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1 Introduction

Alternating sign matrices (ASMs for short) are (0,±1)-matrices such that the sum of the entries
in each row and column equals one and the non-zero entries in each row and column alternate
in sign. Every permutation matrix is an ASM, so we can consider ASMs a natural and exciting
generalization of permutation matrices. The aim of this thesis is to investigate various questions
concerning alternating sign matrices and other related classes of matrices using the tool set of
polyhedral combinatorics and combinatorial optimization that are well known among mathe-
maticians interested in operations research, but seem to be unknown among those involved in
the study of ASMs.

Most of the results we discuss here also appear in [4]. The present thesis discusses the
questions from the literature in more detail, while the paper focuses more on the connection
between ASMs (PBMs) and g-polymatroids, as well as feasible circulations. In some cases, we
also provide alternative proofs to those in the paper.

In Section 2, we introduce the concept of prefix bounded matrices (PBMs for short), which
generalize alternating sign matrices and several other related matrix classes, and investigate
the existence of such matrices under various constraints, relying on the connection we establish
between PBMs and feasible circulations. We also show some interesting properties of these
matrices which are motivated either by related questions in the literature or simply by our own
curiosity.

In Sections 3 and 4, we discuss several problems proposed in the literature using the general
framework of PBMs. We provide simple answers for open questions that were previously believed
to be difficult to solve.

In Section 5, we discuss generalizations that turned out to be NP-hard. We conclude this
thesis in Section 6, by proposing some interesting questions that we plan to answer in the near
future.

1.1 Historical overview

The interest in ASMs started in the early 1980s with the alternating sign matrix conjecture [26,
27] by Mills, Robbins, and Rumsey, which provided the following formula for the number of n×n
ASMs:

n−1∏
j=0

(3j + 1)!

(n+ j)!
.

The conjecture has since been proved using several methods [22, 29], showing that there are
connections between ASMs and various interesting combinatorial objects. The first such connec-
tion was to descending plane partitions, which inspired the proof the Macdonald conjecture [26].
Another important connection is between ASMs and the so-called square ice model used in statis-
tical phyisics. The fact that there is a one-to-one correspondence between ASMs and the states
of square ice played a key role in Kuperberg’s alternative proof of the ASM conjecture [22]. A
state of the square ice model is an n×n grid with directed arcs, such that the in- and out-degree
of every vertex is 2, where we imagine that there are 4 arcs incident to each vertex, including
those on the border. The extra horizontal arcs of the vertices on the border must point inward,
and the extra vertical arcs must point outward. We ignore the other endpoints of these extra
arcs, thus when we refer to a vertex, we always mean one of those in the n×n grid. The model is
called square-ice because it is used to model 2-dimensional ice. The oxygen atoms correspond to



1.1 Historical overview 4

the vertices of the digraph, and the hydrogen atoms correspond to the arcs, in a way that every
hydrogen atom belongs to the oxygen whose vertex the arc representing the hydrogen points to.
Therefore, the in- and out-degree constraints ensure that 2 hydrogen atoms belong to every oxy-
gen atom. A state of the square ice model can be seen in Figure 2 below. The in- and out-degree
constraints imply that the arcs around every vertex must be one the following six configurations,
called the state of the vertex.

1 2 3 4 5 6

Figure 1: The six configurations.

Given a state of the square ice model, the corresponding ASM A = (ai,j) is the matrix, where
the entries represent the states of the vertices, such that ai,j = +1 if and only if the vertex at
the position (i, j) in the grid is of state 1, ai,j = −1 if and only if the corresponding vertex is of
state 2, and ai,j = 0 otherwise. It can be seen that this is a bijection, as there is a unique state
of square ice, from which we get a given ASM.


0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0



Figure 2: A state of 4× 4 square ice and the corresponding ASM.

In the past decade, there has been a growing interest in questions concerning the existence of
ASMs with various restrictions, most of which can be formulated as the existence of an ASM with
additional lower and upper bounds on the matrix entries. Solutions were only found for a few
special cases [8, 11]. We answer such questions in general by providing a necessary and sufficient
condition for the existence of an ASM with bounds on its entries using Hoffman’s theorem on
feasible circulations. A key observation about ASMs is that the alternating sign property can
be expressed as lower and upper bounds for the sum of entries on the prefixes (sets consisting
of the first few entries of a row/column), which leads us to introduce the concept of PBMs. A
different direction of the study of ASMs concerned the alternating sign matrix polytope, as well
as various similar polytopes, with special focus on their faces and vertices. In this thesis, we
discuss one such problem, namely we characterize the vertices of a class of integer polytopes,
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which generalizes a similar result concerning the alternating sign matrix polytope and at the
same time provides a more elegant proof.

1.2 Notations

For any n ∈ Z>0, let [n] denote the set {1, . . . , n} ⊆ Z>0. For an m × n matrix, let S be the
set of positions S = [m]× [n]. We call the set of the first j entries of the i-th row the horizontal
prefix ending at the position (i, j). Similarly, we call the first i entries of the j-th column the
vertical prefix ending at the position (i, j). We consider the empty set to be a prefix. We call the
difference of two prefixes of the same row (column) a horizontal (vertical) interval. For a matrix
M, we denote by Mi,. the i-th row of the matrix and by M.,j its j-th column.

Let D = (V,A) be a digraph and f : A → R be an arbitrary function defined on its arcs. For
a subset U ⊆ V , we denote by ϱf (U) the sum of f on the arcs entering U , and by δf (U) the sum
of f on the arcs leaving U , that is:

ϱf (U) =
∑

uv∈A:u/∈U,v∈U

f(uv), δf (U) =
∑

uv∈A:u∈U,v/∈U

f(uv).

Let f : S → R be an arbitrary function defined on the elements of S. From f , we define the
set function f̃ : 2S → R, where

f̃(Z) =
∑
z∈Z

f(z)

for every subset Z ⊆ S.

2 Prefix bounded matrices

In this section, we introduce the concept of prefix bounded matrices, which is a natural general-
ization of alternating sign matrices. We discuss their relationship in Section 3.

Definition 1. Let (Φ1,Γ1,Φ2,Γ2, f, g, α, β) be an 8-tuple, where Γ1,Γ2,Φ1,Φ2, f, g are m × n
integer matrices where Φ1,Φ2, f might have −∞ entries and Γ1,Γ2, g might have ∞ entries. Let
α, β be integers where α might be −∞ and β might be ∞. We assume that Φ1 ≤ Γ1, Φ2 ≤ Γ2,
f ≤ g and α ≤ β.

We call an m × n integer matrix X = (xi,j) a prefix bounded matrix (PBM for short) with
bounds (Φ1,Γ1,Φ2,Γ2, f, g, α, β) if it satisfies the following conditions: f ≤ X ≤ g and for every
i ∈ [m], j ∈ [n] Φ1

i,j is lower and Γ1
i,j is upper bound for the sum of the first j entries in the i-th

row. Similarly, Φ2
i,j is lower and Γ2

i,j is upper bound for the first i entries in the j-th column.
Furthermore, α and β are lower and upper bounds for the sum of the entries in X. We only use
the term PBM and omit the 8-tuple of the bounds when it is clear from the context.

The integer solutions to the following inequalities are, by definition, the PBMs. Surprisingly,
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the polyhedron described by these inequalities is the convex hull of PBMs in Rm×n.

x ∈ RS

fi,j ≤xi,j ≤ gi,j ∀(i, j) ∈ S (1a)

Φ1
i,j ≤

j∑
j′=1

xi,j′ ≤ Γ1
i,j ∀(i, j) ∈ S (1b)

Φ2
i,j ≤

i∑
i′=1

xi′,j ≤ Γ2
i,j ∀(i, j) ∈ S (1c)

α ≤
∑

(i,j)∈S

xi,j ≤ β (1d)

Let Q be the coefficient matrix of inequalities (1b), (1c), and (1d). Note that the prefixes of
the rows and columns form two laminar set families on the ground set S, moreover, if we add
S to any of these families, then we still get two laminar set families. Therefore, our inequality
system can be formulated as f ≤ x ≤ g, a ≤ Qx ≤ b, where Q is a network matrix [15, p. 151]
and the bounds a and b are determined by (1b), (1c), and (1d). The fact that Q is a network
matrix implies that it is also totally unimodular (TU for short) [15, p. 150]. This implies that
the polyhedron is an integer polyhedron, therefore, the feasibility of the system is equivalent to
the existence of a PBM.

Using the fact that the matrix Q is TU, we derive a decomposition theorem for PBMs, which
can be considered a generalization of Kőnig’s edge coloring theorem [21].

Theorem 1. For every k ∈ Z>0 and every PBM A satisfying the bounds
(Φ1,Γ1,Φ2,Γ2, f, g, α, β), there exist PBMs A1, . . . , Ak satisfying the bounds(⌊

Φ1

k

⌋
,
⌈
Γ1

k

⌉
,
⌊
Φ2

k

⌋
,
⌈
Γ2

k

⌉
,
⌊
f
k

⌋
,
⌈
g
k

⌉
,
⌊
α
k

⌋
,
⌈
β
k

⌉)
such that A = A1 + · · · + Ak, further-

more, for every position (i, j) ∈ S and every index l ∈ [k], if ai,j ≥ 0, then ali,j ≥ 0 and if

ai,j ≤ 0, then ali,j ≤ 0, where Al =
(
ali,j

)
for l ∈ [k].

Proof. We prove the statement by induction on k. The statement obviously holds for k = 1. We
show that there is always a matrix A1 such that the matrix A−A1 can be decomposed into k−1
matrices, which together with A1 form the desired decomposition of A. To show this, consider
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the following system of inequalities.

x ∈ RS (LP)⌊
fi,j
k

⌋
≤xi,j ≤

⌈
gi,j
k

⌉
∀(i, j) ∈ S (2a)⌊

Φ1
i,j

k

⌋
≤

j∑
j′=1

xi,j′ ≤

⌈
Γ1
i,j

k

⌉
∀(i, j) ∈ S (2b)

⌊
Φ2
i,j

k

⌋
≤

i∑
i′=1

xi′,j ≤

⌈
Γ2
i,j

k

⌉
∀(i, j) ∈ S (2c)⌊

α

k

⌋
≤

∑
(i,j)∈S

xi,j ≤
⌈
β

k

⌉
(2d)

0 ≤xi,j ≤ ai,j ∀(i, j) ∈ S : ai,j ≥ 0 (2e)
ai,j ≤xi,j ≤ 0 ∀(i, j) ∈ S : ai,j ≤ 0 (2f)

(k − 1)

⌊
fi,j
k

⌋
≤ ai,j−xi,j ≤ (k − 1)

⌈
gi,j
k

⌉
∀(i, j) ∈ S (2g)

(k − 1)

⌊
Φ1
i,j

k

⌋
≤

j∑
j′=1

(ai,j′−xi,j′) ≤ (k − 1)

⌈
Γ1
i,j

k

⌉
∀(i, j) ∈ S (2h)

(k − 1)

⌊
Φ2
i,j

k

⌋
≤

i∑
i′=1

(ai′,j−xi′,j) ≤ (k − 1)

⌈
Γ2
i,j

k

⌉
∀(i, j) ∈ S (2i)

(k − 1)

⌊
α

k

⌋
≤

∑
(i,j)∈S

(ai,j−xi,j) ≤ (k − 1)

⌈
β

k

⌉
(2j)

It is easy to check that xi,j =
ai,j
k is a solution to the system and therefore, there also exists an

integer solution to the system, as the coefficient matrix of the system is TU and the bounding
vectors are integer-valued.

