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Chapter 1

Introduction

A key challenge in macroeconomics and finance is to understand the propagation of shocks
across interconnected systems. In recent years, network-based measures of connectedness
have emerged as powerful tools to quantify spillover effects and interdependencies among
variables. One of the most prominent approaches in this literature is the framework in-
troduced by Diebold and Yilmaz (Diebold and Yilmaz 2009; Diebold and Yilmaz 2012),
which constructs networks based on forecast error variance decompositions derived from
vector autoregressions. While this method has been widely applied and extended, it relies
on generalized impulse response functions, which do not depend on the causal ordering of
variables. As a result, the resulting networks often lack structural interpretability.

This paper proposes a new approach to connectedness measurement based on struc-
tural impulse response functions. By recovering the contemporaneous causal structure of
the system using the LiNGAM algorithm (Shimizu et al. 2006), we identify a structural
VAR (SVAR) model and derive a sequence of IRFs that fully reflects the dynamics and
directionality of shock transmission. Unlike the GIRF-based method, our framework al-
lows for a clear distinction between direct and indirect, as well as contemporaneous and
lagged effects, offering a richer and more interpretable view of connectedness.

We construct a cumulative impulse response matrix and normalize it in a way that
preserves the relative magnitudes of off-diagonal interactions, thereby avoiding the loss of
interpretive information often associated with row-wise normalization in the DY frame-
work. Based on this matrix, we define directional measures such as TO, FROM, NET, and
the Total Connectedness Index, analogous to the DY measures but grounded in structural
dynamics.

Through a series of simulated experiments, we compare our IRF-based network with
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the Diebold–Yilmaz network under various data-generating processes. The simulations
demonstrate the advantages of our method in capturing the correct causal structure and
spillover channels. We also apply the proposed framework to the dy2012 dataset (Diebold
and Yilmaz 2012), where we recover economically plausible causal relations among key
asset classes and find that our IRF-based network consistently produces higher and more
informative connectedness measures.

The remainder of the paper is structured as follows. Section 2 reviews the Diebold–
Yilmaz framework, introduces our IRF-based network methodology and also presents sim-
ulated examples highlighting the strengths of the proposed approach. Section 3 provides
an empirical analysis using financial market data while Section 5 concludes.

The full replication code, including all simulations and empirical analyses, is available
at the accompanying GitHub repository. 1

1github.com/Espanm/R2DAG/blob/master/TDK
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Chapter 2

Methodology

In this section, we first summarize the Diebold–Yilmaz (DY) connectedness framework
as a benchmark approach. Then, we introduce our novel network construction based on
structural impulse response functions, followed by a comparison between the two method-
ologies.

2.1 The Diebold–Yilmaz framework

The connectedness framework developed by Diebold and Yilmaz (2009) and extended by
Diebold and Yilmaz (2012) is based on forecast error variance decompositions derived
from a reduced-form Vector Autoregression (VAR) model. It quantifies how much of the
forecast error variance of one variable can be attributed to shocks in another, resulting in
a directed, weighted network of spillovers.

We consider a stationary VAR(p) process of dimension N :

yt =

p∑
i=1

Φiyt−i + ut, ut ∼ (0,Σu)

This system admits a moving average representation:

yt =
∞∑
i=0

Aiut−i

Following Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012), the generalized
forecast error variance decomposition (GFEVD) is defined as:

θ
(H)
ij =

σ−1
jj

∑H−1
h=0 (e

′
iAhΣuej)

2∑H−1
h=0 (e

′
iAhΣuA′

hei)
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where σjj is the variance of shock j, ei is the selection vector for variable i, and H denotes
the forecast horizon.

The normalized matrix is then:

θ̃
(H)
ij =

θ
(H)
ij∑N

j=1 θ
(H)
ij

,
N∑
j=1

θ̃
(H)
ij = 1

From this, directional connectedness measures are computed as:

TOi =
∑
j ̸=i

θ̃
(H)
ij

FROMi =
∑
j ̸=i

θ̃
(H)
ji

NETi = TOi − FROMi

TCI =
1

N

N∑
i=1

∑
j ̸=i

θ̃
(H)
ij

NPDCij = θ̃
(H)
ij − θ̃

(H)
ji

The matrix θ̃(H) serves as the basis for constructing a directed network, where nodes
represent variables and edges capture the forecast-based spillovers. The TCI summarizes
the overall level of connectedness in the system, while the directional and net measures
allow detailed analysis of transmission and reception of shocks among variables.
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Algorithm 1 Diebold–Yilmaz connectedness measures
Require: Time series data {yt}Tt=1 with N variables, forecast horizon H

Ensure: Generalized FEVD matrix Θ̃(H), and connectedness measures
1: Estimate a VAR(p) model on {yt}
2: Compute moving average coefficients {Ah}H−1

h=0

3: Compute residual covariance matrix Σu

4: for i = 1 to N do

5: for j = 1 to N do

6: Compute GFEVD entry θ
(H)
ij using:

θ
(H)
ij =

σ−1
jj

∑H−1
h=0 (e

′
iAhΣuej)

2∑H−1
h=0 (e

′
iAhΣuA′

hei)

7: end for

8: end for

9: Normalize rows:

θ̃
(H)
ij =

θ
(H)
ij∑N

j=1 θ
(H)
ij

10: Calculate TO, FROM, NET, NPDC and TCI values
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2.2 The IRF network

In this subsection, we introduce our proposed method for constructing a network based
on structural impulse response functions.

We assume that the observed data is generated by a structural vector autoregression
(SVAR) process of order p, defined as:

A0Yt =

p∑
i=1

AiYt−i + εt, εt ∼ (0, I)

where Yt is an n× 1 vector of endogenous variables, A0 is an n× n contemporaneous
impact matrix, Ai are structural lag coefficient matrices, and εt is a vector of structural
shocks that are assumed to be mutually uncorrelated and standardized.

Although the SVAR model provides a causal interpretation of shock transmission, it
cannot be directly estimated from the data. This is because the model is not identified
without additional assumptions regarding the contemporaneous causal ordering of the
variables. Specifically, identifying the structural impact matrix A0 requires knowledge of
the underlying causal structure, which is not observable.

