disjoint position it needs to
sweep every inner point.

The question whether all incomplete circular arcs possess property (KS) was first
asked by Cunningham in [4] but remains an open question to date. Progress has been
made on smaller circular arcs. In [7] Kornélia Héra and Miklós Laczkovich proved that
circular arcs of radius 1 and length shorter than 1.32 do in fact have property (KS).

The most recent results, including the strongest result on Cunningham’s question,
in the topic were achieved by Alan Chang and Marianna Csörnyei in [1]. We will
mostly just present the results of this article.

Theorem 6.7 (Chang-Csörnyei [1]). For every ε > 0 the set {x2 + y2 = 1: |x| > ε} has
property (KS).

Let H1 denote the one-dimensional Hausdorff measure.

Every rectifiable set in R2 has a tangent field that is defined H1 almost everywhere.
To state some theorems, we will define it at every point, but it turns out that the choice
does not affect the results. Denote the tangent direction at x by θx and denote the
normal line by νx.

Theorem 6.7 easily follows from the next theorem.

Theorem 6.8 (Chang-Csörnyei [1]). Let E ⊂ R2 be a rectifiable set of finite H1 measure.
Then for every ε and point g there exists a polygonal path R2 ⊃ P = ∪n

i Li from the origin to g
and directions θi, such that

λ(
⋃
i

⋃
p∈Li

(p + {x ∈ E|θx /∈ B(θi, ε)})) ≤ ε.

That is, for a fixed end position we can choose a finite number of translations
and during every translation we can chose a direction and ignore points of E whose
tangents are close to that direction in such a way that the remaining points sweep small
area.

Theorem 6.8 applies to parallel line segments as well, but the statement is empty
since we can delete the whole set during each translation. It is also easy to see that

19



translations are not enough to achieve any surprising result about line segments, we
need to include rotations. To unify translations and rotations we consider translations
as rotations around a point at "infinity", as such every translation and rotation has a
projective centre in the projective plane, P2. The polygonal path in Theorem 6.8 is a
series of direction vectors and corresponding lengths, the natural analogue for rotations
is a series of centres and angles of rotation.

An additional ambiguity arises when dealing with rotations: when we perform a
rotation the centre of all other rotations move. To avoid this problem we will always
specify our rotations as compared to our set. This means that given rotations r1 and r2
around z1 and z2 we will perform r1 and the next rotation will be performed around
r1(z2). Therefore, a polygonal path now means a path in Isom+(R2) such that it is the
concatenation of a finite number of "line segments", where each line segment is of the
form Mα.

Theorem 6.9 (Chang-Csörnyei [1]). Let E be a bounded rectifiable set of finite H1 measure.
Let ε > 0 and p ∈ Isom+(R2) be arbitrary and let l ⊂ P2 be a line through the projective
centre of p. Then there is a polygonal path ∪n

i=1Li such that it connects the identity to p and the
projective centres of Li lie within the ε neighbourhood of l and we can choose ui ∈ l in a way
such that

λ(
⋃
i

⋃
r∈Li

r({x|x ∈ E, νx ∩ l ∩ B(ui, ε) = ∅})) < ε.

This is almost a generalization of Theorem 6.8, since if p is a translation, then we can
choose l to be the ideal line. We get a very similar statement to that of Theorem 6.8, the
difference being in whether the projective centres lie on the ideal line (and are therefore
translations) or in the ε neighbourhood of the ideal line.

If E is a line segment, then at every moment we delete only a small segment form
E, since νx has the same direction for all x ∈ E.

Corollary 6.10. If E is a bounded union of parallel line segments which have finite total length,
then E has property (KS).

Proof. Let E ′ = E0 ∪ E1 be the union of two copies of E that are far away from each
other and can be translated into each other while sweeping zero area. Now apply
Theorem 6.9 to E ′. This gives a polygonal path during which E ′ sweeps small area, but
during every segment of the path we delete some part of E ′. It is easy to see that the
deleted points must either lie in E0 or E1 entirely. Therefore, between each subsequent
segments of the path we can trivially translate E into a copy such that its points do not
get deleted during the next segment.

This result generalizes Theorem 6.1. The other notable aspect of this result is that it
applies to sets which have closures of positive measure.