Let x be an integer solution to the system and let a1i,j = xi,j for each position (i, j) ∈ S.
Because of the inequalities (2a) - (2d), the matrix A1 we just defined, is a PBM with bounds(⌊

Φ1

k

⌋
,
⌈
Γ1

k

⌉
,
⌊
Φ2

k

⌋
,
⌈
Γ2

k

⌉
,
⌊
f
k

⌋
,
⌈
g
k

⌉
,
⌊
α
k

⌋
,
⌈
β
k

⌉)
. Moreover, the inequalities (2e) and (2f) imply

that if ai,j ≥ 0, then a1i,j ≥ 0, and if ai,j ≤ 0, then a1i,j ≤ 0 for every position (i, j) ∈ S, thus A1

has the properties listed in the theorem.
Furthermore, because of the inequalities (2g) - (2j), the matrix A−A1 is a PBM with bounds(

(k − 1)
⌊
Φ1

k

⌋
, (k − 1)

⌈
Γ1

k

⌉
, (k − 1)

⌊
Φ2

k

⌋
, (k − 1)

⌈
Γ2

k

⌉
, (k − 1)

⌊
f
k

⌋
, (k − 1)

⌈
g
k

⌉
, (k − 1)

⌊
α
k

⌋
,

(k − 1)
⌈
β
k

⌉)
. The inequalities (2e) and (2f) imply that if ai,j ≥ 0, then ai,j − a1i,j ≥ 0 and

if ai,j ≤ 0, then ai,j − a1i,j ≤ 0 for every position (i, j) ∈ S. Therefore, by induction, A − A1

can be decomposed into k − 1 matrices A2, . . . , Ak such that A1, A2, . . . , Ak form the desired
decomposition of the matrix A.

Remark 1. One can also prove this theorem using the integer decomposition property of poly-
hedra described by a TU matrix and an integer bounding vector [2]. The reason why we chose
to show this slightly more complicated proof is that it directly provides an algorithm to find the
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desired decomposition in polynomial time, as we can find A1 and then inductively A2, . . . , Ak

using the fact that an integer solution of (LP) is a PBM with bounds determined by the inequal-
ities of (LP) and as we show later in this section, there is a one-to-one correspondence between
PBMs and feasible circulations in a certain digraph, which we can find using standard network
flow algorithms.

Another consequence of Q being a network matrix is that there is a bijection between the
solutions to the system and feasible circulations in a digraph, moreover, there is a bijection
between PBMs and integer-valued feasible circulations in the same digraph [15, p. 158]. A
detailed proof of this bijection can be found in [4]. Now we explicitly define the circulation
problem equivalent to the existence of a PBM. Let us define a digraph D = (V,A), where
V = V 1 ∪ V 2 and A = A1 ∪A2 ∪N ∪ {v20v10}. We define V 1, V 2 as the following:

V 1 = {v1i,j : (i, j) ∈ S} ∪ {v10},

V 2 = {v2i,j : (i, j) ∈ S} ∪ {v20}.

For i ∈ [m] and j ∈ [n− 1], we define the arc

a1i,j = v1i,j+1v
1
i,j

representing the horizontal prefix ending at the position (i, j). For i ∈ [m], let the arc

a1i,n = v10v
1
i,n

represent the prefix ending at the position (i, n). Let A1 be the set of arcs representing the
horizontal prefixes, that is,

A1 = {a1i,j : (i, j) ∈ S}.

These correspond to the inequalities in (1b).
Similarly, for i ∈ [m− 1] and j ∈ [n], we define the arc

a2i,j = v2i,jv
2
i+1,j

representing the vertical prefix ending at the position (i, j). For j ∈ [n], let the arc

a2m,j = v2m,jv
2
0

represent the prefix ending at the position (m, j). Let A2 be the set of arcs representing the
vertical prefixes, that is,

A2 = {a2i,j : (i, j) ∈ S}.

These correspond to the inequalities in (1c).
We also add an arc

a0 = v20v
1
0,

which represents the sum of all entries of the matrix, which corresponds to (1d).
The arcs in A1∪A2∪{a0} are called the tree arcs that belong to the spanning tree determined

by the network matrix Q.
Furthermore, let

ai,j = v1i,jv
2
i,j ,
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N = {ai,j : (i, j) ∈ S}

be the non-tree arcs that represent the entries in the matrix. Figure 3 shows the construction
for m = n = 4. Tree arcs are represented as continuous green arrows and non-tree arcs are
represented as dotted black arrows in the digraph.

v10

v20

v11,1 v11,2 v11,3 v11,4

v12,1 v12,2 v12,3 v12,4

v13,1 v13,2 v13,3 v13,4

v14,1 v14,2 v14,3 v14,4

v21,1 v21,2 v21,3 v21,4

v22,1 v22,2 v22,3 v22,4

v23,1 v23,2 v23,3 v23,4

v24,1 v24,2 v24,3 v24,4

Figure 3: The circulation network for a 4× 4 PBM.

For every (i, j) ∈ S, we define the lower and upper bounds l, u : A → Z as

l(a1i,j) = Φ1
i,j , u(a1i,j) = Γ1

i,j ,

l(a2i,j) = Φ2
i,j , u(a2i,j) = Γ2

i,j ,

l(ai,j) = fi,j , u(ai,j) = gi,j ,

l(a0) = α, u(a0) = β.

Theorem 2 (Hoffman’s circulation theorem [19, 25]). Let D = (V,A) be a digraph and
l, u : A → R lower and upper bounds defined on its arcs, such that l ≤ u. There exists an
(l, u)-feasible circulation z : A → R, that is, l ≤ z ≤ u and ϱz(v) = δz(v) for every vertex v ∈ V ,
if and only if ϱu(W ) ≥ δl(W ) holds for every subset W ⊆ V of the vertices. If l and u are
integer-valued, then z can also be chosen integer-valued.
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Now we know that there is a PBM if and only if the condition of Hoffman’s circulation
theorem holds for the corresponding circulation problem. In the next sections, we rely on this
relationship to derive necessary and sufficient conditions for the existence of a PBM with various
bounds.

Remark 2. For any linear cost function c : S → R, we can model the problem min{cx : f ≤ x ≤
g, a ≤ Qx ≤ b}, where Q is the matrix defined above, as a minimum cost circulation problem,
with c′(ai,j) = ci,j ∀(i, j) ∈ S and c′(a) = 0 ∀a ∈ A \N , thus we can find a minimum cost PBM
in polynomial time.

2.1 A general theorem about the existence

Let Φ1,Φ2,Γ1,Γ2, f, g, α, β be the bounds introduced in Definition 1, and D = (V,A) be the
digraph with bounds l, u on the arcs defined above. Let P1 be the set of all horizontal prefixes
of S, and p1, b1 : P1 → Z be the lower and upper bounds defined by Φ1 and Γ1. Similarly, let P2

be the set of all vertical prefixes of S and p2, b2 : P2 → Z the lower and upper bounds defined
by Φ2 and Γ2. We extend the definitions of p1, b1, p2 and b2 to intervals, and we refer to the
extended functions as p∗1, b

∗
1, p

∗
2, and b∗2. Let Z ⊆ S be a horizontal interval in the i-th row, let

(i, h) and (i, k) be its first and last positions, respectively. Then let

b∗1(Z) = Γ1
i,k − Φ1

i,h−1,

p∗1(Z) = Φ1
i,k − Γ1

i,h−1,
(3)

where Φ1
i,0 = Γ1

i,0 = 0 for all i ∈ [m]. For the empty set, p∗1(∅) = b∗1(∅) = 0. Similarly, if Z ⊆ S
is a vertical interval in the j-th column and (h, j), (k, j) are its first and last positions, then let

b∗2(Z) = Γ2
k,j − Φ2

h−1,j ,

p∗2(Z) = Φ2
k,j − Γ2

h−1,j ,
(4)

where Φ2
0,j = Γ2

0,j = 0 for all j ∈ [n]. For the empty set, p∗2(∅) = b∗2(∅) = 0. We extend the
definition of p∗1, b∗1, p∗2, and b∗2 to every subset X ⊆ S. For an arbitrary set X ⊆ S, let p∗1(X) and
b∗1(X) be the sum of the bounds on the maximal horizontal intervals in X. The bounds p∗2 and
b∗2 can be defined similarly as the sum of the bounds on the maximal vertical intervals in X.

Theorem 3. Let S = [m] × [n]. There exists an m × n integer matrix with its entries between
the bounds f, g, the sum of its entries between α and β, and satisfying the prefix bounds defined
by Φ1,Φ2,Γ1,Γ2 if and only if the following conditions hold for every X1, X2 ⊆ S

p∗1(X1) + f̃(X2 −X1) ≤ b∗2(X2) + g̃(X1 −X2), (5a)

p∗2(X2) + f̃(X1 −X2) ≤ b∗1(X1) + g̃(X2 −X1), (5b)

b∗1(X1) + b∗2(X2) + g̃(X1 ∩X2)− f̃(X1 ∩X2) ≥ α, (5c)

p∗1(X1) + p∗2(X2) + f̃(X1 ∩X2)− g̃(X1 ∩X2) ≤ β. (5d)

We can naturally replace the sets X1, X2 with a family of intervals I = IH ⊎ IV , where
IH consists of the maximal horizontal intervals in X1 and IV consists of the maximal vertical
intervals in X2. Note that IH and IV may contain the same entry as a one-element horizontal
and vertical interval.
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Example 1. Consider the bounds defined below:

Φ1 =

−∞ −∞ 1
−∞ −∞ 1
−∞ −∞ −∞

 , Φ2 =

−∞ 1 −∞
−∞ −∞ −∞
−∞ −∞ −∞

 , Γ1 =

∞ ∞ ∞
−1 ∞ ∞
∞ ∞ ∞

 , Γ2 =

∞ ∞ ∞
∞ ∞ ∞
∞ −1 ∞

 ,

f =

 0 0 0
−∞ −∞ 0
−∞ 0 −∞

 , g =

 1 1 1
∞ ∞ 1
∞ ∞ ∞

 .

Figure 4 shows an example of a family of intervals that proves that there is no PBM with the
bounds (Φ1,Γ1Φ2,Γ2, f, g,−∞,∞).

Figure 4: A family of intervals I = IH ⊎ IV violating (5a).

Proof. We call two subsets X1, X2 ⊆ S a violating pair if they do not satisfy at least one of the
inequalities (5a), (5b), (5c), and (5d).

First, we prove that if there exists a violating pair X1, X2, then there exists no PBM with
bounds (Φ1,Γ1,Φ2,Γ2, f, g, α, β). It is easy to see that the left-hand sides of the inequalities (5a)
and (5b), are both lower bounds for the sum of the entries in X1∪X2, while the right-hand sides
of the inequalities are both upper bounds for the sum of the entries in X1 ∪X2, thus, if one of
them does not hold, it means that we have a lower and upper bound, where the upper bound is
smaller than the lower bound, therefore, there exists no PBM. In (5c), the left-hand side is an
upper bound for the sum of the entries in the matrix, thus, if it is smaller than α, then there
cannot exist a PBM. The left-hand side of (5d) is a lower bound for the sum of the entries, thus
if it is greater than β, then there exists no PBM.

Second, we show that if there exists no PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g, α, β), then
there exists a violating pair X1, X2. If there is no PBM, then there cannot be an (l, u)-feasible
circulation either, since we showed that there exists a circulation if and only if there exists a
PBM. It follows from Hoffman’s circulation theorem that there exists a subset W ⊆ V such that

ϱu(W )− δl(W ) < 0. (6)

For a digraph D = (V,A) and for a subset W ⊆ V , let ∆in(W ) := {uv ∈ A : u /∈ W, v ∈ W}
denote the set of arcs entering W , and let ∆out(W ) := {uv ∈ A : u ∈ W, v /∈ W} denote the set
of arcs leaving W .