So, we begin by considering a reduced-form Vector Autoregression (VAR) model of
order p for an n-dimensional vector of endogenous variables:

Yt =

p∑
i=1

BiYt−i + ut, ut ∼ (0,Σu)

Here, Yt is an n × 1 vector of jointly determined time series variables, Bi are n × n

coefficient matrices corresponding to lag i, and ut is an error term with covariance matrix
Σu.

The reduced-form VAR parameters are related to the structural SVAR parameters
through the following transformation:

Bi = A−1
0 Ai and Σu = A−1

0 (A−1
0 )′

To identify the contemporaneous causal ordering required for estimating the structural
matrix A0, we employ the Linear Non-Gaussian Acyclic Model (LiNGAM) algorithm pro-
posed by Shimizu et al. (2006). LiNGAM provides a data-driven approach to uncovering
directed acyclic graphs (DAGs) based on the non-Gaussianity of structural shocks.

This methodology is particularly well-suited for financial and economic data, which
often deviate from the assumptions of classical linear models. As noted in the literature,
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residuals from linear regressions fitted to financial time series typically exhibit properties
such as heavy tails, skewness, excess kurtosis, and volatility clustering (Cont 2001; Nolan
and Ojeda-Revah 2013). These features violate the Gaussian assumptions underpinning
traditional identification schemes, rendering them unreliable in such contexts.

LiNGAM exploits these violations by leveraging the statistical independence and non-
Gaussian distribution of structural errors to recover the underlying causal structure. Un-
like conventional approaches, it does not require a priori ordering or exclusion restrictions;
instead, it derives the causal ordering directly from the data.

Once the contemporaneous causal ordering of the variables has been recovered using
the LiNGAM algorithm, we can use this information to estimate the structural impact
matrix A0. The identified ordering allows us to impose a recursive structure—typically
a (possibly permuted) lower triangular form—on A0, enabling full identification of the
SVAR model.

Given the identified structural matrices A0 and {Ai}pi=1, we can compute the structural
impulse response functions (IRFs), which trace the dynamic effects of one-unit structural
shocks on the system over time. Following standard SVAR methodology (Lütkepohl 2005,
Chapter 11), the IRFs are computed recursively as follows:

At horizon h = 0, the immediate response is:

IRF0 = A−1
0

For h ≥ 1, the responses are given by:

IRFh =

min(h,p)∑
j=1

A−1
0 Aj · IRFh−j

A−1
0

This recursive formulation captures how structural shocks propagate through the sys-
tem via both contemporaneous interactions (encoded in A0) and lagged dynamics (cap-
tured by {Aj}). The resulting sequence {IRFh}Hh=0 forms the foundation of our impulse
response-based network, where each IRFh matrix quantifies the effect of shocks at time t

on outcomes at time t+ h.
Analogously to the θ(H) spillover table used in the Diebold–Yilmaz framework, our

approach constructs an impulse response-based matrix denoted by IRF (H). This matrix
aggregates the dynamic effects of shocks across time and is computed as the cumulative
sum of the structural impulse response functions up to horizon H:
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IRF (H) =
H∑

h=0

|IRFh|

To obtain a comparable and interpretable representation, we normalize IRF (H) by
dividing all its elements by the maximum row sum of the matrix. The resulting normalized
matrix is denoted by ĨRF

(H)
:

ĨRF
(H)

=
IRF (H)

maxi
∑n

j=1 IRF
(H)
ij

This row-wise normalization ensures that each row sum lies between 0 and 1, while
preserving the relative magnitudes of the off-diagonal elements within each row.

Following the approach proposed in Caloia, Cipollini, and Muzzioli (2018), we define
the following connectedness measures based on the normalized matrix ĨRF

(H)
:

TOi =

∑
j ̸=i ĨRF

(H)

ij∑n
j=1 ĨRF

(H)

ij

FROMi =

∑
j ̸=i ĨRF

(H)

ji∑n
j=1 ĨRF

(H)

ji

NETi = TOi − FROMi

NPDCij = ĨRF
(H)

ij − ĨRF
(H)

ji

TCI =
1

n

n∑
i=1

FROMi

2.2.1 Decomposition of the IRF (H) matrix.

An important property of the IRF (H) matrix—and consequently of its normalized form
ĨRF

(H)
—is that it can be decomposed into the sum of four interpretable components:

• Cd: Contemporaneous direct effects,

• Ci: Contemporaneous indirect effects,
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• Ld: Lagged direct effects,

• Li: Lagged indirect effects.

The contemporaneous direct effects (Cd) are given by the absolute value of A−1
0 , as

these represent the immediate structural responses due to direct connections among vari-
ables. All other effects present in IRF0 are classified as contemporaneous indirect effects
(Ci), since they emerge through intermediary pathways in the recursive system.

Among the lagged effects, IRF1 captures the first-order dynamic propagation and
is thus categorized as the lagged direct component (Ld). All remaining matrices in the
cumulative response, i.e., IRFh for h ≥ 2, are considered lagged indirect effects (Li),
reflecting multi-step propagation through the system.

The full decomposition is:

IRF (H) = Cd + Ci + Ld + Li

Table 2.1: Decomposition of IRF (H) into structural components

Component Definition

Cd |A0|
Ci |IRF0| − |A0|
Ld |IRF1|
Li

∑H
h=2 |IRFh|
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Algorithm 2 Impulse response-based network construction
Require: Multivariate time series data {Yt}Tt=1, forecast horizon H

Ensure: Connectedness measures based on structural impulse responses
1: Estimate a reduced-form VAR(p) model on {Yt}
2: Apply the LiNGAM algorithm to identify the contemporaneous causal ordering
3: Estimate the structural impact matrix A0 based on the LiNGAM-implied ordering
4: Obtain the structural lag matrices {Ai}pi=1

5: Compute structural impulse response matrices:

IRF0 = A−1
0

IRFh =

min(h,p)∑
j=1

A−1
0 Aj · IRFh−j

A−1
0 , for h = 1, . . . , H

6: Construct the cumulative impulse response matrix:

IRF (H) =
H∑

h=0

|IRFh|

7: Normalize the matrix by dividing all entries by the maximum row sum:

ĨRF
(H)

=
IRF (H)

maxi
∑n

j=1 IRF
(H)
ij

8: Calculate the FROM, TO, NET, NPDC and TCI values
9: Decompose the IRF (H) to Cd, Ci, Ld and Li
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2.2.2 A toy example

To illustrate the construction of our impulse response-based network, we consider a simple
three-dimensional SVAR(1) process with H = 1. This toy example allows us to demon-
strate each computational step explicitly, from the structural specification to the reduced-
form VAR and ultimately to the network representation.

