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1 Introduction

Computing a maximum matching in an undirected (static) graph is one of the most fun-
damental graph-algorithmic problems. It has many different variations and modifications,
for example, it can also be extended for temporal graphs, whose topology is subject to
discrete changes over time. In these graphs, edges can disappear and then reappear, al-
lowing many real-world optimization problems to be modeled as a maximum matching
problem in temporal graphs. However, even the maximum matching problem itself can
be defined in various ways within these structures, which are in the focus of the present
thesis.

The field of temporal graphs has recently gained significant attention [1, 2, 3] and of
course, it is meaningful to study not only matching problems, but also a wide range of
other problems in these graphs. For example, one could study parity games on temporal
graphs [4], but also many problems defined on static graphs — such as vertex cover or
disjoint path problems — can also be investigated in the temporal setting; see [5, 6].
Another recently popular topic is the multistage matching problem [7, 8], which is also
closely related to temporal graphs.

In this thesis, we focus on two naturally arising matching problems: ∆- and γ-
matching [9, 10]. Additionally, we explore how the seemingly unrelated d-distance match-
ing problem [11, 12] connects to temporal graphs and to the two previous problems. This
connection strengthens a hardness result for the γ-matching problem [10]. Namely, we
prove that the problem is APX-hard even on bipartite graphs. In Section 3.2, we extend
the d-distance matching problem to general graphs, examine how this extended problem
relates to the previously discussed ones and we also present a Fixed-Parameter Tracable
algorithm parameterized by d.

In Section 4, we examine how the inverse of the d-distance matching problem [12] can
be extended to the ∆- and γ-matching problems. Additionally, for the extension to ∆-
matchings, we establish several hardness results. In Section 5, we analyze the maximum
∆-matching problem in the case where the underlying static graph of the temporal graph
is a tree and prove three hardness results. The ∆-matching problem on trees is meaningful
on its own, but as we will see, it is also related to the inverse problems discussed earlier.
We prove that this problem becomes NP-hard as soon as every edge can appear at most
twice. We also prove that it can be solved in polynomial time if every edge appears at
most once. Moreover, we provide an Efficient Polynomial-Time Approximation Scheme
for the problem, provided that every edge appears constant times.
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2 ∆- and γ-matchings

In this section, we examine the ∆- and the γ-matching problems, discuss some complexity
results, and explore the relationship between the two problems. But first, let us present
the precise definition of temporal graphs, which originates from the foundational work of
Kempe, Kleinberg, and Kumar [13].

Definition 2.1. A temporal graph G = (G, λ) is a pair (G, λ), where G = (V,E) is an
underlying (static) graph and λ : E → 2N\{∅} is a time-labeling function that specifies
which edge is active at what time, that is, an edge e ∈ E is active at time τ ∈ N if and
only if τ ∈ λ(e). If e is active at time τ , then we call the pair (e, τ) a time edge and we
say that e appears at time τ . The lifetime T (G) < ∞ of a temporal graph is the biggest
time-label assigned to an edge, that is, T (G) = max{τ ∈ λ(e) | e ∈ E}.

From this point onward, we will refer to the integers in the set {1, . . . , T (G)} as time
ticks. Note that the set of the active edges can be empty in some ticks, that is, there can
be a tick τ such that τ /∈ λ(e) for any edge e. These graphs are called temporal because
each of their “states” is only temporary, lasting for just a single tick.

2.1 The ∆-matching

This problem first appeared in [9] under the name temporal matching. To define matchings
in temporal graphs, we need to define what it means for two time edges to be independent.
There are several different definitions for this in the literature, and in the case of ∆-
matching, it is defined as follows.

Definition 2.2. Given a non-negative integer ∆ ∈ N, we call two time edges (e, τ) and
(e′, τ ′) ∆-independent if the edges e, e′ do not share an endpoint or their time-labels τ, τ ′

are at least ∆ time units apart, that is, |τ − τ ′| ≥ ∆. A ∆-matching of a temporal graph
G is a set M of pairwise ∆-independent time edges of G.

The restriction that a vertex cannot be matched more than once within any ∆ con-
secutive ticks, can be thought of as a “recovery” period that an entity (represented by a
vertex) must undergo after being paired with another entity. Just as in the case of static
graphs, we can also ask how large the maximum matching (in this case, the ∆-matching)
is in a temporal graph.

Problem 2.1. In the maximum ∆-matching problem, the input is a temporal graph
G and a non-negative integer ∆ ∈ N. The goal is to find a ∆-matching in G with the
largest possible cardinality. We refer to the problem of deciding whether a given temporal
graph admits a ∆-matching of a given size k as ∆-matching problem.
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Remark 2.1. An alternative way to think about ∆-matchings is that the active time edges
in M must form a matching in any consecutive ∆ ticks.

The topic of ∆-matching has been thoroughly explored in [9]. They proved that the
maximum ∆-matching problem is APX-complete even if ∆ = 2, T = 3, and every edge of
the underlying graph appears only once. They also proved that the ∆-matching problem
is NP-complete, even if ∆ = 2, T = 5, and the underlying graph of the input temporal
graph is complete. Among several important complexity results, the following theorem
will be particularly useful later in this thesis.

Theorem 2.1. (Mertzios et al. [9]) The maximum ∆-matching problem is NP-hard, even
if ∆ = 2 and the underlying graph of the input temporal graph is a path.

In [9], they also presented a ∆
2∆−1

-approximation algorithm for maximum ∆-matching,
and an FPT-algorithm parameterized by the combination of ∆ and ν, where ν denotes the
size of the maximum matching in the underlying graph G of the input temporal graph.
The algorithm runs in 2O(ν∆) ·(|V |+

∑T
τ=1 |Eτ |)· T∆ time, where Eτ denotes the set of active

edges at time τ . However, this is not the best-known result, as in [14], an algorithm was
presented that solves the problem in ∆O(ν) · (|V | +

∑T
τ=1 |Eτ |) time, and hence provided

an exponential speedup in terms of ∆.

2.2 The γ-matching

Now, let us consider another definition of independence, which we call γ-independence.
The definition is as follows.

Definition 2.3. Given a temporal graph G = (G, λ), G = (V,E), an edge of the under-
lying graph e ∈ E and a non-negative integer γ ∈ N, the γ-edge of e at time τ is the
set {(e, τ ′) | τ ′ ∈ {τ, . . . , τ + γ − 1}}, where {τ, . . . , τ + γ − 1} ⊆ λ(e). We denote this by
Γγ(e, τ). We say that two γ-edges Γγ(e, τ) and Γγ(e

′, τ ′) are γ-independent if the edges
e, e′ do not share an endpoint or {τ, . . . , τ + γ − 1} and {τ ′, . . . , τ ′ + γ − 1} are disjoint.
A γ-matching of a temporal graph G is a set M of pairwise independent γ-edges.

Both ∆- and γ-matching are commonly referred to as temporal matchings in the lit-
erature, however, we need to make a clear distinction between the two concepts. The
problem of maximizing the size of a γ-matching was first introduced in [10] under the
same name. The problem is as follows.

Problem 2.2. In the maximum γ-matching problem, the input is a temporal graph
G and a non-negative integer γ ∈ N. The goal is to find a γ-matching in G with the largest
possible cardinality.
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In [10], they worked with a slightly different terminology. They designed a “link
stream” generating process by mimicking the behavior of a random moving group of
particles. Their main result is showing that the maximum γ-matching problem is NP-
hard for every γ ≥ 2. They also provided a kernelization algorithm for the problem
parameterized by the size of the solution. On the way to obtaining the kernelization
algorithm, they also provided a 2-approximation algorithm for the maximum γ-matching
problem. The problem of maximum γ-matching was later studied in [15], where they
provided a PTAS for a special case of the problem, and an FPT algorithm for the general
case.

However, since the first paper on γ-matching [10] appeared earlier than the first pa-
per on ∆-matching [9], the connection between γ-matching and ∆-matching was only
discovered in the latter paper. They showed that there is an easy reduction from the
γ-matching to the ∆-matching. This reduction is as follows. For every sequence of γ

consecutive time edges starting at tick τ , we introduce only one time edge at tick τ , and
set ∆ = γ. Observe that this is indeed a good reduction, since there is a one-to-one
correspondence between the solutions of the two problems. As they underlined in [9], this
already implies that deciding whether a given temporal graph admits a ∆-matching of a
given size k is NP-complete. However, they were unable to find a reduction in the reverse
direction, just as we were not. Nevertheless, some hardness results in [9] can be easily
transferred to γ-matchings. For example, they showed that γ-matching is NP-hard and its
canonical optimization version is APX-hard even if γ = 2 and T = 4, which strengthens
the hardness result in [10]. By a similar reduction from the d-matching to the γ-matching,
we were able to strengthen the hardness results presented in the next section.

3 The d-matching

In this section, we define the d-matching problem, which was first presented in [11] under
the name d-distance matching problem. We also define the d-b-matching problem, which
was first introduced in [12] under the name d-distance b-matching problem.

3.1 The d-matching problem and temporal graphs

Originally, the d-matching problem is defined on simple static graphs, but in this section,
we discuss it in the concept of temporal graphs and demonstrate that the d-matching
problem can even be reduced to the γ-matching problem. But first, consider the definition
of the d-matching problem.