Let Z be a horizontal interval in the i-th row, and denote its first and last positions by (i, h)
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and (i, k), respectively. Then

b∗1(Z) = Γ1
i,k − Φ1

i,h−1 = u(a1i,k)− l(a1i,h−1),

p∗1(Z) = Φ1
i,k − Γ1

i,h−1 = l(a1i,k)− u(a1i,h−1),
(7)

where we define u(a1i,0) = l(a1i,0) = 0 for all i ∈ [m], so that we get the bounds for the prefixes
for h = 1.

Similarly, if Z is a vertical interval in the j-th column and (h, j) and (k, j) are its first and
last elements, respectively. Then

b∗2(Z) = Γ2
k,j − Φ2

h−1,j = u(a2k,j)− l(a2h−1,j),

p∗2(Z) = Φ2
k,j − Γ2

h−1,j = l(a2k,j)− u(a2h−1,j),
(8)

where we define u(a20,j) = l(a20,j) = 0 for all j ∈ [n], so that we get the bounds for the prefixes
for h = 1.

To prove our theorem, we investigate four different cases depending on the set W that violates
the condition of Hoffman’s circulation theorem. Each of these cases corresponds to an inequality
in Theorem 3.

Case 1. v10, v
2
0 /∈ W

Let X1, X2 be defined as

X1 = {(i, j) ∈ S : v1i,j ∈ W} and X2 = {(i, j) ∈ S : v2i,j ∈ W}.

We know that a0 does not contribute to ϱu(W )− δl(W ), as neither of its endpoints are in W .
The contribution of the arcs in A1 to ϱu(W )− δl(W ) is∑

a1i,j∈∆in(W )∩A1

u(a1i,j)−
∑

a1i,j−1∈∆out(W )∩A1

l(a1i,j−1) = b∗1(X1).

The contribution of the arcs in A2 is∑
a2i−1,j∈∆in(W )∩A2

u(a2i−1,j)−
∑

a2i,j∈∆out(W )∩A2

l(a2i,j) = −p∗2(X2).

An arc ai,j ∈ N contributes (−fi,j) if v1i,j ∈ W and v2i,j /∈ W , that is, (i, j) ∈ X1 − X2. It
contributes gi,j if v1i,j /∈ W and v2i,j ∈ W , that is, (i, j) ∈ X2 −X1. Otherwise, it contributes 0.
From these, we get

ϱu(W )− δl(W ) = b∗1(X1)− p∗2(X2)− f̃(X1 −X2) + g̃(X2 −X1) < 0,

which, by rearrangements, means that X1 and X2 violate (5b).
Case 2. v10, v

2
0 ∈ W

Let X1, X2 be defined as

X1 = {(i, j) : v1i,j /∈ W} and X2 = {(i, j) : v2i,j /∈ W}.

We know that a0 does not contribute to ϱu(W )− δl(W ), since both of its endpoints are in W .
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The contribution of the arcs in A1 is∑
a1i,j−1∈∆in(W )∩A1

u(a1i,j−1)−
∑

a1i,j∈∆out(W )∩A1

l(a1i,j) = −p∗1(X1).

The contribution of the arcs in A2 is∑
a2i,j∈∆in(W )∩A2

u(a2i,j)−
∑

a2i−1,j∈∆out(W )∩A2

l(a2i−1,j) = b∗2(X2).

An arc ai,j ∈ N contributes (−fi,j) if v1i,j ∈ W and v2i,j /∈ W , that is, (i, j) ∈ X2 − X1. It
contributes gi,j if v1i,j /∈ W and v2i,j ∈ W , that is, (i, j) ∈ X1 −X2. Otherwise, it contributes 0.
From these, we get

ϱu(W )− δl(W ) = b∗2(X2)− p∗1(X1)− f̃(X2 −X1) + g̃(X1 −X2) < 0,

which, by rearrangements, means that X1 and X2 violate (5a).
Case 3. v10 ∈ W, v20 /∈ W

Let X1, X2 be defined as

X1 = {(i, j) : v1i,j /∈ W} and X2 = {(i, j) : v2i,j ∈ W}.

In this case, the arc a0 enters W , thus its contribution to ϱu(W )− δl(W ) is β.
The contribution of the arcs in A1 is∑

a1i,j−1∈∆in(W )∩A1

u(a1i,j−1)−
∑

a1i,j∈∆out(W )∩A1

l(a1i,j) = −p∗1(X1).

The contribution of the arcs in A2 is∑
a2i−1,j∈∆in(W )∩A2

u(a2i−1,j)−
∑

a2i,j∈∆out(W )∩A2

l(a2i,j) = −p∗2(X2).

An arc ai,j ∈ N contributes (−fi,j) if v1i,j ∈ W and v2i,j /∈ W , that is, (i, j) ∈ X1 ∩ X2. It
contributes gi,j if v1i,j /∈ W and v2i,j ∈ W , that is, (i, j) ∈ X1 ∩X2. Otherwise, it contributes 0.
From these, we get

ϱu(W )− δl(W ) = −p∗1(X2)− p∗2(X1)− f̃(X1 ∩X2) + g̃(X1 ∩X2) + β < 0,

wich, by rearrangements, means that X1 and X2 violate (5d).
Case 4. v10 /∈ W, v20 ∈ W

Let X1, X2 be defined as

X1 = {(i, j) : v1i,j ∈ W} and X2 = {(i, j) : v2i,j /∈ W}.

In this case, the arc a0 leaves W , thus its contribution to ϱu(W )− δl(W ) is (−α).
The contribution of the arcs in A1 is∑

a1i,j∈∆in(W )∩A1

u(a1i,j)−
∑

a1i,j−1∈∆out(W )∩A1

l(a1i,j−1) = b∗1(X1).
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The contribution of the arcs in A2 is∑
a2i,j∈∆in(W )∩A2

u(a2i,j)−
∑

a2i−1,j∈∆out(W )∩A2

l(a2i−1,j) = b∗2(X2).

An arc ai,j ∈ N contributes (−fi,j) if v1i,j ∈ W and v2i,j /∈ W , that is, (i, j) ∈ X1 ∩ X2. It
contributes gi,j if v1i,j /∈ W and v2i,j ∈ W , that is, (i, j) ∈ X1 ∩X2. Otherwise, it contributes 0.
From these, we get

ϱu(W )− δl(W ) = b∗1(X1) + b∗2(X2)− f̃(X1 ∩X2) + g̃(X1 ∩X2)− α < 0,

which, by rearrangements, means that X1 and X2 violate (5c).

2.2 Simpler bounds

A straightforward special case is when we do not have any bounds on the sum of all entries. We
often use this corollary instead of Theorem 3, since in this case the conditions are simpler.

Corollary 1. Let S = [m] × [n]. There exists an m × n integer matrix with entries between
the bounds f, g satisfying the prefix bounds defined by Φ1,Φ2,Γ1,Γ2 if and only if the following
conditions hold for every X1, X2 ⊆ S

p∗1(X1) + f̃(X2 −X1) ≤ b∗2(X2) + g̃(X1 −X2), (5a)

p∗2(X2) + f̃(X1 −X2) ≤ b∗1(X1) + g̃(X2 −X1). (5b)

Proof. We can see that the statement is a special case of Theorem 3 with α = −∞ and β = ∞.
Because of this, (5c) and (5d) automatically hold for every X1, X2 ⊆ S, thus (5a) and (5b) hold
for every X1, X2 ⊆ S if and only if there exists a PBM.

We also state the theorem in the special case when we only have bounds on the prefixes, with
no bounds on the matrix entries or their sum.

Corollary 2. Let S = [m] × [n]. There exists an m × n integer matrix satisfying the prefix
bounds defined by Φ1,Φ2,Γ1,Γ2 if and only if the following conditions hold for every connected
subset X ⊆ S:

p∗1(X) ≤ b∗2(X), (9a)
p∗2(X) ≤ b∗1(X), (9b)

where we call a subset X ⊆ S connected if, for every s, s′ ∈ X, there exists a sequence of positions
x0, x1, . . . , xk ∈ X, where x0 = s, xk = s′ and for all 0 ≤ i < k xi and xi+1 are adjacent positions.

Proof. In this special case of Corollary 1 the entry bounds are f ≡ −∞ and g ≡ ∞.
It is obvious that if there exists a subset X, for which (9a) or (9b) does not hold, then there

exists no PBM.
If there exists no PBM, we know that there exists a pair of subsets X1, X2 for which (5a) or

(5b) does not hold. Suppose it is (5a). Observe that if X1 ̸= X2, then either f̃(X2 −X1) = −∞
or g̃(X1 − X2) = ∞, thus (5a) holds. This implies X1 = X2 =: X, and (5a) is equivalent to
p∗1(X) ≤ b∗2(X). What remains to show is that if there is such an X, then there is a connected
X ′ for which (5a) still does not hold. Let X1, . . . , Xk be the connected components of X. It is
easy to see that p∗1(X) = p∗1(X

1) + · · · + p∗1(X
k) and b∗2(X) = b∗2(X

1) + · · · + b∗2(X
k), thus at

least one connected component Xi must violate (5a). The same argument works if (5b) does not
hold.
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2.3 Exact prescriptions for the rows and columns

We investigate an interesting case of PBMs, when there are exact prescriptions on the sum of
the entries in each full row and column of the matrix. This means that

−∞ < Φ1
i,n = Γ1

i,n < ∞ ∀i ∈ [m],

−∞ < Φ2
m,j = Γ2

m,j < ∞ ∀j ∈ [n].
(10)

We suppose that ∑
i∈[m]

Γ1
i,n =

∑
j∈[n]

Γ2
m,j =: H, (11)

otherwise, there could not exist a PBM.

Lemma 1. Let S = [m] × [n] be the ground set and let p∗1, p
∗
2, b

∗
1, b

∗
2 be the bounds defined by

Φ1,Φ2,Γ1,Γ2 at the beginning of Section 2.1, where Φ1,Φ2,Γ1,Γ2 satisfy (10) and (11). Then
for every subset X ⊆ S

p∗1(X) + b∗1(S −X) = H, (12a)
p∗2(X) + b∗2(S −X) = H. (12b)

Proof. We only show the proof of (12a) as (12b) can be proven similarly. Recall that Si,. denotes
the i-th row of S, and let Xi denote the positions in X belonging to the i-th row, that is,
Xi = X ∩ Si,.. As we know that

p∗1(X) =
∑
i∈[m]

p∗1(X
i),

it suffices to show that (12a) holds for every row Si,.. The statement for Si,. is the following:

Claim 1. For every subset Z ⊆ Si,.,

p∗1(Z) + b∗1(Si,. − Z) = b∗1(Si,.), (13)

where b∗1(Si,.) = Γ1
i,n = Φ1

i,n = p∗1(Si,.).

Proof. We prove this statement by induction on the number of maximal intervals Z1, . . . , Zk in
Z. If there are 0 intervals in Z, then Z = ∅ and the statement clearly holds. Let Z =

⋃
i∈[k] Zi,

where Z1, . . . , Zk are the disjoint maximal intervals in Z. By induction, we assume that the
statement holds for all subsets that contain fewer than k maximal intervals. Let Z ′ =

⋃
i∈[k−1] Zi

be the union of the first k − 1 maximal intervals. We know that (13) holds for Z ′, thus

p∗1(Z
′) + b∗1(Si,. − Z ′) = b∗1(Si,.).

We also know that
p∗1(Z) = p∗1(Z

′) + p∗1(Zk).

Let us notice that when we add Zk to Z ′, we remove Zk from Si,. − Z and from the maximal
interval that contained Zk in Si,. − Z we get two intervals. Let (i, h) and (i, k) be the first and
last entries of Zk. This way, we add Φ1

i,k −Γ1
i,h−1 to p∗1 and we add Γ1

i,h−1−Φ1
i,k to b∗1, thus their

sum remains b∗1(Si,.).

