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3 Projective Fräıssé theory 19
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Example and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Finite Linear Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Pseudo-arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



1 Introduction

The primary objective of this thesis is to present an introduction to classical Fräıssé theory
and its recently developed dual, projective Fräıssé theory. Fräıssé’s classical theorem
describes a way of building a countable, universal and homogeneous limit structure called
the Fräıssé limit from a well-behaved class of small (finitely generated) structures called
a Fräıssé class. Fräıssé introduced this framework in the 1950s, and it has since become a
cornerstone of model theory as well as a key tool in other areas of mathematics, such as
descriptive set theory and algebra.

Notable examples of Fräıssé limits include:

• the random (or Rado) graph, arising as the limit of the class of finite graphs;

• the Hall universal group, obtained as the limit of the class of finite groups;

• the rational Urysohn space, whose metric completion is the Urysohn universal metric
space.

In the first part of this thesis, we focus on classical Fräıssé theory; we explore its various
(primarily model-theoretic) applications, such as ω-categoricity. We will see that in certain
cases ω-categoricity can be checked fairly easily for a given Fräıssé limit. However, we will
also see that not every Fräıssé limit is ω-categorical.

In the second part of this thesis, we develop the dual theory commonly known as
projective Fräıssé theory. Solecki and Irwin published the foundational paper on this topic
in 2006 [4], in which they describes a way of building a compact homogeneous inverse
limit structure called the projective Fräıssé limit from a well-behaved class of compact
structures called a projective Fräıssé class. As an application we show that a well-known
continuum the pseudo-arc can be realized as a suitable quotient of a projective Fräıssé
limit, then we prove several nontrivial topological properties of the pseudo-arc using the
framework we have developed. Projective Fräıssé theory is already very successful, by
owing to its great potential for dualizing the results of classical Fräıssé theory.

At this point we remark that throughout this thesis, whenever we refer to topological
spaces, we implicitly assume they are Hausdorff.

Notation

We assume that the reader is familiar with the basic definitions and results of set theory
and first-order logic such as first-order languages, structures, the definition of satisfaction,
etc.
Throughout this thesis, we work exclusively with countable languages. Most of
our notation is standard: let ω denote the least infinite ordinal (which we identify with
the set of natural numbers), and for each n ∈ ω we let

n = {0, 1, 2, . . . , n− 1}.

In general, first-order (and, in Section 3, topological) L-structures denoted by cal-
ligraphic letters (such as A), and their domains by the corresponding uppercase Latin
letters (such as A). This convention may be overridden by tradition or by the customary
names of particular structures. For example, the set of rational numbers with its usual
ordering is denoted by Q and fields (viewed as first-order structures) by the standard
blackboard-bold symbols F or K ect.

If f is a mapping, we denote its range by Ran(f) and its domain by Dom(f). In
Section 2, the notions of embedding, isomorphism, epimorphism, etc. are understood in
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the usual sense. In Section 3, where we will work with topological structures we will need
to modify them. We write

A ∼= B

to indicate that A and B are isomorphic first-order (or topological) L-structures, and

A ≤ B

to indicate that A is a substructure of B. In this case, we often use ≤ to denote the
inclusion map of A into B. We also note that if f is a function with domain A and B is a
subset of A, then its restriction f |B has domain B and satisfies

f(b) = f |B(b) for all b ∈ B.

Similarly, if R ⊆ An is an n-ary relation on A, then R|B denotes the restriction of R to
Bn, i.e.,

R|B = R ∩Bn.

We denote by Form(L) the set of all formulas in a given first-order language L. Fur-
thermore, we introduce the operations Mod and Th as follows: if Σ ⊆ Form(L) is a set of
L-formulas (i.e., an L-theory), then

Mod(Σ)

is the class of all L-structures in which every formula of Σ is satisfied and if A is an
L-structure, then

Th(A) = {φ ∈ Form(L) | A |= φ}

denotes the theory of A.
If X is a topological space, then let C[X] denote the space of all continuous function

from X into the unit interval endowed with the uniform metric dU . Where for any f, g ∈
C[X]

dU (f, g) = sup{|f(x0)− f(x1)| : x0, x1 ∈ X}

and |.| is the the absolute value on the reals. If (Y, d) is a metric space, a number δ > 0
and H is a subset of Y then for a δ neighborhood of H denoted by Hδ, where

Hδ =
⋃
h∈H
{y ∈ Y : d(h, y) < δ}.

Finally, Sn denotes the symmetric group of degree n. Moreover, if K is an arbitrary
set, then SymK denotes the full permutation group on K.
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2 Classical Fräıssé Theory

In this section, as already mentioned, we review the fundamental concepts of classical
Fräıssé theory. First, we describe a method for constructing countable homogeneous uni-
versal structures by form certain well-behaved classes of finitely generated structures. In
the second part, we present examples of Fräıssé classes and apply the developed framework
to these classes to prove properties of their limit structures.

2.1 Construction

First, we recall the basic definitions of the Hereditary Property (HP), the Joint Embedding
Property (JEP), and the Amalgamation Property (AP). As we shall see in the second part
of this section, these class properties correspond to natural concepts.

Definition 2.1 (Age) Let A be a countable L-structure. The age of A is the class ∆ of
all finitely generated L-structures that can be embedded into A. Somewhat, we also refer
to a class ∆ as the age of A if it consists, up to isomorphism, exactly the finitely generated
substructures of A. For a countable L-structure we detonate by

Age(A)

the age of A.

Definition 2.2 (HP) A class ∆ of L-structures has the Hereditary Property if for any
A ∈ ∆ and any finitely generated substructure B of A there exists a model C ∈ ∆ such
that B is isomorphic to C.

Definition 2.3 (JEP) A class ∆ of L-structures has the Joint Embedding Property if for
any A,B ∈ ∆ there exists a structure C ∈ ∆ such that both A and B can be embedded into
C.

A

C

B

Remark 2.4 It is easy to see that if ∆ is the age of A, then ∆ has the hereditary property
(HP) and the joint embedding property (JEP).

Remark 2.5 For any structures A and C, if f : A → C is an embedding, then there is
B ≥ A and an isomorphism g : B → C, such that f can be written as g ◦ i, where i : A → B
is the inclusion map. Thus, whenever we have an embedding f : A → C, we may assume
that A is a substructure of C.

A C

B

f

i g

We will now show that the converse of Remark 2.4 is also true.

Theorem 2.6 Let ∆ be a countable set of finitely generated L-structures that has both the
JEP and the HP. Then ∆ is the age of a countable structure A.

Proof. Without loss of generality, assume that ∆ contains at most one element from each
isomorphism class. Let {Ai : i ∈ ω} be an enumeration of the elements of ∆. We define
the set of L-structures {Bi : i ∈ ω} recursively as follows:
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• Let B0 = A0.

• Assume that we have already defined Bi. By the JEP, there exists an L-structure
B′i+1 ∈ ∆ such that Bi and Ai+1 can be embedded into B′i+1. By the previous
remark, there exists an L-structure Bi+1 that extends Bi and is isomorphic to B′i+1.

Now let
A =

⋃
i∈ω
Bi

be a countable structure (countable because its domain is a countable union of countable
structures). By construction, all models in ∆ can be embedded into A. If C is a finitely
generated substructure of A, then there exists i ∈ ω such that C can be embedded into
B′i. By the HP, there exists a model C′ ∈ ∆ such that C is isomorphic to C′. Hence, ∆ is
the age of A.

Definition 2.7 (AP) A class ∆ of L-structures has the Amalgamation Property if for
any structures A,B, C ∈ ∆ and embeddings f : A → B, g : A → C there exists a model
D ∈ ∆ and embeddings h : B → D, e : C → D such that e ◦ g = h ◦ f .

B

A D

C

hf

g e

Definition 2.8 (Fräıssé class) A countable nonempty class ∆ of finitely generated L-
structures is a Fräıssé class if it has the HP, the JEP and the AP.

The following notion is called ultra-homogenecity in many sources, such as our primary
reference [2]. In this theses, however, we will omit the prefix ”ultra”.

Definition 2.9 (Homogeneous L-structure) Let A be an L-structure. We say that A is
homogeneous if every isomorphism between finitely generated substructures of A can be
extended to an automorphism of A.

Definition 2.10 (Chain of structures) A sequence of L-structures (Bi)i∈ω is a chain (of
structures) if Bi ≤ Bi+1 for all i ∈ ω.

Definition 2.11 (Weakly homogeneous L-structure) An L-structure D is weakly homoge-
neous if for any finitely generated substructures A,B ≤ D with A ≤ B and any embedding
f : A → D, there exists an embedding g : B → D such that f ⊆ g.

A D

B

f

≤
g

Remark 2.12 Clearly, if D is homogeneous, then it is also weakly homogeneous.

Lemma 2.13 Let C and D be countable structures. Suppose that Age(C) ⊆ Age(D) and
D is weakly homogeneous. Then C can be embedded into D. In fact, any embedding of a
finitely generated substructure of C into D can be extended to an embedding of C into D.
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Proof. Since C is countable, we have

C =
⋃
i∈ω
Ai

where (Ai)i∈ω is a chain of finitely generated structures. By recursion, we define embed-
dings fn : An → D such that fn ⊆ fn+1 for all n ∈ ω. Since Age(C) ⊆ Age(D), there is an
embedding f0 : A0 → D, let B0 = f0(A0).

Assume that fn−1 is already defined. There exists an embedding gn : An → Bn because
Age(C) ⊆ Age(D). Let Bn = gn(An).

Hence D is weakly homogeneous, there exists an embedding hn : Bn → D such that

fn−1 ◦ (g−1n |gn(An−1)) ⊆ hn.

Let fn = hn ◦ gn. Then fn−1 ⊆ fn, hence f =
⋃
n∈ω fn is an embedding on : C into D.

For the ”in fact” part of the statement, note that we can choose the structure
A0 ∈ Age(C) and an embedding f0 : A0 → D arbitrary.

Lemma 2.14

(a) Let C and D be countable weakly homogeneous L-structures with the same age. Then
C and D are isomorphic. Moreover, any embedding from a finitely generated sub-
structure of C can be extended to an isomorphism from C to D.

(b) A countable L-structure is homogeneous if and only if it is weakly homogeneous.

Proof. (a) Let us write

C =
⋃
i∈ω
Ai and D =

⋃
i∈ω
Bi

where (Ai)i∈ω and (Bi)i∈ω are chains of finitely generated L-structures.
It is suffices to define a sequence (fn) of maps such that for every n ∈ ω

(a) fn−1 ⊆ fn,

(b) Dom(f2n+1) ⊇ An,

(c) Ran(f2n+1 ⊇ Bn,

(d) fn is an isomorphism between finitely generated substructures of C and D.

First fix any embedding f0 : A0 → D. Recursively, assume f0, ..., f2n−1 are defined.
Choose k ≥ n so that Dom(f2n+1) ⊇ Ak. By lemma 2.13, there exists an embedding
f2n : Ak → D that extends f2n−1. Similarly, choose l ≥ n that Ran(f2n) ⊇ Bl. Again,
by lemma 2.13 there is an embedding g : Bl → C that extends f−12n . We let f2n+1 = g−1,
witch concludes the proof of the first statement. Since A0 and f0 were chosen arbitrarily,
the moreover part also follows.

(b) We have already noted that homogeneous structures are weakly homogeneous. The
converse follows from the moreover part of (a).

Remark 2.15 If C and D are not countable L-structures, then (a) fails in the previous
theorem.
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Proof. Let A = ⟨ω1 × Q, <⟩ where < is the lexicographic order and let B be the mirror
image of A. Then A and B are homogeneous and have the same age, but they are not
isomorphic, because every initial segment of A is countable, while every initial segment of
B is uncountable.

The following theorem is the fundamental theorem of classical Fräıssé theory.

Theorem 2.16 (Fräıssé’s Theorem)
Let ∆ be Fräıssé class of L-structures. Then there exists a unique (up to isomorphism)
countable homogeneous L-structure D such the Age(D) = ∆.

We also say that D is the Fräıssé limit of ∆.
The statement consists of two parts: existence and uniqueness. Note that uniqueness
already follows from part (a) of Lemma 2.14, which asserts that countable weakly homo-
geneous structures with the same age are isomorphic. To prove existence, we will construct
a direct limit from our Fräıssé class using recursion. Furthermore, we must ensure that
the limit structure is both universal and homogeneous. At each step, a countable many
tasks will arise, which we will list using bookkeeping, and we will resolve these tasks by
applying the AP and teh JEP of the Fräıssé class.

Proof. We may assume that ∆ ruct a chain (Bi)i∈ω ⊆ ∆ such that the following holds.

(⋆) If A, C ∈ ∆ are structures such that A ≤ C and there is an embedding f : A → Bi
for some i ∈ ω, then there is j > i and an embedding g : C → Bj such that f ⊆ g.

