
Corvinus University of Budapest - Eötvös Loránd University

Calibrating HJM models using deep neural networks

Máté Kurucz

Thesis

Actuarial and Financial Mathematics, MSc

Quantitative Finance Specialization

Thesis supervisors:

Gergely Bence Szilágyi (Morgan Stanley), Miklós Arató (ELTE)

Budapest, 2025

Contents

1 Heath-Jarrow-Morton framework 5

Introduction and deriving market dynamics . 5

Volatility functions . 12

2 Discretized HJM 16

Model implementation . 16

Moment matching by pathwise adjustments . 18

Comparing Caplet prices in the continuous and discretized implementation 19

The initial forward curve . 22

3 LIBOR transition and new term structures 26

LIBOR - Calculation and Decline . 26

SOFR - Transition and Calculation . 27

Approximating 90-day SOFR . 29

4 Deep neural networks 33

Deep neural networks . 33

5 Numerical Expreriments - Calibration for ATM swaptions 36

Constant volatility, flat initial forward curve . 36

Constant volatility, Nelson-Siegel initial forward curve . 41

2-factor volatility, flat initial forward curve . 46

6 Conclusion 49

7 Appendix 54

Magyar nyelvű összefoglaló - HJM modellek kalibrálása mély neurális hálózatok segı́tségével 55

Python Codes . 57

Acknowledgements
I would like to thank to my thesis supervisor, Gergely Bence Szilágyi, for his academic and professional guid-

ance over the past two semesters. His consistent availability and thought-provoking questions were invaluable

throughout the process. I also thank Miklós Arató for pointing out new perspectives for this thesis, and for super-

vising both my BSc and MSc theses, as well as my work for the Scientific Student’s Associations Conference. I

greatly enjoyed working with him. I would also like to thank Csaba Kőrössy for providing the thesis topic and for

his help in deepening my understanding throughout the process.

I would like to thank Tamás Szűcs for his valuable insights regarding neural network training. Last but not

least, I would like to express my appreciation to my girlfriend, Anna Kelemen, for her unwavering support and

motivation.

2

Introduction

The Heath-Jarrow-Morton (HJM) framework [17] is one of the industry standard modeling

frameworks with regards to the pricing of interest rate derivatives. The flexibility of the model

parameterization enables a great variety of interest rate environments to be modeled within the

framework. As the generic case does not have a closed-form analytical pricing formula, pricing

requires computationally heavy Monte Carlo simulation. The optimization problem solved in

the calibration process involves multidimensional functions with non-trivial co-dependencies in

the variables.

Given recent advances in the application of deep neural networks for effectively interpo-

lating multidimensional complex functions, there is a potential in using deep neural networks

for complex calibration problems. This can be especially well utilized in stress testing appli-

cations, where calibration under large shocks might be more challenging when applying tradi-

tional optimization-based methods, and when accuracy requirements might not be as stringent.

The primary objective of this thesis is to perform volatility calibration for at-the-money

swaptions using deep neural networks under specific choices of volatility and initial forward

curve parametrizations.

In the first section, we aim to introduce the HJM framework with all necessary assumptions

and conditions, not excluding measurability in the multi-factor case, primarily following [17].

Subsequently, a concise overview is provided of volatility parametrizations that have emerged in

the literature. [17],[35],[27],[35]. Despite the fact that our calibration efforts do not encompass

stochastic volatility, we incorporate one such model to offer a broader perspective ([10]). We

then address the challenge of appropriate discretization and implementation in the framework

in Section 2, mainly following [16]. Our implementation is consequently benchmarked with

a continuous-time setup. As the consequent pricing of fix cash flow instruments - fix coupon

swap legs are no exception to this - provides a solid foundation for any HJM implementation,

an articulated emphasis is placed on matching first moments of quantities like discount factors

and discounted zero-coupon bonds. Throughout this thesis, our focus remains exclusively on

vanilla instruments: while both a caplet and a swaption pricer were implemented, only the latter

was used for calibration purposes for at-the-money instances.

The main focus in the third section is to provide background for the LIBOR transition [33],[34]

and the calculation of both LIBOR and new term structure rates, such as SOFR [1],[14]. As

3

SOFR serves as the sole underlying rate of our calibration instruments, its calculation rules and

dynamics directly influence the practical considerations for choosing an appropriate approxima-

tion theme. We consider several approximation themes and ultimately choose the most intuitive

one.

In the fourth section, we aim to provide an introduction to deep neural networks to ensure suf-

ficient background for our calibration efforts, using [18], [19],[20],[21],[24],[25].

The final section presents our numerical results. After generating swaption price maps using

our HJM implementation in Python over a multidimensional parameter grid for two variants of

the volatility parametrizations introduced in Section 1, we evaluate the accuracy of the trained

model by predicting volatility on synthetic test data located between the original training grid

points. These results demonstrate the potential of the approach not only for stress testing sce-

narios, but also for improved initialization of gradient-based calibration methods and, with ad-

equate infrastructure, for independent real-time at-the-money calibration.

4

1. Heath-Jarrow-Morton framework

The Heath-Jarrow-Morton (later: HJM) framework belongs to the family of continuous for-

ward rate models, which characterize the forward rate evolution by describing an entire term

structure through multiple factors while avoiding arbitrage. The framework was first published

in 1992 by the three authors giving their name to model in [17], and deviated from previous

principles of determining solely the dynamics of the short rate in order to emulate an interest

rate market.

In this section, we will derive market dynamics under the risk-neutral measure largely fol-

lowing the original article [17], arriving at the conclusion that in order to calibrate the model

given an initial forward curve in the present, one is required to find the appropriate volatility

functions and their respective parameters for the specific market. We then proceed by presenting

a selection of volatility parametrizations that have emerged in the literature, without aiming for

completeness.

Introduction and deriving market dynamics

The methodology in this subsection closely follows [17], and any deviations from their ap-

proach are explicitly indicated. The model is formulated within a continuously trading economy,

represented by a probability space (Σ,F,Q). Market information evolves over the trading hori-

zon [0, τ], where τ denotes the maximal maturity. The filtration capturing the flow of informa-

tion is generated by a set of n ≥ 1 independent Brownian motions {W1(t), . . . ,Wn(t) : t ∈ [0, τ]}.

A fundamental assumption of the model is the existence of a continuum of default-free discount

bonds P(t,T), each maturing at time T , with T ∈ [0, τ], that are continuously traded in the

market.

Definition 1.1 (Zero-coupon bond). Let P(t,T) denote, for all 0 ≤ t ≤ T ≤ τ, the price at

time t of a default-free zero-coupon bond maturing at time T , with payoff P(T,T) = 1 and the

condition P(t,T) > 0.

Definition 1.2 (Instantaneous forward rate). The instantaneous forward rate f (t,T) at time T as

observed at time t is defined by

f (t,T) := −
∂

∂T
log (P(t,T)) . (1)

5

The instantaneous forward rate represents the marginal cost of borrowing (and lending) at

time T given all the information in Ft. The instantaneous forward rate f (t,T) can be used

to approximate the price of a zero-coupon bond over an infinitesimal maturity increment dT ,

under the assumption of continuous compounding. This yields the approximation:

P(t,T + dT) ≈ P(t,T)e− f (t,T)dT .

If the above approximation holds, then the following limit exists:

f (t,T) = lim
dT→0
−

log P(t,T + dT) − log P(t,T)
dT

.

In the HJM framework, and throughout this entire thesis, we assume that this limit exists for all

t,T such that 0 ≤ t ≤ T < τ. This implies that the definition of the instantaneous forward rate is

well-defined for all such t and T .

Solving equation (1) for the discount bond price P(t,T) yields

P(t,T) = exp
(
−

∫ T

t
f (t, s) ds

)
, ∀ t,T : 0 ≤ t ≤ T ≤ τ. (2)

Definition 1.3 (Spot rate). We define the spot rate r(t) at time as

r(t) = f (t, t), ∀t : 0 ≤ t ≤ τ. (3)

The sport rate is the accumulation factor that drives the risk-free money-market account,

which will serve as a numeraire for characterizing a risk-neutral measure.

Definition 1.4 (Money market account). Let us denote the money market account price process

by B, such that

B(t) = exp
(∫ r

0
r(y)dy

)
. (4)

We have now identified the three key interest rate concepts relevant to the framework. Among

these, only zero-coupon bond prices observed at valuation time t = 0 are directly observable in

the market. The remaining two rates—the instantaneous forward rate and the short rate—can

be derived from the continuum of discount bond prices. In practice, however, the modeling

approach proceeds in the reverse direction: the dynamics of the forward rates are specified first,

from which bond prices are then implied.

We now establish the family of instantaneous forward rate dynamics considered in the HJM

6

framework.

Definition 1.5 (Condition 1: Forward Rate Dynamics). For fixed, but arbitrary T ∈ [0, τ], f (t,T)

satisfies the following equation:

f (t,T) − f (0,T) =
∫ t

0
α(ν,T, ω) dν +

n∑
i=1

∫ t

0
σi(ν,T, ω) dWi(ν) for all 0 ≤ t ≤ T. (5)

where:

(i) { f (0,T) : T ∈ [0, τ]} is a fixed, nonrandom initial forward rate curve, and f (0, ·) is Borel

measurable on [0, τ].

(ii) α : {(t, s) : 0 ≤ t ≤ s ≤ T } × Ω → R is jointly Borel measurable on [0,T] × [0, τ],

real-valued, adapted, and satisfies∫ T

0
|α(ω, t,T)| dt < +∞ a.e. Q.

(iii) The real-valued volatility functions σi : {(t, s) : 0 ≤ t ≤ s ≤ T } × Ω→ R are jointly Borel

measurable on [0,T] × [0, τ], adapted, and satisfy∫ T

0
σ2

i (t,T, ω) dt < +∞ a.e. Q, for i = 1, . . . , n.

The volatility coefficients, which specify sensitivity to the Brownian motions driving the

information in the market, are specified up to such conditions that allow a wide range of interest

rate environment dynamics to be simulated via the framework. [17]

Remark 1.6. Although the processes α and σi (for all i ∈ {1, . . . , n}) are, in general, stochastic

processes, at times we suppress the notational dependence on the underlying probability vari-

ableω in the notation. This is justified for three reasons: first, the original article adopts the same

simplification (albeit at a later stage); second, it improves notational clarity; and third—most

practically—from a self-serving perspective, we shall assume deterministic volatility functions

throughout the calibration exercises presented in this thesis.

After deriving the spot rate dynamics below by simple substitution, regularity conditions are

imposed on the money market account, in order for it to be positive and finite almost everywhere

7

regardless of when we examine it in the trading interval. (5) yields

r(t) = f (0, t) +
∫ t

0
α(s, t) ds +

n∑
i=1

∫ t

0
σi(s, t) dWi(s) ∀t : 0 ≤ t ≤ T. (6)

Definition 1.7 (Condition 2).∫ τ

0
| f (0, s)|ds < +∞ and

∫ τ

0

(∫ t

0
|α(s, t)|ds

)
dt < +∞ a.e.Q. (7)

In order to allow for only well-behaved bond prices in the framework, some additional reg-

ularity conditions are required and introduced in [17].

Definition 1.8 (Condition 3).∫ t

0

[∫ t

s
σi(s, y)dy

]2

ds < +∞ a.e.Q ∀t : 0 ≤ t ≤ τ and ∀i ∈ [n]; (8)∫ t

0

[∫ T

t
σi(s, y)dy

]2

ds < +∞ a.e.Q ∀t,T : 0 ≤ t ≤ T ≤ τ and ∀i ∈ [n]. (9)

Should Conditions 2 and 3 hold, the conditions of the stochastic Fubini theorem are satisfied,

and we can calculate the bond price dynamics. In the first step we use (2):

log(P(t,T)) = −
∫ T

t
f (0, y)dy −

∫ T

t

[∫ T

0
α(s, y)ds

]
dy −

n∑
i=1

∫ T

t

[∫ T

0
σi(s, y)dWi(s)

]
dy =

(10)

Now let us apply the stochastic Fubini’s theorem.

= −

∫ T

t
f (0, y)dy −

∫ t

0

[∫ T

t
α(s, y)dy

]
ds −

n∑
i=1

∫ t

0

[∫ T

t
σi(s, y)dy

]
dWi(s) = (11)

After equivalent transformations:

= −

∫ T

0
f (0, y)dy −

∫ t

0

[∫ T

s
α(s, y)dy

]
ds −

n∑
i=1

∫ t

0

[∫ T

s
σi(s, y)dy

]
dWi(s)

+

∫ t

0
f (0, y)dy +

∫ t

0

[∫ t

s
α(s, y)dy

]
ds +

n∑
i=1

∫ t

0

[∫ t

s
σi(s, y)dy

]
dWi(s)

(12)

Before finishing deriving log P(t,T), consider expression (6) when integrating both sides

8

from 0 to t with respect to y = t and applying again the stochastic Fubini’s theorem:∫ t

0
f (0, y)dy =

∫ t

0
r(y)dy +

∫ t

0

[∫ t

0
α(s, y)ds

]
dy +

n∑
i=1

∫ t

0

[∫ t

0
σi(s, y)dWi(s)

]
dy (13)

=

∫ t

0
r(y)dy +

∫ t

0

[∫ t

s
α(s, y)dy

]
ds +

n∑
i=1

∫ t

0

[∫ t

s
σi(s, y)dy

]
dWi(s). (14)

Since log P(0,T) =
∫ T

0
f (0, y)dy, (12) and (14) yield:

log P(t,T) = log P(0,T) +
∫ t

0
r(y)dy −

∫ t

0

[∫ T

s
α(s, y)ds

]
dy+

−

n∑
i=1

∫ t

0

[∫ T

s
σi(s, y)dy

]
dWi(s).