Problem 3.1. In the maximum d-matching problem, we are given a bipartite graph
G = (S, T,E) with S = {s1, . . . , sn}, a weight function on the edges w : E → R+ and a
positive integer d ∈ Z+. The goal is to find a maximum-weight subset M ⊆ E of the edges
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such that the degree of every node of S is one in M , and if sit, sjt ∈ M , then |i− j| ≥ d.
If a set of edges M satisfies these two conditions, we call it a d-matching.

In the first paper [11], they showed that the problem is NP-hard, even in the un-
weighted (w ≡ 1) case, but it admits a simple 3-approximation. They also gave an FPT
algorithm parameterized by d, showed that the integrality gap of the natural integer pro-
gramming model is at most 2 − 1

2d−1
, and gave an LP-based approximation algorithm

for the weighted case with the same guarantee. In [12], the author further studied the
problem, and proved that the problem is APX-hard even in the unweighted case. They
also gave a (2− 2

d
)-approximation algorithm and showed that 2− 2

d
is a tight upper bound

on the integrality gap of the natural integer programming model, provided that the nodes
in S are considered to be in cyclic order.

At first, it is not clear how this problem is related to temporal graphs, but observe
that d-matchings can be formulated as follows.

Remark 3.1. In the bipartite graph G = (S, T,E), M is a d-matching if we obtain a
matching by restricting M to any d consecutive nodes from S. Here, restricting M to a
set of nodes X means that we only consider the edges in M , which are induced by X.

Note that this definition is similar to the one in Remark 2.1. Therefore, with this
observation, we got a slightly closer to the concept of temporal graphs. Now, we
reduce the maximum d-matching problem to the maximum γ-matching problem and
show that the latter problem is APX-hard, even if the underlying graph of the input
temporal graph is bipartite. Let the input of the maximum d-matching problem be
G = (S, T,E), S = {s1, . . . , sn}, w : E → R+, d ∈ Z+, and construct the corresponding
input G ′ = (G′, λ′), γ′ ∈ N of the maximum γ-matching problem. Let G′ = (V ′, E), where
V ′ = S ∪ T . We construct the corresponding time-labeling function λ as follows. Let
λ(sitj) = {i, . . . , i + d − 1}, and let γ = d. Observe that with this reduction, there is a
one-to-one correspondence between the solutions of the two problems.

Corollary 3.1. The maximum γ-matching problem is APX-hard, even if the underlying
graph of the input temporal graph is bipartite.

Corollary 3.2. The maximum d-matching problem can be reduced to the maximum ∆-
matching problem.

In [12], the author also studied a different problem related to d-matching, the d-
distance b-matching problem, which we refer to as d-b-matching.

Problem 3.2. In the maximum d-b-matching problem, we are given a bipartite graph
G = (S, T,E) with S = {s1, . . . , sn}, a weight function on the edges w : E → R+, a
positive integer d ∈ Z+ and a degree bound function b : S ∪T → Z+. The goal is to find a
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maximum-weight subset M ⊆ E of the edges satisfying the following two conditions. First,
the degree of every node v ∈ S ∪ T is at most b(v) in M . Second, if sit, sjt ∈ M , then
|i− j| ≥ d. If a set of edges M satisfies these two conditions, we call it a d-b-matching.

It is easy to see that we get back the maximum d-matching problem when b(s) = 1

for every s ∈ S and b(t) = ∞ for every t ∈ T . Hence, this problem is NP-hard as well.
In the cyclic version of the problem, the nodes in S are considered to be in cyclic order.
In [12], they prove that 2− 1

d
is a tight upper bound on the integrality gap of the natural

integer programming model for the cyclic maximum d-b-matching problem provided that
2d− 1 divides the size of S.

Also in this paper, a different aspect of the problem is considered, in which the goal is
to find a permutation of S maximizing the weight of the optimal d-b-matching. They prove
that such a permutation can be found in polynomial time — even though the maximum
d-matching problem itself is NP-hard and also hard to approximate arbitrarily. For d-b-
matchings, however, they prove that finding the best permutation is NP-hard, even when
b(s) = 2 for all s ∈ S or d = 2, and they give e-approximation algorithms for both the
cyclic and the non-cyclic cases, where e is the Euler’s number. We refer to the problem
of finding the best permutation as the inverse of the original problem. In Section 4, we
further discuss the inverse of the maximum d-b-matching problem and examine what can
be stated about the inverse of the ∆-matching and γ-matching problems. But first, let
us present a variant of the maximum d-matching problem.

3.2 An adaptation of d-matchings to general graphs

Note that the alternative definition in Remark 3.1 still makes sense even if the graph is
non-bipartite; however, in this case, we must define an ordering for all the vertices. Thus,
we can introduce a variant of the d-matching problem defined for general graphs, which
resembles the bipartite case.

Definition 3.1. In the non-bipartite d-matching problem, we are given a graph G =

(V,E) with V = {v1, . . . , vn}, a weight function on the edges w : E → R+ and a positive
integer d ∈ Z+. The goal is to find a maximum-weight subset M ⊆ E of the edges such
that we obtain a matching by restricting M to any d consecutive points from V . If a set
of edges M satisfies this condition, we call it a non-bipartite d-matching.

However, despite this being a variant of the problem defined on bipartite graphs, we
did not find a reduction either from the original problem to the non-bipartite one or
in the reverse direction. Nevertheless, we can prove that the non-bipartite d-matching
problem is NP-hard by reducing another NP-hard problem to it. The other problem is the
double matching problem, which was used in [11] to prove that the d-matching problem is
NP-hard. The definition of the double matching problem is as follows.
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Problem 3.3. In the double matching problem, we are given a bipartite graph G =

(S, T,E) and two sets S1, S2 ⊆ S such that S1 ∪ S2 = S. The goal is to find a maximum-
size subset M ⊆ E for which both M ∩ E1 and M ∩ E2 are matchings, where Ei denotes
the edges induced by Si and T for i = 1, 2.

Theorem 3.1. The non-bipartite d-matching problem is NP-hard, even in the unweighted
case.

Proof. Madarasi [11] proved that the double matching problem is NP-hard even if
|S1| = |S2|. Now, we reduce this problem to the non-bipartite d-matching problem in
the following way. Let the input of the double matching problem be G = (S, T,E) and
S1, S2 ⊆ S, such that S1∪S2 = S and |S1| = |S2|. We can now construct the corresponding
input of the non-bipartite d-matching problem. Let the new input graph be G′ = (V ′, E),
the weight function on the edges w′ ≡ 1 and the positive constant d′ = |S1|+ |T |+ |D1|,
where D1 is the set of |S1 \ S2| dummy nodes. The set of nodes in the new input is
V ′ = (S1 \ S2) ∪ D1 ∪ (S1 ∩ S2) ∪ T ∪ D2 ∪ (S2 \ S1), where D2 is a copy of D1. In the
previous expression, the vertices corresponding to each set follow the same order as the
sets themselves in the previous expression. Within each set, the order of the vertices is as
follows. In (S1 \S2), (S1∩S2) and (S2 \S1) the order of the nodes is the same as before, in
T , D1 and D2 the order of the nodes is arbitrary. The edge set of G′ is the same as that
of G. The original input G of the double matching problem is illustrated in Figure 1a and
the constructed G′ is illustrated in Figure 1b.

Let the solution of the constructed non-bipartite d-matching problem be M∗. Observe
that M∗ is a maximum-size subset M∗ ⊆ E for which both M∗ ∩ E1 and M∗ ∩ E2 are
matchings. Also observe that this is the only constraint in the constructed non-bipartite
d-matching problem and hence there is a one-to-one correspondence between the solutions
of this problem and the solutions of the double matching problem.

Since the problem is NP-hard, we can only hope to approximate the optimal solution.
But before moving on to the approximation algorithm, let us observe a few properties of
the feasible solutions. First of all, it can be assumed that every edge e with endpoints
vi, vj, where |i− j| ≥ d, are included in the solution. In these cases we say that the edge e

jumps a distance at least d. Second, observe that without edges that jump a distance at
least d, a feasible solution M to the problem is the union of node-disjoint paths. Indeed,
if we only consider the nodes and the edges of the solution (G|M), every node has a degree
of at most two, since each node can only have one right and one left neighbor. With these
observations, we are now ready to present a 2-approximation algorithm to the problem.

The algorithm is very simple: it first includes all the edges into the solution M , which
jump a distance at least d, then it finds a maximum-weight matching in G, and includes its
edges into M . As we observed, the optimal solution M∗ in G is a set of node-disjoint paths
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s1 s2 s3 s4 s5 s6

t1 t2

S1

S2

(a) An instance G of the double matching problem.

s1 s2 d1 d2 s3 s4 t1 t2 d3 d4 s5 s6

S1 \ S2 D1 S1 ∩ S2 T D2 S2 \ S1

d

(b) The input G′ of the non-bipartite d-matching problem con-
structed from G.

Figure 1: Illustration of the construction of G′ in the proof of Theorem 3.1.

