
Ear decompositions and their
applications to network routing

problems

Thesis

Author:

Balázs Szepesi
BSc in Mathematics

Supervisors:

Erika Bérczi-Kovács Gyula Pap

Institute of Mathematics,

Department of Operations Research

Eötvös Loránd University
Faculty of Science

2025

Contents

1 Introduction 3

2 Constructing Two Edge-independent Trees 5

3 Constructing Three Edge-independent Trees 8

3.1 Converting a 3-edge-connected graph to 3-edge- 2-vertex connected graphs . 8

3.2 Converting a 3-edge- and 2-vertex-connected graph to a cubic 3-vertex con-

nected graph . 9

3.3 Constructing augmenting cycles and paths 11

3.4 Computing segments . 12

3.5 Computing The Trees . 14

4 Chain Decomposition of a four-edge-connected Graph 16

4.1 Basic definitions . 16

4.2 Preparatory claims . 18

4.3 Proof of characterization . 21

5 Constructing Four Edge-independent Trees 31

6 Applications 36

6.1 General routing problem . 36

6.2 A more practical routing approach . 37

Acknowledgements

I express my gratitude to my thesis supervisors Bárczi-Kovács Erika and Pap Gyula for their

support and professional insights that helped me to write my thesis. I also would like to

thank them for fostering my interest and passion towards operations research. I also express

my gratitude to Johanna Becker, with whom I participated in the consultations and explored

subject-related topics.

I would like to thank Rózi for her never ending encouragement and motivation during

the last three years. Special thanks to my family and friends for their support and patience

towards me.

2

1 Introduction

Consider a communication network that we can represent with a graph G. The nodes are

sending messages to each other. However, the connections between the nodes are not reliable

entirely; sometimes they fail. The problem of sending messages between two distinct nodes

despite having multiple connection failures arises naturally. One possible approach to solve

this issue is to find different paths between each pair of nodes that do not intersect each other.

That way, if one path fails, then we can use another path, and so on. However, in a larger

network, storing these paths would consume a lot of storage space. Instead of maintaining

separate paths for each pair of nodes, a more efficient approach is to have multiple spanning

trees, where we require edge-disjointness of certain paths.

Definition 1.1. We are given a graph G = (V,E), a vertex r ∈ V called a root, and two

spanning trees T1 and T2. We call T1 and T2 edge-independent spanning trees if for any

vertex u the paths to r from u in T1 and T2 are edge-disjoint. Similarly, we can define vertex-

independent spanning trees by requiring the paths to be internally disjoint. We say that k

trees are edge- or vertex-independent if the trees are pairwise edge- or vertex-independent,

respectively.

Spanning trees that are independent in some sense have been studied for a long time.

Cheng, Wang and Fen gathered the results related to this topic in [1]. We may set the goal

to characterize the maximum number of independent spanning trees. There are two famous

conjectures regarding independent spanning trees [5, 6]:

Conjecture 1.1. If a graph G is a k-edge-connected graph, then there are k edge-independent

spanning trees rooted at an arbitrary vertex in G.

Conjecture 1.2. If a graph G is a k-vertex-connected graph, then there are k vertex-

independent spanning trees rooted at an arbitrary vertex in G.

Although the conjectures have not been proven for general k yet there are partial results

for both conjectures. Throughout this thesis, we focus on the edge-independent spanning

3

trees and show that being k-edge-connected is a sufficient condition for k = 2, 3 and 4. For

k greater than 4 the question is still open.

In Section 2, we present an overview of the most simple case k = 2. We continue in

Section 3 by giving a polynomial-time algorithm for finding k = 3 trees. In Section 3,

we characterize four-edge-connected graphs with the help of an ear decomposition-like de-

composition of the graph, which we use in Section 4 to prove the conjecture in Section 5.

Concluding the thesis, we show some applications of edge-independent spanning trees related

to communication networks. Section 6.

4

2 Constructing Two Edge-independent Trees

In this section, we show a way to obtain two edge-independent spanning trees from a two-

edge-connected graph G using a partial order on the vertices.

To construct the trees, we use ear decompositions, which are defined as follows.

Definition 2.1. Given a graph G = (V,E), an ear decomposition is a sequence of subgraphs

P0, P1, ..., Pk such that P0 is a cycle in G and for i ≥ 1 Pi is a cycle or a path such that

its internal vertices have not been added in previous Pj, j < i, and its endpoints have been

added previously. Each subgraph Pi is called an ear. We call an ear closed if it only has one

endpoint. In this case, the ear is a cycle. If an ear decomposition contains a closed ear, then

we call it a closed ear decomposition. We call an ear with two distinct endpoints an open

ear. If an ear decomposition only has open ears we call it an open ear decomposition.

P0 ∪ P1 ∪ ... ∪ Pi−1

Open ear Pi

P0 ∪ P1 ∪ ... ∪ Pi−1

Closed ear Pi

We use the following well-known characterizations of graphs related to ear decomposi-

tions:

Theorem 2.2 (Whitney). [2] A graph G is 2-connected if and only if it has a open ear

decomposition.

Proof. Using the DFS algorithm, we may easily retrieve an ear decomposition of a 2-edge-

connected graph. Once we have obtained a DFS tree, we can build an ear decomposition

the following way. First, consider a back edge. Let the starting cycle P0 be the subgraph

containing the root of the DFS tree, the back edge and the path in the DFS tree between

the two endpoints. Then choose a back edge connecting to P0. Add this edge and the path

5

connecting its other endpoint to P0 as P1. Then we continue adding the ears connecting to

∪j−1
i=0Pi until the whole graph is covered.

A graph with an ear decomposition is 2-connected by the definition of the ears.

A consequence of Whitney’s theorem is that a graph G is 2-edge-connected if and only if

it has an ear decomposition. If the graph has at least one cut-vertex, then we split the graph

at its cut-vertices. Then we have more than one 2-connected graphs, with the cut-vertices

appearing in more than one graph. We can find an ear-decomposition in each of them rooted

at the component’s cut-vertex. We can retrieve an ear-decomposition of G by putting these

decompositions next to each other in appropriate order.

From now on we may assume that in addition to the original graph G we have an ear

decomposition G = P0 ∪ P1 ∪ ...∪ Pk. We may also assume that the root r of the red tree R

and the blue tree B is part of the base cycle P0.

There is a simple algorithm to obtain the two trees from an open ear decomposition by

establishing a partial order on the vertices of the graph. However, the two-edge-connected

graph may not have an open ear decomposition, so we modify it. If Pi is an closed ear, then

it is connected to P0 ∪ P1 ∪ ... ∪ Pi−1 by one vertex v that was added in an ear Pj. We

replace v and the edges e1 and e2 connected to it in Pj and the edges e′1 and e′2 connected

to it in Pi the following way: remove v and add v1 and v2 connected by and edge. Also

connect v1 with the other ends of e1 and e′1 and similarly connect v2 with the other ends

of e2 and e′2. For the first ear, we arbitrarily choose a partial ordering of the vertices. For

P0 = r, v1, v2, ..., vm, r we may freely choose the partial order to be r ≺ v1 ≺ v2 ≺ ... ≺ vm or

the reverse r ≻ v1 ≻ v2 ≻ ... ≻ vm. For each Pi = u1, u2, ..., uj where i is at least one u1 and

uj are already ordered if u1 ≺ uj, then u1 ≺ u2 ≺ ... ≺ uj, if u1 ≻ uj, then u1 ≻ u2 ≻ ... ≻ uj.

After creating the partial order, we orient each edge in the following way: if uv is an edge and

u ≺ v, then u→ v. In the directed graph, we can find a tree that only uses edges according

to the orientation (R) of the graph and one only uses edges opposing the orientation of the

graph (B).