(15)

As mentioned above, among the introduced processes—namely the forward rate f , the bond

price P, and the short rate r—only the zero-coupon bond is directly tradable in the market. In

what follows, we are interested in identifying a risk-neutral measure under which the money

market account B(t) serves as the numéraire, meaning that the discounted bond price P(t,T)
B(t) is a

martingale with respect to t ∈ [0,T], for at least a finite set of maturities {T1, . . . ,Tn} ⊂ [0, τ].

The following two notations are introduced to simplify the calculations:

ai(t,T) :≡ −
∫ T

t
σi(t, s)ds ∀i ∈ [n], (16)

b(t,T) = −
∫ T

t
α(t, s)ds +

1
2

n∑
i=1

a2
i (t,T). (17)

Equation (15) is reformulated using the newly introduced variables, in line with the method-

ology of [17].

d log P(t,T) = log P(0, t) +
∫ t

0
[r(s) + b(s,T)]ds −

1
2

n∑
i=1

∫ t

0
a2

i (s,T)ds+

+

n∑
i=1

∫ t

0
ai(s,T)dWi(s) a.e. Q.

(18)

Define X(t) := log P(t,T), and let us use Ito’s lemma to derive the dynamics of eX(t).

dP(t,T) = deX(t) = eX(t)dX(t) + eX(t)d⟨X(t)⟩

= P(t,T)

[r(t) + b(t,T)] dt +
n∑

i=1

ai(t,T)dWi(t)

 a.e. Q
(19)

9

We can now determine log P(t,T)
B(t) .

log
P(t,T)

B(t)
= log

P(0,T)
B(0)

+

∫ t

0
b(s,T)ds −

1
2

n∑
i=1

∫ t

0
a2

i (s,T)ds+

+

n∑
i=1

∫ t

0
ai(s,T)dWi(s) a.e. Q

(20)

In order for P(t,T)
B(t) to be a martingale in t for a finite set of maturities after performing a change

of measure to a risk-neutral one, we need the drift term to be equal to zero.

Definition 1.9 (Condition 4). Let γ(ω, t,T1, . . . ,Tn) be an n dimensional adapted process with

γi(t) : Ω × [0, S 1] → R coordinates a.e. Q for the set of T1, . . . ,Tn fixed maturities in [0, τ].

Assume that the following conditions are satisfied for all i ∈ [n].

•
∫ T1

0
γ2

i (s) < ∞ a.e. Q

• E
[
exp{

∑n
i=1

∫ T1

0
γi(s)dWi(s) − 1

2

∑n
i=1

∫ T1

0
γ2

i (s)ds}
]
= 1

• E
[
exp{

∑n
i=1

∫ T1

0
[ai(s, y) + γi(s)]dWi(s) − 1

2

∑n
i=1

∫ T1

0
[ai(s, y) + γi(s)ds]2}

]
= 1 for y ∈ {T1, . . . ,Tn}

• (Drift cancellation)


b(t,T1)

...

b(t,Tn)

 −

a1(t,T1) . . . an(t,T1)

...

a1(t,Tn) . . . an(t,Tn)



γ1(t)
...

γn(t)

 =

0
...

0

 a.e. λ × Q; (21)

Following [17] further, we can then have the following proposition:

Proposition 1.10 (The existence and uniqueness of the martingale measure on a finite number of

bonds). Consider [α1(·,T1), . . . , αn(.,Tn)] and [σ(·,T1), . . . , σ(.,Tn)] drift and volatility vectors.

If Conditions 1-3 hold for all i ∈ [n], then Condition 4 is equivalent to the existence of a risk

neutral probability measure QT1,...,Tn , under which the discounted bond prices with maturities

T1, . . . ,Tn are all F − martingales.

Proof: We outline a sketch of the proof in one direction. Conditions 1-3 and the first as-

sumption of Condition 4 yield that Et (γ) is well defined, the second ensures applicability of

Girsanov’s theorem, allowing the appropriate change of measure by the Radon-Nykodim deriva-

tive: QT1 ,...,Tn

dQ = exp{
∑n

i=1

∫ T1

0
γi(s)dWi(s)− 1

2

∑n
i=1

∫ T1

0
γ2

i (s)ds}. The drift cancellation assumption

10

achieves that the drift term equals to zero a.e.λ × Q.

The other direction of the proof can be done similarly, reversing the direction of the measure

change. □

Remark 1.11. We note that the coordinates of γ can be interpreted as the market price of risk

processes. As we shall see later, γ is not directly needed for derivative pricing in the framework.

Uniqueness is warranted by another condition, as it is written in 1.13.

Definition 1.12 (Condition 5). In Condition 4 assume that the matrix
(
(a j(t,Ti)i j)

)
is nonsingular

a.e. λ × Q.

Proposition 1.13 (The existence and uniqueness of the martingale measure on a finite number of

bonds). Consider [α1(·,T1), . . . , αn(.,Tn)] and [σ(·,T1), . . . , σ(.,Tn)] drift and volatility vectors.

If Conditions 1-4 hold for all i ∈ [n], then Condition 5 is equivalent to the uniqueness of the risk

neutral probability measure in the previous proposition.

Now we are looking to ensure the martingale property for all discounted zero coupon bond

prices by removing dependency of the market price of risk processes on the previously chosen

set of maturities. As in [17], the following proposition addresses this challenge.

Proposition 1.14 (The existence and uniqueness of the martingale measure on all bonds). Con-

sider the families of drift and volatility processes {α(·,T) : T ∈ [0, τ]} and {σ(·,T) : T ∈ [0, τ]}.

If Conditions 1-5 hold for all i ∈ [n], then the 3 statements below are equivalent:

1. The risk neutral measure chosen for any n different maturity is the unique risk neutral

measure, under which all discounted bond price process is martingale.

2. For all i ∈ [n] γi(t,T1, . . . ,Tn) is equal for 0 ≤ t ≤ min(T1,T ′1), where (Ti)i=1,...,n and

(T ′i)i=1,...,n are different sets of maturities.

3. α(t,T) = −
∑n

i=1 σi(t)
(
γ(t,T1, . . . ,Tn) −

∫ T

t
σi(t, s)ds

)
, with 0 ≤ t ≤ T1 < · · · < Tn ≤ τ

∀i ∈ [n] for any such set of maturities.

Proof: We outline the sketch of the proof.

• (1) =⇒ (2): By 1.13, the risk neutral measure is unique, hence the market price of risk

process is independent from the finite set of maturities used to determine it.

11

• (2) =⇒ (1): The possible market price of risk processes depend on a chosen set of

maturities and time. If the market price of risk process does not vary with respect to the

chosen set of maturities, then the same change of measure applies to all such sets.

• (1) =⇒ (3): We arrive at (3) by substituting previously computed values into the system

of equations of market price of risks.

• (3) =⇒ (1): Analogously to (2) =⇒ (1).

□

Remark 1.15 (Different measure - different Brownian motions). By Girsanov’s theorem, we

have the following Brownian motions under the risk neutral measure:

WQ∗

i (t) = Wi(t) −
∫ t

0
γi(s)ds ∀i ∈ [n] (22)

In Section 2 we will refer to these Brownian motions as W∗
i (t).

Delbean and Schachermayer proved in [11] that the existence of a unique risk neutral mea-

sure is equivalent to the completeness of the market, that is, every contingent claim can be

replicated by a self-financing strategy. Thus, under the risk neutral measure the following for-

ward curve dynamics apply:

d f (t,T) =
n∑

i=1

(
σi(t,T)

∫ T

t
σi(t, s)ds

)
dt +

n∑
i=1

σi(t,T)dWQ∗

i (t). (23)

This equation shows that for calibration we solely need to determine the σ functions, the

calibration of which is the purpose of this thesis.

Volatility functions

Before proceeding by the introduction to the discrete time version of the model, we highlight

some existing volatility parametrizations.

• Constant normal:

σi(t,T) ≡ σi, where σi ∈ R
2. (24)

12

• Constant lognormal: In [17] the authors use this as their first example.

σi(t,T) = σi max(f (t,T), λ), where σi, λ ∈ R
2 (25)

This way the diffusion parameters are proportional to the current forward rates levels.

• 3-factor setup Resembling the Hull-White model, which can also be fitted into the HJM

framework, the following 3-factor setup is suggested in [23]:

σ(t,T) =


σ1(t,T) = c + P(1)

m1 exp
(
−λ1(T − t)

)
σ2(t,T) = P(2)

m2 exp
(
−λ2(T − t)

)
σ3(t,T) = P(3)

m3 exp
(
−λ3(T − t)

)
 , (26)

where P(i)
mi = a(i)

1 t1 + · · · + ai
mi

tmi for i=1,2,3. Ritchken and Chuang also highlighted the

necessity of parameter c in [27]. They explain that usually around the shorter maturities a

volatility hump can be observed and introducing this parameter enables the calibration to

be more accurate.

• Combination model by Pearson and Zhou: In [27] the authors suggested a combinations

of the ideas above and some additional ones:

σ(·) = σ0 f (t,T)σ1 | f (t,T) − c|σ2 eλ(T−t),

where σ0, σ1 ∈ R
+, c, σ2 ∈ R, with λ expected to be negative.

(27)

They point out the motivation behind this functional form. They want to ensure nonneg-

ative rates while also capturing the effect of time to maturity by incorporating T − t. The

exponents σ1 and σ2 aim to control skewness and convexity/concavity, respectively.

• Forward rate spread model by Pearson and Zhou: Also in their 1999 nonparametric

analyisis [27], the authors observed volatility dependence on the forward rate spread and

in [35] its incorporation into volatility modeling is suggested.

σ(·) = g(f (t,T),T − t, f (t,T)l − f (t,T)s) (28)

where the difference f (t,T)l − f (t,T)s denotes a spread between a forward rate with long

and short maturity.

We note that in [35] the previous parametrizations are referred to as level models.

13

• Stochastic Volatility by CIR process: For a modest sense of completeness, we present a

possible choice for stochastic volatility parametrization. According to the authors of [10],

introducing stochastic volatility to the HJM framework enables more accurate valuation

of deep ITM and OTM interest rate options and greater flexibility of calibrating skewness

of the implied volatility surface. In the framework, the forward rate volatility σ(t,T) is

modeled as a function of a finite-dimensional process S t as follows:

σ(t,T) = ς(S t) exp
(∫ T

t
κ(u) du

)
,

where ς and κ are deterministic functions. This dependency introduces stochasticity in the

volatility via the offset process S t,τ, which aggregates weighted past returns on bond prices.

Let Zt,t+τ denote the logarithm of the discounted bond price process, using the Musiela

parametrization [9], where T = t + τ is used for maturity. Then the SDE determing S t,τ is

as follows:

S t,τ =

∫ ∞

0
λe−λu(Zt,t+τ − Zt−u,t−u+τ)du (29)

Though authors introduce arbitrary number of offset processes, we restrict this example to

one offset process, as the author themselves in their calculations. To characterize the dy-

namics of the term structure under this stochastic volatility parametrization, two auxiliary

processes are defined for 0 ≤ τ ∈ R:

ξt,τ :=
∫ t

0
σ2(s, t + τ) ds, ξt := ξt,0 (30)

ζt =

∫ t

0

(
σ(s, t + τ)

∫ t+τ

s
σ(s, u) du

)
ds +

∫ t

0
σ(s, t + τ)dWs, ζt := ζt,0 (31)

With this structure, the forward rate curve at time t is given by:

f (t, t + τ) = f (0, t + τ) + e−
∫ t+r

t κ(u)duζt + e−
∫ t+r

t κ(u)du
∫ t+τ

t
due−

∫ u
t κ(u)duξt, (32)

where ψτ and ψ̂τ are deterministic functions depending on the choice of ϕ.

This implies that the entire forward rate curve { f (t, t + τ) : τ ≥ 0} can be expressed in

terms of the finite-dimensional vector (νt, ηt), provided S t (which drives σ(t,T)) is itself

Markovian.

14

Regarding exact function to substitute, the authors suggest constant κ and the following ς:

ς(s) = ν
√

1 + ϵs2 ∧ N. (33)

15

2. Discretized HJM

In this section, we present the discretization scheme adopted to approximate the HJM frame-

work, incorporating several ideas from [16]. We begin by deriving a discrete version of the drift

term, along with a martingale correction that is deemed desirable to preserve consistency with

the no-arbitrage condition. This is followed by a comparison with the continuous-time model.

Finally, we describe the chosen approach for initializing the forward rate curve.

Model implementation

The most straightforward approach to simulating stochastic differential equations is the Eu-

ler–Maruyama discretization scheme. However, when examining the behavior of bond prices

on a fixed time grid under the risk-neutral measure, it becomes apparent that the discretized

bond prices generally fail to satisfy the martingale property. In this subsection, following [16],

we provide the discretization details of our implementation. In particular, we derive the discrete

drift formula that must be applied in order to preserve the desired martingale property in the

discretized model.

Consider a fixed and equidistant time grid 0 = t0 < t1 < · · · < tn = T ∗, where t j − t j−1 = ∆

for all j = 1, . . . , n. This grid represents the set of possible maturities in the simulated interest

rate market. Due to the discretization over a finite set of time points, the simulation is naturally

restricted to a finite time horizon. In the following, the notations f , σ, and B refer to the dis-

cretized versions of the continuous forward rate, volatility function, and money market account,

respectively. The latter objects in the discrete setting are specified as follows:

P(ti, t j) = exp

− j−1∑
l=i

f (ti, tl)∆

 (34)

f (ti, t j) = f (ti−1, t j) + µ(ti−1, t j)∆ +
d∑

k=1

σk(ti−1, t j)
√
∆ (35)

B(t j) = exp

 j−1∑
i=0

f (ti, ti)∆

 (36)

Henceforth, we restrict our analysis to deterministic volatility functions. Under this assump-

tion, we proceed to determine the appropriate discrete drift term by imposing the martingale

property on the discounted bond prices.