A Bi

C Bj

f

≤ ≤

g

Assume that we have already defined chain {Bi : i ∈ ω} with the property (⋆). Let
D =

⋃
i∈ω Bi. Every finitely generated substructure of D lies in Bi for some i ∈ ω. Since

∆ has the HP it follows that Age(D) ⊆ ∆.
To show ∆ ⊆ Age let C ∈ ∆ be a structure. Then by the JEP, there exists a C′ ∈ ∆

such that B0 ≤ C′ and C is embeddable in C′. By property (⋆), the identity map of B0
extends to an embedding of C′ into Bj for some j > 0, so C and C′ are in the age of D.

B0 B0

C′ Bj

Id

≤ ≤

g

To construct the chain {Bi : i ∈ ω} with the property (⋆), let Γ be the class of all ⟨E ,F⟩
such E ,F ∈ ∆ and E ≤ F , and let Γ ⊆ Γ′ be a countable set that contain exactly one
representative of each isomorphism type of pairs. Let ι : ω2 → ω be a bijection such that
ι(i, j) ≥ i for every i, j ∈ ω, and let B0 ∈ ∆ be an arbitrary element. Assume that we have
already defined B0, ...,Bk. For each i ≤ k let {⟨fij , Eij ,Fij⟩ : j ∈ ω} be an enumeration of
all triples ⟨f, E ,F⟩, such that ⟨E ,F⟩ ∈ Γ and f : E → Bi is an embedding.

By the AP, for every k ∈ ω there exists Bk+1 ∈ ∆ such that Bk ≤ Bk+1 and if k = ι(i, j),
then fij extends to an embedding gij : Fij → Bk+1.

Fij

Eij Bk+1

Bk

gij,k+1≤

fij ≤
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The chain (Bn)n∈ω has property (⋆), and D =
⋃
n∈ω Bn is weakly homogeneous. Be-

cause if for any finitely generated substructures A, C ≤ D with A ≤ C and any embedding
f : A → D then there exist i ∈ ω such Ran(f) ⊆ Bi using property (⋆) there is j > i
and an embedding g : C → Bj such that f ⊆ g, while D =

⋃
n∈ω Bn then g is also an

embedding into D. Then by Lemma 2.14 (b), D is homogeneous.
By Lemma 2.14 (a), D is unique up to isomorphism.

Theorem 2.17 Let D be a countable homogeneous L-structure with the age ∆. Then ∆
is a Fräıssé class.

Proof. It is obvious that the Age(D) has the HP and the JEP, so we need to show that
∆ has the AP. Let A0,A1,A2 ∈ ∆ and suppose that

f1 : A0 → A1, f2 : A0 → A2

are embeddings. Since D is homogeneous, the isomorphism

f2 ◦ f−11 : f1(A0) −→ f2(A0)

extends to an automorphism α of D. Let A3 be the substructure of D generated by
A2 ∪ α(A1). Then the inclusion

i : A2 → A3

and the restriction
α′ = α

∣∣
A1

: A1 → A3

are embeddings satisfying
α′ ◦ f1 = i ◦ f2.

A1

A0 A3

A2

α′f1

f2 i

Therefore, ∆ has the AP, so the proof is complete.

2.2 Applications

Fräıssé theory has numerous applications. In this subsection, we will examine a few exam-
ples of Fräıssé classes and investigate their model-theoretic properties. It is worth noting
that there are many other applications in descriptive set theory and abstract analysis.
First, let us recall some model-theoretic definitions. One of the central concepts in model
theory is categoricity.

Definition 2.18 (κ-categoricity) Let κ be a cardinal, and Σ an L-theory. We say that Σ
is κ-categorical if it has, up to isomorphism exactly one model of carinality κ.

The motivation for the following definition is to control the size of the elements in the
Fräıssé class ∆. This will allow us to ensure that the limit of an appropriate Fräıssé class
is categorical.
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Definition 2.19 (Uniform local finiteness) We say that a structure A is uniformly locally
finite if there exists a function f : ω → ω such that for every n ∈ ω and substructure B ≤ A,
such B can be generated by at most n elements, then |B| ≤ f(n).
We say that a class ∆ of structures is uniformly locally finite if there exists a function
f : ω → ω such that for every A ∈ ∆ for every n ∈ ω and substructure B ≤ A, such B can
be generated by at most n elements, then |B| ≤ f(n).

Remark 2.20 Note that any class of relational structures is uniformly locally finite.

Another interesting property is quantifier elimination.

Definition 2.21 (Quantifier elimination) An L-theory Σ is said to have quantifier elim-
ination if for every L-formula ϕ , there exists a quantifier-free formula ψ such that

Σ |= (ϕ ⇐⇒ ψ).

The following theorem proves ω-categoricity and quantifier elimination for the theory of
the limit of any uniformly locally finite Fräıssé class.

Theorem 2.22 Suppose that L is a finite language and ∆ is a uniformly locally finite
Fräıssé class. Let D be the Fräıssé limit of ∆ and Σ = Th(D). Then:

1. Σ is ω-categorical,

2. Σ has quantifier elimination.

Proof. First, we will show that there is a ∀2 L-theory Γ whose models are homogeneous
structures with age ∆. There are two key facts here. One is that if A is a finite L-structure
with n generators a, then there exists a quantifier-free formula ψ = ψA,a such that for any
L-structure B and b ∈ Bn:

(*) B |= ψ(b) if and only if there is an isomorphism from A to ⟨b⟩B which takes a to b.

In fact ψ = ψA,a is the conjunction of all atomic formulas and negation of formulas that
are satisfied by a in A. The second is that by uniform local finiteness, for each n ∈ ω,
there are finitely many isomorphism types in ∆ generated by n elements.

Now, let

Γ0 = {∀x(ψA,a(x) =⇒ ∃yψB,ab(x, y)) : A ∈ ∆ generated by a, B ∈ ∆ generated by ab}

and

Γ1 =
⋃
n∈ω
{∀x0 . . . ∀xn(

∨
A,a

ψA,a(x)) : A ∈ ∆ generated by a and |a| = n+ 1},

where |.| denotes the length of a tuple. Then uniform local finiteness implies that for every
element of Γ1, the disjunction is finite (up to logical equivalence). Let us note that in the
formulas of Γ0, a = ∅ is also allowed. Let Γ = Γ0 ∪ Γ1. It is clear that D ∈ Mod(Γ).
Suppose that D′ is another model of Γ. Note that, since ∆ is a Fräıssé class, then in every
∆-structure the constants generate the same substructure C0. Hence, from D′ |= Γ1 it
follows that C0 ≤ D′. Now if a = ∅, then the sentences in Γ0 give the condition that every
one-generator structure in ∆ can be embedded into D′. The general sentences in Γ0 state
that:

(**) If A,B are finitely generated substructures of D′, and B is obtained from A by
adding one more generator, and f : A → D′ is an embedding, then there exists an
embedding g : B → D′ that extends f .
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By induction on the number of generators and using that ∆ has the HP, we get that
every element of ∆ can be embedded into D′. The sentences for Γ1 tell us that the age
of D′ is exactly ∆. If A,B are finitely generated substructures of D′ and h : A → B is
an isomorphism, then, by recursion (using the formulas of Γ0), it is easy to construct an
automorphism of D′ that extends h, so D′ is homogeneous. Therefore, by Theorem 2.16,
D′ ∼= D. Thus, we have shown that 1. holds.

Now suppose that ϕ(x) is an L-formula and x ̸= ∅ and D ∈ Mod(Γ). Let

X = {a ∈ D|x| : D |= ϕ(a)}.

If a ∈ X and b is tuple in D such that there exists an isomorphism g : ⟨a⟩D → ⟨b⟩D, then
g extends to an automorphism of D, so b ∈ X as well. Since the set

{⟨a⟩D : 0 ∈ X}

is close under isomorphism, among the substructures of D, it follows that ϕ(x) is equivalent
modulo Σ to the disjunction of all formulas ψA,a with (A, a) rancing over all isomorphism
types of pairs such that a ∈ X, A ≥ D and ⟨a⟩D = A. Which is a finite quantifier-free
formula. Finally, if ϕ is a sentence of L, then since Σ is complete, ϕ is equivalent modulo
Σ to either ⊥ or ¬ ⊥ (where ⊥ is the identically false formula). Therefore, we have shown
that 2. holds, thus completing the proof.

In the following, we will go through classes of structures and show that they are Fräıssé
classes. Two of them are uniformly locally finite, allowing us to apply Theorem 2.22.
Therefore, the theories of their limits are ω-categorical and have quantifier elimination.
Furthermore, we will also see an example where the theory of a Fräıssé limit is not ω-
categorical.

2.2.1 Finite graphs

In this subsection, consider L as the language of graphs which contains only one binary
relation symbol R, except for equality.

Definition 2.23 Let G = Mod(Σ) be the class of simple graphs, where Σ consists of the
axioms of simple graphs:

• ∀v(¬R(v, v)) (irreflexivity),

• ∀v, u(R(v, u) =⇒ R(u, v)) (symmetry).

Claim 2.23.1 The class K ⊆ G of all finite graphs is a Fräıssé class.

Proof. Straightforward.

Definition 2.24 The random graph R = ⟨V,E⟩ ∈ G is the unique, up to isomorphism,
countable L-structure such that

Mod(Σ ∪ {ϕn,m : n,m ∈ ω}) = {R}

where

ϕn,m ≡ ∀x0, . . . , xn−1, y0, . . . , ym−1∃z

∧
i ̸=j

(xi ̸= yj) =⇒
∧
i∈n

R(xi, z) ∧
∧
j∈m
¬R(yj , z)

 .
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Remark 2.25 It is well known that Σ ∪ {ϕn,m : n,m ∈ ω} is a consistent ω-categorical
theory.

Theorem 2.26 R is the Fräıssé limit of K.

Proof. First, Age(R) ⊆ K is clear. The fact that R contains every finite graph G0,
follows by induction of the cardinality of G0 using that ϕn,m holds in R. To prove that
R is homogeneous, we will using back and forth argument. Let f : A → B be a partial
isomorphism between two finite subgraphs of R. Enumerate the vertices of the random
graph R = {ri}i∈ω. We will build an increasing chain of partial isomorphism

f0 = f ⊆ f1 ⊆ f2 ⊆ ...

whose union will be an automorphism ofR, and for every n ∈ ω we get that rn ∈ Dom(f2n)
and rn ∈ Ran(f2n+1). Assume that we already defined f2n−1. Let

U = {x ∈ Dom(f2n−1 : R(x, rn)}

V = {x ∈ Dom(f2n−1 : ¬R(x, rn)}.

Using that ϕn,m holds in R, we can find z ∈ R, such z is connects with every element of
f2−n(U) and avoids the elements of f2−n(V ). Let

f2n|Dom(f2n−1) = f2n and f2n(rn) = z.

At each odd sage (2n+1) we symmetrically extend the partial map to cover the n-th vertex
in the range. Therefore

g =
⋃
n∈ω

fn

is an automorphism of R.

2.2.2 Finite linear orders

Next we take a look at the class of finite linear orders and we prove that it is a Fräıssé
class. We also show that its Fräıssé limit is ⟨Q, <⟩.

Definition 2.27 Let Lord be a language that consists of only one relation symbol <, except
for equality. Let Γ be the theory of linear orders, which consists of the following formulas:

• ∀x¬(x < x) (irreflexivity),

• ∀x∀y∀z((x < y) ∧ (y < z) =⇒ (x < z)) (transitivity),

• ∀x∀y(¬(x = y) =⇒ (x < y) ∨ (y < x)) (linearity).

If A is an arbitrary set, then A = ⟨A,<⟩ is a linear order if A |= Γ.

Theorem 2.28 The class ∆ of all finite linear orders is a Fräıssé class.

Proof. Clearly, ∆ is countable, has the HP and the JEP.
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AP: Let A,B, C ∈ ∆, where A = ⟨A,<A⟩, B = ⟨B,<B⟩, C = ⟨C,<C⟩, and f0 : A → B,
f1 : A → C are embeddings. Using isomorphic copies, we can assume that A = B∩C
and

<A=<B |A =<C |A.

We will define a structure D ∈ ∆ with domain B ∪ C, and the relation <D will
extend <B and <C . So let <D⊆ 2(B ∪ C) such that <B, <C⊆<D and satisfies the
following:

if a, a′ ∈ A, then a <D a′ if and only if a <A a
′;

if b, b′ ∈ B, then b <D b′ if and only if b <B b
′;

if c, c′ ∈ C, then c <D c′ if and only if c <C c
′;

Suppose that |A| = n. Then the elements of A partition both B and C into n + 1
sections

B0, ..., Bn and C0, ..., Cn.

So that a section with a larger index contains larger elements. If b ∈ B \A and c ∈
C \A and there is i ∈ n+ 1 such that b ∈ Bi and c ∈ Ci then let

b <D c;

otherwise there are i, j ∈ n + 1, with j ̸= j′ (WLOG j < j′) such that b ∈ Bj and
c ∈ Cj′ then let

b <D c.

Then it is easy to check that D |= Γ, so D ∈ ∆. Thus, we have shown that ∆ has
AP.