We get new results if we consider what happens when ε −→ 0 in Theorem 6.9. The
case of a convex function is interesting since we can choose l to be "under" the graph
and then νx ∩ l defines x.
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Theorem 6.11 (Chang-Csörnyei [1]). Let E be a rectifiable set. We can rotate E by 360◦

while sweeping a set of zero area, if at every moment we are allowed to delete a H1-null subset
of E. In the special case when E is the graph of a convex function, we only need to delete a
single point at every moment.

Unfortunately the choice of deleted point cannot be always continuous.

If we choose E to be a line then the set ∪t(Et \ xt) is Lebesgue null and contains a
line segment in every direction, therefore it is a Besicovitch set.
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7 Rotating a square

Theorem 6.1 states that finitely many parallel line segments can be rotated in an
arbitrarily small area. This is of course impossible if we consider a union of parallel line
segments which has positive measure, but we can ask whether there exists a rotating
motion such that every segment sweeps small area. The most natural case is when we
consider the vertical lines in a square. The following results are due to the author [9].

Theorem 7.1. For every ε > 0 there exists a continuous motion of the unit square during
which every initially vertical line segment sweeps at most ε area, while the square does a full
rotation.

This result easily implies Theorem 6.1. This section will deal with the proof of
Theorem 7.1. We will see applications of this theorem in Section 8.

Let V be the set of planes, which have a 45◦ angle with the {y = 0} plane. In
Section 7.1 we will prove the following lemma.

Lemma 7.2. There exists a closed set A in R3, which is the union of planes in V at a bounded
distance from the origin, contains a translate of every plane in V , and intersects every vertical
line in a set of measure zero.

The proof relies on a duality argument and utilizes the construction of Talagrand
[10], for an English description see Appendix A. in [13].

Lemma 7.2 is closely related to the question of rotating a square. The connection
can be seen if we think of the plane as the {y = 0} plane in R3 and raise every vertical
segment of the unit square by its distance from the origin. During the motion of the
unit square, the motion of each initially vertical segment corresponds to the motion of
the raised rectangle at a given height.

Thus Lemma 7.2 can be thought of as giving a discontinuous motion of the unit
square, during which it achieves every direction. In Section 7.2 we turn this motion
into a continuous one and prove Theorem 7.1.

7.1 Planes of certain angle, proof of Lemma 7.2

This section will exclusively deal with the proof of Lemma 7.2.

Let a · b denote the standard dot product of a and b. For a vector v let

pv(X) = {x · v | x ∈ X}.

It is clear that it is sufficient to construct a set fulfilling the conditions, with the
exception that it only contains planes in V , whose directions form an interval.
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We will use a duality argument and encode planes with points of R3. Similar
encodings are often used in planar cases, see for examples [12],[6]. To the point (a, b, c)
assign the plane, which contains (0, 0, a), has slope b in the y = 0 plane, slope c in the
x = 0 plane. It is easy to see that a point (x, y, z) is on the plane corresponding to (a, b, c)
if and only if a + bx + cy = z. Through straightforward calculation a plane is in V when
its triple has c2 − b2 = 1.

7.1.1 Requirements for our codeset and some basic observations

Let K be a set of triples, and A the union of the corresponding planes. If K is compact,
then A is closed and every plane is at a bounded distance from the origin. The point
(x, y, z) is in A if K contains a triple (a, b, c), which satisfies a + bx + cy = z, meaning K
has a point in this plane. The set (x, y, −) ∩ A is p(1,x,y)(K), hence their measure is equal.
Hence if K is such that for all vectors v, of the form (1, x, y) we have λ(pv(K)) = 0, then
A intersects every vertical line in a set of measure 0. For the directions of the planes in
A to form an interval, we need p(0,1,0)(K) to be an interval.

Let the 3 coordinates of the space containing K be a, b, c. By the above argument in
order to prove Lemma 7.2, it is enough to prove the following lemma.

Let H = {(a, b, c)|c2 − b2 = 1, c > 0}.

Lemma 7.3. There exists a compact set K ⊂ H such that p(0,1,0)(K) is an interval and
λ(p(1,x,y))(K) = 0 for all x, y.

The remainder of this section deals with the proof of Lemma 7.3.