— apart from the edges that jump a distance at least d. Therefore, M∗ = (M∗
1 ∪M∗

2 )∪J ,
where M∗

1 and M∗
2 are edge-disjoint matchings and J is the set of all edges that jump a

distance at least d, where J∩(M∗
1 ∪M∗

2 ) = ∅. Observe that w(J)+max(w(M∗
1 ), w(M

∗
2 )) ≥

1
2
w(M∗), where w(X) denotes the sum of the edge-weights in X. By definition, the set M

produced by the algorithm satisfies that w(M) ≥ w(J)+max(w(M∗
1 ), w(M

∗
2 )) ≥ 1

2
w(M∗),

thus the algorithm is indeed 2-approximating.
As previously mentioned, Madarasi [11] provided an FPT algorithm for the (weighted)

d-matching problem, parameterized by d. In what follows, this approach is adapted to
present an FPT algorithm for the non-bipartite d-matching problem, also parameterized
by d.

First, if there are parallel edges in the graph G, we reduce the graph by keeping only
one edge from each set of parallel edges — since at most one of them can be selected
into the solution. This reduction can be done in O(m) steps, where m is the number of
edges. Second, if there are some edges in G which jump a distance d, we include them in
the solution and reduce the graph by excluding these edges. This reduction also runs in
O(m) steps. After these reductions, the degree of each node in G is at most 2d− 2.

In what follows, a dynamic programming approach is presented to solve the prob-
lem (after the previous reductions) in O(nd(2d − 1)d) steps. Let the nodes of G be
V = {v1, . . . , vn}, in this order. For i ≥ d, let f(vi, z1, . . . , zd) denote the weight of the
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maximum-weight d-matching if the problem is restricted to the first i nodes and vi−j+1

is assigned to zj for j ∈ [d], where zj ∈ (N(vi−j+1) ∩ {vi−j, vi−j−1, . . . , vi−j−d+2}) ∪ {∅}.
Here, N(v) denotes the neighbors of v in G, and ∅ denotes that we assigned nothing to
a node. Assigning vi−j+1 to zj, where both vi−j+1 and zj are nodes of G, means that
we include the edge vi−j+1zj into the solution. If vi−j+1 ∈ V and zj = ∅, then assign-
ing vi−j+1 to zj means that for every w ∈ (N(vi−j+1) ∩ {vi−j, vi−j−1, . . . , vi−j−d+2}), the
edge wvi−j+1 is not included into the solution. Let us denote the set of the “possible left
neighbors” of vi−j+1 by L(vi−j+1) = (N(vi−j+1) ∩ {vi−j, vi−j−1, . . . , vi−j−d+2}) ∪ {∅}.

By definition,
f(vi, z1, . . . , zd) = −∞ (1)

if a node appears multiple times among z1, . . . , zd, since it yields an invalid solution.
However, note that ∅ can occur multiple times among the neighbors. Equation (1) also
holds if there exists a node vi−j+1 such that its left neighbor is zj = vk and vk also has a left
neighbor zi−k+1 = vℓ, where |(i− j+1)− ℓ| < d. In this case, vk has two neighbors, which
are closer to each other than d, hence it also yields an invalid solution. Thus, checking
whether f = −∞ can be done in O(d) steps for each combination of vi, z1, . . . , zd.

If f(vi, z1, . . . , zd) ̸= −∞, it can be calculated by the following recursive formula.

f(vi, z1, . . . , zd) =


d∑

j=1

w(vd−j+1zj) if i = d,

w(viz1) + max
ẑ∈L(vi−d)

f(vi−1, z2 . . . , zd, ẑ) if i > d,

(2)

where i ≥ d, vi ∈ V , zj ∈ L(vi−j+1) for j ∈ [d] and f(vi, z1, . . . , zj) ̸= −∞. To see that
this recursion holds, observe that in the first case, by definition, f(vi, z1, . . . , zd) is the
weight of the non-bipartite d-matching {vjzd−j+1 : j ∈ [d]}. In the second case, vi must be
mapped to z1 and we want to find the maximum-weight non-bipartite d-matching on the
first i− 1 nodes which maps vi−j+1 to its left neighbor zj for j ∈ {2, . . . , d}. To this end,
we want to find a left neighbor ẑ ∈ L(vi−d), to be assigned to node vi−d, which maximizes
f(vi−1, z2, . . . , zd, ẑ). Observe that the solution to the problem, by definition, is

max{f(vn, z1, . . . , zd) : zj ∈ L(vn−j+1) for j ∈ [d]}, (3)

which we can obtain by solving all the subproblems.
The number of subproblems is O(n(2d − 1)d), since every node can have at most

2d − 1 neighbors (including ∅). Equation (2) gives a way to compute f(vi, z1, . . . , zd)

in O(d) steps if the subproblems are computed in appropriate order. That is, all the
necessary f(vi−1, z

′
1, . . . , z

′
d) values are already calculated. Therefore, the number of steps

to compute all the subproblems is O(nd(2d − 1)d) and the solution can be computed
in O((2d − 1)d) steps by (3). This means that the algorithm is indeed fixed-parameter
tractable with respect to the parameter d.
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4 Inverse problems of the maximum ∆-matching

As it is discussed in [12], it is a natural question whether we can find a permutation of S
maximizing the weight of the optimal d-b-matching. Formally, let M∗

π denote an optimal
d-b-matching under the permutation π of S. We want to find a permutation of S and a
d-b-matching M∗ with respect to this permutation such that w(M∗) = maxπ∈C w(M

∗
π),

where C is the set of all permutations of S and w is the weight function on the edges. We
refer to this as the inverse of the original problem. In [12], they present a polynomial-
time algorithm that finds an optimal permutation and an optimal d-b-matching under
this permutation, provided that b(s) = 1 for all s ∈ S and b(v) = ∞ for all v ∈ T . They
also prove that the analogous problem is NP-hard even if b ≡ 2 or d = 2. Following
these results, one may ask what can be said about the inverse of the ∆-matching and the
γ-matching.

In Section 4.1, we examine a few unweighted inverse definitions of the maximum ∆-
matching problem and briefly discuss why there is not much to say about the inverse of
the maximum γ-matching problem. In Section 4.2 we explore a few weighted cases, and
then in Section 4.3, we examine a new edge coloring problem related to this topic, the
bagpiper edge-coloring.

4.1 Unweighted inverse problems

What follows is a definition for the inverse of the maximum ∆-matching problem.

Problem 4.1. We are given a graph G = (V,E) and a positive integer k ∈ Z+. The goal
is to assign an integer λ(e) ∈ [k] to each edge of G in such a way that the solution of the
maximum ∆-matching problem on the temporal graph G = (G, λ) is maximized.

Formally, let M∗
λ denote a maximum ∆-matching under the assignment function (which

is also the time-label function) λ. We want to find a labeling function λ : E → [k] and
a ∆-matching M∗ with respect to this labeling function such that |M∗| = maxλ∈F |M∗

λ |,
where F is the set of all functions E → [k]. For the sake of simplicity, at first, let ∆ = 2,
and we deal with the general case later.

Lemma 4.1. There is always an optimal solution λ∗ to Problem 4.1, where λ∗(e) is odd
for all e ∈ E, provided that ∆ = 2.

Proof. Let λ be an optimal solution, and we now construct λ∗, where λ∗ is also optimal,
but only uses odd time-labels. For all the edges e ∈ E, where λ(e) = 2i − 1 for some
i ∈ {1, . . . , ⌈k/2⌉}, let λ∗(e) = λ(e). If there is an edge e for which λ(e) = 2, then let
λ∗(e) = 1. Since ∆ = 2, this change can only increase the size of the optimal solution of
the maximum ∆-matching problem. After we changed all the 2-s to 1-s, we can move on
to the next even number. Now, if we have an edge e ∈ E, for which λ(e) = 4, then let



4.1 Unweighted inverse problems 14

λ∗(e) = 3. Since we do not have any time-labels with the value of 2, this change can also
only increase the size of the optimal solution. Continue this for all the even numbers (in
increasing order), that is, if λ(e) = 2i for some i ∈ {1, . . . , ⌊k/2⌋}, then let λ∗(e) = 2i− 1.
Since every change can only affect the size of the optimal solution in a positive way, λ∗ is
at least as good as λ.

After this lemma, the problem can also be formulated as follows: find a maximum
⌈k/2⌉-edge-colorable subset of edges in G. Indeed, if we only use every second integer as
time-labels, the ∆ = 2 constraint is exactly the constraint in the standard edge-coloring
problem, that is, the edges of the same color (same time-label) cannot be adjacent. In
the general case, where ∆ is not necessarily 2, we can make a very similar observation.

Lemma 4.2. There is always an optimal solution λ∗ to Problem 4.1, where λ∗(e) can be
written as λ∗(e) = j∆+ 1 for some j ∈ {0, . . . , ⌊k/∆⌋} for each edge e ∈ E.

Proof. The proof is the same as in Lemma 4.1, the only difference is that we use different
values in λ∗.

After this observation, the general problem can also be formulated as follows: we are
looking for a maximum ⌈k/∆⌉-edge-colorable subset of edges in G. This problem is NP-
hard, even if ∆ = 2, as it is proven in [16, 17, 18]. However, if the graph G is bipartite,
we can solve the problem in polynomial time. Note that in [18], they have already solved
this problem, but in this thesis we present a different solution.

Theorem 4.1. Problem 4.1 can be solved in polynomial time if the graph G is bipartite.