Definition 2.29 We call an L-structure A ∈ Mod(Γ) a dense linear order without end-
points if it satisfies the L-theory Γ′ that consists of the formulas of Γ and:

• ∀x∀y∃z(x < y =⇒ x < z < y) (dense in itself),

• ∀x∃y∃z(y < x < z) (without endpoints).

it is a nice exercise to prove that ⟨Q, <⟩ is unique model of Γ′. Now, Theorem 2.22
confirms this fact.

Theorem 2.30 ⟨Q, <⟩ is the Fräıssé limit of the class ∆ (finite linear orders).

Proof. We need to show that Q is homogeneous and the age of Q is ∆.
Age(Q) = ∆: any element of Age(Q) is a finite substructure of Q, so it is a finite linear

order as well. On the other hand, it is clear that any element of ∆ can be embedded into
Q, since the order of Q is dense.

To show that Q is homogeneous, we will using back and forth argument (as we did
in the case of the random graph). Let f : A → B a partial isomorphism between two
finite substructure of Q. Enumerate the elements rationals, Q = {qi}i∈ω. We will build
an increasing chain of partial isomorphism

f0 = f ⊆ f1 ⊆ f2 ⊆ ...

14



whose union will be an automorphism of Q, and for every n ∈ ω we get that qn ∈ Dom(f2n)
and qn ∈ Ran(f2n+1). Assume that we already defined f2n−1. Let

U = {x ∈ Dom(f2n−1 : x < qn}

V = {x ∈ Dom(f2n−1 : x > qn}
(Wlog qn /∈ Dom(f2n−1)). Using that Q is dense in itself, we can find y ∈ Q, such y is
strictly less than the elements f2−n(U) and strictly greater then the elements of f2−n(V ).
Let

f2n|Dom(f2n−1) = f2n and f2n(qn) = y.

At each odd sage (2n+1) we symmetrically extend the partial map to cover the n-th vertex
in the range. Therefore

g =
⋃
n∈ω

fn

is an automorphism of Q.

2.2.3 Finite groups

Let us now consider other languages the simple relational languages. Let L be the language
of groups, so L contains exactly an binary function symbol ·, an unary function symbol
−1, a constant symbol 1, and consists the equality relation symbol.

Definition 2.31 The theory Π of groups consists of the following formulas:

• ∀x∀y∀z(x · (y · z) = (x · y) · z) (associativity),

• ∀x((x · 1) = (1 · x) = x) (neutral element),

• ∀x((x · x−1) = x−1 · x = 1) (inverse).

A structure G = ⟨G, ·,−1, 1⟩ is a group if G |= Π.

Let ∆ be the class of finite groups. It is obvious, that ∆ has the HP. It is easy to see
that ∆ has the JEP, because the direct product of two finite group is also finite group.

Definition 2.32 Let G be a finite group and H ≤ G a subgroup. For any element g ∈ G,
the st

gH = {g · h : h ∈ H}
is called a left coset of H in G.

Definition 2.33 Let us G be a finite group and H ≤ G a subgroup, we say that S ⊆ H
is the left transversal of H is |S ∩ gH| = 1 for every g ∈ G. For any element g ∈ G and
its unique product decomposition g = s · h with s ∈ S and h ∈ H, we define s = gσ and
h = g−σ+1.

Theorem 2.34 The class ∆ of finite groups has the AP.

Proof. Let A,B, C ∈ ∆ be such that A can be embedded into B and C. Without loss of
generality, we can assume that A = B ∩ C. We have to find a finite group K, such that
there are embeddings ρ : B → K and ρ′ : C → K such that ρ(a) = ρ′(a) for all a ∈ A.

B

A K

C

ρ≤

≤ ρ′
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Choose a left transversal S, T of A for B and C. Reintroduce the decompositions:

for b ∈ B, b = s · h, s = bσ ∈ S, h = b−σ+1 ∈ A

and
for c ∈ C, c = t · h, t = cτ ∈ T, h = c−τ+1 ∈ A.

Let K = S × T ×A. For every b ∈ B we define the permutation ρb as follows:

ρb : (s, t, a) 7→ (s′, t′, a′),

where t = t′ and s′ · a′ = s · a · b.
Since the decomposition of elements of B is unique, this is well defined. We can also

write it as
(s, t, a)ρ(b) = ((s · a · b)σ, t, (s · a · b)−σ+1).

Analogously, for any c ∈ C we can define ρ′(c) : (s, t, a) 7→ (s, t′, a′), so that

(s, t, a)ρ
′(c) = (s, (t · a · c)τ , (t · a · c)−τ+1).

If a0 ∈ A, then ρ(a0) = ρ′(a0) because a · a0 ∈ A and the decompositions σ and τ fix
the representatives:

(s · a · a0)σ = s and (t · a · a0)τ = t,

so
(s, t, a)ρ(a0) = (s, t, a · a0) = (s, t, a)ρ

′(a0).

Now we also can view ρ as a map from ρ : B → SymK . We claim that ρ ◦ −1 is an
embedding where

ρ ◦ −1 : b 7→ ρ(b−1).

ρ is injective because it has a trivial kernel: If ρ(b) ∈ IdK , then for all s ∈ S and a ∈ A:

(s · a · b)σ = s and (s · a · b)−σ+1 = a,

so s · a · b = s · a, which implies that b = 1.
ρ is an anti-homomorphism (ρ(x·y) = ρ(y)◦ρ(x)) because if b0, b1 ∈ B and (s, t, a) ∈ K,

then
(s, t, a)ρ(b1)◦ρ(b1) = ((s · a · b0)σ, t, (s · a · b0)−σ+1)ρ(b1) =

= (((s · a · b0)σ · (s · a · b0)−σ+1 · b1)σ, t, ((s · a · b0)σ · (s · a · b0)−σ+1 · b1)−σ+1) =

= ((s · a · b0 · b1)σ, t, (s · a · b0 · b1)−σ+1) = (s, t, a)ρ(b0·b1).

Therefore ρ ◦ −1 is an injective homomorphism. The same proof works for ρ′ ◦ −1 : C →
SymK . Therefore, we have shown that B and C can be embedded into SymK ∈ ∆, such
that ρ(a−1) = ρ′(a−1) for all a ∈ A, so the proof is complete.

Definition 2.35 A group G is locally finite if every finitely generated subgroup of G is
finite.

Definition 2.36 Hall’s universal group is the unique, up to isomorphism, countable lo-
cally finite group U that satisfies the following conditons:

• every finite group can be embedded into U ;

• If G0,G1 ∈ ∆ and fi : Gi → U for i ∈ 2 are embeddings, then they are conjugate by
some inner automorphism of U .
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Hall’s universal group was defined by Hall in 1959, who prove its existence in paper
[13]. Note, by Theorem 2.16, that U is the Fräıssé limit of ∆. Since U is homogeneous, by
definition. The class of finite groups is not uniformly locally finite, hence Hall’s universal
group does not satisfy the conditions of Theorem 2.22 . Next, we will see that the theory
of this group is not ω-categorical, thus providing an example of a Fräıssé limit that is not
ω-categorical.

Definition 2.37 Let G be a group. The exponent of G is the least common multiple of
the orders of all the elements of G.

The proof of the following theorem requires further model-theoretic tools that are far-
reaching and not closely related to our topic, therefore we will state this theorem without
proof. We refer the interested reader to [7].

Theorem 2.38 If the theory Th(G) of a group G is ω-categorical, then G has finite expo-
nent.

It is clear that Hall’s universal group does not have finite exponent, since every finite
group can be embedded in it, and thus there exist elements of arbitrarily large finite order.
Consequently, from the previous theorem, it follows that the theory of Hall’s universal
group is not ω-categorical.

2.2.4 Further examples

There are numerous other examples of Fräıssé classes. Here we will list a few of them and
their Fräıssé limits, without claiming completeness.

1. The Fräıssé limit of the class of finiteKn-free graphs ∆¬(Kn) is theHn Henson graph.
Since class ∆¬(Kn) is a uniformly locally finite, we have that Th(Hn) is ω-categorical
and has quantifier elimination. As we can also see in [7].

Algebraic structures:

Note that we need to be careful about the choice of signature. For example in the
case of groups, if L = {1, ·}, then the substructures of a group will be submonoids, closed
under · but not necessary containing inverses. To ensure that substructures we also need
to put symbol for −1. A similar situation holds for other algebraic structures as well, such
as fields.

2. Let L = {0, 1,+,−, ·,−1}. Then the Fräıssé limit of the Fräıssé class of finite fields
with characteristic-p ∆p is Fp, where Fp is the algebraic closure of Fp. Since the
class ∆p is uniformly locally finite, we have that Th(Fp) is ω-categorical and has
quantifier elimination. See [7] and [11].

3. The Fräıssé limit of the class of finite abelian p-groups is Z[p∞](ω) (the direct sum
of countably many copies of the Prüfer p-group), where

Z[p∞] = {z ∈ C : zp
n
= 1 for some n ∈ Z+}.

4. The Fräıssé limit of the class of finite abelian groups is
⊕

p is prime Z[p∞](ω).
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Metric structures:
It is surprising that the classical Fräıssé theory has applications to metric spaces, as metric
spaces are not typically viewed as first-order structures. However, the field of connecting
classical Fräıssé theory with metric structures is indeed very active. We will now mention
a few metric Fräıssé limits, many of whose properties we have understood through the
lens of Fräıssé theory. However, we will not delve into these applications in this thesis; for
those interested, we recommend the paper [12].

5. A metric space in which all distances are rational is called a rational-metric space.
The Fräıssé limit of the class of finite rational metric spaces is called the rational
Urysohn space. As we we can also see in [11]. In fact, the completion of the rational
Urysohn space is the Urysohn universal space. Where the Urysohn universal space
(U , d) is a well know complete separable metric space, such it contains an isometric
copy of any finite metric space and any finite partial isometry can be extended to
an isometry on the whole space.

6. The Fräıssé limit of the class of finite dimensional Hilbert spaces is the space l2. See
[12].

7. The Gurarij space. We recall that a Gurarij space is a separable Banach space G
having the property that for any ϵ > 0, finite dimensional Banach spaces E ⊆ F , and
isometric embedding ψ : E → G, there is a linear embedding ϕ : F → G extending ψ
such that in addition, for all x ∈ F ,

(1− ϵ)∥x∥ < ∥ϕ(x)∥ < (1 + ϵ)∥x∥.

Note that the Gurarij space is unique up to isometric isomorphism. The Fräıssé
limit of the class of finite dimensional Banach spaces is the Gurarij space G. As we
can see in paper [12].
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3 Projective Fräıssé theory

Projective Fräıssé theory was initiated by Solecki [4] and Irwin in 2006 as the dual coun-
terpart to classical Fräıssé theory. This framework provides a method for constructing
a compact, homogeneous structure , known as the projective Fräıssé limit, as an inverse
limit, from a suitably chosen class of compact structures called a projective Fräıssé class.
Moreover, the authors of [4] demonstrated that the so-called pseudo-arc, a well-studied ob-
ject from continuum theory, arises as a quotient of the projective Fräıssé limit. Using this
construction, they proved that every chainable continuum can be realized as the continuous
image of the pseudo-arc (see Theorem 3.28). They also obtained a new characterization
of the pseudo-arc, which, for instance, implies that the group of homeomorphisms of the
pseudo-arc is dense in the space of all onto continuous self-maps.

3.1 Preliminaries

In section 3, we will develop the dual theory following [4]. It is a natural idea that the duals
of discrete first-order structures should be certain compact spaces, as seen, for instance,
in Stone duality or Pontryagin duality.

Definition 3.1 (Topological L-structure) Let L be a first order language. D is a topolog-
ical L-structure if

• it is an L-structure;

• D is a 0-dimensional, second countable compact Hausdorff space;

• the functions on D are continuous;

• for every k ∈ ω, the k-ary relations on D are closed subsets of Dk.

Warning: The following definition of epimorphism requires more then what the name
suggests. However it turns out to be a natural concept on our context . For instance, in
Section 3.3, where we examine the class of finite linear graphs as topological L-structures,
a morphism will be an epimorphism in the usual sense if and only if it is an epimorphism
in the new sense as well.

Definition 3.2 Let E, F be topological L-structures. Then ϕ : E → F is an epimorphism
if it is a surjective continuous homomorphism, and for every relation R in L, if y ∈ RF ,
then there exists x ∈ RE such that ϕ(x) = y.

Definition 3.3 For topological L-structures E and F , we say that f : E → F is an
isomorphism if it is an injective epimorphism. The terminology is justified by the fact that
such a map is a model-theoretic isomorphism and a homeomorphism at the a same time.

As mentioned earlier, in the dual theory, instead of constructing the limit structure as a
direct limit, we will build it using an appropriate inverse limit construction. Let us now
turn to the technical preparations for this.

Definition 3.4 (Inverse limit) Let (Dn)n∈ω be a sequence of topological L-structures and
let

πn : Dn+1 → Dn
be epimorphisms for each n. The inverse limit of (Dn, πn)n∈ω, denoted by

D = lim←−Dn,

is the topological L-structure defined as follows:
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• The domain is

D = {x ∈
∏
n∈ω

Dn : πn(xn+1) = xn for all n ∈ ω},

equipped with the subspace topology inherited from
∏
n∈ωDn.