The edge-independence of the two trees can easily be observed by noting that for each

6

v ∈ V , R(v) only uses directed edges following the orientation and B(v) only uses edges

opposing the orientation. For them to share an edge, the edge would need to be oriented

in both directions. However, since the endpoints follow a partial order, this is impossible.

Hence, the trees are edge-independent.

Note that if we contract the edge v1v2, whose ends were extensions of a cut vertex v, we

maintain edge-independence. However, if there exists a v1 → v2 path that is not the edge

v1v2, after contracting the vertices, a cycle might be created. We can easily eliminate the

cycle by not including one edge of the v1 → v2 path. Thus, we obtain two edge-independent

trees from an ear-decomposition.

7

3 Constructing Three Edge-independent Trees

Given a 3-edge-connected graph G = (V,E), our goal is to find 3 edge-independent spanning

trees rooted at an arbitrary vertex r. We follow the method of Gopalan and Ramasubrama-

nian [3]. For the sake of simplicity, we refer to these trees as red, blue and green trees denoted

by R,B and G respectively. We prove the existence of the trees constructively. First, by

pruning edges, we reduce the original graph to a minimally 3-edge-connected graph. Then

we convert G to a 3-vertex connected cubic graph. Inside this graph, we construct a sequence

of paths with special properties. Then from this partition of the modified graph we obtain

a sequence of partition of the original graph. Using this partition we may construct the 3

trees.

3.1 Converting a 3-edge-connected graph to 3-edge- 2-vertex con-

nected graphs

Our approach first decomposes the graph to 3-edge 2-vertex connected graphs. If the given

graph G is not minimally 3-edge-connected, we remove certain edges to make it so. We

decompose the graph into 2-vertex-connected components. If we find a vertex the removal

of which disconnects the graph then we may divide our graph into two separate 2-vertex

connected components (if required, we iterate this step). If there are at least two components,

then some vertices will occur in multiple components. In each component there exists a vertex

such that any path from a vertex of the component towards the root in the original graph

traverses the vertex. This is the ”virtual root” vertex of the component. We perform all the

following steps in each component with the virtual root taking the place of the root in some

components.

8

3.2 Converting a 3-edge- and 2-vertex-connected graph to a cubic

3-vertex connected graph

Now we construct a 3-vertex connected cubic graph from a 3-edge- and 2-vertex-connected

graph. Each vertex with degree greater than three will be substituted by gadget made of 3-

degree nodes. For all vertices n with degree greater than 3 we apply the following procedure:

Procedure: Cubic expansion

1: Remove n from the graph and all edges connected to it

2: Create d(n) − 2 subvertices, denoted by v1, ..., vd−2. For i = 1, 2, ..., d − 3 add (vi, vi+1)

as an edge.

3: Divide G− n into 2-edge-connected components

4: If there is only one component, then arbitrarily assign edges to the new vertices. Vertices

v1 and vd−2 both have two incident edges connected, the other vertices have one edge

connected to the rest of the graph.

5: If there are more than one 2-edge-connected components, select two arbitrary 2-edge-

connected components which only have one edge connection to another 2-edge-connected

component and select two of these edges. Connect these edges to v1 and vd−2. The rest

of the edges can be placed arbitrarily between v2, ..., vd−3.

Theorem 3.1 (Gopalan-Ramasubramanian). [3] The algorithm maintains the 3-edge- and

2-vertex-connectivity of the graph.

Proof. In the beginning of each step the graph is 2-vertex connected. Removing one vertex

keeps the graph connected. After the expansion procedure is completed it is easy to see,

that deleting any vertex does not split the graph either.

To prove that the algorithm maintains the 3-edge-connected property we show that after

removing any edge we have a 2-edge-connected graph. Throughout this proof the 2-edge-

connected components which only have one edge connection to another 2-edge-connected

component (the same as in step 5 of the algorithm) will be called leafs. We introduce a

9

property called overlap for the edges connected to the newly added subvertices. Consider

the leaf components of G−n, where G is the graph in the beginning of the step and n is the

chosen point which is expanded to subvertices. Divide these components to two arbitrary

separate parts L1 and L2. Then n is replaced by v1, ..., vd−2 vertices. Let mini be the minimal

index for which Li has an edge connected to vmini
. The same way we define maxi as the

maximal index for which Li has an edge connected to vmaxi
. We say that L1 and L2 overlaps

if (min1,max1)∩ (min2,max2) ̸= ∅. Let In = {e : e = vivi+1, i ∈ {1, 2, ..., d− 3}}. These are

the edges connecting two subvertices of n. It is sufficient to show that by removing e ∈ In

or e /∈ In we still have a 3-edge-connected graph.

a) e ∈ In. Removing e splits into the subvertices to two distinct path segments: one

of them containing v1 the other one containing vd−2. Let S1 and S2 be the two leaves we

connected v1 and vd−2 with. Consider a path between S1 and S2. This path and the edges

connecting to v1 and vd−2 each form a cycle. Thus the two path segments, S1, S2 and

the path connecting S1 to S2 is 2-edge-connected. It remains to show that the other leaf

components are 2-edge-connected as well. These leaf components originally had at least

two edges connecting to n, which means the leaves connect to the segments which form a

2-edge-connected component, hence they are part of that component.

b) e /∈ In. We consider three sub-cases. If e is an edge inside a 2-edge-connected compo-

nent C. Any u vertex in C connects to u with 3 edge-disjoint paths. Removing e can break

at most one path, hence u has two edge-disjoint paths to each v and using the two special

leaf components connected to v1 and vd−2 we can find two edge-disjoint paths to each vi.

The same argument can be made for any other vertices of the graph, since the existence of

two edge-disjoint paths is transitive. Consequently the graph remains 2-edge-connected.

c) If e connects a leaf component to a vi, then there is still an edge connecting the leaf

to some vj, furthermore the leaf is connected to another 2-edge-connected component which

connects to the expansion vertices of n. If e connects a non-leaf component to a vi, then

the component is still connected with two other components. There is a path to a leaf using

each edge. Through the leaves we connect to v in the original graph and to two sub-vertex

10

after replacing v. Hence, 2-edge connectivity is retained.

d) If e connects two components, meaning G− n− e is disconnected, then denote these

two components by D1 and D2. Observe that the two leaf components connected to v1 and

vd−2 are both in a Di or each is a part of a distinct Di. Either way the edges connecting from

D1 and D2 to the subvertices overlap, hence the resulting graph is 3-edge-connected.

Lemma 3.2. Any three-edge-connected cubic graph is 3-vertex connected.

Proof. Proof by contradiction. Suppose there are three edge-independent paths between p

and p′, but there is a q ∈ V appearing in two paths. Since the paths are edge-independent,

deg(q) is at least four, contradicting the assumption that the graph is cubic.

Definition 3.3. Given a 3-edge- and 2-vertex-connected graph G = (V,E), we denote the

cubic graph obtained by the algorithm Q = (V∗, E∗). Let V ∗ denote the number of vertices

and E∗ the number of edges in Q.

Definition 3.4. For a vertex v ∈ V who is an expansion of a vertex from V , we denote its

original vertex nv. Let V∗
n denote the set of vertices corresponding to n ∈ V in Q.

Since the expansion does not remove edges, only some E ⊂ E∗ is added.

3.3 Constructing augmenting cycles and paths

Before beginning the description of the construction, let us describe intuitively why we will

require certain properties for this decomposition. We want to build the red and blue tree

through a degree-like partition of the graph, while we mark a neighbor of the root u through

which we can build the green tree not using the decomposition itself, but the fact is that our

decomposition preserves a connection between u and the other vertices.