Proof. Observe that due to Kőnig’s edge-coloring theorem, the problem can be formulated
as follows. We aim to find a set of edges M ⊆ E, such that the maximum degree in G|M
is at most ⌈k/∆⌉. We can write the corresponding integer programming problem in the
form of Ax ≤ b, max1x, where b is a vector, in which all coordinates are ⌈k/∆⌉, A is
the incidence matrix of G, where the columns correspond to the edges, and x ∈ {0, 1}
indicates if a column (edge) is chosen into the solution or not. Since G is bipartite, the
matrix of this IP-problem is totally unimodular. The right-hand side is a vector containing
integers, therefore the theorem holds [19, 20].

Let us slightly alter the previous definition to get to the second naturally arising inverse
problem.

Problem 4.2. We are given a graph G = (V,E) and a positive integer k ∈ Z+. The
goal is to assign some integers λ(e) ⊆ {1, . . . , k} to each edge of G in such a way that
the solution of the maximum ∆-matching problem on the temporal graph G = (G, λ) is
maximized.



4.1 Unweighted inverse problems 15

Formally, let M∗
λ denote a maximum ∆-matching under the assignment function (which

is also the time-label function) λ. We want to find a labeling function λ : E → 2[k] and
a ∆-matching M∗ with respect to this labeling function such that |M∗| = maxλ∈F |M∗

λ |,
where F is the set of all functions E → 2[k].

If there is no upper bound on the time-labels that λ can assign to an edge, the problem
is trivial, since λ(e) = {1, . . . , k} is always optimal. In fact, the size of the optimal solution
of the maximum ∆-matching is always |M | · ⌈k/∆⌉, where M is a maximum matching in
G. Let us introduce a capacity constraint c ∈ Z+ on the time-labels that λ can assign to
an edge. That is, |λ(e)| ≤ c for all e ∈ E. Note that with c = 1, we obtain Problem 4.1.

Remark 4.1. Problem 4.2 with this capacity constraint can be solved as follows. Instead
of assigning a capacity of c to each edge, include each edge in the graph c times as parallel
edges, and solve Problem 4.1 on this graph.

With this observation, it is easy to see that even with capacity constraint, there is
always an optimal λ∗ function, where λ∗(e) = j∆ + 1 for some j ∈ {0, . . . , ⌊k/∆⌋} for
each edge e ∈ E. We can also observe that in some special cases, the problem is easily
solvable.

Theorem 4.2. Problem 4.2 with capacity constraints can be solved in polynomial time,
provided that c ≥ ⌊k/∆⌋ and ∆ > 0.

Proof. We solve this problem based on Remark 4.1. Let λ∗ be an optimal assignment
function, where for every edge e, λ∗(e) = j∆ + 1 for some j ∈ {0, . . . , ⌊k/∆⌋}. Let Mλ∗

be the corresponding optimal solution to the maximum ∆-matching problem under the
labeling function λ∗. For every j ∈ {0, . . . , ⌊k/∆⌋}, let M j∆+1

λ∗ denote the set of edges,
where λ∗(e) = j∆ + 1, and (e, j∆ + 1) ∈ Mλ∗ . Observe that for every j, M j∆+1

λ∗ is a
matching, since ∆ > 0. Let P denote the maximum matching in the graph. Obviously,
|P | ≥ |M j∆+1

λ∗ | for every j ∈ {0, . . . , ⌊k/∆⌋}. Now construct an assignment function λ,
where λ(ej) = j∆ + 1 for every e ∈ P and every j ∈ {0, . . . , ⌊k/∆⌋}, where {e0, . . . , ec}
is an arbitrary ordering of the edges parallel to e (including e). For every other edge
f ̸∈ P , let λ(f) = 1 and let Mλ denote a corresponding optimal solution of the maximum
∆-matching under the labeling function λ. Observe that |M j∆+1

λ | = |P | ≥ |M j∆+1
λ∗ | for

every j ∈ {0, . . . , ⌊k/∆⌋}. Since |Mλ∗| =
∑⌊k/∆⌋

j=0 |M j∆+1
λ∗ | ≤

∑⌊k/∆⌋
j=0 |P | = |Mλ|, we can

be sure that λ is at least as good as λ∗. Observe that in order to construct λ, we only need
to be able to find the maximum matching P in the graph, which we can do in polynomial
time, thus the theorem holds.

The question may arise as to why we are not addressing the inverse of the maximum γ-
matching problem as well. The reason for this is that if we attempt to rewrite Problem 4.1
in terms of γ-matching, we arrive at the following problem.
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Problem 4.3. We are given a graph G = (V,E) and a positive integer k ∈ Z+. The goal
is to assign some integers λ(e) ⊆ [k] to each edge of G in such a way that the solution of
the maximum γ-matching problem on the temporal graph G = (G, λ) is maximized.

It is easy to see that, due to the definition of γ-matching, there is always an optimal
labeling function λ∗ that assigns numbers only to the edges of the largest matching in G.

4.2 Weighted inverse problems

Let us return to Problem 4.1. As we have already established, the problem is solvable for
bipartite graphs, while in the general case, it is NP-hard. However, we can observe that
for bipartite graphs, the problem was solved almost “too easily”, giving the impression
that even more challenging problems could be tackled. Therefore, we now consider the
weighted versions of the problem, specifically three different weighted cases. In the first
case, we only have weights on the edges, but since we are minimizing, we call them costs.

Problem 4.4. We are given a graph G = (V,E), a positive integer k ∈ Z+, and a cost
function on the edges c : E → R+. The goal is to assign an integer λ(e) ∈ [k] to each edge
of G in such a way that the solution of the maximum ∆-matching problem on the temporal
graph G = (G, λ) is maximized, while the cost of the edges in the solution is minimized.

Formally, let M∗
λ denote a maximum ∆-matching under the assignment function (which

is also the time-label function) λ. We want to find a labeling function λ : E → [k] and a ∆-
matching M∗ with respect to this labeling function such that |M∗| = maxλ∈F |M∗

λ |, where
F is the set of all functions E → [k]. We also have to satisfy the following condition:
cost(M∗) = minMs∈S cost(Ms), where S is the set of all optimal sized solutions to the
maximum ∆-matching problem. Here, cost(M) =

∑
e∈M c(e). It turns out, that we can

solve this problem in polynomial time.

Theorem 4.3. Problem 4.4 is solvable in polynomial time, provided that the graph G is
bipartite.

Proof. We solve the problem by formulating two integer programming (IP) problems that
precisely describe it. Then, we show that the matrices of both IP problems are totally
unimodular (TU), and since the right-hand sides consist of integer vectors, we can find a
solution in polynomial time [19, 20].

The first IP problem is the same as the one in the proof of Theorem 4.1. We already
proved that we can solve this problem in polynomial time, hence we can calculate the size
of an optimal solution in polynomial time. We can use this information in the second IP
problem, where we look for a solution with this size, but with the least cost.
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The second problem can be formulated as follows: Bx ≤ b, max cx, where B =

[
A

1

]
,

b =

[
bA

b1

]
, and A is the incidence matrix of G, where the columns correspond to the

edges. Every coordinate in bA is exactly ⌈k/∆⌉, and b1 has only one coordinate, which is
the previously calculated size of the optimal solution (an integer). Moreover, the vector
c contains the costs of the edges, and the edges appear in the same order as in the
matrix A. It is easy to see that the right-hand side is an integer vector. Since A is the
incidence matrix of a bipartite graph, B is a well-known network matrix, hence it is totally
unimodular.

Thus, with this edge-cost definition, the problem was once again solvable. Now, let us
move on to the other edge-cost definitions, which are as follows.

Problem 4.5. We are given a graph G = (V,E), a positive integer k ∈ Z+ and a cost
function on the labels c : [k] → R+. The goal is to assign an integer λ(e) ∈ [k] to each
edge of G in such a way that the solution of the maximum ∆-matching problem on the
temporal graph G = (G, λ) is maximized, while the cost of the labels in the solution is
minimized.

In the first problem, we gave costs to the edges and now we gave costs to the labels.
In the third problem we assign a cost to every edge-label pair.

Problem 4.6. We are given a graph G = (V,E), a positive integer k ∈ Z+, and a cost
function on the edge-label pairs c : E × [k] → R+. The goal is to assign an integer
λ(e) ∈ [k] to each edge of G in such a way that the solution of the maximum ∆-matching
problem on the temporal graph G = (G, λ) is maximized, while the cost of the edge-label
pairs in the solution is minimized.

Now, we will present complexity results for a closely related problem, and using the
methods applied in the proofs, similar results could be obtained for the previous two
problems as well. However, we omit these from the thesis.

4.3 The bagpiper edge-coloring problem

It is somewhat confusing that in the previous problems we only focus on optimal-sized
solutions. However, this is necessary, since we aim to optimize for the maximum ∆-
matching problem, while the cost is only a secondary consideration. If we did not require
the solution to be of optimal size, we would need to penalize the solution size in some
way. To avoid this, we can also attempt the following definition.

Problem 4.7. In the bagpiper edge-coloring problem, we are given a graph G =

(V,E) and two positive integers ∆, k ∈ Z+. The goal is to assign an integer λ(e) ∈ [k] to
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some edges e ∈ E, such that no two adjacent edges have been assigned numbers that are
closer than ∆. We call a labeling function λ a bagpiper edge-coloring of the graph if it
satisfies the condition above.