• For each m-ary relation symbol R ∈ L, a tuple x̄ = (x0, . . . , xm−1) ∈ Dm lies in RD

if and only if
(x0n, . . . , x

m−1
n ) ∈ RDn for every n ∈ ω,

where xi = (xin)n∈ω.

• For each m-ary function symbol f ∈ L, the interpretation

fD : Dm → D

is given by
fD(x0, . . . , xm−1) = ( fDn(x0n, . . . , x

m−1
n ) )n∈ω.

For each n, let
π∞n : D → Dn, π∞n (x) = xn,

and for n < m define

πmn = πn ◦ πn+1 ◦ · · · ◦ πm−1 : Dm → Dn.

Then for every relation R and tuple (x0, . . . , xm−1) ∈ Dm,

(x0, . . . , xm−1) ∈ RD ⇐⇒ (π∞n (x0), . . . , π∞n (xm−1)) ∈ RDn for all n,

and for every function f ,

fD(x0, . . . , xm−1) = (fDn(π∞n (x0), . . . , π∞n (xm−1)))n∈ω.

Remark 3.5 It is easy to sheck the following:

(i) the sets of the form Bn,U = {x ∈ D : π∞n (x) ∈ U} with n ∈ ω and U a basic clopen
in Dn, is a basis for D;

(ii) the inverse limit D is a topological L-structure;

(iii) the maps π∞n and πmn is an epimorphism;

(iv) D ∼= lim←−Dnk
for every subsequence (nk)k∈ω, where πnk

= π
nk+1
nk .

Naturally, Definition 3.4 can be generalized to the limit of an inverse system. We now
attempt to dualize the definition of a Fräıssé class: from the JEP and the AP, we will
obtain the projective JEP and projective AP (see (F1), (F2)), by replacing embeddings
with epimorphisms and thereby reversing the direction of the morphisms (i.e., reversing
the arrows).

Definition 3.6 (Projective Fräıssé class) A class ∆ of topological L-structures is a pro-
jective Fräıssé class if the following hold.

(F1) For any D, E ∈ ∆, there exists F ∈ ∆ and epimorphisms ϕ0 : F → D and ϕ1 : F →
E.

D

F

E

ϕ0

ϕ1
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(F2) For any C,D, E ∈ ∆ and epimorphisms ϕ0 : D → C and ϕ1 : E → C, there exists
F ∈ ∆ and epimorphisms ψ0 : F → D and ψ1 : F → E such that ϕ0 ◦ ψ0 = ϕ1 ◦ ψ1.

D

C F

E

ϕ0 ψ0

ψ1ϕ1

As we have seen, the definition of a projective Fräıssé class does not explicitly require
the HP or its dual. However, in the definition of a projective Fräıssé limit, in addition
to universality (L1) and projective homogeneity (L3), we also require an additional prop-
erty(L2).

Definition 3.7 (Projective Fräıssé limit) Let ∆ be a class of topological L-structures.
Then a topological L-structure D is a projective Fräıssé limit of ∆ if:

(L1) For any B ∈ ∆, then there exists an epimorphism ϕ : D → B.

(L2) For any a finite discrete topological space A and continuous map f : D → A, there
exists a structure B ∈ ∆, an epimorphism ϕ′ : D → B, and a function f ′ : B → A
such that f = f ′ ◦ ϕ′.

D

A B

f ϕ′

f ′

(L3) For any epimorphisms B ∈ ∆ and any ϕ0 : D → B, ϕ1 : D → B, there exists an
isomorphism ψ : D → D such that ϕ0 = ϕ1 ◦ ψ.

D

B D

ϕ0 ψ

ϕ1

Let us prove three lemmas.

Lemma 3.8 Let A,B, C be topological L-structures, let ϕ : C → B be an epimorphism,
and let f : B → A and g : C → A be maps such that g = f ◦ ϕ. Then g is an epimorphism
if and only if f is an epimorphism.

B

A

C

f

ϕ

g

Proof. Most of the proof involves checking the definitions.

The only nontrivial implication is that if g is continuous, then f is also continuous. Assume
the contrary, that g is continuous but there exists a sequence zn → z in B such that
lim f(zn) ̸= f(z). Pick a sequence wn ∈ ϕ−1(zn). By the compactness, we may assume
that wn → w for some w ∈ C; since ϕ is continuous, we have ϕ(w) = z, and we obtain:

f(zn) = g(wn)→ g(w) = f(z),

which is a contradiction.
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Definition 3.9 (Epimorphism refines an open cover) Let A be a topological space, and V
is an open cover on it, another open cover V ′ is refines V, if for every V ′ ∈ V ′ there exist
V ∈ V such V ′ ⊆ V . Let A,B be topological L-structures, an epimorphism ϕ : A → B
refines an open cover U of A if the open cover {ϕ−1(b) : b ∈ B} refines U .

Lemma 3.10 For a toplological L-structure D, property (L2) is equivalent to the follow-
ing.

(L2’) For all open covers U of D, there exists B ∈ ∆ and an epimorphism ϕ : D → B such
that ϕ refines U .

Proof. (L2) =⇒ (L2′) Let U be an open cover of D, we may assume that U is a finite
clopen partition of D, sine in a compact zero dimensional space any open cover is refined
by a finite clopen partition.

We can view U as a finite discrete space. For any d ∈ D, let Ud ∈ U be the unique
element such that d ∈ Ud. Define f : D → U by f(d) = Ud, which is continuous. By (L2),
there exists a structure B ∈ ∆, an epimorphism ϕ′ : D → B, and a function f ′ : B → U
such that f = f ′ ◦ ϕ′. Then ϕ′ refines U , since for d ∈ B, we have

ϕ′−1(d) ⊆ (f ′ ◦ ϕ′)−1(f ′(d)) = f−1(f ′(d)) ∈ U .

D U

B

f

ϕ′ f ′

(L2′) =⇒ (L2) Let A be a finite discrete space, and let f : D → A be continuous. Then
U = {f−1(a) | a ∈ A} is a clopen partition of D. By (L2’), there exists B ∈ ∆ and an epi-
morphism ϕ : D → B that refines U . So for every b ∈ B, there exists a unique ab ∈ A such
that ϕ−1(b) ⊆ f−1(ab). Define f ′ : B → A by f ′(b) = ab. Then, for any x ∈ D, there exists
b ∈ B such that x ∈ ϕ−1(b) ⊆ f−1(ab). Therefore, we have f(x) = ab = f ′(b) = f ′(ϕ(x)).

Lemma 3.11 Let ∆ be a projective Fräıssé class of finite topological L-structures, and
let D be the projective Fräıssé limit of ∆. Then, for any A,B ∈ ∆ and epimorphisms
ϕ : A → B, ψ : D → B, there exists an epimorphism χ : D → A such ϕ ◦ χ = ψ.

A

D

B

ϕ

χ

ψ

Proof. By (L1), there exists an epimorphism χ′ : D → A, and by (L3), there exists an
isomorphism α : D → D such that ϕ ◦ χ′ ◦ α = ψ. Let χ = χ′ ◦ α.

D A

D B

χ′

ϕα

ψ
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3.2 Construction

In this subsection, we will prove the following theorem witch is the main theorem of
projective Fräıssé theory.

Theorem 3.12 Let ∆ be a countable projective Fräıssé class of finite topological L-structures.
Then there exists a projective Fräıssé limit of ∆, which is unique up to isomorphism of
topological L-structures.

The proof will consist of two parts: existence and uniqueness. In the first part, we
will recursively construct an inverse limit from our projective Fräıssé class. We will need
to ensure that the limit structure satisfies conditions (L1), (L2), and (L3). At each step,
countably many tasks will arise, which, as in the classical Fräıssé construction (Theo-
rem 2.16), we will list and solve with bookkeeping. In the second part of the proof, we will
show that the resulting structure is unique up to isomorphism. To do this, we will take
two structures that satisfy conditions (L1), (L2), and (L3), and using these conditions, we
will recursively construct a third structure that is isomorphic to both. Now, let us proceed
with the proof.

Proof. Existence:
We build an inverse sequence (Dn, πn):

D0 D1 D2 ...,
π0 π1 π2

where Dn ∈ ∆ and πn is an epimorphism for all n ∈ ω such that the following hold.

(A) For any B ∈ ∆, there exists n ∈ ω and an epimorphism ϕ : Dn → B.

(B) For any E ,F ∈ ∆ and epimorphisms ϕ0 : F → E , ϕ1 : Dn → E , there exists m > n
and an epimorphism ψ : Dm → F such that ϕ0 ◦ ψ = ϕ1 ◦ πmn .

Dm Dn

F E

πm
n

ψ ϕ1

ϕ0

We will construct (Dn, πn) recursively. First, enumerate the elements of ∆ as (Bn)n.
We will use the odd steps to, ensure that condition (A) is satisfied. Assume that we
already defined D2k. By (F1) we can find a structure D2k+1 ∈ ∆ a ϕ : D2k+1 → Bk and
epimorphism π2k : D2k+1 → D2k . To achieve (B) we will use bookkeeping to list and solve
the tasks: for every k ∈ ω at stage k, countable many task form

? Dk

F E

?

? ϕ1

ϕ0

arise, witch we enumerate as (Tk,j)j∈ω.
Let ι : ω2 → 2N be a bijection (where 2N is the set of nonnegative even numbers)

such that for every i, j ∈ ω we have ι(i, j) ≥ i. In step 2n = ι(i, j), we need to solve
task Ti,j : for Ei,j ,Fi,j ∈ ∆, and epimorphisms ϕ0i,j : Fi,j → Ei,j , ϕ1ij : Di → Ei,j we need

to find a structure D2n and epimorphisms ψ : D2n → Fi,j and π2ni : D2n → Di such that
ϕ0i,j ◦ψ = ϕ1i,j ◦π2ni . We must also be careful because the epimorphism π2n−1i : D2n−1 → Di
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is already given, hence we looking for an epimorphism π2n−1 : D2n → D2n−1 for witch
ϕ1i,j ◦ π

2n−1
i ◦ π2n−1 = ϕ0i,j ◦ ψ holds. Applying (F2),

D2n D2n−1 Di

Fi,j Ei,j

π2n−1

ψ

π2n−1
i

ϕ1i,j

ϕ0i,j

we obtain a topological L-structure D2n and epimorphisms π2n−1 : D2n → D2n−1 and
ψ : D2n → Fi,j we solve task Ti,j .

We claim that the inverse limit D = lim←(Dn, πn) is a projective Fräıssé limit of ∆.
By Remark 3.5 (ii), it is a topological L-structure. We need to verify that it satisfies (L1),
(L2), and (L3).

(L1) By (A), for every B ∈ ∆, there exists n ∈ ω and an epimorphism ϕ : Dn → B.
since π∞n is an epimorphism, ϕ ◦ π∞n witnesses property (L1).

(L2) By Lemma 3.10, fix a finite discrete topological space A. Let f : D → A be a
continuous map. Then

U = {f−1(a) : a ∈ A}

is a finite clopen partition of D. It is easy to see that for large enough n ∈ ω the partition
V = {(π∞n )−1(d) : d ∈ Dn} is a refinement of U . Fix such n ∈ ω. Now for any d ∈ Dn, there
exists a unique ad ∈ A such that (π∞n )−1(d) ⊆ f−1(ad). Then f ′ : Dn → A, f ′(d) = ad is
a good choice, that is, f = f ′ ◦ π∞n hold.

D A

Dn

f

π∞
n f ′

(L3) To show that D satisfies the condition, let us first consider the following claim.

Claim. If k < n and χ0 : Dn → Dk is an epimorphism, then there exists an isomor-
phism χ : D → D such that χ0 ◦ π∞n = π∞k ◦ χ.

D D

Dn Dk

χ

π∞
n π∞

k

χ0

Proof. We will construct two sequences (ni)i∈ω, (ki)i∈ω ∈ Nω by recursion so that ki <
ni < ki+1 for all i ∈ ω. Let k0 = k and n0 = n. We will define epimorhisms χi : Dni → Dki
and αi : Dki+1

→ Dni so that χi ◦ αi = π
ki+1

ki
and αi ◦ χi = π

ni+1
ni .

(∗) Dki+2
Dni+1 Dki+1

Dni Dki
αi+1

π
ki+2
ki+1

χi+1

π
ni+1
ni

αi

π
ki+1
ki

χi

Let χ0 = χ, and assume k0, n0, .., ki, ni and χ0, α0, . . . , αi−1, χi are defined. By prop-

erty (B), we can find ki+1 and an epimorphism αi : Dki+1
→ Dni such that χi ◦αi = π

ki+1

ki
and similarly for Dni+1 and χi+1.
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Dki+1
Dki

Dni Dki

π
ki+1
ki

αi Id

χi

Subclaim. The sequences (χn)n∈ω and (αn)n∈ω induce epimorphisms χ : D → D and
α : D → D such that α ◦ χ = Id .