7.1.2 Preliminaries for constructing K

Let f : R2 → H , f(a, b) = (a, b,
√

1 + b2).

We will construct K ′ ⊂ R2 such that K = f(K ′) has the desired properties.

For any x, y, s we have s ∈ p(1,x,y)(K) if and only if K has a point r, for which

r · (1, x, y) = s.

Such points r on H form a curve:

cx,y,s = {(s − x sinh(t) − y cosh(t), sinh(t), cosh(t)) : t ∈ R}.

Define
Cx,y,s = {(s − x sinh(t) − y cosh(t), sinh(t)) : t ∈ R}.

Then
s ∈ p(1,x,y)(K) ⇐⇒ (K ∩ cx,y,s ̸= ∅) ⇐⇒ (K ′ ∩ Cx,y,s ̸= ∅).
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Figure 5: From Pi−1,j to Pi,2j−1 and Pi,2j .

For each x, y we define a function αx,y on the plane: To calculate αx,y(a, b), take the
curve Cx,y,s through (a, b) and take the signed angle between the tangent of this curve
at (a, b) and the b axis. Observe that αx,y is never ±90◦. The function tan(α(x,y)(a, b)) is
continuous as a function of x, y, a, b. Thus, it is uniformly continuous on a compact set,
and so

∀G∀ε∃δ ∀r1, r2 ∈ [0, 1]2, |x|, |y| ≤ G, |r1 − r2| < δ

=⇒ |tan(αx,y(r1)) − tan(αx,y(r2))| < ϵ.
(7.1)

7.1.3 Construction of K ′

We will prove that the set constructed by Talagrand [10] (see also in [13]) is a suitable
set. For the sake of completeness, we repeat the construction.

By induction, we shall construct a decreasing sequence (K ′
m) of finite unions of

closed rectangles such that K ′ = ∩∞
i=1K

′
m has the desired properties. To begin with let

ε1 = 1 and K ′
1 = [0, 1]2. We now suppose that m ∈ N, 0 < εm ≤ 1/m, and that K ′

m is a
union of rectangles

Rn = [an, an + εm

N
] ×

[
n − 1

N
,

n

N

]
, 1 ≤ n ≤ N,

where N ∈ N+, a1, . . . , aN ∈ R. We will now construct K ′
m+1.

We fix 1 ≤ n ≤ N , define P0,1 = Rn, and choose km ∈ N such that km ≥ 2m
εm

. Starting
with P0,1, we construct parallelograms Pi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ 2i. We take the midpoint
of every side of Pi−1,j , let the midpoint of the left side be Ai,j , and the midpoint of the
right side Bi,j . Take the midpoint of Ai,jBi,j and let the parallelograms Pi,2j−1, Pi,2j , and
the angle αi be as indicated by Fig. 5.
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Figure 6: From Pkm,j to Qkm,j .

It follows by induction from the construction that the two intervals p(0,1)(Pi,2j−1)
and p(0,1)(Pi,2j) have length 2−i/N and that |Ai,j − Bi,j| = 2−iεm/N . Therefore, in the
last step also using that km ≥ 2m

εm
, we obtain

tan αi = εm

2 + tan αi−1,

=⇒ tan αi = iεm

2 , (7.2)
=⇒ tan αkm ≥ m.

Next we shall replace each Pkm,j by a union of rectangles Qkm,j (see Fig. 6) such
that p(0,1)(Qkm,j) = p(0,1)(Pkm,j) and their union T (K ′

m) satisfies λ(p(1,0)(T (K ′
m))) ≤ 1

m+1 .
To that end we choose a suitable multiple N ′ of 2kmN , an εm+1 ∈ (0, 1

m+1)), which is
sufficiently small, and replace each of the parallelograms Pkm,j, 1 ≤ j ≤ 2km , by a subset
Qkm,j , which is a union of rectangles of the form
[t, t + εm+1/N ′] × [u, u + 1/N ′] as indicated by Fig. 2. Using (7.1) we can choose
N ′ to be large enough, such that the oscillation of tan(αx,y) is less than εm+1

2 in each
rectangle, whenever x, y < m.

If m is odd, let K ′
m+1 = T (K ′

m). If m is even, we take K ′
m+1 = S(T (S(K ′

m))), where
S denotes the reflection about the line {b = 1/2}.