For the sake of simplicity, let us assume that λ assigns something to each edge, and
if we do not want to assign an integer to some edge e, we say that λ(e) = ∅. In this
definition, k denotes the number of colors, that is, each integer i ∈ [k] corresponds to a
color. Note that the standard edge-coloring problem is the special case of the bagpiper
edge-coloring problem, where ∆ = 1 and λ(e) ̸= ∅ for each edge e.

To see the connection between this problem and the previous weighted inverse defi-
nitions, let us consider the optimization version of this problem. As before, let us start
with the edge-weighted case. It is important to maximize here; otherwise, we would need
to penalize omitted edges or deal with negative weights.

Problem 4.8. In the first weighted case of the bagpiper edge-coloring problem, we are
given a graph G = (V,E), two positive integers ∆, k ∈ Z+ and a weight function w : E →
R on the edges. The goal is to find a bagpiper edge-coloring λ of the graph G, where the
sum of the weights of the colored edges is as big as possible.

Let Λ denote the set of bagpiper edge-colorings λ of the graph G. We want to find the
coloring λ∗ ∈ Λ, such that w(λ∗) = maxλ∈Λw(λ), where w(λ) =

∑
e∈E:λ(e)̸=∅w(e). Note

that in the special case w ≡ 1 the problem is equivalent to Problem 4.1. Also observe
that Lemma 4.2 remains true in this weighted case of the bagpiper edge-coloring, for the
same reason as before.

Theorem 4.4. Problem 4.8 can be solved in polynomial time, provided that the input
graph G is bipartite.

Proof. Since Lemma 4.2 holds, due to Kőnig’s edge-coloring theorem, we can use a similar
proof to the proof of Theorem 4.1. We can write the corresponding IP problem in the
form of Ax ≤ b, maxwx, where b is a vector, in which all coordinates are ⌈k/∆⌉, A is the
incidence matrix of G, and x ∈ {0, 1} indicates if an edge is selected or not. The vector
w contains the weights of the edges, the i-th coordinate of the vector is the weight of the
edge corresponding to the i-th column of A. Since G is bipartite, the matrix of the IP
problem is totally unimodular, and since the vector b contains only integers, the theorem
holds [19, 20].

Since we were able to solve this problem, the question arises whether the reformulation
of the other two problems introduced in the previous section (Problems 4.5, and 4.6) can
also be solved. First, we examine the exact reformulation of these problems, and then we
prove that one of them is NP-hard on bipartite graphs.
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Problem 4.9. In the second weighted case of the bagpiper edge-coloring problem, we
are given a graph G = (V,E), two positive integers ∆, k ∈ Z+ and a weight function
w : [k] → R on the labels. The goal is to find a bagpiper edge-coloring λ of the graph G,
where the sum of the weights of the labels assigned to the edges (with multiplicity) is as
big as possible.

Once again, let Λ denote the set of bagpiper edge-colorings λ of the graph G. We
want to find a coloring λ∗ ∈ Λ, such that w(λ∗) = maxλ∈Λ w(λ), where w(λ) =∑

e∈E:λ(e)̸=∅ w(λ(e)). Now, let us present the third weighted case of the bagpiper edge-
coloring problem, which turns out to be NP-hard.

Problem 4.10. In the third weighted case of the bagpiper edge-coloring problem, we are
given a graph G = (V,E), two positive integers ∆, k ∈ Z+ and a weight function w :

E × [k] → R on the edge-label pairs. The goal is to find a bagpiper edge-coloring λ of the
graph G, where the sum of the weights of the edge-label pairs in the coloring is as big as
possible.

Theorem 4.5. Problem 4.10 is NP-hard, even if the input graph is bipartite and ∆ = 2.

Proof. We reduce the maximum ∆-matching problem on paths to Problem 4.10, since
in [9], they proved that the former problem is NP-hard, even if ∆ = 2 (see Lemma 2.1).
Let the input temporal graph of the maximum ∆-matching problem be G = (G, λ), where
G = (V,E) is a path. We construct the bipartite graph G′ = (V ′, E ′) and the weighting
function w′ in such a way that if we could solve Problem 4.10 on G′ with respect to w′ in
polynomial time, then we could solve the above mentioned NP-hard ∆-matching problem
in polynomial time. Note that we still need two more input parameters for Problem 4.10:
∆′ and k′. For this purpose, we use ∆′ = ∆ and k′ = T , where T is the lifetime of G.

We construct G′ by modifying G in the following way. For every node v ∈ V , let
v′ ∈ V ′. For every edge uv ∈ E, add |λ(uv)| parallel edges between the nodes u′ and v′.
Since G was a path, G′ is a path with parallel edges, hence it is bipartite. All that remains
is to construct the appropriate weight function w′. Let e1u′v′ , . . . , e

|λ(uv)|
u′v′ be an arbitrary

ordering of the parallel edges between u′ and v′ in G′, and let λ(uv)1, . . . , λ(uv)|λ(uv)| be
an arbitrary ordering of the time-labels assigned to the edge uv ∈ E in G. For every
u′v′ ∈ E ′, every i ∈ [|λ(uv)|], and every j ∈ [k], let

w′(eiu′v′ , j) =

1 if i = j,

−∞ if i ̸= j.
(4)

Let λ∗ be an optimal solution to Problem 4.10 in G′ with respect to ∆′, k′ and w′.
Observe that either λ∗(eiu′v′) = ∅ or λ∗(eiu′v′) = i. Also observe that we constructed G′

and w′ in such a way that there is a one-to-one correspondence between the solutions
of the two problems. Moreover, from an optimal solution to Problem 4.10 in G′, we
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can easily construct an optimal solution M∗ to the maximum ∆-matching problem in
G in polynomial time as follows. Let M∗ = {(uv, i) : λ∗(eiu′v′) = i : u′v′ ∈ E ′, i ∈
[|λ(uv)|]}. Due to the one-to-one correspondence, this is a feasible and optimal solution
to the problem. Therefore the theorem holds.

We saw that Problem 4.10 is NP-hard on bipartite graphs. The question may arise
whether the problem remains NP-hard if the input graph is a tree (or a path).

Remark 4.2. From the proof of Theorem 4.5 it is clear that if the maximum ∆-matching
was NP-hard on trees (or paths), even if every edge appeared at most once, then Prob-
lem 4.10 would be NP-hard, even if the input graph G was a tree (or a path).

This question is quite interesting since many NP-hard problems become solvable on
trees, so it would be quite surprising if this problem remained hard (even on paths). This
is precisely why we began to investigate this question as well. During the course of our
research, interesting complexity results also emerged in connection with the maximum
∆-matching problem on trees, which will be discussed in the following section.

5 ∆-matching on trees

The ∆-matching problem has been widely studied, but there are only a few results con-
cerning the case where the underlying graph is a tree. Based on Remark 4.2, if we could
prove that the maximum ∆-matching problem is NP-hard on trees, even if every edge
appears at most once, we could conclude that Problem 4.10 is NP-hard even on trees.
In Section 5.1, we examine the case where every edge can appear at most twice, and
prove that this problem is NP-hard. However, in Section 5.2, we prove that in the case
of single edge appearances, the problem can be solved in polynomial time, thus we still
do not know the hardness of Problem 4.10. Nevertheless, in Section 5.3, we prove that
the maximum ∆-matching problem admits an Efficient Polynomial-Time Approximation
Scheme, provided that the underlying graph G of the input temporal graph G is a tree
and ∆ is constant.

5.1 Multiple edge appearances

A natural question is whether we can solve the maximum ∆-matching problem on trees
when every edge can appear multiple times. From [9], we know that if an edge can appear
arbitrarily many times, the problem becomes NP-hard. Therefore, the question is where
the threshold lies, i.e., what is the smallest number of times an edge can appear while the
problem still remains solvable. In this section, we prove that even with just 2 appearances,
the problem becomes NP-hard.
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s1 s2 s3 s4 s5 s6

t1 t2
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s1 s2 s3 s4 s5 s6

t11 t21 t31 d1 t12 t22 t32 d2

S1

S2

Figure 2: Example of the construction of G′ in the proof of Theorem 5.1. The graph on
the left is the input G of the double matching problem, while the one on the right is the
constructed bipartite graph G′.

Theorem 5.1. Maximum ∆-matching is NP-hard even if ∆ = 2, the underlying graph of
the temporal graph is a tree and every edge appears at most twice.

To prove Theorem 5.1, we need a slightly stronger version of Theorem 3 from [12],
which we obtain by observing that the constructed bipartite graph in the proof of the
latter theorem has the property that the degree of every node s ∈ S is exactly 2.

Lemma 5.1. (Madarasi [11]) The unweighted double matching problem is NP-hard to
α-approximate for any α < 950

949
, even if the degree of every node s ∈ S is exactly 2.

Hence, the unweighted double matching problem is NP-hard, even if the degree of every
node s ∈ S is exactly 2.

Now, we will prove Theorem 5.1 by reducing the NP-hard problem we just obtained
to the maximum ∆-matching problem on trees, where ∆ = 2 and every edge appears at
most twice.

