Eötvös Loránd Tudományegyetem Természettudományi Kar

Folyadékdinamikai stacionárius parciális differenciálegyenletek numerikus megoldása

MSC SZAKDOLGOZAT

Lados Bálint István

Alkalmazott matematikus MSc Alkalmazott analízis specializáció

TÉMAVEZETŐ:

Karátson János

Alkalmazott Analízis és Számításmatematikai Tanszék

BUDAPEST, 2025

Tartalomjegyzék

Be	vezet	és	1
1.	Absz	ztrakt nyeregpont-feladatok	2
	1.1.	Nyeregpont-feladatok megoldhatósága	2
	1.2.	Galjorkin-módszer nyeregpont-feladatokra	4
2.	Itera	atív módszerek nyeregpont-feladatok megoldására	5
	2.1.	A Schur-féle komplementeroperátorra vonatkozó módszerek	5
		2.1.1. Szimmetrikus operátorokra alkalmazható módszerek	5
		2.1.2. Nem szimmetrikus operátorokra alkalmazható módszerek	7
	2.2.	Az operátormátrixszal felírt nagy rendszerre vonatkozó módszerek	10
		2.2.1. Szimmetrikus indefinit mátrixokra alkalmazható módszerek	10
3.	A St	okes-feladat	14
	3.1.	Megoldhatóság	14
	3.2.	Az Uzawa- és Krylov–Uzawa-algoritmus	15
	3.3.	A nagy rendszer megoldása	17
	3.4.	Numerikus tesztek	19
4.	Az ()seen-egyenlet	30
	4.1.	Megoldhatóság	30
	4.2.	A CGN- és GCR-Uzawa-algoritmus	31
	4.3.	A nagy rendszer megoldása	35
	4.4.	Numerikus tesztek	40
Hi	vatko	zások	50

Bevezetés

Összenyomhatatlan folyadékok stacionárius áramlásának egyik alapvető modelljét a Navier– Stokes-egyenletek írják le, melyek linearizált változataként tekinthetünk a Stokes-feladatra és az Oseen-egyenletre. Utóbbi a folyadék viszkozitását és az áramlás során fellépő konvekciós folyamatok leírását is magában foglalja. Ezek olyan elliptikus másodrendű parciális differenciálegyenletek, melyek ismeretlen függvényként a folyadék sebességét és a nyomást tartalmazzák. Ebben a dolgozatban kétdimenziós korlátos tartományon homogén Dirichlet peremfeltétel mellett vizsgáljuk a Stokes-feladat és az Oseen-egyenlet elméleti tulajdonságait és numerikus megoldási módszereit, illetve ezen belül áttekintjük az Uzawa-típusú iterációkat és a végeselemmódszerrel kapott lineáris egyenletrendszer iteratív megoldásának lehetőségeit, és az egyenlet paramétereinek függvényében elméleti számításokkal és numerikus tesztek segítségével összehasonlítjuk az egyes megoldási módszerek hatékonyságát. A szakdolgozat elkészítésének szerves részét képezte a módszerek MATLAB programnyelven való implementálása is.

A szakdolgozat első fejezetében absztrakt nyeregpont-feladatok megoldhatóságát tárgyaljuk az általánosabb nem szimmetrikus esetben korlátos lineáris operátorokkal és bilineáris formákkal megadott feladatokra egyaránt. Meghatározzuk az ún. Schur-féle komplementeroperátor koercivitási és korlátossági együtthatóját, mely alapvető fontosságú lesz később az iteratív módszerek elméleti vizsgálata során. A fejezet végén kitérünk a nyeregpont-feladatokra alkalmazott Galjorkin-módszer tulajdonságaira is.

A második fejezetben áttekintjük a Schur-féle komplementeroperátorra vonatkozó Uzawa-típusú iteratív módszereket a szimmetrikus és a nem szimmetrikus esetben egyaránt, majd megvizsgáljuk a szimmetrikus esetben a végeselemes nagy egyenletrendszerre alkalmazható iteratív módszereket is. Az egyenletesen pozitív esetben az egyszerű iteráció, a konjugált gradiensmódszer és a MINRES algoritmus leírását és ismert konvergenciabecsléseit, illetve ezek nyeregpont-feladatra alkalmazott változatát mutatjuk be. A nem szimmetrikus esetben a prekondicionált CGN- és GCR-módszert tekintjük át hasonló keretek között, és összehasonlítjuk a lineáris becsléseiket. A végeselem-módszeres diszkretizáció esetében a szimmetrikus indefinit mátrixszal felírt nagy egyenletrendszerre alkalmazott prekondicionált MINRES- és CGN-módszer konvergenciájának tulajdonságait vizsgáljuk, ahol a prekondicionálásban a diszkrét Laplace- és tömegmátrixot használjuk. Ezzel a prekondicionáló mátrixszal kiszámítjuk nyeregpont-feladatokra a konvergenciabecsléseket az előző fejezet eredményeit felhasználva.