16

E

[
P(ti, t j)

B(ti)
|Fi−1

]
= E

P(ti, t j) exp

− i−1∑
k=0

f (tk, tk)∆

 |Z1, . . . ,Zi−1

 = (37)

=
P(ti−1, t j)

B(ti−1)
= P(ti−1, t j) exp

− i−2∑
k=0

f (tk, tk)∆

 (38)

Now let us expand the zero-coupon bond price and use measurability to cancel out terms.

exp{−
i−1∑
k=0

f (tk, tk)∆}E

exp

− j−1∑
l=i

f (ti, tl)∆

 |Z1, . . . ,Zi−1

 =
= exp

− j−1∑
l=i−1

f (ti−1, tl)∆

 exp{−
i−2∑
k=0

f (tk, tk)∆} (39)

E

exp

− j−1∑
l=i

f (ti, tl)∆

 |Z1, . . . ,Zi−1

 = exp

− j−1∑
l=i

f (ti−1, tl)∆

 (40)

We can now substitute (35).

E

exp

− j−1∑
l=i

 f (ti−1, tl) + µ(tl−1, t j)∆ +
d∑

k=1

σk(tl−1, t j)
√
∆Zl

∆

∣∣∣∣∣∣∣Z1, . . . ,Zi−1


= exp

− j−1∑
l=i

f (ti−1, tl)∆

 (41)

After once again canceling out terms due to measurability, and moving the drift terms to the

right-hand side, we are left with the below equation:

E

exp

− j−1∑
l=i

 d∑
k=1

σk(tl−1, t j)
√
∆∆Zl−1


 |Z1, . . . ,Zi−1

 = exp

 j−1∑
l=i

(
µ(tl−1, t j)∆

) (42)

We use the fact that the terms on the left-hand side are lognormally distributed and that the

factors are independent.

exp

 d∑
k=1

1
2

 j−1∑
l=i

σk(tl−1, t j)∆


2

∆

 = exp

 j−1∑
l=i

(
µ(tl−1, t j)∆

) (43)

17

This is satisfied if the following holds:

µ(ti−1, t j) =
d∑

k=1

1
2


 j∑

l=i

σk(ti−1, tl)


2

−

 j−1∑
l=i

σ(ti−1, tl)


2 =

=

d∑
k=1

1
2
σ2

k(ti−1, t j) + σk(ti−1, t j)
j−1∑
l=i

σk(ti−1, tl)

 . (44)

Remark 2.1. We note that if ∆ → 0, this converges to the value given by the Euler-Maruyama

discretization and thus the continuous version. However, our implementation will keep ∆ fixed
1
4 , representing a quarterly simulated term structure. This elevates the importance of keeping the

martingale property, and refraining from enabling arbitrage through appoximation errors.

We also emphasize that, when targeting at-the-money (ATM) volatility calibration in this

thesis, our objective is not the estimation of a continuous volatility surface. Instead, we focus on

estimating a finite set of parameters that define the discretized volatility grid over the simulated

time horizon.

Moment matching by pathwise adjustments

Given the limitations of computational resources, it is not feasible to work with arbitrarily

large sample sizes in Monte Carlo simulations. The finite nature of this limitation inevitably

introduces bias, which may compromise the martingale property of the discounted zero-coupon

bond prices. To mitigate this effect, we apply moment matching by pathwise adjustments sug-

gested by [16] aimed at better preserving the martingale structure. While the result enforced by

this correction is not strictly equivalent to the true martingale property, it significantly improves

pricing consistency for fixed cashflow products by reducing Monte Carlo inconsistencies arising

from sample finiteness.

Consider a finite number of paths denoted by Ω, where ω denotes the individual paths with

|Ω| = M. The expected value in the discretized simulation reduces to a simple averaging.

E

[
P(ti, t j)

B(ti)

]
=

∑
ω∈Ω exp

(
−

∑i−1
k=0 f (tk, tk)∆

)
exp

(
−

∑ j−1
l=i f (ti, tl)∆

)
M

?
= P(t0, t j) (45)

Let us apply the correction ci, j in an inductive way. Assume that we already ran the simulation

and that we have the simulated forward curves f for all paths. f ∗ denotes the corrected paths.

18

At t0 there are no corrections required, hence f ∗(t0, ·) ≡ f (t0, ·). The same applies at t1.

Now assume that you want to modify f (ti, t j−1) to correct the expected value of P(ti,t j)
B(ti)

. In

addition, assume that this expectation was already corrected for all maturities of i, i+1, . . . , j−1.

Now we will determine ci, j−1, by which f ∗((ti, t j−1) = f ((ti, t j−1) + c(i, j − 1). We rearrange (45)

and arrive at:

ci, j−1 = −
1
dt

log

 exp
(∑ j−1

k=0 f (0, k)dt
)

1
|Ω|

∑
ω∈Ω

(∑i−1
k=0 f (k, k, ω) +

∑ j−1
k=i f (i, k, ω)

) . (46)

Comparing Caplet prices in the continuous and discretized implementation

To assess whether the continuous and discretized frameworks produce caplet prices of com-

parable magnitude, we perform a side-by-side evaluation using matching model parameters in

both settings. Since our focus lies on referencing compounded overnight rates - as explained in

Section 3 - , we define the products below in order to reflect this structure. The highlight the

definitions of the interest rate derivatives in scope of this thesis below following [30].

Definition 2.2 (Caplet). A caplet is a European-style interest rate derivative that provides pro-

tection against increases in a compounded overnight rate. At time T + δ, the holder receives the

following payoff:

Payoff = δ ·max(L(T,T + δ) − K, 0),

where

• δ is the accrual period (e.g., 3 months),

• L(T,T + δ) is the compounded in-arrears rate observed at the end of the period [T,T + δ],

• K is the strike rate.

Definition 2.3 (Swaption). A swaption is a European-style option that grants its holder the right,

but not the obligation, to enter into a fixed-for-floating interest rate swap at a future date T . In

the case of a payer swaption, the holder pays fixed and receives a compounded floating rate

(e.g., SOFR). The option is exercised (or not) at time T , but the actual cash flows occur later,

based on in-arrears floating rates.

If exercised, the swap generates a sequence of cash flows at times T1,T2, . . . ,Tn, with each

19

payoff occurring at Ti and given by:

Payoffi = δi · (L(Ti−1,Ti) − K),

where

• K is the fixed strike rate of the swap,

• L(Ti−1,Ti) is the compounded overnight rate (e.g., SOFR) accrued over [Ti−1,Ti], observed

at time Ti,

• δi is the accrual period length for the ith payment,

• cash flows are only made if the swaption is exercised at time T .

As emphasized earlier, throughout this thesis we assume a uniform accrual period of δ = 1
4 ,

corresponding to a quarterly time grid. Within this discretized framework, we approximate the

90-day SOFR rate observed at time t by the spot rate r(t) generated under the HJM model. This

simplification enables us to assess the robustness of the chosen time discretization in capturing

compounded overnight rates.

Remark 2.4. We acknowledge that this approximation can be refined. A more accurate repre-

sentation of the 90-day SOFR rate could be obtained by constructing a Brownian bridge between

the simulated forward rates and applying daily compounding along the interpolated path. Such

an approach would better reflect the realized nature of backward-looking compounded rates.

Nonetheless, for the purposes of this section, we proceed with the spot rate approximation. In

the following section, we address this limitation.

This means that for caplets, in our implementation of the HJM model, we have the following

payoff at time T :
1
4

max(r(T) − K, 0).

In the continuous implementation of the model, only the simulation of two correlated normal

random variables is needed to calculate the price of this derivative at t = 0.

20

Consider a one-factor, constant volatility setup under the risk neutral measure:

dt f (t,T) = σ2(T − t)dt + σdW∗(t)

f (t,T) = f (0,T) + σ2t(T −
t
2

) + σW∗(t) =⇒ r(T) = f (0,T) + σ2 T 2

2
+ σW∗(T)

B(T) = e
∫ T

0 r(s)ds = e
∫ T

0 f (0,s)ds+σ
2T3
6 +σ

∫ T
0 W∗(s)ds

(47)

Now let us determine the price of the above caplet using the martingale pricing formula:

PV(C) =
1
4
EP∗

[
C(T)
B(T)

]
=

1
4
EP∗

[
(r(T) − K)+

e
∫ T

0 f (0,s)ds+σ
2T3
6 +σ

∫ T
0 W∗(s)ds

]
=

1
4
EP∗

 (f (0,T) + σ2 T 2

2 + σW∗(T) − K)+

e
∫ T

0 f (0,s)ds+σ
2T3
6 +σ

∫ T
0 W∗(s)ds

 (48)

This can be calculated via Monte Carlo-simulation. Two standard normal random variables

need to be sampled in order to perform this simulation: W∗(T)
√

T
and the standardized version of

the time integral of the Brownian motion in the exponential function in B(T). We apply the

stochastic Fubini’s theorem to gain more information about the latter.

∫ T

0
W∗(s)ds =

∫ t

0

∫ s

0
dW(u)ds =

∫ t

0

∫ t

u
dsdW(u) =

∫ t

0
(t − u)dW(u) (49)

This is a Wiener-integral of a bounded and deterministic real valued function, hence the

centered normality. The next step is to calculate the variance. To achieve this, once again, we

rely on the stochastic Fubini’s theorem.

E

[
(
∫ t

0
W(s)ds)2

]
= E

[∫ t

0

∫ t

0
W(u)W(s)dsdu

]
=

∫ t

0

∫ t

0
E[W(u)W(s)]dsdu

=

∫ t

0

∫ t

0
min(u, s)dsdu

=

∫ t

0

∫ t

u
udsdu +

∫ t

0

∫ u

0
sdsdu

=

∫ t

0
(ut − u2)du +

∫ t

0

u2

2
du

=
t3

2
+
−t3

3
+

t3

6
=

t3

3

(50)

We have shown that
∫ T

0
W∗(s)ds ∼ N(0, T 3

3). Since
∫ T

0 W∗(s)ds√
T3
3

∼ N(0, 1) and W∗(T)
√

T
∼ N(0, 1),

21

the correlation of two centered variables is equal to their covariance.

Cov


∫ T

0
W∗(s)ds√

T 3

3

,
W∗(T)
√

T

 =
√

3
T 2 E

[∫ T

0
W∗(s)dsW∗(T)

]

=

√
3

T 2

∫ T

0
E[W∗(s)W∗(T)]ds

=

√
3

T 2

∫ T

0
sds =

√
3

T 2

T 2

2
=

√
3

2
≈ 0.867

(51)

Remark 2.5. Interestingly enough, the resulting correlation is time-independent. This means

that regardless of the payoff date, the same correlation is to be applied during the Monte Carlo-

simulation.

The expected value above reduces to the following calculation:

1
4
EP∗

 (f (0,T) + σ2 T 2

2 + σ
√

TZ1 − K)+

e
∫ T

0 f (0,s)ds+σ
2T3
6 +σ

√
T2
3 Z2

 , where Corr(Z1,Z2) =

√
3

2
and Z1,Z2 ∼ N(0, 1).

(52)

For simplicity and to match the least complex parametrization we will use later on, let us

consider a flat yield curve and constant volatility of 50 bps in a single-factor setting. The be-

low table contains price differences in terms of notional for ATM caplets generated with the

continuous and the discretized model. We highlight that the purpose of this comparison is not

to ensure complete matching between the prices. The lack of grid refinement and also moment

matching contributes to the difference. The below table demonstrates that the difference is small

in terms of notional, however, is noticeable in relative price terms.

Maturity Strike & Curve level L1 error in terms of notional Absolute error in relative terms
2 year 4% 13bps 19%
2 years 5% 5bps 7%
2 years 6% 23bps 33%

Table 1: Caplet price comparison between discretized and continuous settings

The initial forward curve

In the Heath–Jarrow–Morton (HJM) framework, two primary inputs are required for the

pricing of interest rate derivatives: the initial forward rate curve and the volatility structure.

For potential volatility parametrizations, we refer the reader to Section 1. In our numerical

22

experiments, we employ multiple parametrizations for the initial forward curve. While the use of

a constant curve would generally be considered an oversimplification—especially in practical,

industry-level applications—its inclusion is justified both by precedents in the literature and by

our objective to establish a proof of concept for the application of neural networks.

As we gradually move from having the least possible parameters to relatively more complicated

models in the numerical experiments, we aim to adopt a forward curve model which is capable

of seizing at least some properties of forward curves. Nelson and Siegel in [26] provide the

following yield curve parametrization:

y(t) = β0 + β1
1 − e−λt

λt
+ β2

(
1 − e−λt

λt
− e−λt

)
. (53)

(1) yields that f (t) = y(t) + t d
dt y(t), hence

f (t) = β0 + β1e−λt + β2λte−λt, (54)

where

• β0 controls long-term level;

• β1 controls short-term behavior;

• β2 controls curvature;

• λ controls decay speed.

As discussed in [32], the sole level parameter in the Nelson–Siegel model is primarily associ-

ated with the behavior of long maturities, rendering the model incapable of capturing a potential

second ”hump” in the yield curve. The short-term level is governed by the sum β0 + β1. To ad-

dress this limitation, Svensson proposed the introduction of a second curvature factor [31], while

Björk and Christensen [8] extended the original Nelson–Siegel framework by incorporating a

second slope factor. Considering the inherent flexibility of the Nelson–Siegel model and the ex-

ponentially increasing data requirements associated with introducing additional curve factors,

we opt not to extend the initial forward curve parametrization beyond the standard three-factor

Nelson–Siegel specification. The adequacy of this flexibility is demonstrated in the figures pre-

sented below with base parameters: β0 = 0.02, β1 = −0.01, β2 = 0.02, and λ = 0.5. The figures

were generated by a code written in Python.