Lemma 1 immediately follows from Claim 1.
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Theorem 4. Let S = [m]× [n]. There exists an m× n integer matrix with entries between the
bounds f, g satisfying the prefix bounds defined by Φ1,Φ2,Γ1,Γ2, where Φ1,Φ2,Γ1,Γ2 satisfy (10)
and (11) if and only if the following condition holds for every X1, X2 ⊆ S:

H ≤ b∗1(X1) + b∗2(X2) + g̃(X1 ∩X2)− f̃(X1 ∩X2). (14)

Proof. Let us notice that the right-hand side of (14) is an upper bound for the sum of all entries,
thus, if (14) does not hold, then there exists no PBM.

Now we need to prove that, if there exists no PBM, then there exists a violating pair of subsets,
for which (14) does not hold. We know from Corollary 1 that there exists a pair X1, X2 ⊆ S, for
which (5a) or (5b) does not hold. If (5a) does not hold, that is,

p∗1(X1) + f̃(X2 −X1) > b∗2(X2) + g̃(X1 −X2).

Let X ′
1 = S −X1 be the complement set of X1. Using this and Lemma 1, we get

H − b∗1(X
′
1) + f̃(X2 ∩X ′

1) > b∗2(X2) + g̃(X
′
1 ∩X2),

which obviously implies that (14) does not hold for X ′
1, X2.

If (5b) does not hold for X1, X2, then with a similar argument we get that (14) does not hold
for X1, X

′
2, where X ′

2 = S −X2 is the complement set of X2.

2.4 Another approach based on g-polymatroids

The problems discussed so far in this section can also be handled with g-polymatroids [14]. In this
thesis, we only provide a brief summary on how we get the above theorems using g-polymatroids
and only define the most essential concepts. The details of this approach can be found in [4] and
the background of g-polymatroids can be found in [15]. Let S be a finite set, which we will refer
to as the ground set. Let p, b : 2S → R be a strongly paramodular pair, that is, p is supermodular,
b is submodular, and they satisfy the cross-inequality for every pair of subsets X1, X2 ⊆ S. We
also suppose that p(∅) = b(∅) = 0.

Definition 2. We call the polyhedron Q(p, b) = {x ∈ RS : p(Z) ≤ x̃(Z) ≤ b(Z) ∀Z ⊆ S} a
generalized polymatroid (g-polymatroid).

For a g-polymatroid Q(p, b), the bordering paramodular pair is unique, namely

b(Z) = max{x̃(Z) : x ∈ Q}, p(Z) = min{x̃(Z) : x ∈ Q}.

Observe that the bounding functions defined in (7) and (8) are paramodular pairs, thus the
matrices satisfying the bounds defined by Φ1 and Γ1 form a g-polymatroid Q(p∗1, b

∗
1). Similarly,

the matrices satisfying the bounds defined by Φ2 and Γ2 form a g-polymatroid Q(p∗2, b
∗
2). This

means that the polyhedron of PBMs is the intersection Q(p∗1, b
∗
1)∩Q(p∗2, b

∗
2)∩ T (f, g)∩K(α, β),

where T (f, g) = {x ∈ RS : f(s) ≤ x(s) ≤ g(s) ∀s ∈ S} and K(α, β) = {x ∈ RS : α ≤ x̃(S) ≤ β}.
We know that if Q(p, b) is a g-polymatroid, then both Q(p, b) ∩ T (f, g) and Q(p, b) ∩ K(α, β)
are g-polymatroids. Our Theorem 3, Corollary 1, Corollary 2, and Theorem 4 can all be proved
using these and the following theorem.

Theorem 5 (Intersection theorem for g-polymatroids). Let (p1, b1) and (p2, b2) be two paramod-
ular pairs. The intersection M = Q(p1, b1) ∩Q(p2, b2) is non-empty if and only if

p1 ≤ b2 and p2 ≤ b1.
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Using tools related to g-polymatroids, we can also prove Lemma 1 a lot simpler, as we know
from the definition of strongly paramodular pairs that the cross-inequality holds for (p∗1, b∗1) and
(p∗2, b

∗
2), and the statement of the lemma can be easily derived from it.

2.5 Linking property

We say that a decision problem has the linking property if we there exist some relaxed subprob-
lems in a way that the original problem is feasible if and only if all the relaxed subproblems
are feasible. An example for the linking property is the following theorem of Mendelsohn and
Dulmage.

Theorem 6 (Mendelsohn, Dulmage [24]). Let G = (S, T,E) be a bipartite graph and X ⊆
S, Y ⊆ T two subsets of the vertex sets. If there is a matching covering X and there is a
matching covering Y , then there exists a matching covering X ∪ Y .

In this subsection, we discuss some linking properties of the problem of deciding whether
there exists a PBM with given bounds. One possible way to split the problem into two relaxed
problems is that we relax the bounds on the full rows of the matrix. Of course, we could say the
same with relaxing the bounds on the full columns instead of the rows. We only show the case
when we relax the bounds on full rows as the same argument could be used for the columns.

Theorem 7. There exists a PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g, α, β) if and only if

7.1 there exists a PBM with bounds (Φ
1
,Γ1,Φ2,Γ2, f, g, α,∞), and

7.2 there exists a PBM with bounds (Φ1,Γ
1
,Φ2,Γ2, f, g,−∞, β),

where Φ
1
i,j = Φ1

i,j for every i ∈ [m], j ∈ [n − 1] and Φ
1
i,n = −∞ for every i ∈ [m]. Similarly

Γ
1
i,j = Γ1

i,j for every i ∈ [m], j ∈ [n− 1] and Γ
1
i,n = ∞ for every i ∈ [m].

Proof. We show that if there is no PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g, α, β), then one of the
two relaxed subproblems must be infeasible. In Theorem 3, we provided a necessary and suffi-
cient condition on the existence of a PBM. It suffices to show that if there exists a pair of subsets
X1, X2 ⊆ S violating one of the inequalities in Theorem 3, then one of the relaxed problems
must be infeasible.
Note that the upper bounds b∗1, b

∗
2 in the first subproblem 7.1 are exactly the same as in

the original problem, thus (5c) remains the same if we use Theorem 3 for the bounds
(Φ

1
,Γ1,Φ2,Γ2, f, g, α,∞). The values of p∗2 remain the same for every X2 ⊆ S, therefore (5b)

remains the same in 7.1. It follows that if the pair X1, X2 violates (5b) or (5c) in Theorem 3,
then it violates these inequalities in 7.1 as well.
In the second subproblem 7.2, the bounds p∗1, p∗2 are the same as in the original problem, thus (5d)
is the same for the bounds (Φ1,Γ

1
,Φ2,Γ2, f, g,−∞, β). The values of b∗2 also remain the same

for every X2 ⊆ S, therefore (5a) is the same for the subproblem 7.2 and the original problem.
We showed that if the pair X1, X2 violates (5b) or (5c), then 7.1 is infeasible and if the pair

X1, X2 violates (5a) or (5d) then 7.2 is infeasible. Obviously, the opposite direction holds as well,
that is, if the original problem is feasible, then the relaxed subproblems are also feasible.

A natural next step is to try to relax the bounds on both the full rows and columns. In the
next theorem we show that the linking property holds if we do not have bounds on the sum of all
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entries. Then we provide a counterexample in Remark 3 for the case when we do have bounds
for the total sum.

Theorem 8. There exists a PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g,−∞,∞) if and only if

8.1 there exists a PBM with bounds (Φ
1
,Γ1,Φ2,Γ

2
, f, g,−∞,∞), and

8.2 there exists a PBM with bounds (Φ1,Γ
1
,Φ

2
,Γ2, f, g,−∞,∞), where

Φ
1
i,j = Φ1

i,j ∀i ∈ [m], j ∈ [n− 1] and Φ
1
i,n = −∞ ∀i ∈ [m],

Γ
2
i,j = Γ2

i,j ∀i ∈ [m− 1], j ∈ [n] and Γ
2
m,j = ∞ ∀j ∈ [n],

Φ
2
i,j = Φ2

i,j ∀i ∈ [m− 1], j ∈ [n] and Φ
2
m,j = −∞ ∀j ∈ [n],

Γ
1
i,j = Γ1

i,j ∀i ∈ [m], j ∈ [n− 1] and Γ
1
i,n = ∞ ∀i ∈ [m].

Proof. We only show that if there is no PBM satisfying the original bounds, then one of the two
subproblems must be infeasible, as the reverse direction is trivial. If there is no such PBM, then
Corollary 1 states that there must be a pair of subsets X1, X2 violating (5a) or (5b).

If the pair X1, X2 violates (5a), then the subproblem 8.2 must be infeasible since b∗2 is the
same as in the original problem for every X2 ⊆ S and p∗1 is the same for every X1 ⊆ S.

Similarly b∗1 is the same in the subproblem 8.1 as in the original problem for every X1 ⊆ S
and p∗2 is the same for every X2 ⊆ S, thus if the pair X1, X2 violates (5b) in Corollary 1, then
8.1 is infeasible.

Remark 3. If we have bounds α, β on the sum of all entries, then the linking property shown in
Theorem 8 no longer holds, even if we include them in both subproblems. Let n = m = 2,α = 5,
β = ∞, and Φ1 = Φ2 ≡ −∞. Let the upper bounds for the prefixes be

Γ1 = Γ2 =

[
∞ ∞
∞ 1

]
.

For every position (i, j) let fi,j = 0 and gi,j = 2. Then it is easy to see that there is no PBM
with bounds (Φ1,Γ1,Φ2,Γ2, f, g, α, β), since the pair

X1 = {(2, 1), (2, 2)}, X2 = {(1, 2), (2, 2)}

violates (5c), however the matrices

M1 =

[
2 2
0 1

]
, M2 =

[
2 0
2 1

]
are PBMs with bounds (Φ

1
,Γ1,Φ2,Γ

2
, f, g, α, β) and (Φ1,Γ

1
,Φ

2
,Γ2, f, g, α, β), respectively.

One might wonder whether we can extend Theorem 8 to every prefix if there are no bounds
on the sum of all entries, that is, in one subproblem we only have lower bounds on the horizontal
prefixes, and upper bounds on the vertical ones, and conversely in the other subproblem. The
answer is negative, as we show a counterexample in Remark 4.
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Remark 4. It is possible that there exist PBMs with bounds (Φ1,∞,−∞,Γ2,−∞,∞,−∞,∞)
and (−∞,Γ1,Φ2,∞,−∞,∞,−∞,∞), but there exists no PBM with bounds
(Φ1,Γ1,Φ2,Γ2,−∞,∞,−∞,∞).

Let the bounds be

Φ1 = Γ1 =
[
1 3

]
, Φ2 =

[
−∞ 1

]
, and Γ2 =

[
∞ 1

]
.

Let the matrices A and B be defined as

A =
[
2 1

]
, B =

[
1 2

]
.

It is easy to see that A is a PBM with bounds (Φ1,∞,−∞,Γ2,−∞,∞,−∞,∞) and B
is a PBM with bounds (−∞,Γ1,Φ2,∞,−∞,∞,−∞,∞), but there is no PBM with bounds
(Φ1,Γ1,Φ2,Γ2,−∞,∞,−∞,∞).

Theorem 9. Let Φ1 and Γ1 be such that in every row there is at most one position where Φ1

and Γ1 might be finite. All other entries in Φ1 and Γ1 are −∞ and ∞, respectively. Similarly,
let Φ2and Γ2 be such that in every column there is exactly one position where Φ2 and Γ2 might
be finite. All the other entries in Φ2 and Γ2 are −∞ and ∞, respectively. Then there exists a
PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g,−∞,∞) if and only if

9.1 there exists a PBM with bounds (Φ1,∞,−∞,Γ2, f, g,−∞,∞), and

9.2 there exists a PBM with bounds (−∞,Γ1,Φ2,∞, f, g,−∞,∞).