Proof of Theorem 5.1. In the unweighted double matching problem, we are given a bi-
partite graph G = (S, T,E), where the degree of every node s ∈ S is exactly 2, and two
sets S1, S2 ⊆ S such that S1 ∪ S2 = S. Finding a maximum-size subset M ⊆ E for which
both M ∩E1 and M ∩E2 are matchings, where Ei denotes the edges induced by T and Si

for i = 1, 2 , is NP-hard. To reduce this problem to the problem in Theorem 5.1, we need
an intermediate step. To this end, we construct a bipartite graph G′, from which we can
derive the temporal graph whose underlying graph is a tree.

Let G′ = (S, T ′, E ′) be a bipartite graph, where S is exactly the same set of nodes as
in G. Let the set of nodes T have a fixed ordering {t1, . . . , t|T |}. For every ti ∈ T , we add
t1i , t

2
i , t

3
i , di to T ′, where di is a “dummy node”. The edge set of G′ is as follows. For every

edge sti ∈ E, add the edge st1i to E ′ if s ∈ S1\S2, add the edge st2i to E ′ if s ∈ S1∩S2 and
add the edge st3i to E ′ if s ∈ S2 \ S1. The degree of all dummy nodes is 0. We order the
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nodes in T ′ as follows: {t′1, . . . , t′4|T |} = {t11, t21, t31, d1, . . . , t1|T |, t
2
|T |, t

3
|T |, d|T |}. An example of

the construction of G′ is illustrated in Figure 2.
Now, we construct the temporal graph G = (Ĝ, λ), for which the corresponding un-

derlying graph Ĝ is a tree. The core of Ĝ is a star, where the node v in the center has
|S| neighbors: {w1, . . . , w|S|}. The time-labels on the edges of the star is as follows. For
every i ∈ [|S|], let λ(vwi) = {x, y}, provided that si is the neighbor of both t′x and t′y in
G′. Since every node si ∈ S has a degree of 2 in G′, every edge of the star has exactly
two time-labels.

We will get back to the construction of Ĝ, but first observe that if we solve the
maximum ∆-matching problem on this star with ∆ = 2 and the constraint that at most
one time-label can be selected for each edge, then we can solve the double matching
problem on G. Indeed, we constructed G′ and the previous star in such a way that there
is a one-to-one correspondence between the solutions of the two problems. However, in
Theorem 5.1, there is no such constraint that only one time-label can be chosen for each
edge. In the following, we modify Ĝ in such a way that there will always be an optimal
solution for the maximum ∆-matching problem in which this constraint is satisfied.

Now, we continue the construction of Ĝ. We iterate through the nodes wi for every
i ∈ [|S|], and connect new nodes to these to create an optimal solution for the maximum
∆-matching problem in which the above-mentioned constraint is satisfied. For every node
wi, we have three cases based on the time-labels on the edge vwi. From now on, we
assume that λ(vwi) = {x, y}, where x < y. The three cases are as follows.

If x + 1 = y, the condition is automatically satisfied, since ∆ = 2. Therefore, we do
not need extra edges to fix the construction.

If x + 1 ̸= y and x ̸≡ y mod 2, then we add y−x−1
2

new nodes to the graph, and
denote them by w1

i , . . . , w
(y−x−1)/2
i , and we also add the edges wiw

1
i , . . . , wiw

(y−x−1)/2
i .

The time-labels on these edges are as follows. On the first edge, the time-labels are
λ(wiw

1
i ) = {x+1, x+2}, and on the last edge, λ(wiw

(y−x−1)/2
i ) = {y−2, y−1}. We space

the time-labels evenly, that is, λ(wiw
j
i ) = {x + 2j − 1, x + 2j} for every j ∈ [(y − x)/2].

Now, we are done with the second case.
In the last case, we have x+ 1 ̸= y, where x ≡ y mod 2. First, we add one node ŵi to

the tree, and the edge wiŵi. The time-labels on this edge are λ(wiŵi) = {x, y+1}. From
here, the construction is the same as before, since on the edge wiŵi the two labels are
incongruent mod 2. Precisely, we add y−x

2
new nodes to the graph, named ŵ1

i , . . . , ŵ
(y−x)/2
i ,

and we add the edges ŵiŵ
1
i , . . . , ŵiŵ

(y−x)/2
i . The labels on these edges are as follows.

λ(ŵiŵ
j
i ) = {x+ 2y − 1, x+ 2y} for every j ∈ [(y − x)/2]. With that, we have covered all

cases and we are done with the construction of Ĝ, which is illustrated in Figure 3.
Now, consider the maximum ∆-matching problem on Ĝ with the constraint that on

the core star, we have to choose as many time edges as possible, but we can select at most
one time-label per edge. We refer to this problem as the core problem.
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Figure 3: Example of the construction of Ĝ in the proof of Theorem 5.1.

Remark 5.1. If we can solve the core problem in polynomial time, we can also solve the
double matching problem in polynomial time.

Now, we prove two lemmas, which show that we can solve the core problem in poly-
nomial time if we can solve the maximum ∆-matching problem on Ĝ in polynomial time.
Let us call a solution of the maximum ∆-matching problem on this tree normalized if the
solution has at most one time-label on each edge of the core star.

Lemma 5.2. For every optimal solution of the maximum ∆-matching problem on Ĝ,
there exists an optimal normalized solution of the same size.

Proof. Let M be an optimal solution to the maximum ∆-matching problem on Ĝ, where
M contains both time edges of the edge vwi of the core star. Observe that we have
constructed Ĝ in such a way that we can exclude either of the two time edges of vwi and
rearrange the selected time edges in the extra component connected to wi, and still obtain
a feasible solution to the maximum ∆-matching problem with the same size. Since the
rearrangement of the chosen time edges in the extra component does not affect the rest of
the tree, and by removing a chosen time-label from an edge of the core star we still obtain
a feasible solution, we can repeat this process until we obtain a normalized solution.

We have proven that there always exists a normalized optimal solution to the maximum
∆-matching problem in this tree. It remains to prove that such solutions, when restricted
to the core star, are optimal solutions to the core problem.

Lemma 5.3. Every optimal normalized solution is an optimal solution to the core prob-
lem.

Proof. Observe that for every edge vwi of the core star, the number of time edges that
can be selected from the associated extra component is independent of whether we have
selected zero or one time edges of vwi. Let M be an optimal normalized solution to the
maximum ∆-matching problem on Ĝ, which is not an optimal solution to the core problem.
Let Mc denote the set of time edges of the core star, which are also in M . Since M is not an
optimal solution to the core problem, there exists a solution M∗, which is also normalized,
but |M∗

c | > |Mc|. Since both M and M∗ are normalized, M ′ = (M \Mc)∪M∗
c is a feasible
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solution to the maximum ∆-matching problem, based on the previous observation. Since
|M∗

c | > |Mc|, it follows that |M ′| > |M |, which is a contradiction, since M is an optimal
solution to the maximum ∆-matching problem.

After finding an optimal solution to the maximum ∆-matching problem on Ĝ, we can
construct a normalized solution based on Lemma 5.2 in polynomial time, from which we
can obtain an optimal solution to the core problem in polynomial time. Therefore, if we
could solve the maximum ∆-matching problem on Ĝ in polynomial time, we could solve
the double matching problem in polynomial time, based on Remark 5.1, which completes
the proof of Theorem 5.1.

With that, we have shown that the maximum ∆-matching problem is NP-hard, even
on trees if every edge appears at most twice and ∆ = 2. From the proof of Theorem 5.1,
it is clear that the problem remains NP-hard when ∆ ≥ 2 and every edge appears at most
twice, and also when ∆ = 2, but the edges can appear at least two times. But what can
we say about approximation algorithms? Can we approximate the optimal solution to
the maximum ∆-matching problem on trees arbitrarily well, or is this problem also APX-
hard? In the Section 5.3, we address this question and present an Efficient Polynomial-
Time Approximation Scheme. But first, let us present a solution to the problem, where
the edges can appear at most once.

5.2 Single edge appearances

In Section 5.1, we showed that the maximum ∆-matching problem is NP-hard on trees
even if the edges can appear at most twice. In this section, we prove that the problem
can be solved in polynomial time if the edges can appear at most once.

Theorem 5.2. The maximum ∆-matching problem can be solved in polynomial time if
the underlying graph G = (V,E) of the input temporal graph G = (G, λ) is a tree, and
every edge appears at most once.

Proof. We provide a dynamic programming solution to the problem. First, add a new
node r to the set of nodes V , add a new edge rr′ to the set of edges E, where r′ ∈ V is an
arbitrary node, and let λ(rr′) = ∅. Run a BFS (Breadth-First Search) algorithm from the
node r to define parents, children, and rooted subtrees. Let us denote the parent of a node
v by p(v) and the subtree rooted at a node v by Tv. If a node v has children v′1, . . . , v

′
k,

then we call the edges vv′1, . . . , vv
′
k the descendant edges of v. Let Sv = Tv ∪ {vp(v)}

denote the union of the subtree of v and the edge that connects v to its parent. Since the
new node r does not have a parent, we define p(r) and Sr as p(r) = ∅, Sr = ∅.