Proof. Let
π(ni) : lim←

(Dn, πn)→ lim
←

(Dni , π
ni+1
ni ) = D1

be the projection, which is an isomorphism by Remark 3.5 (iv), and similarly for π(ki) and
π(ki+1). Also,

σ : D0 = lim
←

(Dki , π
ki+1

ki
)→ lim

←
(Dki+1

, π
ki+2

ki+1
) = D2, σ(x)(i) = x(i+ 1)

is clearly an isomorphism. Define α′ : D2 → D1 by α′(x)(i) = αi(x(i)) and χ
′ : D1 → D0

by χ′(x)(i) = χi(x(i)).
We need to check that α′ and χ′ indeed map to D1 and D0 respectively and they are

epimorphisms. (We only show these for α′, the proof for χ′ is similar.)

Relations. Let R be an m-ary relation symbol in L. Then (x0, . . . , xm−1) ∈ RD2 if and
only if

for all i ∈ ω (x0(i), . . . , xm−1(i)) ∈ RDki+1 ,

which implies that

for all i ∈ ω (αi(x0(i)), . . . , αi(xm−1(i))) ∈ RDni .

By definition, this is equivalent to

∀i ∈ ω (α(x0(i))i∈ω, . . . , α(xm−1(i))i∈ω) ∈ RD1

By the definition of α′, this is the same as

(α′(x0), ..., α
′(xn−1)) ∈ RD1 .

Let (y0, . . . , ym−1) ∈ RD1 . Then for all i ∈ ω, we have

(y0(i), . . . , ym−1(i)) ∈ RDni .

Now observe that for every i ∈ ω and j ∈ m we have

χi+1(yj(i+ 1)) ∈ α−1i (yj(i))

by the commutativity of (∗). Since χi+1 is a homomorphism, we also have

((χi+1(y0(i+ 1)))i∈ω, ..., (χi+1(ym−1(i+ 1)))i∈ω) ∈ RD2

is a good preimage for (y0, ..., ym−1).

Functions. Similar to the case of relations (using that all αi are epimorphisms).

α′ is continuous. It is continuous coordinatewise since the αi are continuous.
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α′ is surjective. Let y ∈ D1. Now χi+1(yj(i+ 1)) ∈ α−1i (yj(i)) shows that

(χi+1(y(i+ 1)))i∈ω =

= (αi(χi+1(y(i+ 1))))i∈ω = (yni)i∈ω = y,

hence α′ is surjective. We conclude that α′ is indeed an epimorphism.

D D D

D2 D1 D0

α

π(ki+1)

χ

π(ni)
π(ki)

α′ χ′

Let α = π−1(ni)
◦ α′ ◦ π(ki+1) and χ = π−1(ki)

◦ χ′ ◦ π(ni). Then χ ◦ α = Id is clear from the

definitions of α′, χ′ and the commutativity of (∗), so χ and α are isomorphisms, which
proves the subclaim. Now χ0 ◦π∞n = π∞k ◦χ follows from the definitions, which proves the
claim.

D D

Dn0 Dk0

χ

π∞
n0

π∞
k0

χ0

Now we return to the proof of property (L3). Fix any structure B ∈ ∆. Let ϕ1 : D → B
and ϕ2 : D → B be epimorphisms. By (L2), there exist n1, n2 ∈ ω, and there exist
functions ϕ′1 : Dn1 → B and ϕ′2 : Dn2 → B such that ϕ1 = ϕ′1 ◦ π∞n1

and ϕ2 = ϕ′2 ◦ π∞n2
.

By Lemma 3.8, ϕ′1 and ϕ′2 are epimorphisms, and (B) implies that there exists m > n1, n2
and, ψ : Dm → Dn1 such that ϕ′1 ◦ ψ = ϕ′2 ◦ πmn2

. By the previous claim there is an
isomorphism χ : D → D , such that π∞n1

◦ χ = ψ ◦ π∞m . We conclude that the following
diagram commutates, hence ϕ2 = ϕ1 ◦ χ holds.

D D

Dn1 Dm

Dn2

B

π∞
n1

ϕ1

χ

π∞
m

ϕ2

ϕ′1

ψ

πm
n1

ϕ′2

Thus, we have proven the existence part of the theorem.

UNIQUENESS:

Let D′ and D′′ be projective Fräıssé limits of ∆. The plan is as follows: we will construct
an inverse limit D from elements of ∆, so that D′ ∼= D ∼= D′′.
Fix sequences (U ′n)n∈ω and (U ′′n)n∈ω of clopen sets in D′ and D′′ that separate the points
of D′ and D′′ respectively. We construct an inverse sequence (Dn, ψn)n∈ω, where Dn ∈ ∆
and ψn : Dn+1 → Dn is an epimorphism for every n ∈ ω. Simultaneously, we also define
epimorphisms ϕ′n : D′ → Dn, ϕ′′n : D′′ → Dn so that the following holds:

(1) ϕ′n = ψn ◦ ϕ′n+1,
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(2) ϕ′′i = ψi ◦ ϕ′′i+1,

(3) ϕ′′i = ψi ◦ ϕ′′i+1, ϕ
′
2n refines {U ′n, D′ \ U ′n},

(4) ϕ′′2n+1 refines {U ′′n , D′′ \ U ′′n}.

.

..
.

D′ D3 D′′

D2

D1

D0

ψ3

ϕ′3

ϕ′2

ϕ′1

ϕ′0

ψ2

ϕ′′3

ϕ′′2

ϕ′′1

ϕ′′0
ψ1

ψ0

Let D0 ∈ ∆ be arbitrary. By (L1), there is an epimorphism ϕ′0 : D′ → D0, which refines
{∅, D′}. Assume we have already defined ϕ′i for i ≤ 2n and ϕ′′j , ψj for all j < 2n. Then
we have the following commutative diagram.

D2n

D′ D2n−1 D′′

D2n−2

..
.

ψ2n−1
ϕ′2

ϕ′2n−1

ϕ′2n−2
ψ2n−2

ϕ′′2n−1

ϕ2n−2

By Lemma3.11, there exists ϕ′′2n : D′′ → D2n such that ϕ′′2n−1 = ψ2n−1 ◦ ϕ′′2n, and by
Lemma 3.10, there exists a D2n+1 ∈ ∆ and an epimorphism ϕ′′2n+1 : D′′ → D2n+1, which
refines

U ′′n = {ϕ′′2n
−1

(d) ∩ U ′′n : d ∈ D2n} ∪ {ϕ′′2n
−1

(d) ∩ (U ′′n)
c : d ∈ D2n}.

Then we can defined ψ2n as a follows, for any d ∈ D2n+1, let ψ2n(d) be the unique element
of ϕ′′2n(ϕ

′′−1
2n+1(d)). Then ψ2n is well defined since ϕ′′2n refines {ϕ′′−12n (d) : d ∈ D2n}, and it is

an epimorphism by Lemma 3.8. The same works for constructing ϕ′2n+1, ψ2n+1 and ϕ′2n+2.
Let D = lim←−Dn. By symmetry, it remains to prove the following.

Claim: ϕ′ : D′ → D, x 7→ (ϕ′n(x))n∈ω, is an isomorphism.

Proof:

ϕ′ maps to D. Since we have ϕ′n = ψn ◦ ϕ′n+1 for all n ∈ ω.

ϕ′ is injective. If x, y ∈ D′ with x ̸= y, then there exists n ∈ ω such that U ′n separates
them, so ϕ′2n(x) ̸= ϕ′2n(y).
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ϕ′ is surjective. Pick any z ∈ D. Then
⋂
n∈ω ϕ

′
2n
−1(z(n)) ̸= ∅, because it is a decreasing

intersection of non-empty compact sets. So let x ∈
⋂
n∈ω ϕ

′
2n
−1(z(n)), then ϕ′(x) =

z.

ϕ′ is continuous. First note that sets of the form

Ud,n = {z ∈ D : z(n) = d}

form a basis in D by remark3.5 (v). on the other hand, for every n ∈ ω and d ∈ Dn,
we have ϕ′−1(Ud,n) = ϕ′n

−1(Ud,n) is clopen because ϕ′n is continuous.

ϕ′ is a homomorphism. Since each ϕ′n is a homomorphism.

Relations. Let R be a relation symbol in L and (z0, . . . , zk−1) ∈ RD. For each n ∈ ω,
since ϕ′n is an epimorphism, the set

Kn =
(
ϕ′−1n (z0(n))× ...× ϕ′−1n (zk−1(n))

)
∩RD′

is nonempty compact set in D′k. Also Kn+1 ⊆ Kn by ϕ′n = ψn ◦ ϕ′n+1. Thus, there
exists

(x0, .., xk−1) ∈
⋂
n∈ω

Kn.

Now (x0, .., xk−1) ∈ RD
′
and ϕ′(xj) = zj for each j ∈ k.

Hence, we have established that D′ and D′′ are isomorphic, which implies the uniqueness
part of the theorem, this completes the proof.

3.3 Example and applications

In this subsection, we will apply the projective Fräıssé theory we have developed. First, we
show that finite linear graphs equipped with the discrete topology form a projective Fräıssé
class. Then we demonstrate that a suitable (and very natural) quotient of its projective
Fräıssé limit is the pseudo-arc. Furthermore, using the tools of projective Fräıssé theory,
we present some interesting properties and a characterization of the pseudo-arc. This
illustrates the potential of dual theory for proving non-trivial topological results. Since
the publication of [4], a number of authors have explored projective Fräıssé theory and
obtained interesting topological results. See, for example, [14].

3.3.1 Finite Linear Graphs

Now we fix the language L until the end of the thesis: let R be the only (binary) relation
symbol apart from equality (=) in L.

Let ∆0 be the class of all L-structures A such that:

1. RA is reflexive: A |= ∀x(R(x, x)),

2. RA is symmetric A |= ∀x∀y(R(x, y) =⇒ R(y, x)),

3. for all a ∈ A, a has ≤ 3 neighbors (including itself)

A |= ∀a, x0, x1, x2
(
(
∧
i∈3

R(a, xi)) =⇒ (
∨

i,j∈3; i ̸=j
xi = xj)

)
,

4. there are exactly 2 elements a ∈ A that have ≤ 2 neighbors (including themselves),
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5. ⟨A, RA⟩ is connected (as a graph).

We defined ∆0 so that i elements of ∆0 each vertex has a loop for technical reason. We
my assume without loss of generality that if A ∈ ∆0, then A = {0, 1, . . . , n − 1} and
(A |= R(x, y)) ⇐⇒ |x− y| < 2.

Remark 3.13 Let A,B ∈ ∆0. it is easy to prove that a surjective map f : A → B is
an epimorphism if and only if for all i, j ∈ A with |i − j| < 2 we have |f(i) − f(j)| < 2.
In particular, if A,B ∈ ∆0, then there exists an epimorphism ϕ : A → B if and only if
|A| ≥ |B|.

Theorem 3.14 ∆0 is a projective Fräıssé class.

Proof.

(F1): Let D, E ∈ ∆0 by arbitrary. Then there exists a structure F ∈ ∆0, such that |F| >
|D| and |F| > |E|. By the previous remark, there exist epimorphisms ϕ0 : F → D
and ϕ1 : F → E .

(F2): Let C,D, E ∈ ∆0 be structures with epimorphisms ϕ0 : D → C and ϕ1 : E → C. We
need to find a structure F ∈ ∆0 and epimorphisms ψ0 : F → D and ψ1 : F → E
such that

(∗) ϕ0 ◦ ψ0 = ϕ1 ◦ ψ1.

In what follows follows, we reduce this task to another combinatorial problem.

The previous task is equivalent to the discrete mountain climbinging problem: we can
view the graphs of functions ϕ0 and ϕ1 as mountain chains (see the figure). The two
climbers begin climbing from points on the mountain chain that lie at the same elevation.
At each step, each climber may move one unit left or right along the graph, or stay in
place. We must provide a finite sequence of moves such that both climbers traverse their
entire mountain chain while staying at the same elevation throughout.

Observe that if we denote the functions describing the horizontal movement of the
two climbers by ψ0 and ψ1, then the pair (ψ0, ψ1) is a solution for the mountain climber
problem then (ψ0, ψ1) is a witnesses to (∗) holds. Thus, to prove that the (F2) holds in
∆0, it suffices to show that the discrete mountain climbing problem is solvable. In the
follows, we will prove this.

Claim. We may assume there are no plateaus on the graphs ϕ0 and ϕ1, that is , for any
k ∈ 2 and i < max(Dom(ϕk)) we have ϕk(i) ̸= ϕk(i+ 1).

Proof. Cut out the plateaus. Any solution to the new problem gives a solution to the
original problem: since any of the climber can stay still while the other climber can move
through the plateau at any time. This prove the claim.
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From this point on, we assume that the graphs of ϕ0 and ϕ1 contain no plateaus. The
lemma below establishes the solvability of a special case of the discrete mountain climbing
problem, we will use this result to tackle the more complex, general case.