Proof. Once again we use Corollary 1 to prove that if the original problem is infeasible, then
one of the relaxed subproblems must be infeasible as well. Let X1, X2 ⊆ S be a pair of subsets
violating (5a) or (5b). In this special problem for a horizontal interval Z, b∗1(Z) < ∞ if and only
if Z is the only prefix in its row with finite bound, and p∗1(Z) > −∞ if and only if it is the only
prefix in its row with finite bounds. Similarly, in every column there is at most one interval, with
finite bounds, and it must be the prefix with finite bounds. It is easy to see now that (5a) is the
same for the subproblem 9.1 as for the original problem, and (5b) is the same for the subproblem
9.2 as for the original problem. This shows that if the original problem is infeasible, then one of
the relaxed subproblems must be infeasible.

Obviously, the reverse direction also holds.

We derive the following well-known theorem of Ford and Fulkerson as a special case of The-
orem 9.

Corollary 3 (Ford, Fulkerson [15, p. 71]). Let G = (S, T,E) be a bipartite graph, V = S ∪ T ,
and let p, b : V → Z≥0 be two functions with p ≤ b. There exists a subgraph H = (S, T, F ) of G
for which p(v) ≤ dF (v) ≤ b(v) ∀v ∈ V if and only if

3.1 there is a subgraph of G such that the degrees meet the lower bounds on S and the upper
bounds on T, and

3.2 there is a subgraph of G such that the degrees satisfy the upper bounds on S and the lower
bounds on T.
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Proof. We construct a PBM problem that is equivalent to the subgraph problem in the statement.
Let the vertices of G be S = {s1, . . . , sm}, T = {t1, . . . , tn}. Let A ∈ Zm×n be the biadjacency
matrix of G, where the i-th row represents si and the j-th column represents tj . Let fi,j = 0 for
every (i, j) ∈ [m]× [n] and gi,j = ai,j for all (i, j) ∈ [m]× [n]. Let the bounds on the prefixes be

• Φ1
i,j = −∞ for all i ∈ [m], j ∈ [n− 1], Φ1

i,n = p(si) for all i ∈ [m],

• Γ1
i,j = ∞ for all i ∈ [m], j ∈ [n− 1], Γ1

i,n = b(si) for all i ∈ [m],

• Φ2
i,j = −∞ for all i ∈ [m− 1], j ∈ [n], Φ2

m,j = p(tj) for all j ∈ [n],

• Γ2
i,j = ∞ for all i ∈ [m− 1], j ∈ [n], Γ2

m,j = b(tj) for all j ∈ [n].

By applying Theorem 9, we get the statement of the corollary, since the relaxed PBM problems
are equivalent to the relaxed subgraph problems in our statement.

In the case when α = β, we can relax the bounds on the sum of the entries of the matrix and
get the following linking property:

Theorem 10. There exists a PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g, γ, γ) if and only if

10.1 there exists a PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g,−∞, γ), and

10.2 there exists a PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g, γ,∞).

Proof. We only show that if there exists a PBM A = (ai,j) with bounds
(Φ1,Γ1,Φ2,Γ2, f, g,−∞, γ) and a PBM B = (bi,j) with bounds (Φ1,Γ1,Φ2,Γ2, f, g, γ,∞), then
there exists a PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g, γ, γ). Let us define

α =
∑

(i,j)∈S

ai,j , and β =
∑

(i,j)∈S

bi,j ,

where α ≤ γ and β ≥ γ. Let P be the polyhedron of the PBMs. In Section 2, we showed the
inequality system describing P . Let Q be the coefficient matrix of these inequalities, and let the
inequalities describing P be f ≤ x ≤ g, a ≤ Qx ≤ b. The convexity of the polyhedron P implies
that there is an x ∈ Rm×n such that x ∈ P and

∑
xi,j = γ. Remember that Q is a network

matrix, thus if we add
∑

xi,j = γ to the set of inequalities describing P , the coefficient matrix
Q′ is also a network matrix, therefore, if there is a solution, then there is an integer solution,
which is a PBM in which the sum of the entries equals γ.

The proof we showed actually proves the following slightly stronger statement.

Corollary 4. Let α be the smallest integer such that there exists a PBM in which the sum of the
entries equals α. Similarly, let β be the greatest integer such that there exists a PBM in which
the sum of the entries equals β. Then, for every integer γ ∈ Z : α ≤ γ ≤ β, there exists a PBM
in which the sum of the entries equals γ.

It is natural to ask whether we can relax the bounds f and g on the entries, similarly
to the linking property of g-polymatroids, where Q(p, b) ∩ T (f, g) is non-empty if and only if
Q(p, b) ∩ T (−∞, g) and Q(p, b) ∩ T (f,∞) are both non-empty. Our problem, however, is the
intersection of two g-polymatroids, thus it does not necessarily hold.
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Remark 5. Consider the following problem:

m = n = 3,Φ1 =

0 0 1
0 0 1
0 0 1

 ,Φ2 =

0 0 0
0 0 0
1 1 1

 ,Γ1 = Γ2 ≡ 1,

and

f =

 1 −1 −1
−1 −1 −1
−1 −1 −1

 , g =

1 1 1
1 −1 1
1 1 1

 .

It is easy to see that

M1 =

1 0 0
0 1 0
0 0 1


is a PBM with bounds (Φ1,Γ1,Φ2,Γ2, f,∞,−∞,∞), and

M2 =

0 1 0
1 −1 1
0 1 0


is a PBM with bounds (Φ1,Γ1,Φ2,Γ2,−∞, g,−∞,∞). There is, however, no PBM with bounds
(Φ1,Γ1,Φ2,Γ2, f, g,−∞,∞).

The PBMs satisfying these prefix bounds are actually the well-known alternating sign matri-
ces, which we discuss in the next section.

3 Alternating sign matrices

We shift our focus towards a well-known special case of the PBMs, the alternating sign matrices.

Definition 3. We call a (0,±1)-valued matrix A ∈ Zn×n an alternating sign matrix (ASM for
short) if in each row and column the non-zero entries alternate in sign and their sum equals 1.

0 1 0
1 −1 1
0 1 0


Figure 5: The 3× 3 “diamond” ASM, the only 3× 3 ASM that is not a permutation matrix.

In 2007, Striker [28] as well as Behrend and Knight [3] provided the following polyhedral
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description of the convex hull of n× n ASMs.

x ∈ Rn×n

0 ≤
j∑

j′=1

xi,j′ ≤ 1 ∀i ∈ [n], j ∈ [n− 1] (15a)

0 ≤
i∑

i′=1

xi′,j ≤ 1 ∀i ∈ [n− 1], j ∈ [n] (15b)

n∑
j′=1

xi,j = 1 ∀i ∈ [n] (15c)

n∑
i′=1

xi′,j = 1 ∀j ∈ [n] (15d)

In fact, they also proved that the vertices of this polytope are exactly the ASMs. In Section 4.1
we show a characterization of the vertices of certain polytopes, from which we get this theorem
as a special case.

It is easy to see that the integer solutions of the system are exactly the n × n
ASMs. Observe that the integer solutions of the system, thus the ASMs, are PBMs with
bounds (Φ1,Γ1,Φ2,Γ2,−∞,∞,−∞,∞), where

Φ1 =


0 . . . 0 1
...

. . .
...

...
0 . . . 0 1
0 . . . 0 1

 ,Φ2 =


0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
1 . . . 1 1

 , and Γ1 = Γ2 =

1 . . . 1
...

. . .
...

1 . . . 1

 . (16)

This means that the existence of an n× n ASM with bounds f and g on its entries is equivalent
to the existence of an n× n PBM with bounds (Φ1,Γ1,Φ2,Γ2, f, g,−∞,∞).

3.1 ASMs with restricted entries

The question of whether there exists an ASM between the bounds f and g is a common gener-
alization of various problems investigated in the literature. After showing a theorem about the
existence of ASMs between lower and upper bounds on their entries, we discuss some of these
questions in detail.

The bounds Φ1,Γ1,Φ2, and Γ2 defined in (16) satisfy the inequalities (10) and (11) with
H = n. This means we obtain a necessary and sufficient condition for the existence of an ASM
between bounds f and g using Theorem 4.

Definition 4. We call a family IH of horizontal intervals separated if, for any two distinct
intervals I1, I2 ∈ IH that lie in the same row Si,., there exists an element (i, j) ∈ Si,. such that
for every (i, j1) ∈ I1 j1 < j and for every (i, j2) ∈ I2 j < j2; or the same holds if we swap I1

and I2. We call a family of vertical intervals IV separated, if its transpose IV T
= {IT : I ∈ IV }

is a family of separated horizontal intervals. We call a family of intervals I = IH ⊎IV separated
if both IH and IV are separated.
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Let I0 denote the set of positions that are not covered by I and let I2 denote the set of
positions that are covered twice by I. The following theorem gives a characterization for the
existence of an ASM between given lower and upper bounds.

Theorem 11. Let f ≤ g be lower and upper bounds on S = [n] × [n]. There exists an ASM
between the bounds f and g if and only if the following holds for every family of separated
horizontal and vertical intervals I = IH ⊎ IV

|I| ≥ n+ f̃(I2)− g̃(I0). (17)

Proof. Observe that the bounds in Theorem 4 are b∗1(I) = 1 for every horizontal interval, and
b∗2(I) = 1 for every vertical interval, thus, by rearrangements, inequality (14) is equivalent
to (17).

For ease of application, we reformulate Theorem 11 in an equivalent but slightly more tangible
form.
Let S = {S0, S−1, S+1, S−, S+, SL} be a partition of the ground set S.

Definition 5. We call an ASM A S-compatible if the entries of A at the positions in Si are
i for i = 0,+1,−1, the entries at the positions of S− are non-positive, and the entries at the
positions of S+ are non-negative.

Definition 6. We call a family I of intervals S-feasible if

dI(i, j) = 0 ⇒ (i, j) ∈ S0 ∪ S−1 ∪ S−,

dI(i, j) = 2 ⇒ (i, j) ∈ S0 ∪ S+1 ∪ S+,
(18)

where dI(i, j) denotes the number of intervals in I that cover the position (i, j). Note that S-
feasibility is equivalent to requiring that I covers the positions of S−∪S−1 at most once, S+∪S+1

at least once, and SL exactly once.

Theorem 12. There exists an S-compatible ASM if and only if

|I| ≥ n+ |S−1 ∩ I0|+ |S+1 ∩ I2| (19)

holds for every S-feasible family I = IH ⊎ IV of intervals.

Proof. The S-compatibility can be described by the following bounds

fi,j =


0 if (i, j) ∈ S0 ∪ S+,

1 if (i, j) ∈ S+1,

−∞ if (i, j) ∈ S− ∪ S−1 ∪ SL,

gi,j =


0 if (i, j) ∈ S− ∪ S0,

−1 if (i, j) ∈ S−1,

∞ if (i, j) ∈ S+ ∪ S+1 ∪ SL.

(20)

Observe that fi,j is finite only if (i, j) ∈ S0∪S+1∪S+ and gi,j is finite only if (i, j) ∈ S0∪S−1∪S−.
This means that S-feasibility is equivalent to f̃(I2) and g̃(I0) being finite, moreover f̃(I2) =
|S+1 ∩ I2| and g̃(I0) = −|S−1 ∩ I0|. If f̃(I2) = −∞ or g̃(I0) = ∞ (17) automatically holds, so
it suffices to require it in the case when they are both finite. In that case, (17) is equivalent
to (19).
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In [11], Brualdi and Kim investigated the problem of a matrix having an ASM completion.
For an n × n (0,±1)-matrix A, a matrix B obtained from A by replacing some 0s by +1s is a
completion of A. If B is an ASM, then it is called an ASM completion of A. Their main result
is that every bordered permutation matrix has an ASM completion.

Definition 7. For n ≥ 2, a matrix A ∈ {0,−1}n×n is a bordered permutation matrix if the first
and last rows and columns only contain 0 entries and the middle (n− 2)× (n− 2) submatrix is
the negative of a permutation matrix.