23

Figure 1: Effect of changing β0 ceteris paribus

Figure 2: Effect of changing β1 ceteris paribus

Figure 3: Effect of changing β2 ceteris paribus

24

Figure 4: Effect of changing λ ceteris paribus

25

3. LIBOR transition and new term structures

In this section we present a concise overview about the historical calculation of LIBOR

(London Inter-bank Offered Rate) and discuss some of the key motivations regarding the regu-

latory push towards an alternative benchmark rate. Similarly, the computation of the new term

structure rates is also provided, just as our approximation approach to model the 90-day SOFR

(Secured Overnight Financing Rate). Although we deem the historical background to be of lim-

ited relevance with respect to the ATM calibration process, due the official cessation of LIBOR

publication on 30 September 2024 we find capturing this transition to be timely and appropriate

in our thesis.

LIBOR - Calculation and Decline

As the Federal Reserve Bank of New York points out in [2], LIBOR was a series of in-

terest rates that intended to reflect the banks’ average cost of short-term wholesale unsecured

borrowing, that is, the transactions used in its calculation were carried out between financial

institutions, not participants in the retail market, and were not backed by collateral. As of the

publication of [2] (July 2020), LIBOR was calculated for five currencies and seven tenors. Each

business day, a panel of banks for each currency submitted their estimated cost to borrow. After

cleaning the data by removing too high and too low percentiles, an average per tenor was cal-

culated.

Since the financial institutions in the panels were considered to be of the safest in the market

for each particular currency, LIBOR could serve as the modeling benchmark for the theoretical

risk-free rate ever since the second half of the 1980s up until its cessation. With respect to in-

terest rate products in fixed income derivative markets, LIBOR rates were of the most widely

used underlying rates. It also acted as a health assessment, indicating the bank’ confidence in

the financial system. Due to its global importance, it needed to remain stable, credible, and rep-

resentative for its usage to go undisturbed.

However, this was not always the case. In 2008 during the financial crisis and afterwards, panel

banks corroborated in order to keep LIBOR fixings low and understated their borrowing costs,

essentially manipulated the markets, leading to the so-called Libor scandal [34]. As a result, the

regulatory landscape around Libor submissions was reshaped, banks involved were investigated

and fined. The issue of relying on expert judgment persisted: after the 2008 crisis and the intro-

26

duction of Basel III regulations, banks turned to secured funding like repo markets (repurchase

agreement), resulting in too low amount of Libor transactions for keeping it to be reliable. All

these served as catalysts for the regulators to turn to new term structure rates.

SOFR - Transition and Calculation

Henceforth, we will restrict our discussion to the US markets, SOFR in particular. In the

US, the Alternative Reference Rate Committee was responsible for the development of a new

term structure rate [3],[4]. The main criteria for selection were benchmark quality, methodolog-

ical quality, accountability, and ease of implementation. Out of multiple options, the Secured

Overnight Funding Rate (SOFR) was chosen as the new reference rate, supported by the fact

of driving the most significant daily volumes in the U.S. money markets. It measures the cost

of borrowing cash overnight, colletarized by U.S. Treasury securities, which are generally re-

garded as one of the safest government bonds in the globally. Based on the FED’s User Guide

[1], the ISDA’s (International Swaps and Derivatives Association) Compound SOFR formula

utilizes the below Compound Annualized Interest:

Compound Annualized Interest =
[
ΠT

b=1

(
1 +

rb × nb

N

)] N
dc

(55)

Where

• T denotes the number of business days in the interest period,

• dc denotes the number of calendar days in the interest period,

• rb denotes the interest rate applicable on business day b

• nb denotes the calender days from and including business day b but not including the

following business day,

• N denotes the market convention of quoting the number of days in the year (N = 360 for

U.S. money markets, this is applied in this thesis as well).

27

Figure 5: 90-day compounded SOFR from 1 April 2024 to 31 March. [14]

When futures or swaps/swaptions use SOFR, they allow for hedging against future interest

rates by construction, since SOFR is an averaged overnight rate. Furthermore, as [1] outlines,

averaging greatly contributes to smoothing out day-to-day fluctuations. These fluctuations can

result from temporary, not market event related liquidity shocks or calender effects, as End-of-

Month effect, that is, higher trading volume on the last day of the month has been growing over

time. [13]

Figure 6: Smoothing effects for averaging SOFR. [1]

28

Approximating 90-day SOFR

One must keep in mind that our implementation of the HJM framework is restricted to a

quarterly time grid. This choice is largely due to limitations in computational power.

The following list contains the approximations considered with the simplifying assumption of

a 90-day quarter with notional suppression of ω. We also discuss their adequacy and the differ-

ences in price levels.

1. End-of-period level: As suggested above, a capacity sparing method to approximate the

90-day (not annualized) SOFR by linearly scaling the first observed overnight rate in the

period.

90-day SOFR(ti) ≈
f (ti−1, ti−1)

4
. (56)

2. Average of Beginning-of and End-of-period levels: Similarly to the previous idea:

90-day SOFR(ti) ≈
1
2 (f (ti−1, ti−1) + f (ti, ti))

4
. (57)

3. Linear compounding: In order to account for compounding effects, linear compounding

can be applied separately to each half of the accrual period.

90-day SOFR(ti) ≈ (1 +
45
360

f (ti−1, ti−1))(1 +
45

360
f (ti, ti)) − 1 (58)

4. Daily compounding with Beginning-of and End-of-period levels: To approximate the

effect of daily compounding, as discussed in Section 3, we apply compounding separately

to each half of the accrual period. This is done using the forward rates observed at the

beginning and end of the period.

90-day SOFR(ti) ≈ (1 +
45
360

f (ti−1, ti−1))(1 +
45

360
f (ti, ti)) − 1 (59)

5. Daily compounding with linear regression: Along this line of reasoning, the next step is

to capture the daily compounding effect, which necessitates the generation of intermediate

terms. This process can be facilitated by regression-based methods, among which we opt

29

for a linear approach.

90-day SOFR(ti) ≈ Π89
i=0(1 + f (ti−1, ti−1) +

i
89

f (ti, ti)) − 1 (60)

6. Daily compounding with the sum of linear regression and Brownian bridge of modi-

fied diffusion: Glasserman [16] suggests the application of Brownian bridges for instances

where the granularity of the given time grid proves to be insufficient.

Assume the generating equation (35) and let Z1, . . . ,Z89 be independent standard normal

random variables and Z0 ≡ 0. Then we propose:

90-day SOFR(ti) ≈ Π89
i=0 (1 + f (ti−1, ti−1) +

i
89

f (ti, ti)+

+

 d∑
k=1

|σk(ti−1, ti−1)|



√

1
360

 i∑
j=0

Zi −
i

89

89∑
j=0

Zi


 − 1

(61)

Remark 3.1. We note that these approximations easily generalize to accrual periods of different

lengths.

We determine the par swap rate, also referred to as the at-the-money (ATM) swap rate, cor-

responding to ATM swaptions whose underlying swap commences at the option’s expiry. The

underlying swap structure involves the payment of the time proportional 90-day SOFR(ti) on

a quarterly basis. Given the initial forward rate curve, the time of expiry ti, and the cash flow

dates ti+1, ti+2, . . . , t j, we can determine the ATM swap rate S ti+1,...,t j from equality of the PV of

the fixed and floating legs:

S ti+1,t j =

∑ j
k=i P(t0, tk)(90-day SOFR(tk) approximation at time 0)∑ j

k=i P(t0, tk)
(62)

We provide formula for the case of daily compounding with linear regression.

S ti+1,t j =

∑ j
k=i P(t0, tk)(Π89

i=0(1 + f (t0, ti−1) + i
89 f (t0, ti)) − 1)∑ j

k=i P(t0, tk)
(63)

Remark 3.2. It is important to note that this formula also determines the relevant ATM swap

rate when applying the modified Brownian bridge, due to fact that independent centered vari-

ables are used for its construction.

30

σ
β

0
β

1
β

2
τ

ex
pi

ry
m

at
ur

ity
Pr

ic
e

1
Pr

ic
e

2
Pr

ic
e

3
Pr

ic
e

4
Pr

ic
e

5
Pr

ic
e

6
L

ar
ge

st
%

D
iff

0.
00

2
0.

03
0

0.
00

7
-0

.0
5

1.
8

8
40

93
.3

94
2

93
.3

19
9

93
.6

23
7

93
.9

22
7

25
.4

54
4

25
.5

98
3

26
8.

98
35

0.
00

2
0.

03
0

0.
00

7
-0

.0
5

1.
8

20
20

76
.9

75
5

76
.9

10
0

77
.1

93
6

77
.4

73
0

79
.2

08
3

79
.0

99
5

2.
98

18
0.

00
2

0.
03

0
0.

00
7

-0
.0

5
1.

8
40

4
20

.0
36

5
20

.0
16

5
20

.0
98

1
20

.1
82

0
22

.7
37

9
22

.7
64

6
64

.2
96

8
0.

00
2

0.
03

5
0.

00
5

-0
.0

4
2.

0
8

40
95

.3
18

5
95

.2
55

7
95

.6
30

0
95

.9
99

0
28

.4
15

3
28

.3
74

9
23

8.
32

33
0.

00
2

0.
03

5
0.

00
5

-0
.0

4
2.

0
20

20
74

.9
86

4
74

.9
25

8
75

.2
46

7
75

.5
63

2
66

.3
36

0
66

.3
71

7
13

.9
09

9
0.

00
2

0.
03

5
0.

00
5

-0
.0

4
2.

0
40

4
19

.2
03

0
19

.1
84

5
19

.2
75

6
19

.3
65

7
28

.1
83

4
28

.2
11

2
47

.0
65

4
0.

00
2

0.
03

0
0.

00
7

-0
.0

5
1.

8
8

40
24

3.
85

82
24

3.
50

24
24

4.
38

29
24

5.
24

97
16

0.
44

83
16

0.
45

43
52

.8
69

4
0.

00
2

0.
03

0
0.

00
7

-0
.0

5
1.

8
20

20
19

1.
37

97
19

1.
01

60
19

1.
82

22
19

2.
61

73
19

4.
31

66
19

4.
25

12
1.

72
79

0.
00

2
0.

03
0

0.
00

7
-0

.0
5

1.
8

40
4

48
.0

63
5

47
.9

48
3

48
.1

81
3

48
.4

11
5

59
.7

48
4

59
.8

52
7

24
.8

27
4

0.
00

5
0.

03
0

0.
00

7
-0

.0
5

1.
8

8
40

22
2.

79
99

22
4.

50
24

22
5.

45
40

22
6.

39
53

14
2.

28
89

14
2.

62
84

9.
10

84
0.

00
5

0.
03

0
0.

00
7

-0
.0

5
1.

8
20

20
17

4.
35

37
17

4.
04

06
17

4.
86

84
17

5.
68

62
12

6.
26

47
16

5.
92

48
5.

88
30

0.
00

5
0.

03
0

0.
00

7
-0

.0
5

1.
8

40
4

46
.5

24
0

46
.4

09
3

46
.6

63
3

46
.9

14
4

55
.2

22
4

55
.1

18
5

18
.9

89
8

0.
01

0
0.

03
0

0.
00

7
-0

.0
5

1.
8

8
40

48
6.

93
94

48
5.

65
02

48
7.

66
93

48
9.

66
11

39
5.

77
40

39
5.

95
97

23
.7

22
4

0.
01

0
0.

03
0

0.
00

7
-0

.0
5

1.
8

20
20

40
0.

48
47

39
8.

89
33

40
0.

97
08

40
3.

01
82

40
3.

18
69

40
3.

14
72

1.
47

23
0.

01
0

0.
03

0
0.

00
7

-0
.0

5
1.

8
40

4
98

.5
90

2
98

.1
02

4
98

.7
00

4
99

.2
91

2
11

0.
17

54
11

0.
34

47
12

.4
77

1
0.

01
0

0.
03

5
0.

00
5

-0
.0

4
2.

0
8

40
45

3.
80

27
45

2.
74

00
45

4.
92

16
45

7.
07

61
36

9.
70

44
37

0.
00

51
23

.6
32

9
0.

01
0

0.
03

5
0.

00
5

-0
.0

4
2.

0
20

20
35

9.
33

62
35

8.
08

29
36

0.
12

33
36

2.
16

07
35

2.
87

16
35

3.
49

23
2.

63
25

0.
01

0
0.

03
5

0.
00

5
-0

.0
4

2.
0

40
4

93
.1

47
6

93
.4

12
6

94
.0

54
0

94
.6

94
0

10
2.

32
81

10
2.

52
45

9.
20

84
0.

01
5

0.
03

0
0.

00
7

-0
.0

5
1.

8
8

40
72

3.
67

85
72

1.
01

46
72

4.
41

10
72

7.
76

64
63

2.
97

16
63

2.
91

56
14

.9
86

3
0.

01
5

0.
03

0
0.

00
7

-0
.0

5
1.

8
20

20
57

0.
75

27
56

7.
59

92
57

1.
08

78
57

4.
38

63
57

6.
07

63
57

5.
28

18
1.

49
35

0.
01

5
0.

03
0

0.
00

7
-0

.0
5

1.
8

40
4

15
1.

32
85

15
0.

81
38

15
1.

20
78

15
1.

60
26

16
3.

08
28

16
3.

25
80

7.
83

78
0.

01
5

0.
03

5
0.

00
5

-0
.0

4
2.

0
8

40
70

6.
68

72
70

4.
14

74
70

7.
97

71
71

1.
75

93
62

1.
73

70
62

1.
80

38
14

.6
44

2
0.

01
5

0.
03

5
0.

00
5

-0
.0

4
2.