Given a 3-vertex connected cubic graph and a root r, we decompose the graph into a

sequence of a cycle and paths. The cycle contains r. Each path starts and ends in different

vertex. The cycles and the paths satisfy the following properties:

(A) The removal of vertices in the path keeps every other vertex not added in this path or

earlier paths connected with each other.

11

(B) Every vertex in the path is connected to at least one vertex that has not been added

to this path or to earlier paths.

We start by choosing an arbitrary neighbor u of the root r, and remove the edge between

them from the graph. Then we determine a cycle containing r and avoiding u satisfying

properties (A) and (B). Then we expand the cycle by adding paths that avoid u starting

from two distinct points and with the following properties:

1. every vertex in the path is connected to a vertex not added yet, and

2. every vertex not added yet stays connected to u.

This gives a sequence of paths with the last having u as the only vertex not yet added.

We denote the cycle with P0 and the paths in the order they were added P1, P2, ..., Pl. J.

Cheriyfd S. N. Maheshwari gave an algorithm that finds the starting cycle and the paths

using non-separating induced cycles in. The algorithm may also be used to solve the 3

vertex-independent tree problem for 3-connected graphs.

Definition 3.5. The path index of an edge is the index of the augmenting path/cycle in

which the edge was added in.

3.4 Computing segments

Having computed the augmenting paths in the modified graph Q,we wish to return to the

original graph G. Using the augmenting paths we will compute segments of the original

graph which will help us to finally compute the red, green and blue trees.

Before presenting the algorithm for computing the segments, we will introduce some

notations used in the algorithm.

Definition 3.6. next(v) is the neighbor of v in a path along the direction of traversal. Let

l(nv) denote the last vertex present in a path containing v that is part of V∗
n.

12

At the beginning of the segmentation process only r is marked, the other vertices are

unmarked.

Procedure: Compute segment

Input: A path in Q: x, v1, v2, ..., vl, y, where x and y are marked. In the case of the first

cycle x = y = r.

Output: A segment S of the original graph G.

1: S = ∅

2: Start from x. Traverse the path and find the first v, that v is marked and next(v) is not.

3: Add nv to S if it exists, if not go to Step 8

4: v′ = next(v)

5: Add n′
v to S

6: If v′ is marked go to step 8

7: v = l(nv′)

8: Mark all v ∈ V∗
n in Q

9: Stop

We follow the procedure for each augmenting cycle and path in the order of P0, P1, ..., Pl

from the previous procedure. A segment may not cover the whole cycle or path, so it may not

be enough to run the procedure only once for each Pi. We repeat the procedure iteratively

until all vertices of Pi are marked.

Notice that while u in Q is avoided by the decomposition until the last augmenting path,

nu in G may not be avoided, since another vertex of u may have been added earlier. However,

each vertex not added yet is connected to it.

Let the obtained segments be numbered from 0 to (S − 1) and denote the ith segment

by Si. We know that the first segment is a cycle containing r. Except for the starting cycle,

all segment’s ends are included in earlier segments (the ends of the segment may be the

same vertex). Furthermore, each segment contains a vertex that did not appear in earlier

segments. Then ∪S−1
i=0 Si contains all vertices of G. In addition, we retained the nonseparating

13

nature of the earlier decomposition, namely that in V − ∪i
j=0Si each vertex is connected to

nu, where u is a fixed neighbor of r in Q.

3.5 Computing The Trees

In order to construct the red and blue trees using the segments, we maintain a partial order

between the edges. This partial order helps to maintain the edge-independent property of

the trees. We build the two trees segment by segment, adding paths to them.

Procedure: Compute red and blue trees

1: Initialize Tr, Tb to be empty.

2: S0 consists of vertices r, n1, ..., nk, r. Add the path nk → nk−1 → ... → r to Tb and

r → n1 → ... → nk to Tr. The partial order between the edges is as follows: [r, n1] ≺

[n1, n2] ≺ ..., ≺ [nk, r].

3: From i = 1 to S − 1:

a) Si consists of x, n1, ..., nk, y, where x and y are already added in previous segments.

Let vr and vb denote the parent of v in Tr and Tb, respectively. Then xr, xb, yr, yb

are already computed and part of an already processed segment.

b) If [x, xr] ≺ [y, yr] in the partial order, then we add x← n1,← n2 ← ...← nk to the

red tree, and add n1 → n2 → ... → y to the blue tree. The partial order for these

edges are updated as follows: [x, xr] ≺ [x, n1] ≺ [n1, n2] ≺ ...[nk, y] ≺ [y, yb]

c) If [x, xr] ≻ [y, yr] in the partial order, then we add x← n1,← n2 ← ...← nk to the

blue tree, and add n1 → n2 → ... → y to the red tree. The partial order for the

edges are updated as follows: [yr, y] ≺ [y, nk] ≺ ... ≺ [n1, x] ≺ [x, xb]

When constructing the green tree we use the nonseparating property of the decomposi-

tion. We add the edge connecting r to nu, along with the edge that has the highest path

index for every other vertex without creating a cycle.

14

Theorem 3.7 (Gopalan-Ramasubramanian). [3] The red, blue and green trees are edge-

independent.

Proof. To prove that the green and red as well as the green and blue trees are edge-

independent, it is enough to observe that the path from a vertex to r in the red and blue

trees traverses through edges with non-increasing path-indexes, while in the green tree it is

strictly increasing. To prove that the red and blue trees are edge-independent, we may use

a similar argument made for the two edge-independent case.

With this method, we showed Conjecture 1.1 for k = 3 and also gave a polynomial time

algorithm to find three trees.

15

4 Chain Decomposition of a four-edge-connected Graph

In this section, we present the results of Hoyer and Thomes [4] regarding the characterization

of four-edge-connected graphs. The characterization resembles the ear decomposition of two-

edge-connected graphs in that it involves building the graph from ’chains.’ However, it differs

in that there are more types of ’chains.’

4.1 Basic definitions

Our main goal is finding four edge-independent trees, but similarly to the two edge-independent

tree case we would like to characterize the 4-edge-connected graphs with something resem-

bling to degrees. We will use chain decompositions with respect to a root vertex r. Before

defining a chain decomposition, we define different kinds of chains that will build up the

decomposition:

Definition 4.1 (Up Chain). An up chain of G with respect to a pair of edge-disjoint subgraphs

(H, L) is a subgraph of G, edge-disjoint from H and L, which is either

1. (open chain) a path with at least one edge such that each vertex is either r or has at

least degree two in L, and ends either at r or at H, or

2. (closed chain) a cycle such that every vertex either is r or has degree at least two in

L, and some vertex v, either is r or has degree at least two in H. Then v is considered

to be both ends of the chain and all other vertices in the chain are to be considered

internal vertices.

Definition 4.2 (Down Chain). A down chain of G with respect to (H, L) is an up chain

with respect to (L, H).

Definition 4.3 (One-way Chain). A one-way chain of G with respect to (H, L) is a subgraph

of G, induced by an edge e /∈ H ∪L. The edge e = uv, such that u is either r or has a degree

at least two in H, and v is either r or has a degree at least two in L. Then u is considered

to be the tail of the chain and v the head of the chain

16

Definition 4.4 (Chain Decomposition). Let G0, G1, ..., Gm be a sequence of subgraphs of G.