Now we assume that C = {0, ...nC}, D = {0, ...nD} and E = {0, ...nE}.

Lemma 3.15 Assume the following:

1. ϕ0(i) = 0 and ϕ1(j) = 0 if and only if i, j = 0,

2. ϕ0(i) = nC − 1 and ϕ1(j) = nC − 1 if and only if i = nD − 1 and j = nE − 1.

Then there is a solution to the discrete mountain climbing problem.

Proof. Consider the following graph G = (V,H):

V = {(i, j) ∈ N2 : i < nD, j < nE , ϕ0(i) = ϕ1(j)},

and ⟨(i, j); (i′, j′)⟩ ∈ H if and only if |i − i′| = |j − j′| = 1. Observe that any path in G
between (0, 0) and (nD, nE) describes a solution to the discrete mountain climbing prob-
lem, thus it suffices to prove that (0, 0) and (nD, nE) are in a same connected component.
Also note that if (i, j) ∈ V \ {(0, 0), (nD, nE)}, then Deg(i, j) is even.

If (i, j) ∈ {(0, 0), (nD, nE)}, then Deg(i, j) = 1.
Since the sum of degrees is even in every connected component of G, the vertices (0, 0)

and (nD, nE) must be in the same component, so there is a solution, therefore we proved
the lemma.

We can assume that nD ≤ nE . Let a < b < nD such that ϕ1(a) = 0 and ϕ1(b) = nC . (The
case when ϕ1(a) = nC and ϕ1(b) = 0 is similar).

Claim. To prove the theorem, it suffices to show that climber 0 can legally climb the
graph of ϕ0 while climber 1 only uses ϕ1|[a,b] (we refer to this climb as a restricted climb).
By a legal climb, we mean that the climber ascends their mountain while remaining at the
same elevation as the other climber throughout the process.

Proof. Without loss of generality, climber 0 can finish a restricted climb at the endpoint
of an interval [c, d] which has the same property for ϕ0 as [a, b] for ϕ1. They can switch
roles, so climber 1 can also climb the full graph of ϕ1.

Claim. Climber 0 can legally climb the graph of ϕ0 while climber 1 only uses ϕ1|[a,b].
Proof: Induction on nC . For nC = 1, 2, it is obvious. Assume it holds for nC ≥ k.
The extrenum points of ϕ0 divide [0, nD − 1] into subintervals. First, note that it suffices
to solve the problem for these subintervals exactly. Second also note that each of these
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subintervals I falls into one of two categories: either one endpoint is a minimum point
and the other a maximum point, in which case we can apply Lemma 3.15 to solve this
subproblem, or either either both end pints are minimum points or both end points are
maximum points, in witch case Ran(ϕ0|I) ⊊ {0, ..., nC − 1}, allowing us to apply the in-
ductive hypothesis. This completes the proof of Theorem 3.14.

3.3.2 Pseudo-arc

In this subsection, we construct the pseudo-arc as a quotient of the projective Fräıssé limit
of ∆0. As previously discussed, projective Fräıssé limits are universal and homogeneous
structures. It is therefore not surprising that a factor of such a limit also yields a universal
topological space.

The pseudo-arc is a well-studied chainable continuum whose universality and various
topological characterizations have long been known. Projective Fräıssé theory provides a
framework in which this space can be obtained as a quotient of an inverse limit, offering a
new construction of the pseudo-arc. We begin this subsection by recalling several funda-
mental definitions from continuum theory, after which we proceed with the construction
of the pseudo-arc.

Definition 3.16 (Continuum) A continuum K is a nonempty compact, connected metric
space. If L ⊂ K is also a continuum, we say L is a subcontinuum of K, and if L ̸= K, it
is a proper subcontinuum of K. If K has more than one point, we say it is nondegenerate.

Here are some examples of continua.

Examples 3.17

• The closed interval [0, 1].

• The circle.

• An arc (homeomorphic image of [0, 1]).

• The n-cell: [0, 1]n for some n ∈ ω.

• The Hilbert cube: [0, 1]ω.

• The topologist’s sine curve: ({0} × [0, 1]) ∪ {(x, sin( 1x)) : x ∈ (0, 1]}.

Definition 3.18 (Indecomposable continuum) A continuum K is decomposable if there
exist proper subcontinua L,L′ ⊂ K such that K = L ∪ L′. If K is not decomposable, we
say it is indecomposable. If every subcontinuum of K is also indecomposable, we say K is
hereditarily indecomposable.

Remark 3.19 All the previous examples (3.17) are decomposable.

Definition 3.20 (Chain of open subsets) Let X be a metric space. A chain is a finite
sequence of open subsets of X, C = {C0, C1, . . . , Cn−1} such that

Ci ∩ Cj ̸= ∅ if and only if |i− j| ≤ 1.

The open sets C0, C1, . . . , Cn−1 are called the links of C, C0 and Cn−1 are called the end
links of C, and C1, . . . , Cn−2 are called the interior links of C. A chain C is an ϵ-chain
if the diameter of all C ∈ C is less than ϵ.
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Definition 3.21 (Chainable continuum) A continuum K is chainable if for every ϵ > 0,
there is an ϵ-chain covering K.

Let ∆0 be the class of finite linear graphs as before.

Lemma 3.22 Let P be the projective Fräıssé limit of ∆0. Then RP is an equivalence
relation with classes of size at most 2.

Proof. Recall that P can be written as an inverse limit of structures from ∆0. Since R
A

is reflexive and symmetric for every element A ∈ ∆0, it follows that RP is also reflexive
and symmetric. thus it suffices to show that there are no distinct elements x, y, z ∈ P
such that

RP(x, y) ∧RP(y, z) holds.

Suppose there exist such elements x, y, z ∈ P, and let X ∪ Y ∪ Z = P be a clopen
a partition such that x ∈ X, y ∈ Y , and z ∈ Z. By (L2’), there is D ∈ ∆0 and an
epimorphism ϕ : P → D that refines the partition. So, a = ϕ(x), b = ϕ(y), and c = ϕ(z)
are pairwise distinct elements, and

RD(a, b) ∧RD(b, c) holds.

Fix D′ ∈ ∆0 and distinct elements a′, b′, b′′, c′ ∈ D′, such RD
′
(a′, b′), RD

′
(b′, b′′), and

RD
′
(b′′, c′) hold and an epimorphism ψ : D′ → D such that ψ−1(a) = {a′}, ψ−1(b) =

{b′, b′′}, and ψ−1(c) = {c′} holds. (Such an epimorphism clearly exists.)
By Lemma 3.11, there exists an epimorphism χ : P → D′ such ϕ ◦ χ = ψ.

D′

P

D

ϕ

χ

ψ

Then χ(x) = a′, χ(z) = c′, and either χ(y) = b′ or χ(y) = b′′, hence (χ(x), χ(y)) /∈ RD′

or (χ(y), χ(z)) /∈ RD′
, contradicting the assumption that χ is an epimorphism.

Lemma 3.23 Let D be a topological L-structure, and let RD be an equivalence relation.
If every open cover of D is refined by an epimorphism ϕ : D → D′ for some D′ ∈ ∆0 then
D/RD is a chainable continuum.

Proof. It follows from well-known facts from basic topology, that D/RD is a second
countable compact Hausdorff space [15]. We will prove the following.

(1.) D/RD is connected.

(2.) D/RD is chainable.

(1.) To prove connectivity it suffices to show that for any nontrivial clopen partition
U ∪ V = D, there are x ∈ U and y ∈ V such that RD(x, y). Fix D′ ∈ ∆0 and an
epimorphism ϕ : D → D′ that refines the cover {U, V }. Pick d0 ∈ ϕ(U) and d1 ∈ ϕ(V ) such
that (d0, d1) ∈ RD

′
. Since ϕ is an epimorphism, there exist x ∈ ϕ−1(d0) and y ∈ ϕ−1(d1)

such that (x, y) ∈ RD, and since ϕ refines {U, V }, we have ϕ−1(d0) ⊆ U and ϕ−1(d1) ⊆ V .
(2.) Now, fix any ϵ > 0. Since D is compact and D/RD is metrizable, the map

σ : D → D/RD is uniformly continuous. Let B0 ∪ B1 ∪ · · · ∪ Bn−1 = D be a clopen
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partition such that diam(σ(Bi)) < ϵ for all i ∈ {0, 1, . . . , n − 1}. Fix a D′ ∈ ∆0 and an
epimorphism ϕ : D → D′ that refines the cover {B0, B1, . . . , Bn−1}.

D D′

D/RD

ϕ

σ

For every d ∈ D′, let Ud = ϕ−1(d). Then {Ud : d ∈ D′} is a clopen cover of D. Note that:

σ(Ud0) ∩ σ(Ud1) ̸= ∅ ⇐⇒ there exist x ∈ Ud0 and y ∈ Ud1 such that (x, y) ∈ RD ⇐⇒

⇐⇒ (d0, d1) ∈ RD
′
.

The first equivalence holds by the definiton of σ and the second eqvivalence follows from
the fact that ϕ is an epimorphism.

Since ϕ refines the cover {B0, B1, . . . , Bn−1}, we have that {σ(Ud0), . . . , σ(Udm−1)} is
an ”ϵ-chain of compact sets” that covers D/RD . Therefore, there exists a δ > 0 such that
{σ(Ud0)δ, . . . , σ(Udm−1)δ} is an ϵ-chain.

Theorem 3.24 (Bing [16]) The pseudo-arc is the unique (up to homeomorphism) non-
degenerate chainable, hereditarily indecomposable continuum.

We do not prove this theorem.

Theorem 3.25 P/RP is homeomorphic to the pseudo-arc.

Proof. By Lemma 3.23, P/RP is a chainable continuum, thus by Bing’s theorem, it
remains to prove that P/RP is hereditarily indecomposable.

Definition 3.26 For a topological L-structure D, a set A ⊆ D is:

• R-invariant, if for any x ∈ A and y ∈ D we have RD(x, y) =⇒ y ∈ A,

• R-connected if there is no decomposition A = A0∪A1 into relatively closed sets such
that if x ∈ Ai and y ∈ Aj and RD(x, y) then i = j.

Let σ : P → P/RP be the quotient map. Suppose for contradiction that there ex-
ists a subcontinuum X ⊆ P/RP with a nontrivial decomposition X = X0 ∪ X1 is into
subcontinua. Let F = σ−1(X) , F0 = σ−1(X0), F1 = σ−1(X1).

Claim 1. F , F0, and F1 are R-invariant and R-connected in P.
Proof: It is clear that F , F0, and F1 are unions of R-classes, so they are R-invariant.
Suppose that F is not R-connected (the same argument works for F0 and F1). Let F =
F ′ ∪ F ′′ be a decomposition, that witnesses this. Since σ is onto and continuous, we have
X = σ(F ′) ∩ σ(F ′′), where σ(F ′) and σ(F ′′) are compact. Since there is no x ∈ F ′ and
y ∈ F ′′ with RP(x, y), the sets σ(F ′) and σ(F ′′) are disjoint. This contradict the fact that
X is connected, witch proves the claim.

Since X is connected, we have that X0 ∩X1 ̸= ∅, which also implies that F0 ∩ F1 ̸= ∅.
Since σ is surjective, it suffices to show that F0 ⊆ F1 or F1 ⊆ F0, as this implies X0 ⊆ X1

or X1 ⊆ X0. Suppose for contradiction that F0 \F1 ̸= ∅ and F1 \F0 ̸= ∅. Fix x0 ∈ F0 \F1

and x1 ∈ F1 \F0. Since R
P is closed, P is zero dimensional, and {x0}×F1 and F0×{x1}

are disjoint from RP , there are clopen sets U0, U1, V0, V1 ⊆ P such that:

{x0} × F1 ⊆ U0 × U1 ⊆ P 2 \RP and F0 × {x1} ⊆ V0 × V1 ⊆ P 2 \RP .
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Note that U0 ∩ U1 = ∅ and V0 ∩ V1 = ∅ since RP contains the diagonal of P 2.

Fix D ∈ ∆0 and an epimorphism χ : P → D that refines the partition by the atoms
of the set algebra B = ⟨U0, U1, V0, V1⟩. Since F0, F1, and F are R-connected and χ is an
epimorphism, it is easy to check that χ(F0), χ(F1), and χ(F ) are also R-connected, since
the image of an R-connected set under an epimorphism is also R-connected. Moreover, it
is easy to see that in finite lienar fraphs, the R-connected sets are exactly the intervals.
Alos note that X = X0 ∪X1 =⇒ F = F0 ∪ F1 =⇒ χ(F ) = χ(F0) ∪ χ(F1).