Theorem 13 (Brualdi, Kim [11]). Every bordered permutation matrix has an ASM completion.

In their paper, they provide an inductive proof, which also gives an algorithm to construct
such an ASM completion. Here we show an alternative proof using Theorem 12.

Proof. Let A = (ai,j) be an n× n bordered permutation matrix and P be the (n− 2)× (n− 2)
permutation matrix such that −P is the middle (n− 2)× (n− 2) submatrix of A. It is easy to
see that an ASM-completion of A is an S-compatible ASM, where S = {S−1, S+} and S−1 =
{(i, j) ∈ S : ai,j = −1}, S+ = {(i, j) ∈ S : ai,j = 0}. By Theorem 12, there exists an S-
compatible ASM if and only if (19) holds for every S-feasible family of intervals, thus it suffices
to show that (19) holds for every S-feasible family of intervals. Suppose indirectly that there is
an S-feasible family I for which (19) does not hold, that is,

|I| < n+ |S−1 ∩ I0|. (21)

We show that there is an S-feasible family I ′ of intervals such that it does not cover any position
in S−1 and it satisfies (21). We construct such an I ′ from I the following way. If there is a
position (i, j) ∈ S and an interval I ∈ I such that (i, j) ∈ I, then we replace I with the two
intervals of I − (i, j). (Note that these intervals might be empty.) By doing this, we still get
an S-feasible family of intervals and (21) still holds, because the S-feasibility of I implies that
the only interval covering (i, j) was I and by the replacement we added (i, j) to the set I0, and
thus the right-hand side of the inequality increased by 1, while the left-hand side increased by at
most 1. We can repeat this process until we get an I ′ that does not cover any positions of S−1.
We get

|I ′| < n+ |S−1| = 2n− 2

and we can replace the conditions of the S-feasibility by requiring I ′ to cover the positions of
S+ at least once, and to not cover the positions in S−1. This shows that we only need to show
that it is not possible to cover the 0-s of A with less than 2n− 2 horizontal and vertical intervals
that do not cover the −1 entries of A. Before we show this, we need to prove a lemma.

Lemma 2. Let P ∈ (0, 1)m×m be a permutation matrix and I be a set of horizontal and vertical
intervals such that I covers every 0 entry and does not cover any 1 entry. Then |I| ≥ 2m− 2.

Proof. Note that if there is a family of intervals I satisfying the conditions above, then there is a
family of intervals I ′ such that it still satisfies the conditions, |I ′| ≤ |I| and every interval starts
and ends at the border of the matrix or next to a 1 entry. From this point, when we refer to a
family of intervals, we always suppose it has these properties.
We prove our statement by contradiction. Let P ∈ {0, 1}m×m be such that there is a cover I
that satisfies the conditions and |I| < 2m−2, and the statement of the lemma holds for m′ < m.
If there is a 1 entry in one of the corners (we can assume it is the top left) and pi,2 = p2,j = 1,
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then the intervals covering pi,1 and p1,j do not cover any elements of the (m−1)×(m−1) minor,
thus it can be covered with 2(m− 1)− 3 intervals, which contradicts the choice of P .
If there are no 1 entries in the corners, then let pi,1 = 1 and pj,2 = 1. We suppose i < j. The
case i > j can be solved with a similar argument. Similarly to the previous case, the interval
covering p1,j does not cover any entry of the (m−1)× (m−1) minor. If there is another vertical
interval in the first column, then we can leave that out and cover the (m− 1)× (m− 1) minor
with 2(m − 1) − 3 intervals. If there is a horizontal interval in the row Pi,., then we can leave
that out too, and cover the (m− 1)× (m− 1) minor with 2(m− 1)− 3 intervals.
If there are no horizontal intervals in Pi,., then there must be vertical intervals covering every
entry of the row. The first few intervals start from the top, let P.,k be the first column, where
the interval covering pi,k does not start at the top of the column, meaning there is a 1 entry
above it, let it be pl,k. If there is no horizontal interval between pl,1 and pl,k then there must be
a vertical interval covering p1,l which we can leave out and cover the (m − 1) × (m − 1) minor
with 2(m − 1) − 3 intervals. If there is a horizontal interval between pl,1 and pl,k then we can
leave it out since pl,2, . . . , pl,k−1 are all covered by vertical intervals. That means we can cover
the (m− 1)× (m− 1) minor with 2(m− 1)− 3 intervals which contradicts the choice of P .

From Lemma 2, we know that we need at least 2(n − 2) − 2 = 2n − 6 intervals to cover
the 0 entries of the negated permutation −P . Now we prove by contradiction that we need
2n−2 intervals to cover the zeros of the bordered permutation matrix without covering the −1s.
Suppose we can cover all the 0s with 2n− 3 intervals. Note that there is exactly one −1 in the
first and last rows and columns of −P . To cover the 0s that are next to these in the border, we
need 4 distinct intervals and these intervals cannot cover any 0s of −P , thus −P can be covered
with 2n− 7 = 2(n− 2)− 3 intervals, which contradicts Lemma 2.

The primal-dual relationship between families of intervals and ASM completions in special
cases, including Lemma 2, is mentioned in a later paper of Brualdi and Dahl [6] in relation
to the notion of A-interval matrices. They show a theorem about the existence of A-interval
matrices, which implies a necessary and sufficient condition for a (0,−1)-matrix having an ASM
completion. Before we show this theorem, we recall a few definitions they introduced.

Definition 8. Let A be an n × n (0, ∗)-matrix. An n × n-matrix M is an A-interval matrix if
it can be obtained from A by replacing one ∗ by a 1 in every maximal horizontal and vertical
interval of ∗ entries of A and setting all other ∗ entries to 0.

It is easy to see that the existence of an ASM-completion of a (0,−1)-matrix M = (mi,j) is
equivalent to the existence of an A-interval matrix, where

A = (ai,j) and ai,j =

{
0 if mi,j = −1,

∗ if mi,j = 0.

The key observation they made (which already appeared in a slightly different form in [11]) is
that there is a bijection between A-interval matrices and perfect matchings in a certain bipartite
graph GA = (S, T , E). They define the graph the following way. Let S be the set of maximal
horizontal intervals of ∗ entries and let T be the set of maximal vertical intervals of ∗ entries.
There is an edge between X ∈ S and Y ∈ T whenever X ∩ Y ̸= ∅. By applying Kőnig’s
theorem [20], we get their theorem, which we rephrase using our own terminology.
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Theorem 14. Let A be an n × n (0, ∗)-matrix. There exists an A-interval matrix if and only
if the ∗ entries of A cannot be covered with fewer than n + k horizontal and vertical intervals
without covering any 0s, where k is the number of 0s in A.

The following corollary about ASM completion is an immediate consequence of this theorem.

Corollary 5. An n × n (0,−1)-matrix A has an ASM-completion if and only if the 0 entries
cannot be covered with less than n + k intervals without covering any −1 entry of A, where k
denotes the number of −1s in A.

In a recent paper [8], Brualdi and Dahl investigated further problems concerning ASMs, which
can also be solved with the help of Theorem 12. In the paper they seek an analogus theorem to
the Frobenius-Kőnig theorem [17] concerning ASMs instead of permutation matrices.

Theorem 15 (Frobenius-Kőnig). Let X be an n × n (0, 1)-matrix. Then there exists an n × n
permutation matrix P ≤ X if and only if X does not have an r × s zero submatrix Ors with
r + s = n+ 1.

They first ask the question: When does an n× n (0,±1)-matrix X contain an ASM A? By
their terms a matrix X “contains” an ASM A, in other words, A is subordinate to X (A⊴X), if
A can be obtained from X by replacing some of the ±1s of X by 0s, similarly to the Frobenius-
Kőnig theorem, where we can replace 1s with 0s. They provide such a theorem for the case when
X belongs to a special class of matrices and for the general case they remark:

“In this generality, there is probably no simple answer...”
However, using Theorem 12, we can easily provide such an answer for the general case.

Observe that for a given n× n matrix X = (xi,j), A⊴X is equivalent to A being S-compatible
for S = {S0, S−, S+}, where

S0 = {(i, j) : xi,j = 0},
S− = {(i, j) : xi,j = −1},
S+ = {(i, j) : xi,j = +1}.

Now we see that the existence of an ASM A such that A ⊴X is equivalent to the existence of
an S-compatible ASM, thus we can apply Theorem 12 and get the following corollary answering
the question of Brualdi and Dahl:

Corollary 6. For a given n × n (0,±1)-matrix X there exists an ASM A such that A ⊴ X if
and only if there is no family I of intervals that covers the +1s of X at least once, the −1s of
X at most once, and |I| < n.

In the same paper they also propose the following questions for future research:

Question 3.1.

(I) Given an n × n (0, 1)-matrix X = (xi,j), when does there exist an ASM A obtained by
replacing some of the 0’s of X by −1’s?

(II) Given an n × n (0,−1)-matrix X = (xi,j), when does there exist an ASM A obtained by
replacing some of the 0’s of X by +1’s?
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We can easily answer these question, as the following corollary can be derived directly from
Theorem 12.

Corollary 7.
1. Given an n×n (0, 1)-matrix X = (xi,j), let S+1 = {(i, j) : xi,j = 1} be the set of positions

with 1 entries and S− = {(i, j) : xi,j = 0} the set of positions with 0 entries in X. There exists
an ASM A obtained by replacing some 0s of X with −1s if and only if for every family I covering
every position of S− at most once and every position in S+1 at least once

|I| ≥ n+ |S+1 ∩ I2|.

2. Given an n × n (0,−1)-matrix X = (xi,j), let S−1 = {(i, j) : xi,j = −1} be the set of
positions with −1 entries and S+ = {(i, j) : xi,j = 0} the set of positions with 0 entries in X.
There exists an ASM A obtained by replacing some 0s of X with +1s if and only if for every
family I covering every position of S+ at least once and every position of S−1 at most once

|I| ≥ n+ |S−1 ∩ I0|.

They introduce the class Cn of n×n near permutation matrices (NPMs for short) and provide
a necessary and sufficient condition for the existence of matrix C ∈ Cn such that C⊴X for a given
(0,±1)-matrix X. A (0,±1)-matrix is an NPM if the sum of its entries in each row and column
equals 1. It is easy to see that NPMs are by definition PBMs, moreover, the bounds defining
them satisfy (10) and (11), thus the condition they provide can be derived from Theorem 4.
To provide this condition, they model this special case of the problem as a feasible circulation
problem in a much simpler digraph than ours, and use Hoffman’s circulation theorem to derive
the necessary and sufficient condition.

4 Generalizations of ASMs

4.1 Weak alternating sign matrices

We call an m× n (0,±1)-matrix a weak alternating sign matrix (WASM) if its non-zero entries
in each row and column alternate in sign. Note that, as opposed to ASMs, a WASM does not
need to be a square matrix, and its first and last non-zero entries are not necessarily +1s. It is
easy to see that a matrix is a WASM if and only if it can be made an ASM by adding rows and
columns before the first and after the last row and column.