The data-generating process is defined as:

A0Yt = A1Yt−1 + εt, εt ∼ t10(0,Σε)

Since a standard multivariate Student-t distribution with ν = 10 degrees of freedom
has covariance 10

8
I = 5

4
I, we rescale the shocks to ensure unit variance, thus

Σε = I

The structural matrices are given by:

A0 =


1 0 0

−0.5 1 0

0 −0.4 1

 , A1 =


0.7 0 0

0 0.7 0

0 0 0.7


To derive the reduced-form VAR(1) model:

Yt = B1Yt−1 + ut, ut = A−1
0 εt, ut ∼ (0,Σu)

we compute the inverse of A0:

A−1
0 =


1 0 0

0.5 1 0

0.2 0.4 1


Then the estimated reduced-form coefficient matrix becomes:

B1 = A−1
0 A1 =


0.7 0 0

0.35 0.7 0

0.14 0.28 0.7


The reduced-form error covariance matrix is:
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Σu = A−1
0 (A−1

0 )′ =


1 0.5 0.2

0.5 1.25 0.5

0.2 0.5 1.2


We obtain the following adjacency matrix from the LiNGAM algorithm:

Adj =


0 0 0

1 0 0

0 1 0


Hence, the causal ordering among the variables is:

Y1 ≺ Y2 ≺ Y3

To ensure that the structural shocks are orthogonal, we require the structural impact
matrix A0 to satisfy the following condition:

A0ΣuA
′
0 = D

where D is a diagonal matrix. Since Σu is symmetric, it has 6 unique elements, of which
3 off-diagonal constraints must be zero to ensure orthogonal structural shocks. To match
these, we require at least 3 free parameters in A0, which—given the LiNGAM ordering
Y1 ≺ Y2 ≺ Y3—we place in the lower triangular part of a recursive structure:

A0 =


1 0 0

a21 1 0

a31 a32 1


Substituting into the condition A0ΣuA

′
0 = D, we impose that all off-diagonal elements

of the resulting product vanish. This leads to the following system of equations:

a21 + 0.5 = 0

a31 + 0.5a32 + 0.2 = 0

a21(a31 + 0.5a32 + 0.2) + 0.5a31 + 1.25a32 + 0.5 = 0

Solving this system yields:
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a21 = −0.5, a31 = 0, a32 = −0.4

Therefore, the fully identified A0 matrix is:

A0 =


1 0 0

−0.5 1 0

0 −0.4 1


Having completed the identification, we can now compute the first two structural

impulse response matrices.
The immediate impact matrix is:

IRF0 = A−1
0 =


1 0 0

0.5 1 0

0.2 0.4 1


The one-step response is given by:

IRF1 = A−1
0 A1A

−1
0 =


0.7 0 0

0.7 0.7 0

0.42 0.56 0.7


Summing the absolute values elementwise:

IRF (1) = |IRF0|+ |IRF1| =


1.7 0 0

1.2 1.7 0

0.62 0.96 1.7


The maximum row sum of the cumulative absolute IRF matrix is:

max
i

∑
j

(
IRF (1)

)
ij
= 3.28

Normalizing by this value, we obtain the scaled matrix:

ĨRF
(1)

=


0.5183 0 0

0.3659 0.5183 0

0.1890 0.2927 0.5183
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From this normalized matrix, the TO, FROM, NET, NPDC, and TCI measures can
be easily derived using the definitions provided earlier.

The decomposition is as follows:
-

Cd =


1 0 0

0.5 1 0

0 0.4 1



Ci =


0 0 0

0 0 0

0.2 0 0



Ld =


0.7 0 0

0.7 0.7 0

0.42 0.56 0.7


Li = 0, since H = 1 and there are no responses beyond horizon 1.
The contemporaneous causal structure in this example is depicted in the following

graph, which provides an intuitive basis for distinguishing between direct and indirect
effects.

Y1

Y2

Y3

0.5 0.4

Figure 2.1: Contemporaneous structure

It is important to emphasize that these are theoretical values; in empirical applications,
model estimates are inherently subject to approximation and are never perfectly accurate.

2.3 Comparing Diebold–Yilmaz and IRF-based Networks

To assess the practical implications of our proposed impulse response-based network
framework, we compare it with the widely used Diebold–Yilmaz connectedness approach
across several simulated four-dimensional data-generating processes.
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While both methods rely on the estimation of a vector autoregressive (VAR) model,
the underlying principles and assumptions differ significantly. The Diebold–Yilmaz frame-
work builds on generalized impulse response functions (GIRFs), which, due to their invari-
ant ordering property, sacrifice interpretability. In contrast, structural impulse response
functions (IRFs) provide more tangible and interpretable dynamics, especially when the
contemporaneous causal structure is known.

Thanks to the LiNGAM algorithm, we are able to identify the contemporaneous causal
ordering, which allows for a specification of the structural system. This additional layer of
information enables us to distinguish between direct and indirect, contemporaneous and
lagged effects in a meaningful way.

Moreover, unlike the Diebold–Yilmaz approach—which applies normalization row-
wise—the IRF-based normalization is performed using the maximum row sum of the
cumulative impulse response matrix. As a result, the relative magnitudes of the matrix
elements remain intact, preserving the internal structure of directional influences in the
network.

2.3.1 Contemporaneous-only effects

To begin our comparison, we consider a simple setting in which the data-generating process
includes only contemporaneous effects, with no lagged interactions. This setup isolates the
role of contemporaneous structural dependence in determining connectedness.

The structural model is specified as:

A0Yt = εt, εt ∼ t10(0, I)

where A0 is a lower triangular matrix encoding the contemporaneous causal structure:

A0 =


1 0 0 0

0 1 0 0

−0.5 −0.5 1 0

−0.5 0 −0.5 1


The innovations εt follow a multivariate Student-t distribution with 10 degrees of

freedom and identity covariance matrix. The sample size is 1000, and the horizon is set
to H = 5.
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The resulting contemporaneous causal structure is illustrated in the following directed
acyclic graph, where olid arrows indicate direct effects, dashed arrows represent indirect
ones.

Y2 Y1

Y3

Y4

Figure 2.2: Causal DAG implied by A0.