Denote Hi = G0 ∪G1 ∪ ... ∪Gi−1 and Li = Gi+1 ∪Gi+2 ∪ ... ∪Gm. H0 and Lm are the null

graph. Then G0, G1, ..., Gm is a chain decomposition of G rooted at r, if the following hold:

1. The sets E(G0), E(G1), ..., E(Gm) partition E(G)

2. For i = 0, 1, ...,m the subgraph Gi is either an up chain, a down chain or a one-way

chain with respect to the subgprahs (Hi, Li).

Definition 4.5. The chain index of e ∈ E(G) denoted by CI(e), is the index of the chain

containing e.

Chain decompositions have a certain symmetry. Namely, if G0, G1, ..., Gm is a chain

decomposition of G with root r, then Gm, Gm−1, ..., G0 is a chain decomposition with root

r and the up/down chains of the first decomposition are down/up chains of the second one,

while in the case of one-way chains the heads and tails are switched. From now on, this

property of chain decompositions will be known as symmetry. The first chain has to be

either a closed up chain or a one-way chain with r as the tail. Furthermore the last chain

has to be either a closed down chain or a one-way chain with r as the head.

There is a certain family of chain decompositions which are easier to deal with and have

desirable properties. These are minimal chain decompositions:

Definition 4.6. An up chain / down chain Gi is minimal if no internal vertex of Gi is in

{r} ∪ V (Hi) / {r} ∪ V (Li). A chain decomposition is minimal if all up chains and down

chains are minimal.

Observe that a minimal chain is an ear (Theorem 2.1). If we are given a chain decompo-

sition then we may subdivide up and down chains into minimal chains by cutting them at

the critical vertices. Then we may replace the original chain with a series of minimal chains

in the decomposition. Using the previous method, we may convert a chain decomposition to

a minimal chain decomposition. From now on, we may assume that the chain decomposition

is minimal if convenient.

The main theorem of this section is as follows.

17

Theorem 4.7 (Hoyer-Thomas). [4] Given a four-edge-connected graph G = (V,E) and a

vertex r ∈ V there is a chain decomposition of G with root r.

To prove this theorem, we use the Mader construction.

Definition 4.8. A Mader operation is one of the following operations:

• Add an edge between two (not necessarily distinct) vertices.

• Consider two distinct edges, e1 = xy and e2 = zw. ”Pinch” them as follows: delete

e1 and e2. Add a new vertex v and edges ex, ey, ez, ew with endpoints v and x, y, z, w,

respectively. Although e1 and e2 must be distinct, the new edges may not.

We will use the following theorem, which characterizes four-edge-connected graphs with

Mader operations.

Theorem 4.9 (Mader). [4] A graph is four-edge-connected if and only if, for any r ∈ V (G),

we can construct G in the following way. Begin with a graph G0 consisting of r and one

other vertex of G, with four parallel edges. Then repeatedly perform Mader operations to

obtain G.

4.2 Preparatory claims

The following claims will help us to prove that we can maintain a chain decomposition

through Mader-operations. First, we show that loop edges can be omitted in some sense

from the graph. Then, we prove the existence of two important chain indices, which will

help us to examine different subcases in later steps of the proof. Finally, we show that the

existence of a chain decomposition implies a degree property.

Lemma 4.10. Given a graph G = (V,E) and a chain decomposition G0, G1, ..., Gm with

root r ∈ V . If v ̸= r is in Hi (respectively, Li) then v is incident to a nonloop edge in Hi

(respectively, Li). If v ̸= r has degree at least two in Hi (respectively, Li), then v is incident

to two distinct nonloop edges in Hi (respectively, Li).

18

Proof. A vertex with a loop has at least degree two, hence it is sufficient to prove only the

second part of the lemma since it implies the first part.

Suppose v ̸= r is incident to a loop. We may assume that it is in Hi by symmetry.

Choose the loop with minimal chain index j < i. Notice that by the minimality of j the

vertex v is incident to no loops in Hj. By recalling the definitions of the different types of

chains we can conclude that a loop can only be a closed chain. A closed chain requires v

to have at least degree two in Hj. We showed that in Hj ⊂ Hi v is distinct to at least two

nonloop edges.

An immediate consequence of the previous lemma:

Corollary 4.11. Given a graph G = (V,E) and a chain decomposition G0, G1, ..., Gm with

root r ∈ V . Suppose e ∈ E(Gi) is a loop. Then G0, G1, ..., Gi−1, Gi+1, ..., Gm is a chain

decomposition of G− e rooted in r.

Notice that if G has no isolated vertices, then G−e has neither, since it would not satisfy

any chain definition. Now, we show a useful property of minimal chain decompositions:

Lemma 4.12. Given a graph G = (V,E) with no isolated vertices and a minimal chain

decomposition G0, G1, ..., Gm with root r ∈ V . For a vertex v ∈ V there are indices i and j

such that the degree of v in Hi and Lj is two.

Proof. By symmetry, we only need to find i. Since G has no isolated vertices v is contained

in a chain. Let Gi0 be the chain containing v with a minimal chain index i0.

Gi0 cannot be a down chain, since v /∈ V (Hi0).

If Gi0 is an up chain, then v has to be an internal vertex, since v /∈ V (Hi0) so v has to

have degree two in Gi0 . Furthermore, v has to have degree at least two in Li0 which means

that Li0 ̸= ∅, so Hi0+1 is a sufficient i.

If Gi0 is a one-way chain, then v has to be the head, since v /∈ V (Hi0). Therefore, v has to

have degree at least two in Li0 so we may consider the next chain Gi1 such that v ∈ V (Gi1).

Note that the degree of v in Hi1 is exactly one.

19

Gi1 cannot be a down chain, since the degree of v in Hi1 is not at least two. If Gi1 is

an up chain, then it has to be an open chain. Since the chain decomposition is minimal, v

has to be an end of the chain, therefore, the degree of v in Gi1 is exactly one. If Gi1 is a

one-way chain, then it has to be the head since v does not have degree two in Hi1 . In either

way v has exactly degree one in Gi1 , at least degree two in Li1 , so Hi1+1 is nonempty, hence

a sufficient choice.

As a closure of this section we show that a chain decomposition implies a minimum degree

result:

Lemma 4.13. Given a graph G = (V,E) with no isolated vertices and a minimal chain

decomposition G0, G1, ..., Gm with root r ∈ V . For a vertex r ̸= v ∈ V the degree of v is at

least four.

Proof. By 4.11, we may assume that there are no loops in the graph. Suppose v is in an up

chain Gi. In an open chain v has degree at least two in Li. If it is an internal vertex of the

chain, then it has degree at least two in Gi. If it is the end of the chain, then it has degree

at least one in Gi and degree at least one in Hi. We showed that if v is in a down chain,

then it has degree at least four. By symmetry, the claim regarding the degree is also true

for vertices in down chains.

Since there are no isolated vertices for the rest of the vertices, we may assume that they

are in only one-way chains. If v is in a one-way chain Gi, then it has degree one in Gi and

degree two in either Hi or Li. Assume for the sake of contradiction that v is in only three

one-way chains. Let these chains be Gl1 , Gl2 , Gl3 with increasing chain indexes. Consider

the definition of one-way chains and the chain Gl2 . Notice that v should have degree at least

two in Hl2 or Ll2 , but it has not, contradicting that v is in only three one-way chains. We

can conclude that v ∈ V − r has a degree at least four.

20

4.3 Proof of characterization

We will prove Theorem 4.7 using Mader operations. Due to the characterization of four-

edge-connected graphs in Theorem 4.9, it suffices to show that we can maintain a chain

decomposition through a Mader operation. First, we need a chain decomposition of G0. The

chain decomposition of G0 will be a closed up chain consisting of two edges and a closed

down chain also consisting of two edges.