0
20

20
53

3.
44

46
53

0.
64

41
53

4.
09

85
53

7.
52

14
52

7.
96

24
52

9.
06

91
1.

81
06

0.
01

5
0.

03
5

0.
00

5
-0

.0
4

2.
0

40
4

13
6.

74
55

13
5.

74
93

13
6.

83
61

13
7.

90
74

14
5.

77
50

14
6.

26
62

7.
74

73

Ta
bl

e
2:

Pr
ic

e
re

su
lts

fo
rs

w
ap

tio
ns

w
ith

qu
ar

te
rl

y
te

no
rs

pr
ic

e
re

su
lts

ac
ro

ss
si

x
SO

FR
-a

pp
ro

xi
m

at
io

n
sc

he
m

es
an

d
pe

rc
en

ta
ge

de
vi

at
io

ns
.

E
xp

ir
y

an
d

m
at

ur
ity

gi
ve

n
/

qu
ar

te
r.

31

In Table 2, we present swaption prices obtained under different model parametrizations. For

each parameter set, we calculate the percentage difference between the highest and lowest prices

across the various approximation schemes.

Our results show that, under the one-factor normal volatility model combined with a Nelson-

Siegel initial forward curve, the differences between the pricing approximations are indeed ma-

terial. Since, heuristically, the approximation scheme based on the Brownian bridge appears

the most adequate — considering that it aims to capture the inherent non-smoothness of daily

SOFR rates — we choose to generate our training and validation datasets for SOFR swaption

pricing using this particular approximation within our pricer. Another decision making factor

is the price level of swaptions with short expiry and maturity, where we expect the effect the

volatility to be lessened compared to swaptions with longer expiry. Given simulation results,

we opt for the latter method consistently providing lower short expiry ATM prices for shorter

maturities.

Finally, with all relevant modeling decisions available, we are able to present the swaption pric-

ing formula within the discretized framework of our choice. Let PVt0(S Wti,t j) denote the present

value at time t0 of a swaption with expiry ti, and subsequent underlying swap payment dates

ti+1, ti+2, . . . , t j. Consider a Monte Carlo simulation over N paths. For each path, we evaluate

the value of the underlying swap at expiry, based on the simulated instantaneous forward curve

starting from the expiry date. We then take the maximum between this value and zero, reflecting

the payoff of the swaption, and discount the result back to time zero using the money market

account as numeraire under the risk-neutral measure. Finally, averaging the discounted payoffs

across all simulated paths yields the present value of the swaption.

PVt0(S Wti,t j) =
1
N

N∑
y=1

exp

− i−1∑
k=0

f (ωy, tk, tk)∆t

 ×max
(j∑

l=i+1

[
exp

− l−1∑
m=i

f (ωy, ti, tm)∆t


×

 89∏
n=0

(
1 + f (ωy, tn−1, tn−1) +

n
89

(
f (ωy, tn, tn) − f (ωy, tn−1, tn−1)

)
+

d∑
k=1

|σk(tn−1, tn−1)|

√
1

360

 n∑
j=0

Z j(ωy) −
n

89

89∑
j=0

Z j(ωy)



 − 1

]
− S ti,t j ∗ dt, 0

)
× Notional (64)

32

4. Deep neural networks

Deep neural networks

Deep neural is a subset of machine learning that utilizes multilayered neural networks to

model complex patterns in data. In this section, following [24], we provide a concise overview

on the particular type of deep neural networks implemented in this thesis, while not neglecting

the opportunity to discuss their applicability in ATM calibration.

There are several approaches to ATM calibration for HJM models, as the literature over the

years has introduced numerous methods based on gradient descent and Gauss–Newton tech-

niques. A notable example that combines features of both is the Levenberg–Marquardt algo-

rithm [7]. However, a major bottleneck arises when these algorithms are applied in an online

calibration setting, as they require re-running Monte Carlo simulations and re-pricing the rel-

evant calibration instruments at each iteration. Furthermore, since these algorithms are convex

optimization methods, multiple initializations are necessary to mitigate the risk of convergence

to local minima, further increasing computational cost.

We are, however, prepared to incur this cost — preferably by paying it up front. As discussed

in [21], training deep neural networks is computationally expensive; however, model evalua-

tion typically requires only a fraction of a second. Effective and accurate online calibration

could provide significant industrial advantages, such as an increased potential for identifying

arbitrage opportunities in fixed income markets and the ability to deliver faster pricing in over-

the-counter markets for market makers.

Neural networks generally consist multiple layers of interconnected nodes (neurons) that pro-

cess the data, each transforms it, capturing certain levels of abstraction. In our implementation

Feedforward Neural Networks are in scope where data flows without cycles from the input to

the output layer.

• The input layer recieves the raw data, in our case it is information about the initial forward

curve and ATM swaption prices for several expiry and maturity.

• In the hidden layers multiple nodes/neurons perform certain calculation. Each recieves

outputs of the nodes in the previous layer, calculates a linear combination of them, applies

and activation function and adjust for bias. All parameters of the calculations are up to

training via backpropogation.

33

• Finally, the output layer performs a linear transformation on one last occasion and thus

produces the final prediction of the model.

The network architecture is fully connected, meaning each node in a given layer has weighted

connections to all nodes in the subsequent layer.

Figure 7: Architecture of a deep artificial neural network [22]

After the model generates a prediction, a loss function is computed to quantify the predic-

tion error. The backpropagation algorithm is then applied to determine the contribution of each

weight to this error by calculating gradients. These gradients are used to update the weights

using a gradient descent-based optimization method — in our case, the Adam optimizer. We

choose Adam for its computational efficiency and built-in bias correction [25], which can po-

tentially offer stable training and potentially better handling of Monte Carlo noise, particularly

in high-volatility regions of the training grid. The weight update process is performed once per

epoch, where an epoch refers to one complete pass of the entire training dataset through the

network. [12]

Although arbitrary loss functions can be defined, we adopt the Sum of Squared Error (SSE) and

the Sum of Squared Relative Error (SSRE), both supplemented with L2 regularization to pre-

vent overfitting, a concept initially introduced to statistical modeling in [18]. For activation, we

choose the Swish function, defined as x
1+ex , due to its smooth, non-monotonic nature and almost

always non-zero derivative, which enables stable and effective gradient-based optimization. [28]

34

Figure 8: Swish activation function

Just like Horvath et al. in [21], we also refer to the universal approximation theorems de-

veloped by Hornik, Stinchcombe, and White [19][20], which establish that feedforward neural

networks with a single hidden layer containing a finite number of neurons can approximate

any continuous functions on compact subsets of Rn , provided that suitable activation functions

are used. These results greatly support the applicability of neural networks as general function

approximators.

35

5. Numerical Expreriments - Calibration for ATM swaptions

In this section, we present the calibration results obtained from our numerical experiments.

While our experiments are partly inspired by the work of Horvath et al. [21], our approach

fundamentally differs in its objective. Instead of learning the mapping from model parameters

to implied volatilities or option prices, as in their framework, we pursue the inverse problem:

using current market data—including the full forward rate curve and prevailing at-the-money

(ATM) swaption prices—we train neural networks to infer the corresponding volatility levels.

The simulations are conducted on a quarterly time grid spanning a 30-year horizon. For each

combination in the Cartesian product of the parameter grids defining the volatility functions

and the initial forward curves, we price a predefined set of swaptions covering the maturity

grid: 1Y1Y, 1Y2Y, 1Y5Y, 1Y10Y, 1Y20Y, 2Y1Y, 2Y2Y, 2Y5Y, 2Y10Y, 2Y20Y, 5Y1Y, 5Y2Y,

5Y5Y, 5Y10Y, 5Y20Y, 10Y1Y, 10Y2Y, 10Y5Y, 10Y10Y, 10Y20Y, 15Y1Y, 15Y5Y, 15Y10Y,

20Y5Y, 20Y10Y. Each underlying interest rate swap is structured to pay quarterly based on the

90-day compounded SOFR, with the first cash flow occurring one quarter after the swaption’s

expiry date. The 90-day comopunded SOFR is approximated via the modified Brownian bridge

approach. We reiterate that our primary objective is to assess whether neural networks can

effectively learn the volatility parameters of the underlying HJM models based solely on data

typically available in live calibration scenarios—namely, the current forward rate curve and

prevailing market prices—even in the presence of increased Monte Carlo simulation noise at

higher volatility levels within the training dataset.

Constant volatility, flat initial forward curve

As this calibration setting involves the smallest number of parameters, it is expected to yield

the highest prediction accuracy among the tested configurations. The training dataset was gen-

erated as the Cartesian product of the volatility grid and the flat initial forward curve levels

respectively

[0.001, 0.002, 0.003, . . . , 0.020] × [1%, 1.5%, 2%, . . . , 7%].

The corresponding validation dataset was constructed from the inner points of this grid, namely:

[0.0015, 0.0025, 0.0035, . . . , 0.0195] × [1.25%, 1.75%, 2.25%, . . . , 6.75%].

36

Additional implementation details are summarized in the table below. The swaption price data

Parameter Value
Volatility Constant
Error Metric SSRE
Epochs 80000
Hidden Layers 4
Neurons / Layer 100
Learning Rate 0.0001
L2 Alpha 0.0001

Table 3: Numerical experiment parameters - 1

used for both training and prediction is standardized using the mean and standard deviation

computed from the training set. This normalization procedure ensures that the model focuses

on relative variations in price, rather than being influenced by absolute magnitudes such as

notional amounts.

Figure 9: Validation L1 error - one factor, flat initial curve, SSRE

37

Figure 10: Validation percentage-wise error - one factor, flat initial curve, SSRE

We compare these results to the calibration where we utilize a different error function.

Parameter Value
Volatility Constant
Error Metric SSRE
Epochs 80000
Hidden Layers 4
Neurons / Layer 100
Learning Rate 0.0001
L2 Alpha 0.0001

Table 4: Numerical experiment parameters - 2

38

Figure 11: Validation L1 error - one factor, flat initial curve, SSE

Figure 12: Validation percentage-wise error - one factor, flat initial curve, SSE

Overall, both approaches yield satisfactory results, with absolute percentage errors remain-

39

ing below 5%. However, since the maximum error is lower by 1 basis points in terms of the L1

norm when using the SSE loss with L2 regularization and also the percentage-wise performance

is better in the high-volatility regions, we choose to adopt this configuration in subsequent train-

ing experiments.

Regarding the model’s extrapolation capability, concerns about overfitting can be reasonably

ruled out. By evaluating predictions at volatility levels reaching up to 125% of the maximum

value observed in the training set, we assess the model’s generalization performance under ex-

trapolated conditions. This evaluation is conducted for three distinct forward curve levels. As

illustrated in Figure 13, the model provides consistent and credible predictions across all sce-

narios. While higher prediction errors are observed at elevated volatility targets, this behavior

aligns with prior expectations and reflects the increasing difficulty of accurate estimation in

more extreme regimes.

Figure 13: Extrapolation results - one factor, flat initial curve, SSE

40

Constant volatility, Nelson-Siegel initial forward curve

Given the effective calibration achieved under a flat initial forward curve, we proceed to

evaluate the model’s predictive performance using the Nelson–Siegel initial forward curve pa-

rameterization. For swaptions primarily sensitive to the long end of the forward curve, we an-

ticipate similar price dynamics to the previous case due to the relative flatness of the initial

Nelson–Siegel curve at longer maturities. Consequently, our focus lies in assessing whether the

neural network can adapt to the distinct pricing behavior induced by variations at the short end

of the curve.

Due to the inherent multidimensionality of the forward curve representation, we evaluate cali-

bration accuracy with respect to each curve parameter individually. This is achieved by comput-

ing the average of the specified prediction errors within discretized parameter regions, defined

by bins over the volatility and a selected curve parameter. The parameter grid employed for

training was constructed as a Cartesian product of the following sets:

[0.01, 0.03, 0.05, . . . , 0.019] × [0.3, 0.5, 0.7] × [−0.2, 0.0, 0.2] × [−0.1, 0.0, 0.1],

corresponding to the volatility, λ, β0, β1, and β2, respectively. The validation grid consists of the

inner points of the training grid, defined as:

[0.02, 0.04, 0.06, . . . , 0.018] × [0.4, 0.6] × [−0.1, 0.0, 0.1] × [−0.05, 0.0, 0.05].

Parameter Value
Volatility Constant
Error Metric SSE
Epochs 80000
Hidden Layers 4
Neurons / Layer 100
Learning Rate 0.0001
L2 Alpha 0.0001

Table 5: Numerical experiment parameters - 3

The results presented below demonstrate that the model is capable of capturing distinct swap-

tion price dynamics at the short end of the time grid. Both calibration and validation are con-

ducted on a sparse parameter grid, constrained to a specific subset of feasible initial forward

curves The numerical experiment shows notable flexibility and high accuracy— even when

compared to the results of the pervious experiment.. These findings support the model’s poten-

41

tial applicability in real-world, industrial settings.

Remark 5.1. We find it important emphasizing that the increased number of parameters and the

corresponding demand for a larger dataset result in noticeably slower training. However, as pre-

viously discussed, this initial computational cost is incurred only once during the offline training

phase. Once trained, the model enables fast and efficient evaluation, with prediction time scaling

linearly with respect to the number of model parameters. This makes the approach promising

for real-time calibration to market data, provided the underlying model parameterization offers

sufficient flexibility.