The results of our impulse response-based network, applied to a structural system
with contemporaneous effects only, are summarized in the table below. Each cell captures
the relative strength of influence based on the normalized cumulative impulse response
matrix ĨRF

(5)
. The final two rows report the total incoming connectedness (FROM) and

the net directional connectedness (NET) for each variable, while the final column shows
the total outgoing connectedness (TO). The Total Connectedness Index (TCI) is shown
as percentage.

Y1 Y2 Y3 Y4 FROM

Y1 0.4063 0.0061 0.0056 0.0034 0.0357
Y2 0.0131 0.4093 0.0190 0.0011 0.0750
Y3 0.2019 0.2044 0.4066 0.1870 0.5934
Y4 0.3119 0.1263 0.0006 0.4205 0.5106

TO 0.5646 0.4514 0.0583 0.3129 TCI

NET 0.5289 0.3764 -0.5351 -0.1977 30.36%

Table 2.2: Normalized IRF-based connectedness table for contemporaneous-only system

For comparison, the results of the Diebold–Yilmaz framework are shown below.
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Y1 Y2 Y3 Y4 FROM

Y1 0.6981 0.0005 0.1051 0.1963 0.3019
Y2 0.0005 0.8492 0.1148 0.0355 0.1508
Y3 0.0915 0.0814 0.6083 0.2188 0.3917
Y4 0.1679 0.0249 0.2135 0.5938 0.4062

TO 0.2600 0.1068 0.4334 0.4506 TCI

NET -0.0420 -0.0441 0.0417 0.0443 31.27%

Table 2.3: Diebold–Yilmaz connectedness table for the contemporaneous-only system

Figure 2.3: Visualizition of the networks in case of contemporaneous-only effects. The size
of each node reflects its FROM+TO value. In the pie charts, the green (red) segments
correspond to the proportion of FROM (TO) spillovers within the total for that series.
Arrows indicate the direction of net spillovers, with their thickness representing the mag-
nitude. Nodes labeled in green denote time series with FROM/SUM ratios of at least
55%, while red labels indicate TO/SUM ratios of 55% or more.

A key distinction between the Diebold–Yilmaz and IRF-based networks lies in their
treatment of structural information. The Diebold–Yilmaz framework does not incorpo-
rate the contemporaneous causal structure of the system; instead, it relies solely on the
reduced-form covariance matrix of innovations. As a result, the derived connectedness
matrix tends to be close to symmetric, and the net connectedness values (NET) for each
variable typically hover around zero.
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In contrast, the IRF-based network directly incorporates the causal ordering identified
by the structural model. This leads to a more informative and interpretable structure: in
the contemporaneous-only example, the IRF matrix clearly reflects that variables Y1 and
Y2 act primarily as transmitters of shocks (positive NET), while Y3 and Y4 behave as
receivers (negative NET). Despite this directional asymmetry, the Total Connectedness
Index values in both approaches remain close in magnitude, indicating comparable overall
spillover intensity.

These differences are also visually evident when comparing the two resulting network
graphs side by side:

Since the structural system in this example contains no lagged dynamics, both the
lagged direct (Ld) and lagged indirect (Li) components of the cumulative impulse re-
sponse matrix are zero by construction. As a result, the entire response is driven by
contemporaneous effects, which we decompose into direct (Cd) and indirect (Ci) compo-
nents.

The direct contemporaneous effects, captured by the absolute value of the structural
impact matrix A0.

Cd =


1.0000 0 0 0

0.0232 1.0000 0 0

0.5106 0.4782 1.0000 0

0.4936 0.0701 0.4687 1.0000


The indirect contemporaneous effects are the following:

Ci =


0 0 0 0

0 0 0 0

−0.0111 0 0 0

0.2325 0.2241 0 0


Note that these are non-normalized values computed directly from the IRF (5) matrix.

It is also important to emphasize that the entries (Cd)21, (Cd)42, and (Ci)31 deviate slightly
from zero solely due to estimation error.

2.3.2 Lagged-only effects

As a contrasting case, we now consider a system in which the structural matrix A0 is set
to the identity matrix. In this setting, the process corresponds to a reduced-form VAR
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model rather than a structural VAR (SVAR), and no contemporaneous causal structure
is imposed or recoverable.

Since the structural matrix is the identity, the model takes the form:

Yt = A1Yt−1 + εt

with the lag matrix defined as:

A1 =


0.5 0 0 0

0.7 0.5 0 0

0 0.7 0.5 0

0 0.2 0 0.5


The innovations εt follow a multivariate Student-t distribution with 10 degrees of

freedom and identity covariance matrix. The sample size is 1000, and the horizon is set
to H = 5.

The resulting lagged causal structure is illustrated in the fol- lowing directed acyclic
graph, where olid arrows indicate direct effects, dashed arrows represent indirect ones.

Y2 Y1

Y3

Y4

Figure 2.4: Causal DAG implied by A1.

Having introduced the VAR model with lagged dependencies and no contemporaneous
structure, we now present the connectedness results obtained from both the IRF-based and
Diebold–Yilmaz frameworks. The following tables summarize the directional influences,
total effects, and net positions across variables.

22



Y1 Y2 Y3 Y4 FROM

Y1 0.2680 0.0068 0.0030 0.0119 0.0751
Y2 0.3566 0.2754 0.0131 0.0092 0.5791
Y3 0.3848 0.3364 0.2737 0.0051 0.7263
Y4 0.1150 0.1024 0.0087 0.2538 0.4712

TO 0.7616 0.6180 0.0833 0.0937 TCI

NET 0.6865 0.0390 -0.6429 -0.3775 46.29%

Table 2.4: Normalized IRF-based connectedness table for the lagged-only system

Y1 Y2 Y3 Y4 FROM

Y1 0.9932 0.0021 0.0002 0.0045 0.0068
Y2 0.5413 0.4542 0.0001 0.0044 0.5458
Y3 0.3920 0.3305 0.2745 0.0029 0.7255
Y4 0.0841 0.0831 0.0003 0.8325 0.1675

TO 1.0174 0.4158 0.0006 0.0119 TCI

NET 1.0106 -0.1301 -0.7249 -0.1556 36.14%

Table 2.5: Diebold–Yilmaz connectedness table for the lagged-only system

An important consistency check is the comparison of the diagonal elements across
the two connectedness tables. These values reflect the own-variable cumulative response
and should theoretically be equal across both frameworks. However, due to the row-wise
normalization employed in the Diebold–Yilmaz approach, substantial discrepancies can
be observed. For instance, in Table 2.5, the diagonal entries range from as low as 0.27 to
0.99, whereas our impulse response-based network preserves consistency in these values,
yielding identical diagonal elements. A similar distortion appears in specific off-diagonal
entries such as (2, 1) and (3, 2), where the relative magnitudes are notably altered in the
Diebold–Yilmaz matrix due to normalization artifacts.