Since χ refines the atoms of B = ⟨U0, U1, V0, V1⟩, we have χ(x0) /∈ χ(F1) and χ(x1) /∈
χ(F0), since U0 × U1 ∩ RP = ∅ and RP contain the diagonal, thus the open sets U0, U1

separate x0 and F1 from each other, similar the open sets V0, V1 separate x1 and F0, which
implies that χ(F0) \ χ(F1) ̸= ∅ and χ(F1) \ χ(F0) ̸= ∅. Also, we have observed that
F0 ∩ F1 ̸= ∅, so χ(F0 ∩ F1) ⊆ χ(F0) ∩ χ(F1) ̸= ∅.
Claim 2. There is no y ∈ χ(F1) such that y and χ(x0) are neighbors in D. Similarly,
there is no y′ ∈ χ(F0) such that y′ and χ(x1) are neighbors in D.
Proof: Assume for contradiction that there is y ∈ χ(F1) such that y and χ(x0) are
neighbors in D. Since χ refines the partition by the atoms of B = ⟨U0, U1, V0, V1⟩, we have
χ−1(χ(x0)) ⊆ U0 and χ−1(y) ⊆ U1, and thus (χ−1(χ(x0))× χ−1(y)) ∩RP = ∅, which is a
contradiction because χ is an epimorphism.
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By Claim 2 and χ(F0)∩χ(F1) ̸= ∅, we have |χ(F )| ≥ 5. By composing an epimorphism
after χ if necessary, we may assume that D = {0, 1, 2, 3, 4} and (i, j) ∈ RD if and only if
|i− j| ≤ 1 and

χ(F0) = {2, 3, 4}, χ(F1) = {0, 1, 2}, χ(x0) = 4, χ(x1) = 0.

Potentially we lose the property that χ is refines the partition induced by the atoms of B
but at this point that no matters. Now consider the following finite lieal graph C ∈ ∆,
where C = {0, 1, 2, 3, 4, 5, 6, 7, 8} and (i, j) ∈ RC if and only if |i − j| ≤ 1. Define the
epimorphism ϕ : C → D as follows:

ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = 2, ϕ(3) = 3, ϕ(4) = 2, ϕ(5) = 1, ϕ(6) = 2, ϕ(7) = 3, ϕ(8) = 4.

By Lemma 3.11, there is an epimorphism ψ : P → Csuch that χ = ϕ ◦ ψ.

P C

D

ψ

χ
ϕ

Then we must have ψ(x0) = 8 and ψ(x1) = 0, so ψ(F ) = C since F is R-connected. Also
note that

{0, 1, 5} ⊆ ψ(F1) ⊆ {0, 1, 2, 4, 5, 6},

since {0, 1}χ(F0) = ∅ and χ(F1) ⊆ {0, 1, 2}. Thus ψ(F1) cis not an interval, contradiction.
Therefore the proof of Theorem 3.25 is complete.

3.3.3 Applications

In this section, we will apply the projective theory to prove topological properties of the
pseudo-arc. In the main theorem (3.28), we provide a new proof of the fact that every
chainable continuum is the continuous image of the pseudo-arc, and, in addition, we prove
an interesting characterization of the pseudo-arc, which was not known before the paper
[4] by Solecki and Irwin.
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Let P be the projective Fräıssé limit of the class ∆0 of finite linear graphs and P/RP
be the pseudo-arc, as before.

Consider the following ”approximate projective homogeneity” property:

Definition 3.27 (Approximate projective homogeneity)

Let C be a compact metric space. Then C has the property (∗) if

(∗) for every (X, d) chainable continuum (X, d), surjective continuous maps f0 : C → X,
f1 : C → X and f ϵ > 0, there exists a homeomorphism h : C → C such that
dU (f0, f1 ◦ h) < ϵ, where dU detonates the uniform metric.

C C

X

h

f0 f1

We will also use the notation (∗)C whenever C has the property (∗).

Let us note that if a chainable continuum C has property (∗), then homeomorphisms
form a dense set in the space of continuous surjections from C to itself for any continuous
surjective f0 : C → C and ϵ > 0, apply (∗) with f1 = Id.

Theorem 3.28

1. Every chainable continuum is the continuous image of the pseudo-arc.

2. P/RP has the property of (∗).

3. Up to homeomorphism there is at most one non degenerate chainable continuum C,
that has the property (∗).

Definition 3.29 (Special L-structure) An L-structure D is special if the following holds:

(α) Each open cover of D is refined by an epimorphism ϕ : D → C onto some C ∈ ∆0.

(β) RD is an equivalence relation with classes of size at most 2.

Definition 3.30 Let (X, d) be a chainable continuum, then a chain C = {U0, U1, ..., Un−1}
on X is δ-fine if the following holds:

(C1) dist(Ui, Uj) > δ if |i− j| > 1,

(C2) for all i ∈ n, there is x ∈ Ui such that dist({x},
⋃
i ̸=j Uj) > δ,

(C3) for any A ⊆ X, with diam(A) < δ then there is i ∈ n such that A ⊆ Ui.

A chain C is fine if it is δ-fine for some δ > 0.
The chain C closure-refines a cover V of X if for all i ∈ n the set Ui lies in some element
of V.

The previous definition is very natural. Using the Lebesgue number lemma, it is easy to
see that a continuum is chainable if and only if it is δ-fine chainable with enough small δ.

Lemma 3.31 Let D0 and D1 be special L-structures, ϕ : D0 → D1 be an epimorphism,
ρ0 : D0 → D0/R

D0 and ρ1 : D1 → D1/R
D1 be quotient maps. Then:

1. there is a continuous surjection map ϕ∗ : D0/R
D0 → D1/R

D1 such that ϕ∗ ◦ ρ0(x) =
ρ1 ◦ ϕ(x) for all x ∈ D0,
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2. if ϕ is an isomorphism, then ϕ∗ is a homeomorphism.

D0 D1

D0/R
D0 D1/R

D1

ϕ

ρ0 ρ1

ϕ∗

Proof. Just checking the definitions.

Remark 3.32 If X is a chainable continuum, and U is an open cover of X, then U can
be closure refined by a fine chain.

Proof. Let U is an open cover of X, then by the Lebesgue number lemma, there exists
δ > 0 such every subset X with diameter less then δ is covered by an element of U . Since
X is chainable then there is a δ

2 -fine chain C. Therefore C is closure refines U .

Lemma 3.33 Let X be a chainable continuum. Then there exists a special L-structure C,
such that X = C/RC.

Proof. We will construct a sequence (Cn)n∈ω of chains on X such that Cn+1 refines Cn

for all n ∈ ω. Then we will associate an inverse limit sequence (Cn)n∈ω of finite linear
graphs to (Cn)n∈ω and define C as the inverse limit of (Cn)n∈ω.

Let C(k) detonate the k-th link of C, and let Mesh(C) = max{diam(C) : C ∈ C}. We
will recursively construct a sequence (Cn)n∈ω of chains on X such that:

(1) Cn+1 closure refines Cn,

(2) Mesh(Cn) <
1

n+1 ,

(3) Cn is fine,

(4) if Cn+1(i) ⊆ Cn(k) and Cn+1(j) ⊆ Cn(l) such that |k − l| > 1, then |i− j| > 2,

(5) for any link Cn(k), there exists i such that Cn+1(i) ⊆ Cn(k) \
(⋃

l ̸=kCn(l)
)
.

Let C0 be any chain covering X. Suppose Cn is already defined for some n ∈ ω and it
is δ-fine. Note that by (C3), any chain with sufficiently small mesh closure refines Cn.
We will construct a fine chain Cn+1 a fine chain, that closure refines Cn and satisfies

Mesh(Cn+1) < min
{
δ
3 ,

1
n+2

}
. Cover X by balls of radius less than min( 1

2(n+1) ,
δ
6). Let

Cn+1 be a fine chain closure refining this cover. Observe that for each link Cn+1(i) of
Cn+1

diam(Cn+1(i)) <
δ

3
,

by (C3) Cn+1 is closure refines Cn.
Then conditions (2) and (3) holds by definition, (C1) implies condition (4) and (C2)

implies condition (5).
Now we build the inverse limit. Let Cn be the Finite linear graph:

• Cn = {0, 1, ..., |Cn| − 1} with the discrete topology;

• for any i, j < |Cn|, let (i, j) ∈ RCn if and only if |i− j| ≤ 1.
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Let ϕn : Cn+1 → Cn be defined by

ϕn(i) = min
{
k ∈ |Cn| : Cn+1(i) ⊆ Cn(k)

}
.

By condition (1), ϕn is well-defined. By condition (5), ϕn is surjective, and by condition
(4), ϕn preserves the relations. Recall that in the class ∆0 these are sufficient for ϕn to
be an epimorphism. Let C = lim←(Cn, ϕn) be the inverse limit. It remains to prove the
following:

(a) C is special,

(b) X ∼= C/RC .

(a) Condition (α) follows easily from the fact that C is an inverse limit of structures
in ∆0.

(a)Condition (β) follows by the inverse limit construction, it is clearly that RC is
reflexive and symmetric, so it suffices to show that if x, y, z ∈ C, x ̸= z, (x, y) ∈ RC , and
(y, z) ∈ RC , then x = y or y = z. There are two cases.

CASE 1. |x(n), y(n)| = 1 for all but finitely many n. Then either x(n) = y(n) for all but
finitely many n or y(n) = z(n) for all but finitely many n because Cn ∈ ∆0. So we have
x = y or y = z.

CASE 2. |x(n) − z(n)| = 2 for all but finitely many n. This cannot happen because by
condition (4),

|x(n)− z(n)| = 2 =⇒ |x(n+ 1)− z(n+ 1)| > 2,

so either (x(n+ 1), y(n+ 1)) /∈ RCn+1 for all but finitely many n or (y(n+ 1), z(n+ 1)) /∈
RCn+1 for all but finitely many n, any of which contradicts our assumptions.

(b) Define f : C → X as follows: for any c ∈ C let f(c) be the unique point in⋂
n∈ωCn(c(n)), witch is a singleton by conditions (1) and (2). Also, condition (2) implies

that f is continuous. To show that f is surjective: fix x ∈ X, and let

Tx =
⋃
n∈ω
{(m0,m1, ...,mn) ∈

∏
i∈n+1

Ci : x(n) ∈ Cn(mn) and for all i ∈ n, ϕi(mi+1) = mi}∪{∅}.

Then clearly Tx is a tree, and for all n ∈ ω we have Tx ∩
∏
i∈n+1Ci ̸= ∅. By König’s

Lemma, Tx has an infinite branch c, and clearly f(c) = x.

Claim. f(c0) = f(c1) if and only if (c0, c1) ∈ RC .

Proof. Observe that (c0, c1) ∈ RC if and only if for all n ∈ ω we have (c0(n), c1(n)) ∈ RCn
if and only if for all n ∈ ω we have Cn(c0(n))∩Cn(c1(n)) ̸= ∅ if and only if f(c0) = f(c1).
Therefore we proved the claim.

Now let us define f : C/RC → X by f(ρ(x)) = f(x), where ρ : C → C/RC is the quo-
tient map. First, f is well-defined bijection by the claim. It is continuous by the definition
of the quotient topology. Since C/RC is compact, it follows that f is a homeomorphism,
which proves the lemma.
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Proposition 3.1 Let ∆ be a projective Fräıssé class of finite L-structures, and let D be
the projective Fräıssé limit of ∆. Let B be a topological L-structure such that every open
cover of B is refined by an epimorphism ϕ : B → C onto some C ∈ ∆. Then there exists
an epimorphism χ : D → B.

Proof. We will write B as the inverse limit of an inverse sequence from ∆. Enumerate
all clopen partitions of B as (Un)n∈ω. Let ϕ0 : B → B0 be an epimorphism that refines the
open cover U0 of B. Assume that we have already defined ϕn : B → Bn. Pick Bn+1 ∈ ∆
and epimorphism ϕn+1 : B → Bn+1 that refines the open cover

{u ∩ ϕ−1n (b) : b ∈ Bn and u ∈ Un+1}.

Let ψn : Bn+1 → Bn be a map such that ϕn = ψn ◦ ϕn+1.

..
.

B3

B B2

B1

B0

ψ3

ψ2
ϕ3

ϕ2

ϕ1

ϕ0

ψ1

ϕ0

By Lemma 3.8, the maps ψn are epimorphisms. By property (L1), we can find an
epimorphism ϕ′0 : D → B0, and, by using Lemma 3.11, we can recursively find ϕ′n : D → Bn
such that ϕ′n−1 = ψn−1 ◦ ϕ′n.

Bn D

..
.

B0

ψn−1

ϕ′n

ϕ′0
ψ0

Now let
ϕ : B → lim←−(Bn, ψn), ϕ(x) = (ϕn(x))n∈ω

and
ϕ′ : D → lim←−(Bn, ψn), ϕ′(x) = (ϕ′n(x))n∈ω.

The same argument as in the uniqueness part of the proof of Theorem 3.8 shows that ϕ
and ϕ′ are epimorphisms. Since, in addition, ϕ separates the points of B, ϕ is injective
as well. Hence it is an isomorphism. Thus ϕ−1 ◦ ϕ′ : D → B is an epimorphism, witch
concludes the proof.

We note that the proposition holds in general for any projective Fräıssé class.

Proof. (Of Theorem 3.28)
1. Let (X, d) be a chainable continuum. By Lemma 3.33, there exists a special topo-

logical L-structure C such that X ∼= C/RC . By Proposition3.1, there is an epimorphism
ϕ : P → C, so by Lemma 3.31, we can find an epimorphism ϕ∗ : P/RP → C/RC . It
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remains to recall that P/RP is homeomorphic to the pseudo-arc by Theorem 3.25.