Figure 14: Average L1 Error

Figure 15: Mean Absolute Percentage Error

Figure 16: Calibration results w.r.t. λ - constant one factor, Nelson-Siegel initial curve, SSE

42

Figure 17: Average L1 Error

Figure 18: Mean Absolute Percentage Error

Figure 19: Calibration results w.r.t. β0- constant one factor, Nelson-Siegel initial curve, SSE

43

Figure 20: Average L1 Error

Figure 21: Mean Absolute Percentage Error

Figure 22: Calibration results w.r.t. β1 - constant one factor, Nelson-Siegel initial curve, SSE

44

Figure 23: Average L1 Error

Figure 24: Mean Absolute Percentage Error

Figure 25: Calibration results w.r.t. β2- constant one factor, Nelson-Siegel initial curve, SSE

We conjecture that, given sufficiently informative initial forward curve data in the training

set, neural networks are capable of calibrating ATM volatility with relative ease. Therefore,

as a proof of concept, it is sufficient to demonstrate that the network can learn the underlying

volatility function under the assumption of a flat initial forward curve. Guided by this rationale,

we continue our experimental investigation.

45

2-factor volatility, flat initial forward curve

We now investigate whether a more layered volatility structure can be effectively captured

using neural networks. To extend the initial experiment with a more expressive HJM volatility

model, we adopt an alternative parametrization inspired by the structure proposed in [refer-

ence]. The aim is to capture a broader range of volatility behavior while keeping the number of

parameters reasonably low due to personal computing limitations.

σ1(t) = α + γ exp(−λ1(T − t))

σ2(t) = γ exp(−λ2(T − t))
(65)

We recall Andersen and Piterbarg in [5], where they explain that the correlation structure

does not influence swaption data to the extent that it could be calibrated together with ATM

volatilities. Hence the assumption, that we have already successfully calibrated parameters λ1

and λ2 to a chosen set of spread option for example. Thereby we restrict the calibration to the

parameters α and γ.

As we would like to implement similar network as in the previous experiments, first, we try

predicting both parameters simultaneously, and we do not succeed.

To address the calibration challenge, we introduce a two-phase learning framework. In the

first phase, we train a neural network to predict the constant volatility level, denoted by α, using

only the initial curve level and the swaption price map as inputs. In the second phase, a separate

neural network is trained to predict the parameter γ, conditional on the previously predicted α

as well as on λ1, λ2, and the same input features used in the first phase.

Given a set of observed market prices and an initial curve level, we first employ the α-

network to produce a prediction α′. This predicted value is then passed to the second network

to generate a corresponding estimate γ′. Provided that the first network has been trained to

sufficient accuracy, the dominant source of error in a two-step procedure originates from the

second network’s prediction of γ.

We provide the details and calibration results regarding the first network.

46

Parameter Value
Volatility Constant
Error Metric SSE
Epochs 10000
Hidden Layers 4
Neurons / Layer 50
Learning Rate 0.000001
L2 Alpha 0.001

Table 6: Numerical experiment parameters - 4 - Phase 1

Figure 26: Average L1 Error

Figure 27: Mean Absolute Percentage Error

Figure 28: Calibration results w.r.t. α - two factor, flat initial curve, SSE

The accuracy of the first network is sufficient to support the testing of the second network’s

ability to predict γ, despite the compounded noise originating from both the Monte Carlo sim-

47

ulation and the first-stage predictions. However, despite experimenting with several different

approaches like rescaling and feature selection, we were unable to design a network that not

only achieves good training accuracy but also performs well during validation. It is worth not-

ing that validation results were similarly unsatisfactory whether we used the predicted or the

benchmark α values from the synthetic data.

As for future research directions to overcome this bottleneck, the two-phase calibration ap-

proach could be extended either by incorporating additional vanilla instruments or by increasing

the size of the training dataset. We are hopeful that such extensions could improve the model’s

performance and predictive capabilities.

At last, we highlight the potential applicability of the approach in computationally intensive

stress testing environments. Given that stress tests are required to balance a number of objec-

tives, as outlined in [6], accuracy requirements are not always stringent. This may increase the

appeal of fast calibration techniques using neural networks.

48

6. Conclusion

Our thesis explored the ATM calibration of HJM interest rate models using deep neural

networks. We presented the theoretical foundations of the HJM framework, implemented a dis-

cretized version of the model with a focus on preserving the martingale property and theoretical

expectations, and discussed the transition from LIBOR to SOFR, which is particularly relevant

for the swaptions we chose to price. We also gave a concise overview on neural networks.

Our main contribution lies in demonstrating that deep neural networks can effectively learn

the mapping from ATM swaption prices and initial forward curves to the volatility parameters

of HJM models. Through a series of numerical experiments—starting from simple constant

volatility with flat curves, up to more complex configurations involving Nelson – Siegel curves

or multi-factor volatilities — we showed that the proposed neural network models achieve good

accuracy, even under limited data and increased simulation noise. For parametrizations that

allow distinguishing between global and local parameters within the volatility grid, we addi-

tionally proposed a two-phase calibration approach.

These results highlight the potential of neural networks in speeding up calibration tasks and

enabling more efficient real-time pricing in practical applications. With proper offline training,

the models are able to offer fast and accurate volatility estimates, making them a promising

alternative to traditional optimization-based calibration techniques.

We note that due to the overwhelming success of the adaptability and flexibility of the HJM

framework, a large number of articles cite it with relatively low degree in freedom of phrasing

and notations. We hereby state that all - whether HJM related or otherwise - articles that we

used are cited and used appropriately. We also opted for relatively strict follow of the original

article. Any potential match in wording or notation with articles not cited are purely the result

of the unity around the framework and not of plagiarism.

I would like to express my appreciation for the overall level of challenge presented by the

thesis topic, it motivated me to expand my skill set — particularly in the areas of model training

and general implementation.

We also note that further research opportunities remain. With sufficient computational re-

sources, calibration of more complex model parametrizations could be explored, and bench-

marking against actual market prices could be conducted. We acknowledge, however, that such

data and infrastructure are typically accessible only to institutional market participants.

49

AI Tool Usage Declaration

I, the undersigned, Máté Kurucz, declare that during the preparation of my thesis, I used the

AI-based tools listed below for the tasks specified.

Task Tool Used Scope of Use Remarks

Language correctness GPT Entire thesis Spelling check, stylistic review
of certain sentences, occasional
rephrasing.

Literature research GPT Entire thesis Identifying and selecting rele-
vant literature.

No other AI-based tools were used beyond those listed above.

50

References
[1] Alternative Reference Rates Committee. An Updated User’s Guide to SOFR. https://www.newyorkfed.

org/medialibrary/Microsites/arrc/files/2021/users-guide-to-sofr2021-update.pdf.

Accessed: 2025-04-30. Feb. 2021.

[2] Alternative Reference Rates Committee. SOFR Starter Kit: Factsheets 1. https://www.newyorkfed.

org/medialibrary/Microsites/arrc/files/2020/ARRC_Factsheet_1.pdf. Federal Reserve Bank

of New York. 2020.

[3] Alternative Reference Rates Committee. SOFR Starter Kit: Factsheets 2. https://www.newyorkfed.

org/medialibrary/Microsites/arrc/files/2020/ARRC_Factsheet_2.pdf. Federal Reserve Bank

of New York. 2020.

[4] Alternative Reference Rates Committee. SOFR Starter Kit: Factsheets 3. Federal Reserve Bank of New

York. 2020.

[5] Leif B. G. Andersen and Vladimir V. Piterbarg. Interest Rate Modeling. Volume III: Products and Risk

Management. Atlantic Financial Press, 2010. isbn: 0984422129.

[6] Basel Committee on Banking Supervision. International Convergence of Capital Measurement and Capital

Standards: A Revised Framework. https://www.bis.org/publ/bcbs155.pdf. Basel II – Comprehen-

sive Version. June 2006. (Visited on 05/13/2025).

[7] Riccardo Beltrami. “Machine learning techniques for financial time series prediction”. Master’s thesis. Po-

litecnico di Milano, 2010. url: https://www.politesi.polimi.it/retrieve/a81cb059-7f30-

616b-e053-1605fe0a889a/2010_12_Beltrami.PDF.pdf.

[8] Tomas Björk and Bent Jesper Christensen. “Interest rate dynamics and consistent forward rate curves”. In:

Mathematical Finance 9.4 (1999), pp. 323–348.

[9] Andrew Brace, Dariusz Gatarek, and Marek Musiela. “The Market Model of Interest Rate Dynamics”. In:

Mathematical Finance 7.2 (1997), pp. 127–155. doi: 10.1111/1467-9965.00028.

[10] Carl Chiarella and Oh Kang Kwon. “A Complete Markovian Stochastic Volatility Model in the HJM Frame-

work”. In: Asia-Pacific Financial Markets 7.4 (Sept. 2000), pp. 321–342. doi: 10.1023/A:1010017213565.

[11] Freddy Delbaen and Walter Schachermayer. “A General Version of the Fundamental Theorem of Asset

Pricing”. In: Mathematische Annalen 300.1 (1994), pp. 463–520. doi: 10.1007/BF01450498.

[12] European Information Technologies Certification Academy. EITC/AI/DLTF Deep Learning with Tensor-

Flow Study Guide. https://eitca.org/wp-content/uploads/materials/eitca_exam_mat_eitc-

ai-dltf.pdf. Accessed: 2025-05-13. 2023.

[13] Federal Reserve Bank of New York. End-of-Month Liquidity in the Treasury Market. Accessed: 2024-05-05.

Sept. 2024. url: https://libertystreeteconomics.newyorkfed.org/2024/09/end-of-month-

liquidity-in-the-treasury-market/.

51

https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/users-guide-to-sofr2021-update.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/users-guide-to-sofr2021-update.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2020/ARRC_Factsheet_1.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2020/ARRC_Factsheet_1.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2020/ARRC_Factsheet_2.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2020/ARRC_Factsheet_2.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2020/ARRC_Factsheet_3.pdf
https://www.bis.org/publ/bcbs155.pdf
https://www.politesi.polimi.it/retrieve/a81cb059-7f30-616b-e053-1605fe0a889a/2010_12_Beltrami.PDF.pdf
https://www.politesi.polimi.it/retrieve/a81cb059-7f30-616b-e053-1605fe0a889a/2010_12_Beltrami.PDF.pdf
https://doi.org/10.1111/1467-9965.00028
https://doi.org/10.1023/A:1010017213565
https://doi.org/10.1007/BF01450498
https://eitca.org/wp-content/uploads/materials/eitca_exam_mat_eitc-ai-dltf.pdf
https://eitca.org/wp-content/uploads/materials/eitca_exam_mat_eitc-ai-dltf.pdf
https://libertystreeteconomics.newyorkfed.org/2024/09/end-of-month-liquidity-in-the-treasury-market/
https://libertystreeteconomics.newyorkfed.org/2024/09/end-of-month-liquidity-in-the-treasury-market/

[14] Federal Reserve Bank of New York. Secured Overnight Financing Rate Averages and Index. https://www.

newyorkfed.org/markets/reference-rates/sofr-averages-and-index. Accessed: 2025-04-30.

2025.

[15] Federal Reserve Bank of New York. SOFR Averages and Index. https : / / www . newyorkfed . org /

markets/reference-rates/sofr-averages-and-index. Accessed: 2025-04-30. 2020.

[16] Paul Glasserman. Monte Carlo Methods in Financial Engineering. Vol. 53. Stochastic Modelling and Ap-

plied Probability. New York: Springer, 2004. doi: 10.1007/978-0-387-21617-1.

[17] F. E. H. Haug, Robert A. Jarrow, and Donald B. Morton. “Bond Pricing and the Term Structure of Interest

Rates: A New Methodology for Contingent Claims Valuation”. In: The Journal of Finance 47.2 (1992),

pp. 519–547. doi: 10.2307/2951677.

[18] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Biased Estimation for Nonorthogonal Prob-

lems”. In: Technometrics 12.1 (1970), pp. 55–67. doi: 10.1080/00401706.1970.10488634.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal

approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.

[20] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Universal approximation of an unknown mapping

and its derivatives using multilayer feedforward networks”. In: Neural Networks 3.5 (1990), pp. 551–560.

[21] Blanka Horvath, Aitor Muguruza, and Mehdi Tomas. “Deep Learning Volatility: A deep neural network

perspective on pricing and calibration in (rough) volatility models”. In: arXiv preprint arXiv:1901.09647

(Aug. 2019). Available at https://arxiv.org/abs/1901.09647.

[22] IBM. What is a Neural Network? Accessed: 2025-05-11. url: https://www.ibm.com/think/topics/

neural-networks.

[23] Beyna Ingo, Carl Chiarella, and Boda Kang. “Pricing Interest Rate Derivatives in a Multifactor HJM Model

with Time”. In: 317 (2012). doi: 10.2139/ssrn.2162748.

[24] Nicos B. Karayiannis. “A brief review of feed-forward neural networks”. In: Communications Faculty of

Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 50.1 (2006). https://

www.researchgate.net/publication/228394623, pp. 1–20.

[25] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A Method for Stochastic Optimization”. In: arXiv preprint

arXiv:1412.6980 (2014). Published as a conference paper at ICLR 2015. url: https://arxiv.org/abs/

1412.6980.

[26] Charles R. Nelson and Andrew F. Siegel. “Parsimonious modeling of yield curves”. In: The Journal of

Business 60.4 (1987), pp. 473–489.

[27] Neil D. Pearson and Anjun Zhou. A Nonparametric Analysis of the Forward Rate Volatilities. Working Paper

99-05. Available at SSRN: https://ssrn.com/abstract=190011 or http://dx.doi.org/10.2139/

ssrn.190011. Office for Futures and Options Research, 1999.