Given a graph G, with chain decomposition G0, G1, ..., Gm. We may assume that the

decomposition is minimal. We obtain G′ from G by a Mader-operation. Our goal is to give

a chain decomposition of G′.

a) Adding an edge

Suppose that we obtained G′ by adding an edge uv in G. If either vertex is r, then we can

classify the edge uv as a one-way chain with tail r and make it first in the chain decompo-

sition. The head has to have degree at least two in later chains, but all chains are later, so

any other vertex is an eligible head.

If neither vertex is r, then let i be the minimal index for which u or v has degree exactly

two in Hi, guaranteed to exist by 4.12. Without loss of generality, we may assume that it is

u. Since H0 is null, i has to be greater than one. By the choice of i, the degree of v in Hi is

at most two and at least two in Li−1. Classify the edge uv a one-way chain with tail u and

head v and in the decomposition, we place it between Gi−1 and Gi.

Consider the impact of the added chains on other chains. Increasing the degree of any

vertex does not interfere with any chain definitions. The relative position of the other chains

did not change. We obtained a chain decomposition of G′, but notice that some chains may

not be minimal.

b) Pinching edges

Suppose that we obtained G′ by pinching the edges e1 = xy and e2 = zw in G replacing

them with ex, ey, ez and ew. We denote the chain containing e1 by J1 = GCI(e1) = Pxe1Py,

21

where Px is the path of the chain from an end to x not using e1 and Py is the path from

the other end to y not using e1. Note that Px and Py may be empty. Similarly, we define

J2 = GCI(e2) = Pze2Pw.

Now, we show several claims proving that for any type of chain pairs and index combi-

nations of J1 and J2 we can obtain a chain decomposition for G′. First, we show that if the

chain indices are the same, then we can obtain a chain decomposition. We then distinguish

between cases based on the degree properties of the one-way chains. Naturally, the claims

also cover those cases where the pinched edges are not one-way chains.

Claim 4.14. If CI(e1) = CI(e2), then G′ has a chain decomposition rooted at r.

Proof. If CI(e1) = CI(e2), then J1 = J2. Without loss of generality e1 ∈ E(Pz) and

e2 ∈ E(Py), so the chain can be written as J1 = J2 = Pxe1(Py ∩ Pz)e2Pw. Note that Py ∩ Pz

may be empty if y = z. By the definition of pinching e1 and e2 are distinct, consequently

J1 = J2 is not a one-way chain. We may assume by symmetry that J1 = J2 is an up chain.

In G′, replace J1 = J2 with the following chains in this order.

1. PxexewPw as an up chain. Since ey and ez have not yet been used, v has degree at

least two in later chains.

2. ey as a one-way chain with v as tail and y as head. Then v is incident to two edges in

the chain above. Then y has degree at least two in later chains, since it was an internal

vertex of J1 = J2.

3. ez as a one-way chain with head z and tail v. Then v is incident to at least two edges in

earlier chains (the ones above), and the head z has degree at least two in later chains

since it was an internal vertex of an up chain.

4. Py ∩ Pz as an up chain if it is not empty. The ends y and z are incident to two later

chains since they were interior points of an up chain.

Consider the impact of the replacement for the other chains. For earlier chains, there

is no impact. Most of the edges of GCI(e1) = GCI(e2) are added with the same chain index

except for e1 and e2, since these were replaced with other edges. Since replacing these two

22

edges does not change the degree of the edges outside of CI(e1) = CI(e2), we maintained a

chain decomposition.

Without loss of generality, for the remainder of the proof we may assume the following:

• CI(e1) < CI(e2)

• If J1 is a one-way chain, then y is the head and x is the tail

• If J2 is a one-way chain, then w is the head and z is the tail.

Claim 4.15. If J1 is either a one-way chain whose head y has degree exactly one in HCI(e2),

or J2 is a one-way chain whose tail z has degree exactly one in LCI(e1) then G′ has a chain

decomposition rooted at r.

Proof. The two cases are the ”complement” of each other, so by symmetry we may assume

the first case, where y is the head of the one-way chain J1 with degree at least two in HCI(e2).

Replace J1 with ex the edge between x and the new vertex v with chain index CI(e1). The

tail x is tail of the original one-way chain, so it has degree at least two in earlier chains. The

head v has edges incident to it in later chains ey, ez, ew. We now give chain decompositions

for different chain types of J2.

a) J2 is an up chain. By the condition in the claim y has degree one in HCI(e2), if J2 is

closed, y cannot be the end of it. If it is an open chain, then by swapping w and z we may

assume that y is not the other end of Pz. The other end of Pz must be a vertex with degree

at least one in earlier chains despite not adding ey to the graph yet. Replace J2 with the

following chains at the index CI(e2).

1. Pzez as an up chain. The original end of Pz is an eligible end, since it was an end for

J2 and v is also a valid end, since it is incident to ex from an earlier chain and has

degree at least two in later chains by ey and ew.

2. ey as a one-way chain with head y and tail v. Then v is incident to two edges in earlier

chains ex and ez, and y has degree one in HCI(e2) by assumption, so y has degree at

least two in later chains.

23

3. ew as a one-way chain with head w and tail v. We already seen in the last chain that

v is an eligible tail. The head w is either r or has degree at least two in later chains,

because it was a part of an up chain J2.

4. Pw as an up chain if it is not empty. Then w is incident to ew from an earlier chain

and has degree at least two in later chains, since it was an internal vertex of the up

chain J2. The other end of Pw is an end of J2. It is either r or incident to an edge in

earlier chain. Note that it may be y but by adding ey earlier it is an eligible end.

b) J2 is a down chain. By assumption y has degree exactly one in HCI(e2), therefore y cannot

be part of J2. This implies that each vertex in J2 is either the root r or has degree at least

two in earlier chains, even though ey has not been placed yet. Replace J2 with the following

chains at the index CI(e2).

1. Pw as a down chain if it is not empty. Its end w has an incident edge in later chains

(namely ew) and degree at least two in later chains, since it was an internal vertex of

a down chain J2.

2. ew as a one-way chain with head v and tail w. Since w was a part of J2 it has a degree

at least two. Then v is incident to ey and ez so it is an eligible head.

3. Pzez as a down chain. Its end v is incident to one edge in later chains ey and two edges

in earlier chains ex and ew.

4. ey as a one-way chain with head y and tail v. The tail has a degree at least two in

earlier chains, and the head y is either r or has degree at least two later chains, since

by assumption it has degree one in HCI(e2).

c) J2 is a one-way chain. We assumed, that y has degree exactly one in HCI(e2), so it is not

an eligible candidate for the tail (z). Consequently z is either r or has degree at least two

in earlier chains. Replace J2 with the following chains at the index CI(e2).

1. ez as a one-way chain with head v and tail z. Then z is an eligible tail as described

above. The head v has degree exactly two in later chains ey and ew.

24

2. ew as a one-way chain with head w and tail v. Then v has degree two in earlier chains

ez and ex, so it is an eligible tail. The head w is either r or has degree two in later

chains, since it was the head of J2.

3. ey as a one-way chain with head y and tail v. Then v has three edges incident to it from

earlier chains, namely ex, ez, ew, hence it is an eligible tail. The head y by assumption

is either r or has degree at exactly one in HCI(e2), so it has to have at least two edges

incident to it in later chains.

Now we consider how the replacement of the chains affected the other chains. Note that

for the vertices x,w, z their degree after the step CI(e1) and CI(e2) did not change, since

we inserted in each case ex with chain index CI(e1) and ew and ez with chain index CI(e2).