2. Let (X, d) be a chainable continuum, and let f0 : P/RP → X and f1 : P/RP → X
be surjective continuous maps. Fix ϵ > 0. It suffices to find an isomorphism ϕ : P → P
such that dU (f0 ◦ρ, f1 ◦ρ◦ϕ) < ϵ since for the homeomorphism ϕ∗ : P/RP → P/RP given
by Lemma 3.31. We get that dU (f0, f1 ◦ ϕ∗) < ϵ (where dU is the uniform metric).

P P

P/RP P/RP

X

ϕ

ρ ρ

ϕ∗

f0 f1

Let U = {U0, . . . , Un−1} be a δ-fine ϵ-chain on X. Let D ∈ ∆0 be such that |D| = n.
Since P is compact, both f0◦ρ and f1◦ρ are uniformly continuous. So there are structures
E0, E1 ∈ ∆0 and epimorphisms ϕ0 : P → E0, ϕ1 : P → E1 such for all ∈ 2 and e ∈ Ei we
have diam(fi(ρ(ϕ

−1
i (e)))) < δ. Let ψi : Ei → D be maps defined by

ψi(e) 7→ min{j ∈ n : fi(ρ(ϕ
−1
i (e))) ⊆ Uj}

for i ∈ 2.

P P

E0 E1

D

ϕ

ϕ0 ϕ1

ψ0 ψ1

Claim. Both ψi is an epimorphism.

Proof. By (C3), since the sets fi(ρ(ϕ
−1
i (e))) of diameter less then δ cover X and U

satisfies (C2), ψi is surjective. Let e, e′ ∈ Ei such that (e, e′) ∈ REi . Since ϕi is an epi-
morphism, there exist x ∈ ϕ−1i (e) and x′ ∈ ϕ−1i (e′) such that (x, x′) ∈ RP , which implies
that ρ(x) = ρ(x′), and thus fi(ρ(ϕ

−1
i (e))) ∩ fi(ρ(ϕ−1i (e′))) ̸= ∅ since U satisfies (C1) we

conclude that (ψi(e), ψi(e
′)) ∈ RD. We have verified that ψi is an epimorphism, which

proves the claim.

Since P is a projective Fräıssé limit, it has property (L3), which gives an isomorphism
ϕ : P → P such that ψ0 ◦ ϕ0 = ψ1 ◦ ϕ1 ◦ ϕ. Fix any x ∈ P . Then ψ0(ϕ0(x)) = ψ1(ϕ1(x))
implies that the sets f0(ρ(ϕ

−1
0 (ϕ0(x)))) and f1(ρ(ϕ

−1
1 (ϕ1(ϕ(x))))) lie in the same link

Uj . Since f0(ρ(x)) ∈ f0(ρ(ϕ
−1
0 (ϕ0(x)))) and f1(ρ(ϕ(x)))) ∈ f1(ρ(ϕ

−1
1 (ϕ1(ϕ(x))))) and

dima(Uj) < ϵ, we conclude that d(f0(ρ(x)), f1(ρ(ϕ(x)))) < ϵ as desired.

Recall some facts form continuum theory. If (X, dX) and (X, dX) are compact metric
spaces with then a continuous map f : X → Y is called a δ-map if diam(f−1(f(x))) < δ
for each x ∈ X. It is easy to see that, if f : X → Y is a δ-map, then there is a ξ > 0 such
that diam(f−1(A)) < δ if diam(A) < ξ for any A ⊆ Y so in particular if dX(x0, x1) ≥ δ,
then dY (f(x0), f(x1)) ≥ ξ. It is well known that a non-degenerate continuum (X, dX)

40



is chainable if and only if for every δ > 0 there is a δ-map from X onto the closed unit
interval. See [5].

3. Let (X, dX) and (Y, dY ) be nondegenerate chainable continua such that both X and
Y has property (∗). Let In = [0, 1] for all n ∈ ω. We will construct continuous surjections
ϕn : In+1 → In, fn : X → In, and gn : Y → In, as well as number ϵn > 0 for all n ∈ ω
such that:

(an) ϵn <
1

n+1 ;

(bn) dUX
(ϕk,n−1 ◦ fn, ϕk,m−1 ◦ fm) < ϵm for all k ≤ m ≤ n, where dUX

is the uniform
metric on C[X] and ϕm1,m2 = ϕm1 ◦ϕm1+1 ◦ . . . ◦ϕm2 for m1 ≤ m2, and ϕi,i−1 is the
identity map on Ii;

(cn) dUY
(ϕk,n−1 ◦ gn, ϕk,m−1 ◦ gm) < ϵm for all k ≤ m ≤ n, where dUY

is the uniform
metric on C[Y ];

(dn) for all x, y ∈ X, if n is even and dX(x, y) ≥ 1
n+1 , then |fn(x)− fn(y)| > 2ϵn;

(en) for all x, y ∈ X, if n is odd and dY (x, y) ≥ 1
n+1 , then |gn(x)− gn(y)| > 2ϵn.

Let f0 : X → I0 be a continuous surjection (a δ-map with δ = 1) and ϵ0 be any
positive real number less than 1, such that for all x, y ∈ X with dX(x, y) ≥ 1 implies that
|f0(x) − f0(y)| > 2ϵ0. Let g0 : Y → I0 be a continuous surjection. Clearly, we can find
(f0, ϵ0) such that (a0)− (e0) holds (the conditions (ci) and (ei) hold vacuously no matter
how g0 is chosen).

..
.

I2n+1

X I2n Y

I2n−1

..
.

ϕ2n
f2n+1

f2n

f2n−1
ϕ2n−1

g2n+1

g2n

g2n−1

Assume we have already found (fi, ϵi) such that (ai), (bi), (di) hold for every i ≤ 2n and
(gi, ϕi) such that (ci) and (ei) hold for i < 2n. Now we find g2n, ϕ2n, g2n+1, and ϵ2n+1 (for
f2n+1, ϕ2n+1, f2n+2, and ϵ2n+2 the same arguments work).

Claim. For any ϵ > 0 and any continuous surjections ϕ : [0, 1]→ [0, 1] and g : Y → [0, 1],
there is a continuous surjection g′ : Y → [0, 1] such that dU (ϕ ◦ g′, g) < ϵ.

Y

[0, 1] [0, 1]

g′ g

ϕ

Proof. Applying (∗)Y : for ϵ > 0 and two continuous surjections g : Y → [0, 1] it follows
that ϕ ◦ g : Y → [0, 1], there exists a homeomorphism ψ : Y → Y such that the following
diagram commutes with ϵ error, that is, |g(y)− ϕ(g(ψ(y)))| < ϵ for every y ∈ Y .
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Y Y

[0, 1]

[0, 1]

ψ

g

g

ϕ

Let g′ = g ◦ ψ, which confirms the claim.

By our inductive assumption (c)2n−1, we can find ϵ > 0 such that for all k ≤ m ≤ 2n− 1
we have

dUY
(ϕk,2n−2 ◦ g2n−1, ϕk,m−1 ◦ gm) + ϵ < ϵm (1)

By the previous claim, we can find a continuous surjection g2n : Y → [0, 1] such that
dUY

(ψ2n−1 ◦ g2n, g2n−1) < γ, where γ can be made arbitrarily small, and we choose it to
be sufficiently small to satisfy

dUY
(ϕk,2n−1 ◦ g2n, ϕk,2n−2 ◦ g2n−1) = dUY

(ϕk,2n−2 ◦ (ϕ2n−1 ◦ g2n), ϕk,2n−2 ◦ g2n−1) < ϵ (2)

for all k ≤ 2n − 1, which is possible by the uniform continuity of ϕk,2n−2. Consequently,
inequalities (1), (2), and the triangle inequality yield

dUY
(ϕk,2n−1 ◦ g2n, ϕk,m−1 ◦ gm) < ϵm (3)

for all k ≤ m ≤ n− 1. since the inequality (3) also holds for m = 2n, the map g2n satisfies
condition (c2n). Next, we construct g2n+1, ϕ2n, and ϵ2n+1 using the inductive hypothesis
(c2n), and we can select an ϵ′ > 0 such that for all k ≤ m ≤ 2n

dUY
(ϕk,2n−1 ◦ g2n, ϕk,m−1 ◦ gm) + ϵ′ < ϵm (4)

We will define ϕ2n and g2n+1 so that g2n+1 : Y → [0, 1] ontinuous surjection such that
dUY

(ψ2n ◦ g2n+1, g2n) can be made arbitrarily small, and we choose it to be sufficiently
small to satisfy

dUY
(ϕk,2n ◦ g2n+1, ϕk,2n−1 ◦ g2n) = dUY

(ϕk,2n−1 ◦ (ϕ2n ◦ g2n+1), ϕk,2n−1 ◦ g2n) < ϵ′ (5)

for all k ≤ 2n.

We will need the following lemma, witch we do not prove. The reader can find the proof
in book [5] (Lemma 12.17).

Lemma 3.34 1 If (X, dX) is a compact metric space, f : X → [0, 1] is a continuous
surjection, and ϵ > 0. Then there exists δ = δ(f, ϵ) so that if g : X → [0, 1] is a δ-map,
then there is a continuous surjection ϕ : [0, 1]→ [0, 1] so that |ϕ(g(x))− f(x)| < ϵ for all
x ∈ X.

By uniform continuity, we can fix ϵ′′ > 0 so that if |x − y| < ϵ, then |ϕk,2n−1(x) −
ϕk,2n−1(x)(y)| < ϵ′ for each k ≤ 2n. Then let δ′ < min{ 1

2n+2 , δ(g2n, ϵ
′′)}, where δ(g2n, ϵ′′)

is given by the lemma. Fix any continuous surjective δ′-map g2n+1 : Y → I2n+1. Now by
the lemma, we can define ϕ2n : [0, 1] → [0, 1] so that dU (g2n, ϕ2n ◦ g2n+1) < ϵ′′. Then (5)
holds by the choice of ϵ′′. By applying the triangle inequality to (4) and (5), we obtain
that

1This lemma in [5] explicitly states that ϕ need not be onto, but an analysis of the proof shows that if
f is onto, then ϕ is onto.
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dUY
(ϕk,2n ◦ g2n+1, ϕk,m−1 ◦ gm) < ϵm (6)

for all k ≤ m ≤ 2n. Let 1
2n+2 > ϵ2n+1 > 0 be such that the condition (e2n+1) holds.

Note that this is possible since g2n+1 is a δ-map for some δ < 1
2n+2 . Thus, conditions

(an)− (en) are stisfied and the reculsive construction is complete.

It remains to show that X and Y are homeomorphic. We will prove that X and Y are
homeomorphic to the inverse limit Z = lim←−(In, ϕn). By symmetry, it suffices to show this
for X. By (an) and (bn), for every k ∈ ω the sequence of functions

(ϕk,n−1 ◦ fn)n≥k
converges uniformly to a continuous function fk : X → Ik. In particular, we have

dUX
(fk, ϕk,m−1 ◦ fm) < ϵm (7)

for all k ∈ ω and m ≥ k. We claim that F : X →
∏
n∈ω In

x 7→ (f0(x), f1(x), f2(x), . . . )

is a homeomorphism between X and Z.

• (f0(x), f1(x), f2(x), . . . ) ∈ Z holds because ϕk ◦ϕk+1,n−1 = ϕk,n−1 for n > k+1, and
ϕk is continuous.

• F is continuous since each fk is continuous.

• To show that F is surjective, it is suffices to show that for each k ∈ ω, the range
of fk is dense in Ik since F is continuous and X is compact. This follows from the
fact that for every m ≥ k the map ϕk,m−1 ◦ fm is surjective, equation (7) holds and
condition (am) is satisfied.

• We show that F is injective. Let x, y ∈ X with x ̸= y. Then we can find k0 ∈ ω such
that dX(x, y) >

1
2k0+1 . By the condition (d)2k0 , we have that |f2k0(x) − f2k0(y)| >

2ϵ2k0 , which implies that f2k0(x) ̸= f2k0(y) by (7). Hence F (x) ̸= F (y).

Since X is compact and F is a continuous bijection, it follows that F is a homeomorphism.
Therefore we proved the the last part of Theorem 3.28.
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Aluĺırott Ivanyos János Balázs nyilatkozom, hogy szakdolgozatom elkésźıtése során az
alább felsorolt feladatok elvégzésére a megadott MI eszközöket alkalmaztam:

Table 1:
Feladat Felhasznált

eszköz
Felhasználás
helye

Megjegyzés

Nyelvhelyesség
ellenorzése,
fogalmazás
gördülékenyebbé
tétele, Angol-
Magyar ford́ıtás

GPT-4o Teljes dolgozat-
ban

Diagram késźıtés quiver Teljes dolgozat-
ban

Latex kód
generálása

A felsoroltakon túl más MI alapú eszközöket nem használtam.
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