Moreover, our framework enables a clear decomposition of the total impact into direct
and indirect components, in the case of purely lagged dependencies as well.

The lagged direct and indirect matrices computed from the cumulative structural
impulse responses exhibit a clear correspondence with the causal structure encoded in the
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Figure 2.5: Visualizition of the networks in case of lagged-only effects. The size of each node
reflects its FROM+TO value. In the pie charts, the green (red) segments correspond to
the proportion of FROM (TO) spillovers within the total for that series. Arrows indicate
the direction of net spillovers, with their thickness representing the magnitude. Nodes
labeled in green denote time series with FROM/SUM ratios of at least 55%, while red
labels indicate TO/SUM ratios of 55% or more.

data-generating process.
Ld, which reflects the one-step, first-order effects derived from the lag matrix A1, is

given by:

Ld =


0.5097 0.0006 0.0055 0.0255

0.7193 0.5188 0.0207 0.0258

0.0777 0.6832 0.5133 0.0053

0.0342 0.2001 0.0113 0.4934


Li, which aggregates the multi-step propagated effects, is:

Li =


0.5358 0.0515 0.0176 0.0655

1.9658 0.5832 0.0680 0.0444

2.8451 1.8842 0.5759 0.0337

0.7702 0.5776 0.0526 0.4436


These matrices faithfully reflect the underlying causal dependencies specified in the

data-generating process.
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2.3.3 Lagged and contamporenaous effects as well

To explore the behavior of our connectedness framework in a more complex and realistic
setting, we now turn to a structural system that includes both contemporaneous and
lagged dependencies.

The data-generating process is specified as follows:

A0Yt = A1Yt−1 + εt, εt ∼ t10(0, I)

where the structural impact matrix A0 encodes contemporaneous causal relationships,
and A1 governs the lagged dynamic effects. The specific matrices are given by:

A0 =


1 0 0 0

0 1 0 0

−0.5 −0.5 1 0

−0.5 0 −0.5 1

 , A1 =


0.5 0 0 0

0.7 0.5 0 0

0 0.7 0.5 0

0 0.2 0 0.5


The innovations εt follow a multivariate Student-t distribution with 10 degrees of

freedom and identity covariance matrix. The sample size is 1000, and the horizon is set
to H = 5.

We now compare the outcomes of the IRF-based and Diebold–Yilmaz connectedness
frameworks in a structural system that contains both contemporaneous and lagged de-
pendencies. The following tables present the connectedness metrics derived from each
approach.

Y1 Y2 Y3 Y4 FROM

Y1 0.1237 0.0089 0.0020 0.0002 0.0821
Y2 0.1696 0.1112 0.0053 0.0056 0.6189
Y3 0.4343 0.2405 0.1249 0.0053 0.8449
Y4 0.5148 0.2468 0.1229 0.1156 0.8844

TO 0.9004 0.8170 0.5105 0.0877 TCI

NET 0.8184 0.1981 -0.3344 -0.7967 60.76%

Table 2.6: Normalized IRF-based connectedness table for the mixed system
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Y1 Y2 Y3 Y4 FROM

Y1 0.6992 0.0020 0.1118 0.1870 0.3008
Y2 0.3657 0.3094 0.1819 0.1430 0.6906
Y3 0.3519 0.1623 0.2882 0.1976 0.7118
Y4 0.3493 0.1182 0.2438 0.2887 0.7113

TO 1.0668 0.2826 0.5376 0.5275 TCI

NET 0.7661 -0.4080 -0.1742 -0.1839 60.36%

Table 2.7: Diebold–Yilmaz connectedness table for the mixed system

Figure 2.6: Visualizition of the networks in case of both lagged and contemporaneous
effects. The size of each node reflects its FROM+TO value. In the pie charts, the green
(red) segments correspond to the proportion of FROM (TO) spillovers within the total for
that series. Arrows indicate the direction of net spillovers, with their thickness representing
the magnitude. Nodes labeled in green denote time series with FROM/SUM ratios of at
least 55%, while red labels indicate TO/SUM ratios of 55% or more.

This example clearly illustrates the combined advantages of the impulse response-
based network. The Diebold–Yilmaz approach once again fails to incorporate the contem-
poraneous structure: the resulting connectedness matrix is not lower triangular, despite
the underlying form of the system. Moreover, the diagonal elements differ significantly
in magnitude across variables, highlighting once again the distorting effect of row-wise
normalization.
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In contrast, the IRF-based network accurately reflects the causal structure through
a lower triangular form, and the diagonal elements remain consistent across variables.
This highlights the superiority of our framework in capturing both contemporaneous and
dynamic dependencies in a coherent and interpretable manner.

This case also shows more clearly than any previous example how well the impulse
response-based network can separate different types of effects. Since the system includes
both contemporaneous and lagged connections, we can observe direct and indirect effects
happening both within the same time period and across time. Our method makes it easy to
separate and measure these effects one by one, giving a more complete and understandable
picture of how shocks move through the system. The Diebold–Yilmaz approach cannot
do this, because it does not use the structural relationships and mixes all effects together.

Contemporaneous Direct Effects:

Cd =


1.0000 0.0000 0.0000 0.0000

0.0445 1.0000 0.0000 0.0000

0.4810 0.5192 1.0000 0.0000

0.4552 0.0265 0.5303 1.0000


Contemporaneous Indirect Effects:

Ci =


0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0231 0.0000 0.0000 0.0000

0.2685 0.2753 0.0000 0.0000


Lagged Direct Effects:

Ld =


0.5451 0.0301 0.0071 0.0005

0.7657 0.4457 0.0446 0.0296

0.9240 1.1735 0.4670 0.0304

1.1125 0.8770 0.5107 0.4875


Lagged Indirect Effects:

Li =


0.4327 0.1119 0.0249 0.0024

1.9021 0.3319 0.0407 0.0597

5.5169 2.1531 0.5300 0.0550

6.3952 2.7677 0.9241 0.3604
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It is important to emphasize that the structural matrix A0 must always be lower
triangular, possibly after an appropriate row and column permutation, and its diagonal
elements are normalized to one by definition.