7.1.4 Showing that K is suitable

Recall that K = f(K ′). It is clear that K ⊂ H and p(0,1,0)(K) is an interval, so it remains
be proved that λ(p(1,x,y)(K)) = 0 for any x, y. We now fix x, y. Let F ⊂ R2 be the set on
which αx,y is non-negative. It is easy to verify that F is a half-plane with a defining line
parallel to the a-axis, or the whole plane or possibly the empty set. We prove that

λ(p(1,x,y)(K ∩ f(F )) = 0. (7.3)

The reasoning is similar if αx,y is negative, in that case we need to use that for even
m we have K ′

m+1 = S(T (S(K ′
m))). Thus (7.3) implies that K is a suitable set.
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Figure 7: Two generations of parallelograms

The following claim clearly implies (7.3), therefore it will complete the proof of
Lemma 7.3 and thus the proof of Lemma 7.2.

Claim 7.4. If m is large enough and even, then

λ(p(1,x,y)(f(K ′
m ∩ F )) ≤ 3

√
1 + x2 + y2

2(m − 1) .

Proof. Let M be the maximum of tan(αx,y) on [0, 1]2. We can choose m to be large
enough, such that x, y < m and n + 2 < km for every n < 2M

εm−1
, since km > 2m

εm−1
. The

set (K ′
m−1 ∩ F ) is a union of rectangles, this follows from the observation made on the

possible shapes of F . Let R be one of these rectangles. The oscillation of tan(αx,y) on R
is less than εm−1

2 , since x, y < m. Let n be such that

tan(αx,y) ⊂
[

nεm−1

2 ,
(n + 2)εm−1

2

]

on R.

Let A′
n+1,jB

′
n+1,j be the segment we obtain by scaling An+1,jBn+1,j by 3

2 from its
midpoint (Fig. 7). We claim that every curve Cx,y,s intersecting Pn+2,4j−i, where i =
0, 1, 2, 3 must intersect the segment A

′
n+1,jB

′
n+1,j . This can be verified for each parallelogram

separately. We will only check this for Pn+2,4j−3, the others can be done similarly.
Suppose Cx,y,s intersects Pn+2,4j−3. We claim that if it intersects the line of A

′
n+1,jB

′
n+1,j
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right of B′
n+1,j , then it must be right of the segment B′

n+1,jV2 in the horizontal strip
between B′

n+1,j and V2. Indeed, this follows from the fact that by (7.2) the segment
B′

n+1,jV2 has an angle of arctan
(

(n+2)εm−1
2

)
with the b-axis, since the tangent of the curve

has a smaller angle with the b-axis on R. On the left side, a slightly stronger statement
is true. If the curve intersects the line of A

′
n+1,jB

′
n+1,j left of An+1,j , then it must be left

of the segment An+1,jV1 in the horizontal strip between An+1,j and V1 (this segment has
an angle of arctan(nεm−1

2 ) with the b-axis).

The segment A
′
n+1,jB

′
n+1,j is of length 2−(n+1)3εm−1

N
. Note that f(A′

n+1,jB
′
n+1,j) is a

segment of the same length. This means that

λ(p(1,x,y)(f(∪3
i=0Pn+2,4j−i))) ≤ λ(p(1,x,y)(f(A′

n+1,jB
′

n+1,j))) ≤

≤ 2−(n+1)3εm−1

N

√
1 + x2 + y2,

λ(p(1,x,y)(f(R ∩ K ′
m))) ≤

2n∑
j=1

λ(p(1,x,y)(f(∪3
i=0Pn+2,4j−i))) ≤ 3εm−1

2N

√
1 + x2 + y2,

λ(p(1,x,y)(f(K ′
m ∩ F ))) ≤

N∑
i=1

λ(p(1,x,y)(f(Ri))) ≤

≤ 3εm−1

2

√
1 + x2 + y2 ≤ 3

√
1 + x2 + y2

2(m − 1) .

7.2 Rotating a square, the proof of Theorem 7.1

7.2.1 Neighbourhoods of A

Call a rectangle in R3 interesting if its sides are of length 1 and
√

2, one of the shorter
sides lies in the plane {y = 0}, it has a 45◦ angle with the {y = 0} plane and is in the
y ≥ 0 half-space. By the neighbourhood of an interesting rectangle we will mean a set that
contains the rectangle and is relatively open in R × [0, 1] × R.