52

https://www.newyorkfed.org/markets/reference-rates/sofr-averages-and-index
https://www.newyorkfed.org/markets/reference-rates/sofr-averages-and-index
https://www.newyorkfed.org/markets/reference-rates/sofr-averages-and-index
https://www.newyorkfed.org/markets/reference-rates/sofr-averages-and-index
https://doi.org/10.1007/978-0-387-21617-1
https://doi.org/10.2307/2951677
https://doi.org/10.1080/00401706.1970.10488634
https://arxiv.org/abs/1901.09647
https://www.ibm.com/think/topics/neural-networks
https://www.ibm.com/think/topics/neural-networks
https://doi.org/10.2139/ssrn.2162748
https://www.researchgate.net/publication/228394623
https://www.researchgate.net/publication/228394623
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://ssrn.com/abstract=190011
http://dx.doi.org/10.2139/ssrn.190011
http://dx.doi.org/10.2139/ssrn.190011

[28] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Swish: A Self-Gated Activation Function”. In: arXiv

preprint arXiv:1710.05941 (2017). url: https://arxiv.org/abs/1710.05941.

[29] Peter Ritchken and Iyuan Chuang. “Interest Rate Option Pricing with Volatility Humps”. In: Review of

Derivatives Research 3.3 (2000), pp. 237–262. doi: 10.1023/A:1009690621051.

[30] Thierry Roncalli. Handbook of Financial Risk Management. Chapman and Hall/CRC Financial Mathematics

Series. Chapman and Hall/CRC, 2020. isbn: 9781138393906. doi: DOI:10.1201/9781315144597.

[31] Lars E.O. Svensson. Estimating and Interpreting Forward Interest Rates: Sweden 1992–1994. NBER Work-

ing Paper Series 4871. National Bureau of Economic Research, 1994. doi: 10.3386/w4871.

[32] Ranik Raaen Wahlstrøm, Florentina Paraschiv, and Michael Schürle. “A Comparative Analysis of Parsimo-

nious Yield Curve Models with Focus on the Nelson–Siegel, Svensson and Bliss Versions”. In: Computa-

tional Economics 59.4 (2022), pp. 967–1004. doi: 10.1007/s10614-021-10113-w.

[33] Wikipedia contributors. LIBOR — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/

wiki/Libor. Accessed: 2025-04-30. 2025.

[34] Wikipedia contributors. Libor scandal — Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/wiki/Libor_scandal. Accessed: 2025-04-30. 2025.

[35] Anjun Zhou. Modeling the Volatility of the Heath-Jarrow-Morton Model: A Multi-Factor GARCH Analysis.

Working Paper 00-05. Available at SSRN: https://ssrn.com/abstract=244521 or http://dx.doi.

org/10.2139/ssrn.244521. Office for Futures and Options Research, Aug. 2000.

53

https://arxiv.org/abs/1710.05941
https://doi.org/10.1023/A:1009690621051
https://doi.org/DOI:10.1201/9781315144597
https://doi.org/10.3386/w4871
https://doi.org/10.1007/s10614-021-10113-w
https://en.wikipedia.org/wiki/Libor
https://en.wikipedia.org/wiki/Libor
https://en.wikipedia.org/wiki/Libor_scandal
https://en.wikipedia.org/wiki/Libor_scandal
https://ssrn.com/abstract=244521
http://dx.doi.org/10.2139/ssrn.244521
http://dx.doi.org/10.2139/ssrn.244521

7. Appendix

In the following pages we provide a short summary in Hungarian.
Az alábbi szószedet tartalmazza a legfontosabb angol nyelvű szakszavak magyar nyelvű megfelelőit.

Table 7: Angol–magyar szakszószedet (válogatás)

English Magyar

activation function aktivációs függvény

bond price kötvényárfolyam

Brownian motion Brown-mozgás

calibration kalibráció

caplet egyetlen periódusra vonatkozó kamatplafon opció

compounded average interest kamatos kamattal számı́tott átlagos kamatláb

deep learning mélytanulás

diversification diverzifikáció

forward rate forward kamatláb

initial forward curve kezdeti forward görbe

interest rate curve kamatlábgörbe

interest rate derivative kamatlábra vonatkozó származtatott termék

interest rate model kamatlábmodell

layer réteg (neurális hálózatban)

money market account bankbetét

market price of risk kockázat piaci ára

neural network mesterséges neurális hálózat

node neuron (neurális hálók)

no-arbitrage condition arbitrázsmentességi feltétel

numerical experiment numerikus kı́sérlet

pricing function árazó függvény

risk-neutral measure kockázatsemleges mérték

spot rate rövid kamat

stochastic differential equation sztochasztikus differenciálegyenlet

swaption kamatcserére vonatkozó opció

theorem tétel

time discretization idődiszkretizálás

training tanı́tás (neurális hálózat)

volatility volatilitás

weighting súlyozás

yield curve hozamgörbe

zero-coupon bond kamatszelvény nélküli kötvény

54

Magyar nyelvű összefoglaló - HJM modellek kalibrálása mély neurális háló-

zatok segı́tségével

A dolgozat célja a Heath–Jarrow–Morton (HJM) kamatlábmodell keretrendszerében alkal-

mazott volatilitásfüggvények paramétereinek becslése at-the-money kalibráció során, mélyta-

nulási módszerek segı́tségével. A HJM modell egyik fő előnye a rendkı́vüli rugalmassága,

amely különösen alkalmassá teszi a pénzügyi piacokon kereskedett széleskörű kamatlábra vonat-

kozó származtatott termékek árazására.

A dolgozat első felében bemutatásra került a HJM modell alapfelépı́tése, beleértve a kockázat-

semleges mérték alatti dinamikát, valamint a volatilitás szerepét a modellben. A dolgozatban

több, az irodalomban fellelhető volatilitásparametrizációt mutattunk be – a teljesség igénye

nélkül. Ezek közül választottunk ki néhányat a kalibrációs kı́sérletek során alkalmazott model-

lekhez. A diszkontált kötvényárak martingál mivolta nem csupán a folytonos modell bemu-

tatásában kapott kiemelt szerepet, hanem az általunk implementált diszkretizált HJM modell-

ben és annak a bemutatásában is hangsúlyt kapott, elősegı́tve a belső konzisztenciát és ezáltal

az arbitrázsmentességet.

A HJM keretrendszer egy szimulációs modellt definiál, ı́gy Monte Carlo módszert alkal-

mazva közelı́tő árakat számı́tottunk elsősorban kamatcserére vonatkozó opciókra. Az imple-

mentáció Python nyelven történt, ennek segı́tségével implementáltunk swaption árazót a SOFR

referencia kamatot fizető kamatcsere tı́pusú alaptermékek esetén. Miután bemutattuk a LIBOR

kivezetésének körülményeit, több approximációt is megfontoltunk a SOFR-re az általunk alkal-

mazott negyedéves diszkretizáció esetén, melynek eredményképp egy módosı́tott Brown-hidas

közelı́tést alkalmaztunk a kalibrációs kı́sérletek folyamán.

A dolgozat fontos saját eredménye a HJM modell neurális hálóval történő kalibrációja. En-

nek során mesterséges neurális hálókat tanı́tottunk arra, hogy kezdeti forward görbe és swap-

tion árak alapján visszakövetkeztesse az ismeretlen volatilitásparamétereket. Az árakat szin-

tetikusan generáltuk különböző rácspontjain a paramétertérnek, implicit módon feltételezve a

kı́sérlet folyamán, hogy az adott parametrizáció kellő pontossággal alkalmas közelı́teni a piacot,

melyben alkalmazzák. A hálózat bemeneteként a diszkrét kezdeti forward görbét meghatározó

paramétereket, valamint swaption árak egy halmazát használtuk. A kimenet a volatilitásfüggvény

paramétereit reprezentálta.

A predikciós eredményeink kellően pontosnak bizonyultak, ı́gy a módszer potenciálisan al-

55

kalmazható stressztesztelési környezetben, hagyományos optimalizációs eljárások inicializálá-

sára és ezáltal azok gyorsı́tására, valamint – megfelelő, a dolgozat kereteit meghaladó számı́tási

kapacitás birtokában – önálló ATM-kalibrációs eljárásként is. Komplexebb volatilitásparametri-

záció esetén az alábbi megközelı́tést tartjuk leginkább járhatónak: külön neurális hálózat tanı́tása

a hosszú távú és a lokális hatást kifejtő paraméterekre. Bár összességében a lokális paraméterek

esetében nem értünk el kielégı́tő eredményeket, bizakodunk a módszer alkalmazhatóságában.

A dolgozatban tehát sikeresen demonstráltuk mesterséges neurális hálózatok ATM-kalibrációs

feladatokban való alkalmazhatóságát. További kutatási irányt jelent a bonyolultabb volatilitás

parametrizációk és hálóarchitektúrák vizsgálata, különös tekintettel arra, hogy milyen szintig

valósı́tható meg a kalibráció gyorsı́tása ezen a módszertani úton, valamint az, hogy tényleges

piaci körülmények között, esetleges piaci inkonzisztenciák mellett milyen teljesı́tményre képesek

ezek a megközelı́tések.

56

Python Codes

1 import numpy as np

2 import pandas as pd

3 import random

4 import matplotlib.pyplot as plt

5 import openpyxl

6 import torch

7 import torch.nn as nn

8 from torch.optim import Adam

9 from tqdm import tqdm

10 import scipy.stats as stats

11 import seaborn as sns

12 import itertools

13

14

15 def hjm_sim(num_traj , num_points , dt, initial_curve , voltype, vol_params):

16

17 # creating forward curves, initialization

18 f = np.zeros((num_traj, num_points , num_points))

19 f[:, 0, :] = initial_curve

20

21 # determining vol matrix

22 if voltype == ’flat’:

23 num_factors = 1

24 volatility = np.full((num_factors , num_points , num_points), vol_params[0])

25

26 if voltype == ’2-factor’:

27 num_factors = 2

28 c = vol_params[0]

29 gamma = vol_params[1]

30 lambda1 = vol_params[2]

31 lambda2 = vol_params[3]

32 volatility = np.zeros((num_factors , num_points , num_points))

33 for j in range(num_points):

34 for k in range(num_points):

35 volatility[0, j, k] = c + gamma * np.exp(-lambda1 * (k - j) * dt)

36 volatility[1, j, k] = gamma * np.exp(-lambda2 * (k - j) * dt)

37

38 # forward curve evolution

39 for i in range(1, num_points):

40

41 #noise

42 dz = np.random.normal(size=(num_traj , num_factors))

43

44 #generating risk-free drift

45 mu_help = np.roll(volatility[:, i-1, i:], shift = +1, axis=-1)

57

46 mu_help[:,0] = 0

47 mu = (np.cumsum(volatility[:, i - 1, i:], axis = 1)**2 - np.cumsum(mu_help, axis = 1)

2) * (dt2) / 2

48

49 #using the previous point in time

50 f[:, i, i:] = f[:, i - 1, i:]

51

52 for j in range(num_factors):

53

54 #adding diffusion

55 f[:, i, i:] += np.sqrt(dt) * volatility[j, i - 1, i:] * np.broadcast_to(dz[:, j

][:, np.newaxis], (num_traj , num_points - i))

56

57 #adding drifts

58 f[:, i, i:] += mu[j, :]

59

60 #setting not valid indices zero

61 f[:, i, :i] = 0

62

63 # moment matching

64 for j in range(i + 1, num_points):

65

66 # setting zero_coupon prices at zero

67 initial_bond = np.exp(np.sum(-f[0,0,:j])*dt)

68

69 # calculating discounted bond prices

70 b = np.full((num_traj), float(0))

71 for k in range(i):

72 b -= f[:,k,k]

73 for k in range(i, j):

74 b -= f[:,i,k]

75 B = np.average(np.exp(b*dt))

76

77 #adjustment

78 f[:,i,j - 1] -= np.log(initial_bond/B)/dt

79

80 return f, volatility

81

82

83

84

85 def nelson_siegel_curve(num_points , beta0, beta1, beta2, Lambda, dt=1/4):

86 t = np.arange(num_points) * dt

87 forward_rates = beta0 + beta1 * np.exp(-Lambda * t) + beta2 * Lambda * t * np.exp(-Lambda

* t)

88 return forward_rates

89

58

90

91

92 def swaption_pricer_approximation_investigation(f, dt=0.25, notional=1000000, expiry=0, tenor

=1, maturity=4, sigma=0.01):

93 ’’’expiry, tenor, maturity: all need to be set in quarter’’’

94

95 #money market account

96 mm = np.ones((np.shape(f)[0], expiry + 1))

97 for i in range(1, expiry + 1):

98 mm[:, i] = mm[:, i - 1] * np.exp(f[:, i, i] * dt)

99

100 #discount factors at time 0

101 df_0 = np.ones((np.shape(f)[0], expiry + tenor + maturity + 1))

102 for i in range(1, expiry + tenor + maturity + 1):

103 df_0[:, i] = df_0[:, i - 1] * np.exp(-f[:, 0, i - 1] * dt)

104

105 #discount factors at expiry

106 df_expiry = np.ones((np.shape(f)[0], tenor + maturity + 1))

107 for i in range(1, tenor + maturity + 1):

108 df_expiry[:, i] = df_expiry[:, i - 1] * np.exp(-f[:, expiry, i + expiry - 1] * dt)

109

110 payment_indices = np.arange(expiry + tenor, expiry + tenor + maturity)

111 annuity = np.sum(df_0[0, payment_indices] * dt)

112

113 floating_1 = np.zeros((np.shape(f)[0]))

114 for i in payment_indices:

115 floating_1 += df_0[:, i] * f[0, 0, i] * dt

116

117 floating_2 = np.zeros((np.shape(f)[0]))

118 for i in payment_indices:

119 floating_2 += df_0[:, i] * (f[0, 0, i-1] + f[0, 0, i]) / 2 * dt

120

121 floating_3 = np.zeros((np.shape(f)[0]))

122 for i in payment_indices:

123 floating_3 += df_0[:, i] * ((1 + f[0, 0, i-1]*45/360) * (1 + f[0, 0, i]*45/360)-1)

124

125 floating_4 = np.zeros((np.shape(f)[0]))