In contrast, the lagged coefficient matrix A1 is not subject to such structural re-
strictions. It does not need to be lower triangular, and its form depends entirely on the
dynamics of the system being modeled.

In our examples, we deliberately selected cases where A1 is lower triangular in order
to make the properties of the IRF-based network more visually interpretable and easier
to explain. However, the framework is fully applicable even when A1 has a more general
structure.
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Chapter 3

Empirical analysis on finacial data

In this section, we apply our methodology to real-world financial data in order to evaluate
volatility spillovers across major US asset classes. Our empirical investigation builds on the
dataset originally used by Diebold and Yilmaz (2012), which includes daily observations
from the US stock, bond, foreign exchange, and commodity markets.

Specifically, we use data on the S&P 500 index (equities), the 10-year US Treasury
bond yield (bonds), the New York Board of Trade USD index futures (foreign exchange),
and the Dow Jones/UBS Commodity Index (commodities). The sample period spans from
January 25, 1999, to January 29, 2010, yielding a total of 2771 daily observations.

To quantify market uncertainty, we calculate daily volatilities using the Parkinson
estimator (Parkinson 1980), which captures intraday price variation based on the high
and low prices. For market i on day t, the estimator is given by:

σ̂2
it = 0.361

[
ln(Pmax

it )− ln(Pmin
it )

]2
,

where Pmax
it and Pmin

it denote the daily high and low prices, respectively. This provides an
estimate of the daily return variance.

Following Diebold and Yilmaz (2012), we annualize the daily standard deviations by
computing:

σ̂ann
it = 100 ·

√
365 · σ̂2

it,

and apply a logarithmic transformation.
The descriptive statistics of the log-transformed annualized volatilities for the four

asset classes are reported in the table below, as originally presented in Diebold and Yilmaz
(2012).
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Stocks Bonds Commodities FX

Mean −9.70 −9.44 −10.69 −11.00

Median −9.74 −9.44 −10.50 −10.99

Maximum −5.45 −4.23 −6.34 −7.62

Minimum −13.09 −13.79 −18.33 −16.86

Std. deviation 1.19 1.19 1.54 0.98

Skewness 0.21 0.019 −0.73 −0.21

Kurtosis 3.18 3.16 4.21 3.87

Table 3.1: Log volatility summary statistics for the four asset classes. Source: Diebold and
Yilmaz (2012).

We estimate a (VAR(1)) model on the log-transformed, annualized volatilities of the
four asset classes. The estimated coefficient matrix B1 is:

B1 =


0.5514 0.0461 −0.0358 0.0521

0.1556 0.3618 0.1120 0.0259

−0.1326 0.2007 0.4448 0.1122

0.1211 0.0352 0.0720 0.2062


The residual correlation matrix from the estimated VAR model is as follows:

Corr(ût) =


1.0000 0.2984 0.0419 0.2087

0.2984 1.0000 0.0988 0.2725

0.0419 0.0988 1.0000 0.0995

0.2087 0.2725 0.0995 1.0000


This correlation structure among the reduced-form residuals reflects potential con-

temporaneous relationships between asset classes, which cannot be interpreted causally
without structural identification.

As evident from the matrix, the most relevant dependencies involve stocks, bonds, and
foreign exchange. Determining the correct causal ordering among these three variables is
therefore central to identifying the structural system.

To assess the stability of the identified structure, we implement a bootstrap proce-
dure. Specifically, we repeatedly draw samples of the same size as the original dataset
using sampling with replacement. For each bootstrap sample, we run the LiNGAM al-
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gorithm and extract the resulting binary contemporaneous adjacency matrix. This pro-
cedure is repeated 1000 times, and the resulting adjacency structures are aggregated by
their frequency of occurrence.

The three most frequently observed adjacency matrices and their relative frequencies
are presented below. Each matrix corresponds to a directed graph where entry (i, j) = 1

indicates a contemporaneous effect from variable j to variable i:

Adjacency Matrix 1 (Frequency: 33.9%)


0 0 0 1

1 0 0 1

0 0 0 0

0 0 0 0



Adjacency Matrix 2 (Frequency: 29.6%)


0 0 0 0

1 0 0 1

0 0 0 0

0 0 0 0



Adjacency Matrix 3 (Frequency: 16.8%)


0 0 0 0

1 0 0 1

0 0 0 0

1 0 0 0


Based on the dominant patterns in the bootstrap results, we infer a causal ordering of

FX → Stocks → Bonds → Commodities, with Commodities did not exhibit any
consistent incoming or outgoing contemporaneous effects across the bootstrap replications.
Therefore, its position in the contemporaneous structure remains ambiguous and can be
considered weakly connected.

Using the bootstrap-selected causal ordering, we constructed the contemporaneous
structural matrix A0 and the lagged coefficient matrix A1.

A0 =


1.0000 0 −0.0155 −0.2168

−0.2689 1.0000 −0.0524 −0.2399

0 0 1.0000 0

0 0 −0.0692 1.0000
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A1 =


0.5272 0.0354 −0.0583 0.0056

−0.0148 0.3305 0.0810 −0.0434

−0.1326 0.2007 0.4448 0.1122

0.1303 0.0213 0.0412 0.1985


Based on the estimated structural matrices A0 and A1, we compute the structural

impulse response functions up to a horizon of H = 5. The resulting cumulative impulse
response matrix IRF (5) serves as the basis for the connectedness measures presented
below.

Stocks Bonds Commodities FX FROM

Stocks 0.6036 0.0347 0.0180 0.1742 0.2732
Bonds 0.2442 0.4440 0.1207 0.1911 0.5560
Commodities 0.0387 0.1490 0.5226 0.0964 0.3522
FX 0.0944 0.0361 0.0736 0.3740 0.3530

TO 0.3846 0.3312 0.2889 0.5525 TCI

NET 0.1114 -0.2249 -0.0633 0.1995 38.36%

Table 3.2: Normalized IRF-based connectedness table for dy2012 data

For comparison, we also compute the connectedness measures using the Diebold–
Yilmaz framework.