Now, we define the subproblems. For every node v ∈ V \ {r}, we define OPT(v, 0) as
the maximum size of a ∆-matching in the subtree Sv that does not include the edge vp(v)
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and we define OPT(v, 1) as the maximum size of a ∆-matching in the subtree Sv that
includes the edge vp(v). Including or not including an edge means determining whether
the given edge appears in our constructed ∆-matching with its assigned single time-label.
Note that if an edge has no assigned time-label, it is never included.

Now, we demonstrate how to obtain the solution to the original problem and then
we present the algorithm that solves the subproblems. We solve the problem starting
from the leaves of the tree obtained during the BFS, and for each vertex v, we compute
OPT(v, 0) and OPT(v, 1) using the optimal values computed for its children. The solution
to the original problem (by definition) is OPT(r′, 0), where r′ is the only neighbor of r.

Now, we present the algorithm that computes OPT(v, 0) and OPT(v, 1) for a given
node v. Let v′1, . . . , v

′
k be an ordering of the children of v, where λ(vv′1) ≤ . . . ≤ λ(vv′k).

If there is no time-label on an edge between v and a child of this node, then we do not
include that child in this order. Now, we formulate two IP problems to obtain OPT(v, 0)

and OPT(v, 1).
Let ci = OPT(v′i, 1) − OPT(v′i, 0) for every i ∈ [k]. The IP problem for OPT(v, 0) is

as follows.

max
∑
i∈[k]

xici (5a)

s.t.

x ∈ Zk (5b)

0 ≤ xi ≤ 1 ∀i ∈ [k] (5c)
∆−1∑
i=0

xj+i ≤ 1 ∀j ∈ [k −∆+ 1] (5d)

We introduce a variable xi for each child v′i, which is either 1 or 0, depending on
whether we include the edge leading to the child or not. The objective function means
that we only consider how much we gain by including an edge in the solution, compared to
the case where we do not include it. The only constraint is that we should not select two
edges whose time-labels are closer to each other than ∆. This means, for the x variables,
that if i, j ∈ [k], |i− j| < ∆, then either xi or xj (or both) is 0. Observe that the matrix
of this IP problem is a network matrix and the right-hand side is a vector with only 1-s
in it, hence the problem is solvable in polynomial time.

Now, we formulate the IP problem for OPT(v, 1). The only change we need to
make in the previous formulation is that now we cannot select time-labels from the ∆-
neighborhood of λ(vp(v)). That is, we have to remove every v′i child from {v′1, . . . , v′k},
where |λ(vv′i)−λ(vp(v))| < ∆. Everything else remains the same, so obviously, the matrix
remains a network matrix, and the right-hand side also stays integer.
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Now that we have shown how to compute a subproblem and demonstrated how to
obtain the solution to the original problem, only the analysis of the runtime remains.

The BFS algorithm at the beginning runs in O(n), where |V | = n denotes the number
of nodes. Computing OPT(v, 0) and OPT(v, 1) for a node v can be done in polynomial
time, as shown before. Therefore calculating OPT(v, 0) and OPT(v, 1) for every node v

requires polynomial time, hence we proved the theorem.

5.3 An Efficient Polynomial-Time Approximation Scheme

We know that there is no Polynomial-Time Approximation Scheme (PTAS) for the max-
imum ∆-matching problem for any ∆ ≥ 2 and T ≥ 3, unless P=NP [9]. Now, we will
show that the problem admits an EPTAS if the underlying graph of the input temporal
graph is a tree and ∆ is constant. Our (1− ε)-approximation algorithm uses some simple
ideas from the ∆

2∆−1
-approximation algorithm presented in [9], but we take advantage of

the fact that our graph is a tree and hence we can solve harder problems with dynamic
programming. Throughout this section, we assume that 0 < ∆, since the ∆ = 0 case is
trivial.

The main idea of our algorithm is to compute maximum matchings for time slices of
size k within the input temporal graph, where k is a constant. These slices are chosen so
that they are sufficiently spaced apart, ensuring that they do not interfere with each other.
This allows the matchings to be computed in polynomial time. After identifying these
non-overlapping slices, we greedily fill in the remaining gaps. We systematically explore
different combinations of non-interfering slices of size k and select the largest ∆-matching
found. Using counting arguments, we establish that this approach achieves the desired
approximation ratio.

Now we introduce additional notation and terminology, closely following that of [9].
Let k and T be natural numbers with ∆ ≤ k ≤ T . For each time tick τ ∈ [T − k+1], we
define the k-window Wτ as the interval [τ, τ + k− 1] of length k. An interval of length at
most k−1 that either begins at tick 1 or ends at tick T is referred to as a partial k-window
(with respect to lifetime T ). For brevity, we simply use the term partial k-window in this
problem. The distance between two disjoint intervals [a1, b1] and [a2, b2] with b1 < a2 is
defined as b1 − a2.

A k-template (with respect to lifetime T ) is a family of maximal cardinality S of k-
windows or partial k-windows, such that any two consecutive intervals in S are at distance
exactly ∆− 1 from each other. A ∆-matching MS in G = (G, λ) is called a ∆-matching
with respect to k-template S if MS has the maximum possible number of edges in every
interval W ∈ S.

We say that a time tick τ is covered by a k-template S if τ belongs to an interval of S.
First, we present some properties of k-templates which we need to prove the approximation
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ratio of our algorithm, then we will show that we can solve the maximum ∆-matching
problem restricted to a k-template in polynomial time. The following is a rephrasing of
Lemma 24 in [9] for our situation.

Lemma 5.4. Let k and T be natural numbers such that ∆ ≤ k ≤ T . Then

(1) there are exactly k +∆− 1 different k-templates with respect to lifetime T , and

(2) every time tick in [T ] is covered by exactly k distinct k-templates.

Proof. We start by proving (1). Observe that a k-template is uniquely determined by its
leftmost interval. Indeed, by fixing the leftmost interval, the positions of the following
intervals are determined. Also observe that the leftmost interval is either a partial k-
window that starts at time tick 1, or a (possibly partial) k-window that starts in one of
the first ∆ time ticks. Since there are k − 1 intervals of the first type and ∆ intervals of
the second type, we conclude that there are exactly k +∆− 1 k-templates with respect
to lifetime T .

To prove (2), observe that all k-templates can be derived step by step from a starting
k-template S, where the first interval is the first tick, which is a partial k-window. Indeed,
we can shift all intervals of the current k-template one time tick to the right in each step.
It follows that each time slot is covered exactly k times across the k + ∆ − 1 shifting
iterations.

By definition, for any two distinct intervals W1 and W2 in a k-template S and for
any two time ticks τ1 ∈ W1 and τ2 ∈ W2 we have |τ1 − τ2| > ∆, which implies that no
two time edges of G that appear in time slots of different intervals of S are in conflict.
This observation implies that finding a ∆-matching with respect to S can be reduced to
computing a maximum ∆-matching in G|W for every W ∈ S. All that remains is to show
that we can solve the maximum ∆-matching problem in polynomial time on an interval of
length k, where k is a constant. This brings us to our second lemma, which is as follows.

Lemma 5.5. Maximum ∆-matching can be solved in polynomial time if the underlying
graph G = (V,E) of the input temporal graph G = (G, λ) is a tree, and the lifetime T is
constant.

Proof. We provide a dynamic programming solution to the problem, which is similar to
the solution used in the proof of Theorem 5.2. Similar to the previous proof, add a new
node r to the set of nodes V , add a new edge rr′ to the set of edges E, where r′ ∈ V is an
arbitrary node, and let λ(rr′) = ∅. Run a BFS (Breadth-First Search) algorithm from the
node r to define parents, children, and rooted subtrees. Let us denote the parent of a node
v by p(v) and the subtree rooted at a node v by Tv. If a node v has children v′1, . . . , v

′
k,

then we call the edges vv′1, . . . , vv
′
k the descendant edges of v. Let Sv = Tv ∪ {vp(v)}
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denote the union of the subtree of v and the edge that connects v to its parent. Since the
new node r does not have a parent, we define p(r) and Sr as p(r) = ∅, Sr = ∅.

Now, we define the subproblems. For every node v ∈ V \ {r} and every subset
I ⊆ λ(vp(v)), we define OPT(v, I) as the maximum size of a ∆-matching in the subtree
Sv that includes the edge vp(v) with the time-labels in I. Including an edge with a subset
of time-labels means that the given edge appears in our constructed ∆-matching M with
those and only those time-labels.

Now, we demonstrate how to obtain the solution to the original problem and then
we present the algorithm that solves the subproblems. We solve the problem starting
from the leaves of the tree obtained during the BFS, and for each vertex v, we compute
OPT(v, I) for all I ∈ λ(vp(v)) using the optimal values computed for its children. The
solution to the original problem (by definition) is OPT(r′, ∅), where r′ is the only neighbor
of r.

Now, we present the algorithm that computes OPT(v, I). Let P (v, I) ⊆ [T ] be the
subset with maximum cardinality such that for every j ∈ P (v, I) and every i ∈ I, |i−j| ≥
∆ holds. That is, P (v, I) is the set of the possible time-labels on the descendant edges
of v, provided that vp(v) is included in the solution with the time-labels in I. We choose
a subset L ⊆ P (v, I) and a partition {L1, . . . , Lh} of L, such that for every set Li in
this partition, there will be a descendant edge that is included into the solution with the
time-labels in Li. Moreover, every descendant edge must be included into the solution
with either the empty set or with the time-labels in one of the subsets Li.