The only vertex not mentioned yet is y. We inserted ey with chain index CI(e2) in each case,

but by the condition of the claim, that is the degree of y in HCI(e2) is exactly one shows that

y is not in any chains between the chain indices CI(e1) and CI(e2), so it could not affect

any chains.

For the remaining cases, we may assume the following, which are symmetrical counter-

parts of each other.

• If J1 is a one-way chain, then y has degree at least two in HCI(e2).

• If J2 is a one-way chain, then z has degree at least two in LCI(e1).

The following definitions of indices, which are also symmetrical counterparts of each other

help separate the different cases from each other.

• If J1 is a one-way chain and y is not in HCI(e1) define the minimal index i for which

y ∈ V (Gi) and CI(e1) < i < CI(e2).

• If J2 is a one-way chain and z is not in LCI(e2) define the maximal index j for which

y ∈ V (Gi) and CI(e1) < i < CI(e2).

25

Note that by the minimality of i and maximality of j, if we use minimal chain decompo-

sitions Gi can only be an open up chain with y as its end or a one-way chain with y as its

head. Similarly Gj can only be a down chain with z as its end or a one-way chain with z as

its tail.

Claim 4.16. If i < j or either one of them is not defined, then G′ has a chain decomposition.

Proof. We replace J1 with other chains with chain index CI(e1) or i (if i is defined). Similarly

we replace J2 with chains with chain index CI(e2) or j (if j is defined). By assumption, the

chains replacing J1 have smaller chain index, than the ones replacing J2, foreshadowing that

we gain a chain decomposition after the procedure. We replace J1 accordingly depending on

its chain type.

a) If J1 is an up chain, then replace it with PxexeyPy as an up chain. Then v is valid as

internal vertex of an up chain, since it is incident to ew and ez in later chains.

b) If J1 is a down chain, then replace it with the following chains:

1. Px as a down chain, if it is not empty. One end of it is the end of J1, the other one is

x, which is incident to ex in a later chain, so it is valid.

2. Py as a down chain, if it is not empty. One end of it is the end of J1, the other one is

y, which is incident to ey in a later chain, so it is valid.

3. ex as a one-way chain with head v and tail x. Then x is either r or has degree at least

two in earlier chain, since it was an internal vertex of a down chain. The head v is

incident to two edges in later chains, namely ew and ez.

4. ey as a one-way chain with head v and tail y. Then y is either r or has degree at least

two in earlier chain, since it was an internal vertex of a down chain. The head v is

incident to two edges in later chains, namely ew and ez.

c) J1 is a one-way chain with head y and y has been added in earlier chains. Replace J1

with the following chains.

1. ex as a one-way chain with head v and tail x. Then x is an eligible tail since it was

the tail of J1. Then v at least two edges incident to it in later chains (ey, ez, ew).

26

2. ey as an up chain. Since y was the head of J1 it has degree at least two in later chains

and by assumption has already an edge incident to it. The other end v has two edges

incident to it in later chains ew and ez, and an edge from earlier chains ex.

d) If J1 is a one-way chain with head y that has not been added in earlier chains.

Add ex with chain index CI(e1) as a one-way chain with head v and tail x. Thenx is an

eligible tail since it was the tail of J1, and v is incident to at least two edges in later chains

(ey, ez, ew).

• If y is one of two distinct ends of the up chain Gi, then replace Gi with Giey as an

up chain. Then v is an eligible end since it is incident to an edge from earlier chains,

namely ex and to ez and ew in later chains.

• If y is a head of the one-way chain Gi, which is not a loop, then y is an eligible head at

the chain index i without having ey placed yet. Thus do not need to replace Gi, it is

enough to add ey after Gi as an up chain. Then y is incident to an edge from Gi and

either is r or has a degree at least two in later chains, since it was the head of Gi in

the original decomposition. Then v is incident to one edge from earlier chains ex and

to two from later chains ew and ez.

Now we consider how the replacement of the chains affected the other chains. In a), b)

and c) the new chains are inserted with chain index CI(e1) and each vertex’s degree remains

the same so we can conclude that these cases are valid. In d) the edge ey is inserted with

chain index i. By the definition of i and the assumptions the change at chain index CI(e1)

does not impact any other chains than Gi but has been proved to be valid already.

To replace J2 consider the reversed chain decomposition and follow the same procedure

as for J1. The proof for the validity of the chain decomposition regarding J2 is the same as

for J2 also. We may conclude that we maintained a chain decomposition.

Claim 4.17. If both i and j are defined and i = j then G′ has a chain decomposition rooted

at r.

27

Proof. When we introduced i and j we showed that Gi can only be an open up chain with

end y or a one-way chain with head y, and Gj can only be an open down chain with end z

or a one-way chain with tail z. Since Gi = Gj it has to be a one-way chain with head y and

tail z. Both i and j are defined, which means that the chain cannot be a loop, thus y and z

are distinct. We replace J1 and J2 with the following chains in this order. Before i = j we

insert the two following chains.

1. ex as a one-way chain with head v and tail x. Then x is an eligible tail, since it was

the tail of J1 and i is grater than CI(e1). The head v three edges incident to it in later

chains ex, ew, ez.

2. ez as a one-way chain with head v and tail z. By the definition of j that tail z is either

r or has two edges incident to it in earlier chains than Gj. Since we insert this chain

immediately before the chain Gj z is a valid tail. Then v has two edges incident to it

in later chains, namely ew, ey.

We insert the following two chains immediately after i = j.

1. ey as a one-way chain with head y and tail v. Then v is incident to two edges from

earlier chains, namely ex and ez. By the definition of i, y is either r or has two edges

incident to it in chains later, than i = j. Since we insert this chain immediately after

i = j this chain is also valid.

2. ew as a one-way chain with head w and tail v. The tail v was already valid in the

previous case, and it is still valid. The head w was the head of the one-way chain J2

and i = j is smaller than CI(e2), so it is valid.

Now we consider how the replacement of the chains affected the other chains. We inserted

ex with greater chain index than CI(e1), so we must examine how this affects the chains

between J1 and Gi = Gj. We know, that x was the tail of J2, so it already has a degree at

least two at chain index i = j. By the definitions of chains losing one degree at vertex x

between CI(e1) and i = j does not affect the validity of other chains. The edge ey is inserted

later, than i = j, but by the definition of i the only chain affected is Gi = Gj. This chain

28

remains valid, because Gi is a one-way chain, with head y, so if y loses a degree in Hi it does

not affect the validity of Gi. We can make a similar argument in the reversed graph for ez

and ew.

Claim 4.18. If both i and j are defined, and i > j then G′ has a chain decomposition.

Proof. We replace J1 and J2 with the following chains. Their chain index is specified in their

respective description.

1. ex as an up chain, with head v and tail x and chain index CI(e1). In J1 x was an

eligible tail, so it is also an eligible tail for ex. The head v has three edges incident to

it in later chains, namely ey, ez, ew.

2. ez as a one-way chain, with head v and tail z. We insert this chain immediately after

Gj. By the definition of j, z is an eligible tail since z is either r or incident to two

edges in earlier chains than Gj. The head v is incident to two edges in later chains,

namely ey and ew.

3. ey as a one-way chain with head y and tail v. We insert this chain immediately before

Gi. The tail v has two edges incident to it in earlier chains, namely ex and ez. By the

definition of i the head y is either r or incident to two edges in later chains than Gi.

Since we insert this chain before Gi, this chain is valid.

4. ew as a one-way chain with head w and tail v and chain index CI(e2). The tail v has

three incident edges in earlier chains, namely ex, ey, ez. The head w was a valid head

for J2, so it is also valid for ew.