126 for i in payment_indices:

127 floating_4 += df_0[:, i] * (((((1 + f[0, 0, i-1]/360) ** 45) * ((1 + f[0, 0, i]/360)

** 45))) - 1)

128

129 floating_5 = np.zeros((np.shape(f)[0]))

130 for i in payment_indices:

131 floating_5 += df_0[:, i] * (np.prod([(1 + (f[0, 0, i-1]+(f[0, 0, i]-f[0,0,i-1])/89*i)

/360) for i in range(0, 90)]) - 1)

132

133 floating_6 = np.zeros((np.shape(f)[0]))

59

134 for i in payment_indices:

135 floating_6 += df_0[:, i] * (np.prod([(1 + (f[0, 0, i-1]+(f[0, 0, i]-f[0,0,i-1])/89*i)

/360) for i in range(0, 90)]) - 1)

136

137 strike_1 = floating_1 / annuity

138 strike_2 = floating_2 / annuity

139 strike_3 = floating_3 / annuity

140 strike_4 = floating_4 / annuity

141 strike_5 = floating_5 / annuity

142 strike_6 = floating_6 / annuity

143

144 print("Strikes", strike_1[0], strike_2[0], strike_3[0], strike_4[0], strike_5[0], strike_6

[0])

145

146 floating_leg1 = np.zeros((np.shape(f)[0]))

147 floating_leg2 = np.zeros((np.shape(f)[0]))

148 floating_leg3 = np.zeros((np.shape(f)[0]))

149 floating_leg4 = np.zeros((np.shape(f)[0]))

150 floating_leg5 = np.zeros((np.shape(f)[0]))

151 floating_leg6 = np.zeros((np.shape(f)[0]))

152 fixed_leg_1 = np.zeros((np.shape(f)[0]))

153 fixed_leg_2 = np.zeros((np.shape(f)[0]))

154 fixed_leg_3 = np.zeros((np.shape(f)[0]))

155 fixed_leg_4 = np.zeros((np.shape(f)[0]))

156 fixed_leg_5 = np.zeros((np.shape(f)[0]))

157 fixed_leg_6 = np.zeros((np.shape(f)[0]))

158

159 for i in payment_indices:

160 floating_leg1 += df_expiry[:, i-expiry] * notional * f[:, expiry, i] * dt

161

162 floating_leg2 += df_expiry[:, i-expiry] * notional * (f[:, expiry, i] + f[:, expiry, i

-1]) / 2 * dt

163

164 floating_leg3 += df_expiry[:, i-expiry] * notional * ((1 + f[:, expiry, i-1]*45/360) *

(1 + f[:, expiry, i]*45/360)-1)

165

166 floating_leg4 += df_expiry[:, i-expiry] * notional * (((((1 + f[:, expiry, i-1]/360)

** 45) * ((1 + f[:, expiry, i]/360) ** 45))) - 1)

167

168 floating_leg5 += df_expiry[:, i-expiry] * notional * (np.prod([(1 + (f[:, expiry, i

-1]+(f[:, expiry, i]-f[:,expiry,i-1])/89*j)/360) for j in range(0, 90)], axis = 0)

- 1)

169

170 b = np.sqrt(1/360) * np.random.normal(0, 1, (np.shape(f)[0], 89))

171 bb = np.cumsum(b, axis=1)

172 fl_bridge = np.ones((np.shape(f)[0], 90))

173 fl_bridge[:, 0] = f[:, expiry, i-1]

60

174 for j in range(1, 90):

175 fl_bridge[:, j] = f[:, expiry, i-1] + (f[:, expiry, i] - f[:, expiry, i-1]) * j /

89 + sigma * (bb[:, j-1] - (j / 89) * b[:, -1])

176 floating_leg6 += df_expiry[:, i-expiry] * notional * (np.prod([(1 + fl_bridge[:, j

]/360) for j in range(0, 90)], axis = 0) - 1)

177

178 fixed_leg_1 += df_expiry[:, i-expiry] * notional * strike_1 * dt

179 fixed_leg_2 += df_expiry[:, i-expiry] * notional * strike_2 * dt

180 fixed_leg_3 += df_expiry[:, i-expiry] * notional * strike_3 * dt

181 fixed_leg_4 += df_expiry[:, i-expiry] * notional * strike_4 * dt

182 fixed_leg_5 += df_expiry[:, i-expiry] * notional * strike_5 * dt

183 fixed_leg_6 += df_expiry[:, i-expiry] * notional * strike_6 * dt

184

185 price_1 = np.mean(np.maximum(floating_leg1 - fixed_leg_1 , 0) / mm[:, expiry], axis=0)

186 price_2 = np.mean(np.maximum(floating_leg2 - fixed_leg_2 , 0) / mm[:, expiry], axis=0)

187 price_3 = np.mean(np.maximum(floating_leg3 - fixed_leg_3 , 0) / mm[:, expiry], axis=0)

188 price_4 = np.mean(np.maximum(floating_leg4 - fixed_leg_4 , 0) / mm[:, expiry], axis=0)

189 price_5 = np.mean(np.maximum(floating_leg5 - fixed_leg_5 , 0) / mm[:, expiry], axis=0)

190 price_6 = np.mean(np.maximum(floating_leg6 - fixed_leg_6 , 0) / mm[:, expiry], axis=0)

191

192 return price_1, price_2, price_3, price_4, price_5, price_6

193

194

195

196 def swaption_pricer_bb(f, dt=0.25, notional=100000000, expiry=0, tenor=1, maturity=4, Sigma=

None, sw_sp={}):

197 ’’’expiry, tenor, maturity: all need to be set in quarter; receives swaption details in

sw_sp dictionary’’’

198

199 #money market account

200 mm = np.ones((np.shape(f)[0], np.shape(f)[1]))

201 for i in range(1, expiry + 1):

202 mm[:, i] = mm[:, i - 1] * np.exp(f[:, i, i] * dt)

203

204 #discount factors at time 0

205 df_0 = np.ones((np.shape(f)[0], np.shape(f)[1]))

206 for i in range(1, expiry + tenor + maturity + 1):

207 df_0[:, i] = df_0[:, i - 1] * np.exp(-f[:, 0, i - 1] * dt)

208

209 # List for prices

210 prices = np.zeros((len(sw_sp.keys())))

211 count = 0

212

213 for item in sw_sp.keys():

214

215 expiry = sw_sp[item][’expiry’]

216 tenor = sw_sp[item][’tenor’]

61

217 maturity = sw_sp[item][’maturity’]

218

219 #discount factors at expiry for specific swaption

220 df_expiry = np.ones((np.shape(f)[0], tenor + maturity + 1))

221 for i in range(1, tenor + maturity + 1):

222 df_expiry[:, i] = df_expiry[:, i - 1] * np.exp(-f[:, expiry, i + expiry - 1] * dt)

223

224 payment_indices = np.arange(expiry + tenor, expiry + tenor + maturity)

225

226 # calculations supporting strike calculation: PV(float) = PV(fixed)

227 floating = np.zeros((np.shape(f)[0]))

228 annuity = np.sum(df_0[0, payment_indices] * dt)

229 for i in payment_indices:

230 floating += df_0[:, i] * (np.prod([(1 + (f[0, 0, i-1]+(f[0, 0, i]-f[0,0,i-1])/89*i

)/360) for i in range(0, 90)]) - 1)

231

232 strike = floating / annuity

233

234 floating_leg = np.zeros((np.shape(f)[0]))

235 fixed_leg = np.zeros((np.shape(f)[0]))

236

237 for i in payment_indices:

238 # approximating sigma via the sum of absolute volatilities for given expiry

239 sigma = 0

240 for j in range(np.shape(Sigma)[0]):

241 sigma += np.abs(Sigma[j, expiry, i-1])

242

243 # normal random variable for Brownian bridge

244 b = np.sqrt(1/360) * np.random.normal(0, 1, (np.shape(f)[0], 89))

245 bb = np.cumsum(b, axis=1)

246 fl_bridge = np.ones((np.shape(f)[0], 90))

247 fl_bridge[:, 0] = f[:, expiry, i-1]

248 for j in range(1, 90):

249 fl_bridge[:, j] = f[:, expiry, i-1] + (f[:, expiry, i] - f[:, expiry, i-1]) *

j / 89 + sigma * (bb[:, j-1] - (j / 89) * b[:, -1])

250

251 floating_leg += df_expiry[:, i-expiry] * notional * (np.prod([(1 + fl_bridge[:, j

]/360) for j in range(0, 90)], axis = 0) - 1)

252 fixed_leg += df_expiry[:, i-expiry] * notional * strike * dt

253

254 price = np.mean(np.maximum(floating_leg - fixed_leg , 0) / mm[:, expiry], axis=0)

255 prices[count] = price

256 count += 1

257

258 return prices

259

260

62

261 # Model training related code

262 # for data

263 file_path = ’’

264 data = pd.read_excel(file_path)

265

266 # Extracting features and targets - change for specific model appropriately

267 vol_param = data[[’vol_param’]].values

268 curve_and_swaptions = data[[’curve_param_lambda’, ’curve_param_beta_0’, ’curve_param_beta_1’,

’curve_param_beta_2’, ’1Y1Y’, ’1Y2Y’, ’1Y5Y’, ’1Y10Y’, ’1Y20Y’,

269 ’2Y1Y’, ’2Y2Y’, ’2Y5Y’, ’2Y10Y’, ’2Y20Y’, ’5Y1Y’, ’5Y2Y’,

270 ’5Y5Y’, ’5Y10Y’, ’5Y20Y’, ’10Y1Y’, ’10Y2Y’,

271 ’10Y5Y’, ’10Y10Y’, ’10Y20Y’, ’15Y1Y’, ’15Y5Y’, ’15Y10Y’, ’20Y5Y’,

’20Y10Y’]].values

272

273 # Convert to PyTorch tensors

274 features = torch.tensor(curve_and_swaptions , dtype=torch.float32)

275 targets = torch.tensor(vol_param , dtype=torch.float32)

276

277 # Standardize features

278 def standardize(data, mean=None, std=None):

279 if mean is None and std is None:

280 mean = torch.mean(data, dim=0)

281 std = torch.std(data, dim=0)

282 standardized_data = (data - mean) / std

283 return standardized_data , mean, std

284

285 # Standardize training data

286 features_standardized_1 , mean_features , std_features = standardize(features)

287

288

289

290 # Define Neural Network Model

291 class Model(nn.Module):

292 def __init__(self, hidden):

293 super().__init__()

294 self.l1 = nn.Linear(29, hidden)

295 self.a1 = nn.SiLU()

296 self.l2 = nn.Linear(hidden, hidden)

297 self.a2 = nn.SiLU()

298 self.l3 = nn.Linear(hidden, hidden)

299 self.a3 = nn.SiLU()

300 self.l4 = nn.Linear(hidden, hidden)

301 self.a4 = nn.SiLU()

302 self.l5 = nn.Linear(hidden, 1)

303 #self.a3 = nn.Sigmoid()

304

305 def forward(self, x):

63

306 x = self.a1(self.l1(x))

307 x = self.a2(self.l2(x))

308 x = self.a3(self.l3(x))

309 x = self.a4(self.l4(x))

310 x = self.l5(x)

311 return x

312

313 # Loss function (Mean Squared Error with L2 Regularization)

314 def criterion(pred, target, weights, alpha):

315 n = len(target)

316 return (torch.sum(torch.abs(pred - target)**2) + alpha * torch.sum(weights**2))

317 """ # Alternative loss function with relative error

318 def criterion(pred, target, weights, alpha, eps=1e-6):

319 rel_err = torch.abs(pred - target) / (target)

320 return torch.sum(rel_err**2) + alpha * torch.sum(weights**2)"""

321

322 # Training Function

323 def train(features, targets, n_epochs, hidden, alpha, learning_rate , save_path):

324 model = Model(hidden)

325 optimizer = Adam(model.parameters(), lr=learning_rate)

326

327 with tqdm(range(n_epochs)) as tepoch:

328 for epoch in tepoch:

329 optimizer.zero_grad()

330 pred = model(features)

331 weights = torch.cat([p.flatten() for p in model.parameters()])

332 loss = criterion(pred, targets, weights, alpha)

333 loss.backward()

334 optimizer.step()

335 tepoch.set_postfix(loss=loss.item())

336 torch.save(model.state_dict(), save_path)

337 print("Training finished and model saved.")

338

339

340

341 save_path = "...\\nn.pt"

342

343 h = 100

344 # Train the model

345 train(features_standardized_1 , targets, 80000, h, 0.00001, 0.00001, save_path)

346

347 # Load Model with Safe Deserialization

348 torch.serialization.add_safe_globals([Model]) # Allowlist the Model class

349

350 # Initialize Model with correct architecture

351 model = Model(h)

352

64

353 # Load state_dict safely

354 state_dict = torch.load(save_path , map_location=torch.device(’cpu’))

355 model.load_state_dict(state_dict)

356 model.eval()

65

	Heath-Jarrow-Morton framework
	Introduction and deriving market dynamics
	Volatility functions

	Discretized HJM
	Model implementation
	Moment matching by pathwise adjustments
	Comparing Caplet prices in the continuous and discretized implementation
	The initial forward curve

	LIBOR transition and new term structures
	LIBOR - Calculation and Decline
	SOFR - Transition and Calculation
	Approximating 90-day SOFR

	Deep neural networks
	Deep neural networks

	Numerical Expreriments - Calibration for ATM swaptions
	Constant volatility, flat initial forward curve
	Constant volatility, Nelson-Siegel initial forward curve
	2-factor volatility, flat initial forward curve

	Conclusion
	Appendix
	Magyar nyelvű összefoglaló - HJM modellek kalibrálása mély neurális hálózatok segítségével
	Python Codes