We enumerate all partitions and — for each of them — determine which set corre-
sponds to which edge by solving a matching problem, which we call the pairing phase. By
solving these matching problems, we obtain lower bounds to OPT(v, I). But we do not
merely aim to provide a lower bound — we seek to precisely determine the optimal value,
and therefore we examine all possibilities by selecting every possible subset L ⊆ P (v, I)

and considering all possible partitions of L. This means that after the pairing phase we
move on to a new partition of the currently examined L ⊆ P (v, I), and after we check
every partition, we move on to the next subset L′ ⊆ P (v, I).

Some partitions yield “trivially invalid” results, therefore we skip the pairing phase for
these partitions and move on to the next one. These partitions are as follows. First, if the
number of sets in the partition is greater than the number of descendant edges, then we
skip the pairing phase. Second, if there are two time ticks x, y ∈ L for which |x− y| < ∆

is true, we also skip the pairing phase.
Now we provide a precise description of the pairing phase. At the beginning of this

phase, we have L ⊆ P (v, I) and a partition {L1, . . . , Lh} of L. Let {e1, . . . , ek} be an
arbitrary ordering of the descendant edges of v, where ei denotes the edge vv′i. We find a
maximum-weight matching on the bipartite graph G′ = (S ′, T ′, E ′), that covers the entire
vertex set S ′, where the nodes in S ′ correspond to the sets in the partition, and the nodes
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in T ′ correspond to the descendant edges. Let sj ∈ S ′ denote the vertex corresponding to
Lj, and let ti ∈ T ′ denote the vertex corresponding to ei. Let sjti be an edge in E ′ if and
only if Lj ⊆ λ(ei). We also define a weight function w′ : E ′ → R on the edges. For every
sjti ∈ E ′, let w′(sjti) = OPT(v′i, Lj).

In the pairing phase, we find a maximum-weight matching in G′ that covers S ′ (if
there is no such matching for the current partition, we move on to the next one). We
then assign the sets in the partition to the descendant edges according to the edges of
this matching. If we did not assign anything to a descendant edge, then we include that
edge into the solution with the empty set.

Note that with this assignment, we get a feasible solution on Sv. Therefore, we can
obtain a lower bound to OPT(v, I) by adding up the OPT(wi, Iwi

) values, where the set
Iwi

was assigned to wi, and also adding |I| to this sum, since we are including the edge
vp(v) with the time-labels in I. Since we iterate through every L ⊆ P (v, I) and every
partitions of L, we will find the subset and the partition which correspond to the optimal
solution OPT(v, I).

Now that we have shown how to compute a subproblem and demonstrated how to
obtain the solution to the original problem, only the analysis of the runtime remains.

The BFS algorithm at the beginning runs in O(n), where |V | = n denotes the number
of nodes. Computing OPT(v, I) for a node v and a set I ⊆ [T ] requires iterating through
all O(2T ) subsets of P ⊆ [T ], and all O(T T ) partitions of the chosen subset. This is a
total of O((2T )T ) iterations. In (possibly) every iteration we have to solve a maximum-
weight matching problem on a bipartite graph, where we have to cover one of the vertex
sets, which has a constant number of elements. Let us denote the number of nodes in the
constant-sized vertex set by c. Observe that we can solve this problem in O(n+T 4) time
by selecting the c incident edges with the largest weights for every node in the constant-
sized vertex set and then using the Hungarian method [21] only for these edges. We
can select these edges in O(n) time and the Hungarian method runs in O(c4) = O(T 4)

time in this simplified graph. To compute OPT(v, I) for a node v and every subset
I ⊆ [T ], we have to repeat the same process O(2T ) times, which results in another
O(2T ·(2T )T ·(n+T 4)) = O(n(4T )T +4T +T T +4) = O(n(4T )T ) extra runtime. Therefore
calculating OPT(v, I) for every node v and every subset I requires O(n2(4T )T ) time.

Given a k-template S, every interval W ∈ S has at most k consecutive time ticks in it.
Therefore, by relabeling the time ticks (subtracting the smallest value from every tick),
we arrive to the same problem as in Lemma 5.5.

Corollary 5.1. On an interval W of length k, where k is a constant, the maximum
∆-matching problem can be solved in polynomial time.

We are now ready to present the approximation algorithm that we aim to prove is an
EPTAS. Since our algorithm will be a (1− ε)-approximation, we can assume that ε < 1.
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The algorithm itself is simple: take k ∈ Z+ such that k ≤ ∆/ε, (1−ε)(∆−1)
ε

≤ k, and
∆ ≤ k (it is easy to see that such k always exists), and for every k-template S, compute
a ∆-matching MS with respect to S and return one of maximum cardinality. Now we
prove that this algorithm is indeed an Efficient Polynomial-Time Approximation Scheme.

Theorem 5.3. For every 0 < ε < 1, the maximum ∆-matching problem admits an
O(T n2(4∆/ε)∆/ε)-time (1− ε)-approximation algorithm if the underlying graph G of the
input temporal graph G is a tree and ∆ ∈ Z+ is a positive constant.

Proof. Let G = (G, λ) be an arbitrary temporal graph of lifetime T and ∆ be a positive
constant such that ∆ ≤ T . Let M∗ be an optimal solution to the maximum ∆-matching
problem on G.

Clearly, the algorithm outputs a feasible solution as the output M is a ∆-matching
with respect to some k-template. We show next that M is the desired approximate
solution. Let C be the family of all k-templates with respect to lifetime T , and let S ′ ∈ C
be a k-template such that M = MS′ . It follows from the algorithm that |MS′| ≥ |MS |
for every S ∈ C. By definition, for every S ∈ C and for every interval W ∈ S, we have∑

τ∈W |MS
τ | ≥

∑
τ∈W |M∗

τ |, where Mτ = M ∩ Eτ . Therefore

|MS | =
∑
W∈S

∑
τ∈W

|MS
τ | ≥

∑
W∈S

∑
τ∈W

|M∗
τ |. (6)

Using the above inequalities and Lemma 5.4, we derive

(k+∆−1)|MS′| ≥
∑
S∈C

|MS | ≥
∑
S∈C

∑
W∈S

∑
τ∈W

|MS
τ | ≥

∑
S∈C

∑
W∈S

∑
τ∈W

|M∗
τ | = k

T∑
τ=1

|M∗
τ | = k|M∗|.

(7)
Since we chose k such that (1−ε)(∆−1)

ε
≤ k, we have ∆−1

k+∆−1
≤ ε, hence

|M | = |MS′| ≥ k

k +∆− 1
|M∗| = (1− ∆− 1

k +∆− 1
)|M∗| ≥ (1− ε)|M∗|. (8)

Now we analyze the time complexity of the algorithm. By Lemma 5.4, there are exactly
k+∆−1 different k-templates, and since every interval W in a k-template S has a length
at most k, there are O(T /k) intervals in a k-template. By Corollary 5.1, on an interval
of length k, we can solve the restricted problem in O(n2(4k)k) time. Therefore, the total
runtime of our algorithm is O(T n2(4k)k). Since we chose k such that k ≤ ∆/ε, in terms
of ε, the runtime is O(T n2(4∆/ε)∆/ε), hence our algorithm is indeed an EPTAS.

From the proofs of Lemma 5.5 and Theorem 5.3, it is clear that with a small modifi-
cation, the algorithm works for the weighted case as well.

Remark 5.2. For every 0 < ε < 1, the weighted maximum ∆-matching problem admits
an O(T n2(4∆/ε)∆/ε)-time (1 − ε)-approximation algorithm if the underlying graph G of
the input temporal graph G is a tree and ∆ ∈ Z+ is a positive constant.
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6 Open questions

We have shown that among the ∆-, γ-, and d-matchings, certain pairs can be reduced
to one another. However, many potential connections remain unexplored, and we have
not proven in any case that one problem cannot be reduced to another. This raises the
question of whether we have uncovered all possible relationships between these problems,
or whether there might still be reductions that remain to be discovered. If the non-
bipartite d-matching problem cannot be reduced to the other problems, another important
question arises: is this problem also APX-hard, or can it be approximated arbitrarily well?

Concerning the inverse problems of the maximum ∆-matching, it remains open
whether Problem 4.2 is NP-hard if c < ⌊k/∆⌋ and ∆ > 0. Furthermore, both in the
case of the weighted inverse problem of the maximum ∆-matching (Problem 4.5) and the
bagpiper edge-coloring problem (Problem 4.9), it remains open whether the problem is
NP-hard when only the edges have weights and the input graph is bipartite.
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MI alapú eszközök használatáról szóló nyilatkozat

Alulírott Juhász Márk Hunor nyilatkozom, hogy szakdolgozatom elkészítése során az alább
felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye Megjegyzés
Általam írt
magyar
mondatok
angolra
fordítása

ChatGPT Teljes dolgozat Tisztán
ChatGPT-vel
generált mondat
nem szerepel a
dolgozatban

A felsoroltakon túl más MI alapú eszközt nem használtam.

Dátum: 2025. 06. 01.
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