The polytope of m× n WASMs is a projection of the polyhedron of (m+ 1)× (n+ 1) prefix
bounded matrices with bounds (Φ1,Γ1,Φ2,Γ2,−∞,∞,−∞,∞) defined below, where the indices
of rows and columns start from 0.
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Φ1
0,j = −∞ ∀j ∈ {0} ∪ [n] (22a)

Φ1
i,j = 0 ∀i ∈ [m] j ∈ {0} ∪ [n] (22b)

Φ2
i,0 = −∞ ∀i ∈ {0} ∪ [m] (22c)

Φ2
i,j = 0 ∀i ∈ {0} ∪ [m] j ∈ [n] (22d)

Γ1
0,j = ∞ ∀j ∈ {0} ∪ [n] (22e)

Γ1
i,j = 1 ∀i ∈ [m] j ∈ {0} ∪ [n] (22f)

Γ2
i,0 = ∞ ∀i ∈ {0} ∪ [m] (22g)

Γ2
i,j = 1 ∀i ∈ {0} ∪ [m] j ∈ [n] (22h)

It is easy to see that if an (m+1)× (n+1) matrix is a PBM with these bounds, then its bottom
right m × n submatrix is a WASM. If a matrix is a WASM, then we get a PBM by adding an
extra row and column full of 0s before the first row and column of the matrix, and in the rows and
columns, in which the first non-zero entry is a −1, we change the leading 0 to 1. In [12], Brualdi
and Kim investigated the question of the existence of a so-called (u, u′|v, v′)-ASM, which are
basically WASMs whose first and last non-zeros are prescribed in every row and column. There
is, however, a slight difference, which we point out after the definition of (u, u′|v, v′)-ASMs. Let
u, u′ ∈ {±1}n and v, v′ ∈ {±1}m be ±1-valued vectors. For an m× n matrix A, we define A′ to
be the following (m+ 2)× (n+ 2) matrix.

A′ =

0 u1 . . . un 0

v1

A

v′1
...

...
vm v′m
0 u′1 . . . u

′
n 0

We say that A is an (u, u′|v, v′)-ASM if the non-zero entries of A′ alternate in sign in each
row or column except the first and last ones. It is easy to see that (u, u′|v, v′)-ASMs are WASMs,
in which the first and last non-zero entries are prescribed in each row and column, except the
case when uj = u′j and the column A.,j contains only zeros or vi = v′i and the row Ai,. contains
only zeros. In these two cases it is true that the first and last non-zero entries of the column
(row) are −uj and −u′j (−vi and −v′i) as there are no non-zero entries in the column (row), thus
such matrices are technically WASMs with prescribed first and last non-zero entries. However,
these are not (u, u′|v, v′)-ASMs, because the non-zeros in A′

.,j (A′
i,.) do not alternate. In the case

u = u′ ≡ −1 and v = v′ ≡ −1 the (u, u′|v, v′)-ASM are exactly the alternating sign matrices.
We show a more detailed example below.

Example 2. Let u =
[
−1 1 1

]T , u′ =
[
1 −1 1

]T , v =
[
1 −1 1

]T , and
v′ =

[
1 1 −1

]T . Then the following matrix A is an (u, u′|v, v′)-ASM, with A′ denoting
the extended matrix as above. The matrix A′′ is a PBM whose projection is A.
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A =
0 −1 0
1 0 −1
−1 1 0

, A′ =

0 −1 1 1 0

1 0 −1 0 1
−1 1 0 −1 1
1 −1 1 0 −1

0 1 −1 1 0

, A′′ =

0 0 1 1

1 0 −1 0
0 1 0 −1
1 −1 1 0

The authors show a necessary and sufficient condition for the existence of an (u, u′|v, v′)-
ASM, and remark that if the vectors u, u′, v, v′ may contain 0s, then a similar theory could be
derived, but it seems technically difficult to formulate. Here we provide an alternative proof of
their theorem about the existence of (u, u′|v, v′)-ASMs.

Similarly to the WASMs, the convex hull of m × n (u, u′|v, v′)-ASMs is a projection of the
polytope of (m+1)× (n+1) PBMs with bounds (Φ1

,Γ
1
,Φ

2
,Γ

2
,−∞,∞,−∞,∞), where define

Φ
1
,Γ

1
,Φ

2
, and Γ

2 similarly to the bounds defined in (22a) - (22h) the following way.

Φ
1
i,0 =

{
1 if vi = +1

0 otherwise
Φ
1
i,n =

{
1 if v′i = −1

0 otherwise
∀i ∈ [m] (23a)

Φ
1
i,j = 0 ∀i ∈ [m] j ∈ [n− 1] (23b)

Φ
1
0,j = −∞ ∀j ∈ {0} ∪ [n] (23c)

Φ
2
0,j =

{
1 if uj = +1

0 otherwise
Φ
2
m,j =

{
1 if u′j = −1

0 otherwise
∀j ∈ [n] (23d)

Φ
2
i,j = 0 ∀i ∈ [m− 1] j ∈ [n] (23e)

Φ
2
i,0 = −∞ ∀i ∈ {0} ∪ [m] (23f)

Γ
1
i,0 =

{
0 if vi = −1

1 otherwise
Γ
1
i,n =

{
0 if v′i = +1

1 otherwise
∀i ∈ [m] (23g)

Γ
1
i,j = 1 ∀i ∈ [m] j ∈ [n− 1] (23h)

Γ
1
0,j = ∞ ∀j ∈ {0} ∪ [n] (23i)

Γ
2
0,j =

{
0 if uj = −1

1 otherwise
Γ
2
m,j =

{
0 if u′j = +1

1 otherwise
∀j ∈ [n] (23j)

Γ
2
i,j = 1 ∀i ∈ [m− 1] j ∈ [n] (23k)

Γ
2
i,0 = ∞ ∀i ∈ {0} ∪ [n] (23l)

One can see that the bottom right m×n submatrices of PBMs with these bounds are exactly the
m×n (u, u′|v, v′)-ASMs, thus the existence of an (u, u′|v, v′)-ASM is equivalent to the existence
of such a PBM. Note that this is still true if the vectors u, u′, v, and v′ contain 0 components.
In fact, we only need the projection if we allow 0 components, otherwise we could define bounds
such that the (u, u′|v, v′)-ASMs are exactly the PBMs with those bounds.

We state the theorem of Brualdi and Kim in a slightly altered form, so that we do not need
to define too many new concepts. For two vectors w,w′ ∈ {±1}k and an integer 1 ≤ i ≤ k,
let r+i (w,w

′) = |{j ∈ [i] : wj = w′
j = +1}| be the numbers of components that are +1 in

both w and w′. Similarly, let r−i = |{j ∈ [i] : wj = w′
j = −1}|. For a vector w ∈ {±1}k, let

w+ = |{j ∈ [k] : wj = +1}| be the number of its +1 components, and w− = |{j ∈ [k] : wj = −1}|
be the number of its −1 components.
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Theorem 16. Let u, u′ ∈ {±1}n and v, v′ ∈ {±1}m be ±1-vectors. There exists an (u, u′|v, v′)-
ASM if and only if the following inequalities hold.

r−m(v, v′)− r+m(v, v′) = r−n (u, u
′)− r+n (u, u

′) (24a)
−u+ ≤ r−i (v, v

′)− r+i (v, v
′) ≤ u− ∀i ∈ [m] (24b)

−v+ ≤ r−j (u, u
′)− r+j (u, u

′) ≤ v− ∀j ∈ [n] (24c)

Proof. First, we prove that these are necessary conditions for the existence of an (u, u′|v, v′)-
ASM, that is, if they do not hold, then there cannot exist an (u, u′|v, v′)-ASM. Observe that
r−i (v, v

′) − r+i (v, v
′) is exactly the sum of the entries in the first i rows of the matrix, and

similarly r−j (u, u
′)− r+j (u, u

′) is the sum of the entries in the first j columns of the matrix. From
this, it is easy to see that both sides of (24a) equal the sum of the entries of the matrix, thus if
it does not hold, then there exists no (u, u′|v, v′)-ASM. To see that (24b) is necessary, it suffices
to show that −u+ is lower bound and u− is upper bound for the sum of the entries in the first i
rows. Consider the vertical prefixes that contain the first i entries of their columns. The entries
in these prefixes are exactly those in the first i rows of the matrix. The sum of the first i entries
of the j-th column can only be positive if uj = −1, in which case, this sum is at most one, thus
u− is an upper bound for the sum of the first i rows. Similarly, the sum of the first i entries of
the j-th columns can only be negative if uj = +1, in which case it is at least −1, thus −u+ is
lower bound for the sum of the first j rows. It can be shown analogously that (24c) is necessary.

Next, we prove the sufficiency of these inequalities, that is, if there exists no (u, u′|v, v′)-ASM,
then one of the inequalities (24a), (24b), and (24c) does not hold. If (24a) does not hold, we
are done, so we assume that (24a) holds. If there exists no (u, u′|v, v′)-ASM, then there exists
no PBM with the bounds defined in (23a)-(23l). Corollary 2 implies that there is a connected
subset X ⊆ S, for which (9a) or (9b) does not hold. Looking at the bounds, it is easy to see that
X ⊆ [m]× [n], that is, X is a subset of the positions of the m× n matrix and does not contain
any of the additional positions. Next, we observe that a subset X that does not contain any full
row or column of the m × n matrix, satisfies both (9a) and (9b), as p∗i (X) ≤ 0 and b∗i (X) ≥ 0
for i = 1, 2. This implies that any X ⊆ S violating (9a) or (9b) must contain every position of
at least one row or column. If X violates one of the inequalities and it contains every entry of
a row, then for every row Si,. such that X ∩ Si,. ̸= ∅, X ∪ Si,. also violates the same inequality.
Similarly, if X contains every entry of a column, then adding every column, in which there is
a position in X, to X we get a subset violating one of inequalities (9a) or (9b). This implies
that if there is no (u, u′|v, v′)-ASM, then the subset X violating (9a) or (9b) can be chosen to
be the union of some rows or columns, and because of the connectivity, these rows or columns
are adjacent. It is easy to see that (24a) implies that X violates (9a) if and only if X violates
(9b), thus we only need to check those cases when X is the union of the first or last few rows
or columns and violates (9a). By checking these cases, using (24a) we get that one of the four
inequalities in (24b) and (24c) does not hold.

In the case when we allow the vectors u, u′, v, and v′ to have 0 components, that is, there
may be rows in which the first and/or last non-zero is not prescribed, the main difference is that
(24a) is no longer a necessary condition, as the sum of the entries of the matrix is no longer
determined, thus it is no longer true that X violates (9a) if and only if X violates (9b), therefore
we have to investigate a lot more cases.

As the WASMs are an extension of ASMs, it is natural to ask, whether we can generalize
theorems about ASMs to WASMs. In Section 3, we mentioned that Striker [28] and Behrend
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and Knight [3] independently showed a linear inequality system describing the polytope of n×n
ASMs and also proved that the vertices of the polytope are exactly the n × n ASMs. Here,
we provide a generalization of this theorem to (u, u′|v, v′)-ASMs, where u, u′ ∈ {0,±1}n and
v, v′ ∈ {0,±1}m. In the case of the polytope of (u, u′|v, v′)-ASMs the theorem is not that simple,
as there are (u, u′|v, v′)-ASMs that are not vertices of the polytope. For example consider the
polytope of m × n (u, u′|v, v′)-ASMs, and a matrix M that is an element of the polytope, such
that the i-th row and j-th column of M contains only 0s, moreover, uj = u′j = 0 and vi = v′i = 0.
It is easy to see that M is not a vertex of the polytope, as it is the convex combination of the
following (u, u′|v, v′)-ASMs.

M =

0
...

0 . . . 0 0 0 . . . 0
...

0

= 1
2

0
...

0 . . . 0 -1 0 . . . 0
...

0

+1
2

0
...

0 . . . 0 1 0 . . . 0
...

0

We show that actually these are the only (u, u′|v, v′)-ASMs that are not vertices of the
polytope.

Theorem 17. Let the vectors u, u′ ∈ {0,±1}n and v, v′ ∈ {0,±1}m be as before. An m × n
(u, u′|v, v′)-ASM M is a vertex of the polytope of m× n (u, u′|v, v′)-ASMs if and only if it does
not contain both a row Mi,. and a column M.,j full of 0s, such that uj = u′j = 0 and vi = v′i = 0.

Proof. We showed that if there is a row Mi,. and a column M.,j full of 0s in the matrix, such
that uj = u′j = 0 and vi = v′i = 0, then the matrix cannot be a vertex of the polytope. It is left
to prove the reverse direction, that is, if a matrix does not have such a row and column, then it
is a vertex of the polytope.