Now we consider how the replacement of the chains affected the other chains. The degree

of vertex x did not change after replacing e1 with ex at CI(e1). The edge ey is inserted

immediately before Gi. By the definition of i, no other chains are affected. By symmetry

and a similar argument for e2 we may conclude that we maintained a chain decomposition.

29

We covered all possibilities of chain types when pinching edges. In summary, we proved

that we can maintain a chain decomposition through Mader-operations, which also implies

Theorem 4.7.

30

5 Constructing Four Edge-independent Trees

In this section, we show that Conjecture 1.1 holds for k = 4 following the method of Hoyer

and Thomas [4]. Using the result of the previous section, namely that a four-edge-connected

graph has a chain decomposition. It is enough to prove the following theorem.

Theorem 5.1 (Hoyer-Thomas). [4] Suppose G is a graph without isolated vertices. If G has

a chain decomposition rooted at a vertex r, then it has four edge-independent spanning trees

rooted at r.

Given a graph G and its chain decomposition G0, G1, ..., Gm. We may assume that

the chain decomposition is minimal. We obtain four edge-independent spanning trees by

constructing two partial numberings of the edges of G using the chain decomposition. From

each numbering, we gain two spanning trees, whose independence is provided by monotonic

paths with respect to the numberings from the vertices to the root r. The spanning trees

that are obtained from different numberings gain their independence from monotonic chain

indices in the paths.

By Theorem 4.11 we may assume that there are no loops in G. Using Theorem 4.10,

we can select for each vertex special edges incident to it. For each vertex v ̸= r, there are

two distinct nonloop edges incident to v whose chain indices are strictly smaller than any

other edge’s chain index incident to v. Likewise, there are two edges, whose chain indices are

strictly greater than any other edge’s chain index incident to v. We use these edges when

constructing the trees, so we name these edges.

Definition 5.2. For each vertex v ̸= r, the two f -edges of v are the two edges incident to v

with the lowest chain index. The two g-edges of v are the two edges incident to v with the

highest chain index.

Note that by definition f -edges cannot be edges from down chains. Similarly, g-edges

cannot be edges from up chains.

We define the numbering f iteratively on the edges of all up chains and one-way chains.

The numbering assigns distinct values from R to each edge. We consider two edges consec-

31

utive if they belong to the same up chain and are incident to the same internal vertex of

the chain. Note that in case of a closed up chain, the two neighboring edges of the end are

not consecutive.

We are numbering the edges of the graph in the order of the chain decomposition. We

begin by numbering E(G0) and then we number each edge of the up chains and the one-way

chains. Note that when we number Gi each edge in Hi belonging to up chains or one-way

chains has been numbered. Since f -edges cannot be edges from down chains, we numbered

every f -edge from Hi. We denote the f -, and g-values of an edge e by f(e) and g(e),

respectively. When we number Gi, we number the edges based on the following rules:

• If Gi is a closed up chain containing r, then number the edges of E(Gi) so that the

values monotonically change between consecutive edges. The values can be chosen

arbitrarily.

• If Gi is a closed up chain not containing r, then the end’s f -edges have already been

numbered. We call these edges the numbering edges of Gi. Number the edges of

E(Gi) so that the values monotonically change between consecutive edges and their

values are between the values of the two numbering edges.

• If Gi is an open up chain containing r, then r is an end of the chain. Let the other

end be u ̸= r. At least one f -edge of u has already been numbered. We call this

edge the numbering edge of Gi. Number the edges of E(Gi) so that the values grow

monotonically between consecutive edges and their value is greater than the numbering

edge’s value.

• If Gi is an open up chain not containing r, then at least one f -edge of each end has

been numbered. Let the two ends be u and v. Choose an f -edge of each end. We

can choose these edges to be distinct. If we could not, then v and u would have only

one f -edge in E(Hi), the one between them, but this would imply that the graph is

disconnected. We denote them ev and eu and call them the numbering edges of Gi. We

may assume that f(ev) < f(eu). Starting from the edge incident to v in the chain, we

umber the edges of E(Gi) so that the values grow monotonically between consecutive

32

edges and their value stays between the values of the numbering edges of Gi.

• If Gi is a one-way chain with tail r, then arbitrarily number the edge Gi.

• If Gi is a one-way chain whose tail is not r, then both f -edges of the tail have been

numbered with distinct values. Number the edge of Gi between the two values.

Symmetrically, we define the numbering g. The numbering assigns a number from R to

each edge of one-way chains and down chains. To obtain the g-numbering, we follow the

procedure in the reverse chain decomposition.

We construct the four trees R,B,G, Y as follows. For each vertex v ̸= r, consider its two

f -edges. Assign the one with the lower f -value to R and the one with the higher f -value

to B. Similarly assign the g-edge of v ̸= r with lower g-value to G and the one with higher

g-value to Y .

The following claim prepares us to prove that the trees are edge-independent.

Claim 5.3. For any v ̸= r, consider the edge e1 assigned to the vertex v in R. Let v′ be the

other end of v1. If v′ ̸= r, then let e′1 be the edge assigned to v′ in R. Then CI(e′1) ≤ CI(e1)

and f(e′1) < f(e1).

Proof. Let e2 be the edge assigned to B. We know that since e1 is an f -edge, it cannot be

in a down chain. We consider the two chain-types e1 can be the part of:

• Suppose e1 is in an up chain Gi. Since the chain decomposition is minimal and v′ ∈

V (Gi), the f -edges of v′ are in E(Hi+1), thus CI(e′1) ≤ i = CI(e1).

The edge e2 is part of Gi or is the covering edge of v, which is an end of Gi. By

definition f(e1) < f(e2). Furthermore, by the numbering procedure there exists an

edge e∗ of v′ for which f(e∗) < f(e1) < f(e2). Using the definition of R: f(e′1) ≤ f(e∗).

Both desired conditions are fulfilled.

• Suppose e1 is the one-way chain Gi. By assumption e1 is an f -edge of v, consequently

the degree of v can be at most one. By the definition of a one-way chain v is not eligible

to be the tail of Gi, so it must be the head and v′ must be the tail. The f -edges of v′

have chain indices smaller than i, consequently e1 ̸= e′1 and CI(e′1) < CI(e1).

33

By the numbering procedure, f(e1) is between the value of the two f -edges of v′. By

the definition of e′1 it is the smaller one, thus f(e′1) < f(e1). Both desired conditions

are fulfilled.

We may conclude that to each vertex, we assign a different edge in R. Also, R does not

contain a cycle, but has |V | − 1 edges, thus it is a spanning tree of G. From each vertex

v ̸= r there is a unique path from v to r, through which the chain indices are decreasing,

and the f -values are also decreasing. In the case of B, the chain indices are also decreasing,

but the f -values are increasing. The independence of the two trees is demonstrated in the

different behavior of f -values.

By symmetry, the independence of G and Y is also guaranteed by the different behavior

of the f -values of the two trees. Their independence from R and B is ensured by their

distinct behavior with respect to the chain indices. Although the chain indices show different

monotonicity, their starting edges may be the same, but considering Theorem 4.12 and

Theorem 4.13 the starting edges are different in each tree.

We showed that the four trees are indeed edge-disjoint, proving Conjecture 1.1 for k = 4.

The steps of the proof also imply a polynomial-time algorithm to construct the trees.

We summarize the algorithm without proving the correctness of each step:

34

Procedure: Four trees

Input: A graph G and its chain decomposition G0, G1, ..., Gm rooted at r ∈ V (G).

Output: Four edge-independent spanning trees R,B,G, Y .