Stocks Bonds Commodities FX FROM

Stocks 0.8506 0.0960 0.0014 0.0520 0.1494
Bonds 0.1288 0.7528 0.0445 0.0739 0.2472
Commodities 0.0015 0.0562 0.9112 0.0311 0.0888
FX 0.0767 0.0829 0.0281 0.8122 0.1878

TO 0.2070 0.2352 0.0740 0.1570 TCI

NET 0.0576 -0.0120 -0.0148 -0.0308 16.83%

Table 3.3: Diebold–Yilmaz connectedness table for dy2012 data

The main distinction between the two frameworks lies in the behavior of the diago-
nal elements. In the Diebold–Yilmaz network, the diagonals are much more dominant,

32



Figure 3.1: Visualizition of the networks in case of dataset dy2012. The size of each node
reflects its FROM+TO value. In the pie charts, the green (red) segments correspond to
the proportion of FROM (TO) spillovers within the total for that series. Arrows indicate
the direction of net spillovers, with their thickness representing the magnitude. Nodes
labeled in green denote time series with FROM/SUM ratios of at least 55%, while red
labels indicate TO/SUM ratios of 55% or more.

resulting in a substantially lower Total Connectedness Index.
Another striking difference is observed in the net connectedness of the foreign exchange

market. In the DY network, the FX variable appears nearly neutral, with a net value close
to zero. In contrast, under the IRF-based network—where the structural causal ordering
is explicitly identified—FX emerges as a net transmitter of volatility, highlighting its role
as an influential driver in the system.

To further investigate the underlying structure of the IRF-based network, we observe
the decomposition of the cumulative impulse response matrix IRF (5). This decomposition
enables a more nuanced comparison of how shocks propagate across markets in both timing
and type. The matrices below are reported in their original, non-normalized form:

Cd =


1.0000 0.0000 0.0155 0.2168

0.2689 1.0000 0.0524 0.2399

0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0692 1.0000
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Ci =


0.0000 0.0000 0.0150 0.0000

0.0000 0.0000 0.0248 0.0583

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000



Ld =


0.5638 0.0461 0.0118 0.1854

0.2529 0.3618 0.1465 0.1676

0.0786 0.2007 0.4640 0.1433

0.1306 0.0352 0.0927 0.2430



Li =


0.7190 0.0851 0.0258 0.2566

0.4016 0.3173 0.2329 0.2570

0.0677 0.3628 0.5124 0.2214

0.2264 0.1014 0.1163 0.1716


This decomposition shows that contemporaneous indirect effects (Ci) are negligible.

In contrast, among the lagged components, the indirect effects (Li) are more pronounced,
indicating that the majority of dynamic spillovers propagate over time through indirect
channels.

3.1 Rolling network

To explore the time-varying nature of connectedness, we conduct a rolling window anal-
ysis based on the first seven years of the dy2012 dataset. We use a window size of 252
observations, corresponding approximately to one calendar year of daily data.

For each rolling window, we re-estimate the entire network structure separately for
both the Diebold–Yilmaz and the IRF-based frameworks. This includes re-fitting the
VAR model, identifying the contemporaneous structure (in the case of the IRF network),
and computing the connectedness measures. We then extract the Total Connectedness
Index from each window and visualize its evolution over time for both approaches.
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Figure 3.2: Rolling Total Connectedness Index computed from IRF and Diebold–Yilmaz
networks using a 252-day moving window.

Figure 3.2 illustrates the evolution of the Total Connectedness Index over time, as
computed from both the IRF-based and Diebold–Yilmaz frameworks. It is evident that
the IRF-based network consistently yields higher TCI values.

In periods where the underlying causal structure becomes less stable or undergoes a
transition, the LiNGAM algorithm finds it more difficult to establish a clear ordering.
This results in small fluctuations in the IRF-based TCI. One such example is the inter-
val between 2000 and 2001, where the rolling TCI briefly dips and rebounds, reflecting
underlying structural uncertainty.

3.2 Robustness check

To assess the robustness of our IRF-based network to the choice of forecast horizon, we
perform a rolling-window analysis using different values of H. The analysis is conducted
over the first seven years of the dy2012 dataset, applying a 252-day moving window, as
before. For each window, we compute the Total Connectedness Index (TCI) using the
IRF-based approach for horizons H = 3, H = 5, and H = 7.
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Figure 3.3: Rolling IRF-based TCI computed for different impulse response horizons (H =

3, H = 5, H = 7)

As shown in Figure 3.3, the TCI trajectories for the three horizon lengths are nearly
indistinguishable throughout the sample period. While minor deviations occur at certain
points, the overall pattern suggests a high degree of robustness to the choice of H.

To further support this observation, Table 3.4 reports the average TCI values computed
over all rolling windows for each horizon. The differences are marginal, with only a slight
upward trend as the horizon increases.

Horizon Average TCI

H = 3 0.3313
H = 5 0.3404
H = 7 0.3431

Table 3.4: Average IRF-based Total Connectedness Index for different horizons

This phenomenon is consistent with the interpretation that, as the forecast horizon
increases, indirect effects accumulate and become more pronounced. These effects typically
involve off-diagonal propagation paths, thereby increasing total connectedness without
inflating the diagonal elements.
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Chapter 4

Conclusion

In this paper, we introduced a novel network-based connectedness framework built upon
structural impulse response functions. By explicitly incorporating contemporaneous causal
relationships—identified through the LiNGAM algorithm—our method provides a more
interpretable and structurally grounded view of how shocks propagate across variables.

Using a series of simulated data-generating processes, we demonstrated that the IRF-
based network is capable of distinguishing between direct and indirect, as well as contem-
poraneous and lagged effects. Such decomposition is not available in the Diebold–Yilmaz
framework, which relies on generalized impulse responses and does not account for causal
ordering. As a result, the DY network tends to produce more symmetric connectedness
matrices with suppressed off-diagonal and net effects.

In our empirical application, we revisited the well-known dataset from Diebold and
Yilmaz (2012) (Diebold and Yilmaz 2012), referred to as dy2012. The IRF-based network
consistently delivered higher Total Connectedness Index values and clearer directional
roles—particularly for the foreign exchange market. Rolling window and robustness analy-
ses further confirmed the stability of the IRF-based network and its resilience to variations
in the forecast horizon.

Overall, our results suggest that IRF-based networks offer a theoretically sound and
empirically robust alternative to traditional connectedness measures, particularly when
the identification of structural shocks is feasible.