Claim 7.5. For every ε > 0 there exists a set U such that for every possible direction U contains
a neighbourhood of an interesting rectangle in that direction, while it intersects the {y = h}
plane in a set of measure less than ε for all h.

Proof. Let A be the set provided by Lemma 7.2. Fix an N large enough that

A ∩ ((−N, N) × [0, 1] × (−N, N))

contains an interesting rectangle in every direction. For any δ > 0 let Aδ be A+{(−δ, δ)×
{0} × (−δ, δ)}, where + denotes the Minkowski sum and define A0 to be A. The set Aδ

27



is open for all δ > 0, since A is a union of planes and we replace each plane with an
open set. Define

Bδ = Aδ ∩ ([−N, N ] × [0, 1] × [−N, N ]).

The set Bδ is a relatively open in [−N, N ] × [0, 1] × [−N, N ] for all δ > 0, therefore Bδ

contains a neighbourhood of an interesting rectangle in every possible direction.

Let fδ(h) = λ(Bδ ∩ {y = h}). Using the fact that B0 is compact, it is easy to verify
that the function fδ(h) is continuous in δ. Since f0(h) = 0, fδ(h) converges to 0 as δ
tends to 0.

We claim that
fδ+t(h1) ≥ fδ(h2) (7.4)

whenever |h1 − h2| < t. Indeed for every point p in Bδ ∩ {y = h2} the set A contains a
plane that intersects {y = h2} in a line, which is less distance away from p than δ. This
plane has a 45◦ angle with the {y = h2} plane and intersects {y = h1} as well.

By (7.4), fδ(h) is upper semicontinuous in h. Hence f 1
n

is a sequence of upper
semicontinuous functions on [0, 1], which is pointwise monotonically decreasing, and
pointwise converges to 0. It is easy to prove that such a sequence must uniformly
converge to 0. Therefore, there exists a δ0 > 0 such that U = Bδ0 has all the required
properties.

7.2.2 Rotating an interesting rectangle

Let R be an interesting rectangle. Call a continuous motion M of R interesting if at every
moment it keeps R interesting.

Lemma 7.6. For all ε > 0 there exists an interesting motion of R, during which R does a full
a rotation, but R ∩ {y = t} sweeps an area less than ε for all t.

Proof. We will again use the idea of Pál joins to move between translated copies. We
claim that for any interesting rectangle R′ parallel to R there exists an interesting motion
of R during which R ∩ {y = t} sweeps less than ε area for all t and R is translated to R′.

There is a direction in which we can translate R in such a way, that it sweeps 0 area
at every height, call this its free direction. We will move R in an N-like shape. We
translate it in its free direction, there we rotate it by a small angle, then we translate
it in its free direction, and rotate it in the opposite direction, by the same angle. If we
translate it far enough, then the angle of rotation can be arbitrarily small, and so the
area swept at each height will be small.

Let U be the set given by Claim 7.5. For any possible direction d, U contains the
neighbourhood of an interesting rectangle Rd, which is in the direction of d. For each
Rd, there is an interesting motion, that rotates the rectangle a small amount within U .
Since S1 is compact, we can choose finitely many directions, whose neighbourhoods
cover all directions. We have seen that we can move between parallel copies of R
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while sweeping an arbitrarily small area at all heights, therefore these will only add an
arbitrarily small area to the arbitrarily small area of U at each height.

7.2.3 Proof of the main result

Proof of Theorem 7.1. Let M be the motion of an interesting rectangle R given by Lemma 7.6.
Let T = R ∩ {y = 0}. If at every moment we project R onto the {y = 0} plane, then we
get M ′, a motion of the unit square. Observe that during M ′ the segment at t distance
from T sweeps the same area, as R ∩ {y = t} does during M .

29



8 Sets with the strong Kakeya property in R3

The results in this section are due to the author [9].

We say that a compact set K ⊂ R3 is cylinderlike if there exists n ∈ N such that for
almost all t the set {x = t} ∩ K can be covered by n vertical lines.