1: R = ∅, B = ∅, G = ∅, Y = ∅

2: for i = 1, 2, ...,m:

Let the edges of Gi be e1, e2, ..., ek in this order

• If Gi is a closed up chain and r ∈ Gi, then f(ej) =
j

k + 1

• If Gi is a closed up chain and r /∈ Gi. Let the value of the numbering edges of the

end be l and u such that l < u. Then f(ej) = l +
j(u− l)

(k + 1)

• If Gi is an open up chain and r ∈ Gi. The two endpoints are r and u. The vertex

u is incident to e1. Then f(ej) =
j

k + 1

• If Gi is an open up chain and r /∈ Gi. The two ends are u and v, such that u is

incident to e1. The value of one of the f -edges of u and v are l and u respectively,

such that l < u. Then f(ej) = l +
u− l

k + 1

• If Gi is a one-way chain with tail r, then e1 = i

• If Gi is a one-way chain with tail u ̸= r. The value of the two f -edges of u are l

and u such that l < u. Then f(e1) =
l + u

2

3: for i = m,m− 1, ..., 1: do the same as above but replace f by g

4: for all v ∈ V − r:

Let the two f -edges of v be e1 and e2 and the two g-edges of v be e3 and e4.

R = R + v1 B = B + v2 G = G+ v3 Y = Y + v4

35

6 Applications

In this section, we define and study a routing problem that has been investigated in different

settings. Itai and Rodeh proposed a solution in the context of general networks [5]. Gopalan

and Ramasubramanian proposed a protocol for a similar problem [3]. We begin by presenting

the approach of Itai and Rodeh, and subsequently discuss the algorithm by Gopalan and

Ramasubramanian.

6.1 General routing problem

Consider a network G = (V,E), where the vertices intend to send packets to each other.

The vertices u and v can only communicate with each other if uv ∈ E. Each vertex has

an information storage capacity. A vertex v (the sender) intends to send a packet to the

vertex u (the receiver). If the graph G is connected, then this problem can be solved easily

with a spanning tree. Our goal is to solve the problem by using limited storage space, which

can result in faster message transmissions. It is sufficient to store one neighbor to a given

receiver for each vertex. However, assume that some edges may ”fail” in the sense that we

cannot send packets through them. When an edge fails, its endpoints are not aware that

it is faulty. Our goal is to be able to send the packets despite as many failures as possible.

We will refer to a packet sending method as a routing mechanism. We say that a routing

mechanism is k-reliable in case of at most k− 1 edge failures we can send a packet from any

vertex to any other vertex.

Edge-independent spanning trees are appilicable structures for solving these problems.

Consider a graph G = (V,E) with T1, T2, ..., Tk edge-independent spanning trees with root

r. Each vertex stores its parents and children, one for each of the k spanning trees rooted

at r. If the vertex v intends to send a packet to the vertex u, then u sends a packet to the

root r, then from the root r it is transmitted to u. Note that the packet contains its receiver

vertex, so when a packet passes through a vertex it knows if it is the receiver of the packet.

In addition, the packet also contains information that indicates which tree it was sent on.

We can store this information with log k bits. We propagate the packet from the root r to

36

its children in all trees, who in turn forward it to their respective children, and so on. This

way, we cover the whole graph. Summarizing how a vertex acts if it receives a packet:

• If the root receives a packet, it forwards it to all of its children in all trees.

• If vertex is not the root and the packet was sent by one of its children, then it forwards

it to its parent in the respective tree.

• If the packet was sent by its parent, then it sends the packet to all of its children in

the respective tree.

In case of k − 1 edge failures, the vertex u is guaranteed to receive the packet due to the

nature of edge-independent spanning trees. Note that in case of no edge failure, the vertex

u receives the packet at most k2 + k times, since it may be part of each v → r paths, and

when the packet arrives at r, it forwards it in all k trees. Thus, when we send the packet

through one tree, the vertex u can receive it at most k+1 times. This is a theoretical result,

as the method has a large number of messages, making it impractical to use.

6.2 A more practical routing approach

The previous routing protocol guarantees that the packet is received, but the same packet

has been sent, transmitted, and received many times, leading to an overload in the network.

Our goal now is not to send the packet to some vertex, but specifically to the root vertex.

We present a routing protocol for the case k = 3. This routing protocol operates under

stronger network assumptions, which allow for reduced communication overhead.

In this network, the vertex who sends a message on an edge is aware whether the vertex

on the other end of the edge has successfully received the packet. This condition gives us

the opportunity to redirect the packet when we encounter an edge failure. We refer to the

three trees as red, blue and green (R,B,G, respectively). An additional characteristic of the

network is that each vertex stores the color of the edges to which it is connected. We can

think of the edges of the trees as arcs, directed towards the root. Consequently, an edge uv

may have a u− v color and a v − u color.

37

The following method is called ”Red tree first”. We add an extra bit to the end of the

packet indicating if it has already encountered two faulty edges. The bit is set to 0 at the

beginning and switches to 1 if we have encountered two edge failures. The starting vertex

sends the packet along the red edges towards the root.

a) One edge failure. Assume that the packet cannot be sent from u to v through the edge

uv . The packet is sent towards the root through either the blue or the green tree. If the

color of edge v−u is blue, then the packet continues its path on the blue tree, if the color of

v − u is green, it continues on the green tree. If the edge does not have a v − u color, then

the next edge is chosen arbitrarily. The extra bit remains 0.

b) Two edge failures. Assume that the packet cannot be sent from u to v through the uv

edge. The packet used either the blue or green tree until now. We send the packet towards

the root on the green tree, if we have used the blue tree until now, and on the blue one, if

we have used the green tree. The overhead bit changes to 1. If we encounter any following

edge failures, the packet is dropped.

38

Alulírott Szepesi Balázs nyilatkozom, hogy szakdolgozatom elkészítése során az alább

felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye Megjegyzés

Nyelvhelyesség ellenőrzése Writefull Teljes dolgozat

39

References
[1] Baolei Cheng, Dajin Wang, and Jianxi Fan, Independent spanning trees in networks: A survey, ACM

Comput. Surv. 55 (July 2023), no. 14s.

[2] J Cheriyan and S.N Maheshwari, Finding nonseparating induced cycles and independent spanning trees

in 3-connected graphs, Journal of Algorithms 9 (1988), no. 4, 507–537.

[3] Abishek Gopalan and Srinivasan Ramasubramanian, Ip fast rerouting and disjoint multipath routing with

three edge-independent spanning trees, IEEE/ACM Transactions on Networking 24 (2016), no. 3, 1336–

1349.

[4] Alexander Hoyer and Robin Thomas, Four edge-independent spanning trees, SIAM Journal on Discrete

Mathematics 32 (2018), no. 1, 233–248, available at https://doi.org/10.1137/17M1134056.

[5] Alon Itai and Michael Rodeh, The multi-tree approach to reliability in distributed networks, Information

and Computation 79 (1988), no. 1, 43–59.

[6] Avram Zehavi and Alon Itai, Three tree-paths, Journal of Graph Theory 13 (1989), no. 2, 175–188,

available at https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130205.

40

https://doi.org/10.1137/17M1134056
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130205

	Introduction
	Constructing Two Edge-independent Trees
	Constructing Three Edge-independent Trees
	Converting a 3-edge-connected graph to 3-edge- 2-vertex connected graphs
	Converting a 3-edge- and 2-vertex-connected graph to a cubic 3-vertex connected graph
	Constructing augmenting cycles and paths
	Computing segments
	Computing The Trees

	Chain Decomposition of a four-edge-connected Graph
	Basic definitions
	Preparatory claims
	Proof of characterization

	Constructing Four Edge-independent Trees
	Applications
	General routing problem
	A more practical routing approach