37



Appendix: Accuracy of the LiNGAM

Algorithm

This appendix presents simulation results evaluating the accuracy of the LiNGAM algo-
rithm under varying data conditions, using a fixed structural model. Specifically, we assess
how the algorithm performs in recovering the correct contemporaneous causal structure
when sample size and the heaviness of tails (captured by the degrees of freedom of the
t-distribution) change.

The structural matrix used for data generation is:

A0 =


1 0 0 0

0 1 0 0

−0.5 −0.5 1 0

−0.5 0 −0.5 1


Thus, the corresponding adjacency matrix to be recovered by the LiNGAM algorithm

is:

Adjacency matrix =


0 0 0 0

0 0 0 0

1 1 0 0

1 0 1 0
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Figure 4.1: Accuracy of the LiNGAM algorithm in recovering the structure of the fixed
A0 matrix across varying sample sizes and degrees of freedom

Figure 4.1 displays a heatmap summarizing the percentage of correct identifications
of the exact causal structure by the LiNGAM algorithm, based on 1000 simulation runs
for each combination of sample size and degrees of freedom.

The results reveal two main insights:

• Larger sample sizes significantly improve accuracy, as expected.

• Lower degrees of freedom—i.e., heavier tails—also enhance recovery. This is
particularly relevant for financial data, where error terms often follow a Student-t
distribution with 4–6 degrees of freedom, aligning well with the favorable regions of
the heatmap.
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Furthermore, even when the full adjacency matrix is not perfectly recovered, the cor-
rect causal ordering can still be inferred. As demonstrated in our empirical application,
combining LiNGAM with bootstrap aggregation helps stabilize the results and en-
hances the robustness of the recovered structure.
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Magyar nyelvű összefoglaló

A makrogazdaságtanban és a pénzügyek területén kulcsfontosságú kérdés, hogy hogyan
hatnak egymásra az egyes szereplők az összekapcsolódó rendszerekben. Az elmúlt évek-
ben egyre népszerűbbé váltak a hálózatalapú kapcsolati mutatók, amelyek segítségével
mérhetővé váltak az egyes változók közötti kölcsönhatások. A legismertebb módszerek
közé tartozik a Diebold–Yilmaz-féle keretrendszer, amely vektor-autoregressziós modellek-
ből származó előrejelzési hibavariancia-felbontásokon alapul. Bár ez a megközelítés széles
körben elterjedt, az alkalmazott általánosított impulzusválasz függvények nem veszik fi-
gyelembe a kauzális sorrendet, így a kapott hálózatok gyakran ellentmondásosak vagy
nehezen értelmezhetőek.

A dolgozat egy új, strukturális impulzusválasz-függvényeken alapuló hálózati módszert
javasol, amely lehetővé teszi az oksági viszonyok figyelembevételét. A LiNGAM algoritmus
segítségével feltárjuk a rendszeren belüli egyidejű oksági kapcsolatokat, majd egy struk-
turális VAR (SVAR) modellből származtatjuk a sokkterjedést leíró válaszfüggvényeket.
Az új módszerben lehetőség nyílik a közvetlen és közvetett, valamint a késleltetett és
azonos idejű hatások szétválasztására, ami részletesebb és értelmezhetőbb eredményeket
ad.

A módszer részeként egy kumulatív impulzusválasz-mátrixot definiálunk, melyet úgy
normalizálunk, hogy megőrizze a változók közötti kapcsolatok relatív nagyságát. Ez elk-
erüli a DY-módszer egyik problémáját, a soronkénti normalizálás okozta információvesztést.
A mátrix alapján a DY rendszerhez hasonlóan különböző összefüggőségi mutatókat –
például TO, FROM, NET és a teljes összefüggőségi indexet (Total Connectedness Index,
TCI ) – vezetünk be.

A módszer hatékonyságát szimulációs kísérletek során vizsgáltuk, különböző adat-
generáló folyamatok mellett. Az IRF-alapú hálózat rendre pontosabban tükrözte a valódi
oksági viszonyokat, és érzékenyebben jelezte a spillover-hatásokat. Az empirikus vizsgálat-
ban a Diebold és Yilmaz (2012) által használt dy2012 adathalmazt elemeztük, ahol az
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IRF-hálózat magasabb TCI-értékeket eredményezett. A gördülő ablakos és robusztitási
vizsgálatok megerősítették a módszer stabilitását és megbízhatóságát.

Összességében az eredmények azt sugallják, hogy az IRF-alapú hálózati megközelítés
elméletileg megalapozott és empirikusan robusztus alternatívát kínál az összefüggési vis-
zonyok mérésére, különösen akkor, ha az azonos idejű kapcsolatok azonosítása lehetséges.
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Angol–magyar szakszószedet

Angol kifejezés Magyar megfelelő

shock propagation sokkterjedés

network-based measure hálózatalapú mutató

spillover effect spillover-hatás / áthúzódó hatás

connectedness kapcsolódás / összefonódottság

forecast error variance decompo-
sition

előrejelzési hibavariancia-felbontás

vector autoregression vektor-autoregressziós modell

impulse response function impulzusválasz függvény

generalized impulse response általánosított impulzusválasz-függvény

structural VAR strukturális VAR modell

causal ordering kauzális sorrend

contemporaneous effect azonos idejű hatás

lagged effect késleltetett hatás

cumulative impulse response ma-
trix

kumulatív impulzusválasz-mátrix

Total Connectedness Index teljes összefüggőségi index

rolling window gördülő ablak

identification of shocks sokkok azonosítása

LiNGAM algorithm LiNGAM algoritmus

structural interpretability strukturális értelmezhetőség
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MI-eszközhasználati nyilatkozat

Alulírott, Espán Márton, nyilatkozom, hogy szakdolgozatom elkészítése során az alább
felsorolt feladatok elvégzésére a megadott MI-alapú eszközöket alkalmaztam:

Feladat Felhasznált

eszköz

Felhasználás

helye

Megjegyzés

LATEXtáblázatok
készítése, R kódok
írása és
nyelvhelyesség
ellenőrzése

ChatGPT 4o Teljes dolgozat Az MI eszközt a
letisztultabb kódoláshoz,
táblázatok készítésére és a
szellemi munkám
nyelvhelyességének
ellenőrzésére használtam.

A felsoroltakon túl más MI-alapú eszközt nem használtam.
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