Let M = (mi,j) be an m× n (u, u′|v, v′)-ASM, and assume that M does not have a row Mi,.

full of 0s, such that vi = v′i = 0. The case where the same holds for the columns instead of the
rows can be proven analogously. By the definition of vertices of a polyhedron [15, p. 142], it
suffices to show that there is a linear cost function c : S → R, such that M is the only element
of that politope at which c̃ takes its maximum, that is, for every element M ′ of the polytope,
if M ′ ̸= M , then c̃(M ′) < c̃(M). Since the polytope is an integer polyhedron, we only need
to show this for every integral M ′, which are exactly the m × n (u, u′|v, v′)-ASMs. We define
the cost function c the following way. For a position (i, j) ∈ S let ci,j := K if mi,j = +1 and
ci,j := −K if mi,j = −1, where K := n3+1 For the positions with 0 entries, we define the cost c
based on their distance from the non-zero entries in the same row. If a position (i, j) is between
a −1 and a +1 entry, where either Mi,j−k or Mi,j+k is the −1 entry next to it, then ci,j := k.
In case (i, j) is before the first non-zero, if the first non-zero is −1 at position (i, j + k), then
ci,j := k − n − 1 and if the first non-zero is +1 at position (i, j + k), then ci,j := n + 1 − k.
Similarly, in case (i, j) is after the last non-zero position, if the last non-zero is −1 at position
(i, j − k), then ci,j := k − n− 1 and if the last non-zero is +1, then ci,j := n+ 1− k. If the i-th
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row only contains 0s, then at either ui ̸= 0 or u′i ̸= 0 and we can handle it like it was one of the
previous cases with a non-zero at the position (i, 0) or at the position (i, n + 1). To show that
c̃(M ′) < c̃(M) for every M ′ ̸= M , we first note that, for any matrix M∗ = (m∗

i,j), where c takes
its maximum, for every position (i, j) where M has a non-zero entry m∗

i,j = mi,j since we chose
the cost K of these positions large enough, so that if we change any of these positions, the total
cost decreases regardless the entries at the other positions. The only thing left to show is that if
we replace some 0 entries of M , then the cost also decreases. Assume that we change a some 0
entries to ±1 in the i-th row. First, consider the new non-zero entries that lie between a +1 and
a −1 entry of M . Obviously, the new non-zero entries we get between these, must alternate and
must start with −1 if the non-zero entry of M before them is a +1, and with a +1 if the non-zero
before them is a −1, otherwise the matrix we get would no longer be an (u, u′|v, v′)-ASM. It
can easily be checked that because of the monotonity of c in this interval, and the order of the
new non-zero entries, the total contribution of these entries to the cost is negative. Next, we
consider the new non-zeros we get before the first non-zero entry of M . If the number of new
non-zero entries we get is even, then the same argument proves that their contribution to the
cost is also negative. If we get an odd number of new non-zero entries, then we only show that
the contribution of the last one is negative, as the rest together has a negative contribution, as
we have already seen. Note that the last of these must be −1 if the first non-zero entry of M is
+1, and −1 if the first non-zero of M is +1, and the sign of the cost implies that the contribution
of this entry is also negative. It can be shown similarly that the contribution of the new non-zero
entries we get after the last non-zero entry of M is also negative implying that if we replace some
zeros with non-zeros, then the total cost decreases, thus M is the only matrix with maximum
cost, therefore it is a vertex.

4.2 k-regular ASMs

Brualdi and Dahl [7] introduced the notion of k-regular alternating sign matrices. We call an
n × n (0,±1)-matrix a k-regular ASM if the sum of the entries in each prefix falls between 0
and k, moreover, the sum of the entries in every row and column equals k. One can consider
the k-regular ASMs an extension of ASMs, as for k = 1 the 1-regular ASMs are exactly the
ASMs. They investigate the relationship of k-regular ASMs and ASMs, especially questions
about decomposition of k-regular ASMs into ASMs. They prove that k-regular ASMs can be
decomposed into k ASMs and conjecture that these k ASMs can always be chosen to be pairwise
pattern disjoint, that is, their supports are pairwise disjoint. We prove their conjecture, showing
that it is a corollary of Theorem 1.

Corollary 8. For every positive integer k and every n × n k-regular ASM A, there exist
A1, . . . , Ak pairwise pattern disjoint n× n ASMs such that A = A1 + · · ·+Ak.

Proof. It is easy to see that k-regular ASMs are PBMs in the special case when the lower bound
Φ1 is identically k in the last column and 0 elsewhere; Φ2 is identically k in the last row and
0 elsewhere; the upper bounds Γ1 and Γ2 are identically k; and the entry bounds f and g are
identically −1 and +1, respectively. Applying Theorem 1 to PBMs with the bounds defining the
k-regular ASMs, we get the corollary.

In the same paper, the authors also conjecture that every 2-regular ASM contains an ASM,
that is, we can obtain an ASM by changing some ±1 entries to 0. Of course, this is an immediate
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consequence of Corollary 8, as the 2 pattern disjoint ASMs, into which we decompose it, are both
such matrices.

They also pose the following question as another possible relationship between ASMs and
2-regular ASMs.

Question 1. Given an n×n ASM A, is it possible to replace some of its −1 entries with 0s and
some of its 0 entries with +1s, so that the resulting matrix A′ is a 2-regular ASM?

We provide an affirmative answer to this question for n ≥ 2. We show a more general lemma,
from which this follows as a corollary.

Lemma 3. Let k ≥ 1 be an integer and let A be an n× n k-regular ASM. There exists an n× n
(k + 1)-regular ASM A′ that can be obtained from A by changing some of the 0 entries of A to
+1 and some of its −1 entries to 0 if and only if for every r × s submatrix of A that contains
only +1 entries, r + s ≤ n.

Proof. Let k ≥ 1 be an integer and let A = (ai,j) be an n×n k-regular ASM. First, observe that
changing some 0 entries to +1 and some −1 entries to 0 is equivalent to adding a (0, 1)-matrix
to A. Moreover, the matrix we add, must be a permutation matrix, otherwise we cannot get a
(k + 1)-regular ASM. Therefore, we need to decide whether there exists a permutation matrix
P = (pi,j) such that A′ = A+ P is a (k + 1)-regular ASM. Obviously, the sum of the entries in
every prefix of A′ is between 0 and k + 1, since this sum is between 0 and k in A, and between
0 and 1 in P , for any permutation matrix P . Similarly, the sum of the entries in each row
and column of A′ equals k + 1. The only restriction we have for P is that for every position
(i, j) ∈ [n]× [n], if ai,j = +1, then pi,j must be 0, that is P ≤ M , where M = (mi,j) and mi,j = 0
if ai,j = +1, and mi,j = 1 otherwise. By applying Theorem 15 to M , the lemma immediately
follows.

We can also find the entries to change in polynomial time, as there is a simple one-to-one
correspondence between these entries and the edges of perfect matchings in a certain bipartite
graph, which we can find using Kőnig’s algorithm [20].

Corollary 9. For n ≤ 2 and any n × n ASM A, there exists a 2-regular ASM A′ that can be
obtained from A by changing some of the 0 entries of A to +1 and some of its −1 entries to 0s.

Proof. Lemma 3 implies that we only need to show that for any n × n ASM A, for every r × s
submatrix of A that contains only +1s, r + s ≤ n. We prove this by contradiction.

Suppose indirectly that there exists an n×n ASM A that has an r×s submatrix that consists
of only +1 entries, and r+s > n. This implies that either r > n

2 or s > n
2 . By symmetry, we can

assume that r > n
2 . Observe that a in row or column of an alternating sign matrix the number

of +1 entries is at most
⌈
n
2

⌉
, thus r > n

2 implies that n is odd and r =
⌈
n
2

⌉
< n

2 +1. Note that a
column with

⌈
n
2

⌉
+1 entries has a +1 entry in the first and last rows, thus it is the only column

of A in which the number of +1 entries is greater than n
2 . This means s = 1. From these we get

n < r + s =
⌈n
2

⌉
+ 1 <

n

2
+ 1 + 1.

By rearrangements, we get n < 4. One can easily check the n × n ASMs when 2 ≤ n < 4 and
see that they do not have such submatrices either, giving us the desired contradiction. Actually,
one only needs to check the 3 × 3 “diamond” ASM shown in Figure 5, as all other n × n ASMs
with n < 4 are permutation matrices, for which the statement clearly holds.
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5 Extensions and related problems

Heuer and Striker [18] introduced the notion of partial alternating sign matrices (PASMs for
short), defined as (0,±1)-valued m × n matrices in which the sum of entries in every prefix is
either 0 or +1, which are of course prefix bounded matrices, and thus similar theorems can be
formulated as those we showed in Section 3. Higher spin alternating sign matrices introduced
by Behrend and Knight [3] and sign matrices introduced by Aval [1] are also prefix bounded
matrices.

Brualdi and Dahl introduced the notion of alternating sign hypermatrices (ASHMs for short)
as a generalization of ASMs in three dimensions [5]. An n × n × n hypermatrix is an ASHM if
each of its planes obtained by fixing one of the three indices is an ASM. Naturally, one could ask
whether our results can be extended for ASHMs. The answer is negative, as it is NP-complete
to decide whether there exists an ASHM between bounds f and g. The proof is by reduction
from the 3 dimensional matching problem.

A natural step forward could be having bounds on the suffixes (the complements of prefixes)
as well as the prefixes and the entries, but it is NP-complete to decide if there exists a prefix
bounded matrix between lower and upper bounds on its entries such that it satisfies the bounds
on the suffixes as well. The proof is by reduction from the NP-complete simultaneous matching
problem [13]. We do not discuss the details here, but we plan to show them in a future work.

This result immediately implies that it is NP-complete to decide if there is an integer matrix
satisfying lower and upper bounds on its intervals. In a special case, we only have bounds for
the intervals {(i, j), . . . , (i,min{n, j + d − 1})} and {(i, j), . . . , (min{m, i + d − 1}, j)} for every
i ∈ [m] and j ∈ [n]. It turns out that it is still NP-complete to decide whether there exists an
m × n integer matrix between lower and upper bounds, satisfying the lower and upper bounds
on these intervals. The proof of this is by reduction form the d-distance matching problem [23].

Note that it is not completely hopeless to have bounds on the intervals of the matrix, as the
case when the lower and upper bounds on the horizontal and the vertical intervals both form a
so-called weak pair, the approach based on g-polymatroids shown in Section 2.4 still works and
the problem is algorithmically tractable [16].

6 Future plans

The circulation model we use for investigating the ASMs with constraints on their entries can
only handle those that can be described as fi,j ≤ ai,j ≤ gi,j , that is, every constraint except the
one, where we require an entry to be non-zero. A question strongly related to this constraint, is
deciding whether there exists an ASM with prescribed number of non-zero entries in each row
and column. Brualdi et al. provided necessary conditions for the number of non-zeros in the
rows and columns of an ASM [9]. We hope to extend their results and provide a characterization
for these.

Brualdi and Kim investigated completion questions regarding symmetric ASMs [10]. As we
answered completion questions in the general case, it might be interesting to try and answer
the same questions with the additional constraint that the desired ASM must be symmetric.
The answer to these questions probably requires a new model. If we just add the symmetry
constraints as additional inequalities to our system, the coefficient matrix will no longer be TU.
The same is true if instead of adding extra constraints, we have one common variable for ai,j
and aj,i.
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Alulírott Takács Tamás nyilatkozom, hogy szakdolgozatom elkészítése során az alább felsorolt
feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye Megjegyzés
Nyelvhelyesség
ellenőrzése

Writefull Teljes dolgozat

A felsoroltakon túl más MI alapú eszközt nem használtam.
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