Theorem 8.1. If K is cylinderlike from two non-parallel directions d1, d2, then K has the
strong Kakeya property.

Lemma 8.2. If ϕ is a rotation around the x-axis, K is cylinderlike, then K can be moved to
ϕ(K) in an arbitrarily small volume.

Proof. We will look at K from the direction of the x-axis, and give a motion that keeps
the x-coordinate of every point constant. The set K is bounded, so its projection onto
the {x = 0} plane can be covered by a square. Apply Theorem 7.1 to this square. This
naturally induces a motion on K. For almost all planes perpendicular to the x-axis the
swept area will be less than nε, since if a plane contains n vertical segments, then the
motion of each segment corresponds to the motion of a vertical segment of the square
and these all sweep an area less than ε. Applying Fubini’s theorem we are done.

Remark 8.3. It is easy to check that the proof of the above lemma also works for general
cylinderlike sets defined as follows: For a compact set K ⊂ R3 let n(t) be the minimum
(possibly infinite) number of vertical lines required to cover K ∩ {x = t}. Say that K is
general cylinderlike if ∫R n(t)dt < ∞.

We say that a compact set K is cylinderlike from direction d if there is an orthogonal
coordinate system, in which the x-axis is parallel to d, and K is cylinderlike.

By Lemma 8.2: If K is cylinderlike from direction d, then K can be rotated around
d in an arbitrarily small volume.

Proof of Theorem 8.1. Translations can be done again with Pál joins: if K is cylinderlike
from some direction, then there exists a direction in which K can be translated in 0
volume, we can bring it very far from its original position sweeping 0 volume, there
we rotate it by a very small angle, translate it in the free direction and rotate it back by
the same angle.

Let ϕ(K) be the desired position, by using translations we can suppose that the
origin is a fixed point of ϕ. Since d1 and d2 are non-parallel, the vectors ϕ(d1), ϕ(d2)
uniquely determine ϕ. Let their distance on S2 be t. From this point forward every
distance is the arc distance on S2. By Lemma 8.2 we can rotate K around the vectors
d1, d2 in an arbitrarily small volume. Therefore, it is enough to solve the following
problem: Take S2 and stick two needles (n1 and n2) into it, at directions d1 and d2
respectively. The following step is allowed: take a needle and rotate the sphere around
it. The other needle moves accordingly. We need to prove that we can get the needles
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to any pair of fixed points p1 and p2, which are t distance apart, in a finite number of
steps.

First case: Suppose n1 and p1 are further than t apart. Then we rotate around n1 in a
way such that n2 moves onto a short arc between n1 and p1. Then we rotate around n1
by π. It is clear that after a finite number of steps n1 and p1 will be at most t distance
apart.

Second case: Suppose n1, p1 are at most t apart. We rotate around n1 in a way such that
n2 moves onto the circle centred around p1 of radius t. We can rotate around n2 in such
a way that n1 moves into p1. Now we can rotate n2 into p2 by rotating around n1.

Corollary 8.4. If for a compact set A ⊂ R2 there exists an n ∈ N and non-parallel directions d1
and d2, such that every line perpendicular to di intersects A in at most n points for i ∈ {1, 2},
then A × [0, 1] has the strong Kakeya property.

Proof. The set A×[0, 1] is cylinderlike from directions d1 and d2, therefore by Theorem 8.1
it has the strong Kakeya property.

Corollary 8.5. If A can be covered by a finite union of graphs of Lipschitz functions, then
A × [0, 1] possesses the strong Kakeya property.

Proof. The graph of a Lipschitz function intersects every steep enough line in one point,
therefore we can use Corollary 8.4.

Corollary 8.6. If K = A × [0, 1] is compact, and A is such that it can be covered by a finite
number of monotonic functions, then K possesses the strong Kakeya property.

Proof. Under such conditions A intersects every horizontal and vertical line in at most
n points, where n is the number of monotonic functions required to cover A. Again
Corollary 8.4 can be applied.

Corollary 8.7. The curved surface of a cylinder has the strong Kakeya property. Moreover, the
finite union of parallel curved cylinder surfaces possesses the strong Kakeya property.

Corollary 8.8. If K can be covered by a finite set of planes that have normal vectors in a
common plane, then K has the strong Kakeya property.
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