Az első két fejezetben tárgyalt elméleti eredmények alkalmazásaként a harmadik fejezetben a Stokes-feladatot, a negyedik fejezetben pedig az Oseen-egyenletet tanulmányozzuk részletesen. Először felírjuk őket nyeregpont-feladatként, majd a megoldhatóságukat vizsgáljuk. Ezután a Stokes-feladatnál az Uzawa- és a Krylov–Uzawa-algoritmus konvergenciáját vizsgáljuk, az Oseen-egyenletnél pedig levezetjük a CGN- és a GCR-Uzawa-algoritmust, majd külön megnézzük a konvekció nélküli és a konvekciót tartalmazó esetet is. Hasonlóan vizsgáljuk a nagy rendszer esetét is, ahol a viszkozitási paraméter különböző konkrét és aszimptotikus értékeire megadjuk, hogy a CGN-módszer vagy a MINRES lineáris becslése a jobb. Végül mindkét fejezetet numerikus tesztekkel zárjuk. Ismertetjük a végeselem-módszer implementációját, tesztfeladatokat dolgozunk ki, elemezzük a módszerek konvergenciáját, ábrákat készítünk a numerikus megoldásról, és összehasonlítjuk a korábban bemutatott megoldási módszerek hatékonyságát konkrét feladatok esetén. A numerikus tesztek alapján felállítunk egy sorrendet a megoldási módszerek között. Ezt utána összevetjük az elméleti becslésekkel, mely részben megmagyarázza a numerikus tesztek eredményeit.

1. Absztrakt nyeregpont-feladatok

Ez a fejezet az [1] könyv 12.1.1. fejezetének a felépítését követi, és általánosítja a nyeregpontfeladatok megoldhatóságával kapcsolatos eredményeket a nem szimmetrikus operátorok esetére is. Ez később alkalmazható lesz a Stokes-feladatra és az Oseen-egyenletre egyaránt. Az 1.2. állításban meghatározott koercivitási és korlátossági együtthatók fontosak lesznek az iteratív módszerek konvergenciájának vizsgálatakor. A megoldhatóság után külön alfejezetben vizsgáljuk a nyeregpont-feladatokra alkalmazott Galjorkin-módszert és a diszkretizált feladat megoldhatóságát.

1.1. Nyeregpont-feladatok megoldhatósága

Legyen *H*, *K* valós Hilbert-tér, $f \in H$ adott függvény, illetve $A : H \to H$ és $B : K \to H$ korlátos lineáris operátor, ahol az *A* egyenletes pozitivitása helyett most csak a koercivitását követeljük meg, tehát az *A* lehet nem szimmetrikus operátor is. A koercivitás szerint létezik olyan $m_A > 0$ konstans, melyre

$$\langle Au, u \rangle \ge m_A ||u||^2 \qquad (\forall u \in H).$$

Tekintsük az alábbi nyeregpont-feladatot:

$$\begin{cases}
Au + Bp = f \\
B^*u = 0
\end{cases}$$
(1)

Mivel az *A* operátor egy koercív korlátos lineáris operátor, ezért bijekció, így létezik A^{-1} . Ennek segítségével *u* kifejezhető az első egyenletből:

$$u = A^{-1}(f - Bp), (2)$$

és ez behelyettesíthető a második egyenletbe:

$$B^*A^{-1}(f-Bp) = 0 \quad \Leftrightarrow \quad Sp := B^*A^{-1}Bp = B^*A^{-1}f =: \widetilde{f},$$

ahol $S: K \to K$ a Schur-féle komplementeroperátor. Mivel a (2) egyenletből p ismeretében u egyértelműen meghatározható, ezért elég az $Sp = \tilde{f}$ egyenlet megoldhatóságát vizsgálni. Ha megmutatjuk, hogy az S lineáris operátor korlátos és koercív, akkor S bijekció, tehát létezik egyértelműen $p \in K$, amely teljesíti az operátoregyenletet. Az S operátor koercivitásához szükséges az ún. inf-sup-feltétel teljesülése:

1.1. Definíció. Az (1) általános nyeregpont-feladatra teljesül az *inf-sup-feltétel*, ha létezik olyan $\gamma > 0$ konstans, melyre

$$\inf_{p\in K\setminus\{0\}}\sup_{u\in H\setminus\{0\}}\frac{\langle Bp,u\rangle}{\|p\|\|u\|}=\gamma>0.$$

1.2. Állítás. $Az S := B^*A^{-1}B$ operátor korlátos és koercív a K Hilbert-térben az $m := \frac{m_A \gamma^2}{\|A\|^2}$ és $M := \frac{\|B\|^2}{m_A}$ konstansokkal, ha az inf-sup-feltétel teljesül γ -val, és m_A az A operátor koercivitási konstansa.

Bizonyítás.

(i) Korlátosság.

Az A operátor koercivitása és a Cauchy-Schwarz-egyenlőtlenség szerint

$$m_A \|u\|^2 \leq \langle Au, u \rangle \leq \|Au\| \|u\| \Rightarrow m_A \|u\| \leq \|Au\| \Rightarrow \|u\| \leq \frac{1}{m_A} \|Au\|.$$

Az $u := A^{-1}v$ helyettesítéssel kapjuk, hogy

$$||A^{-1}v|| \le \frac{1}{m_A} ||v|| \implies ||A^{-1}|| \le \frac{1}{m_A}$$

Ezt felhasználva az S operátorra adódik, hogy

$$||S|| = ||B^*A^{-1}B|| \le ||B^*|| ||A^{-1}|| ||B|| = ||A^{-1}|| ||B||^2 \le \frac{||B||^2}{m_A}.$$

(ii) Koercivitás.

Az A operátor korlátossága miatt

$$\|v\| = \|AA^{-1}v\| \le \|A\| \|A^{-1}v\| \Rightarrow \frac{1}{\|A\|} \|v\| \le \|A^{-1}v\|.$$

Az $u := A^{-1}v$ helyettesítéssel kapjuk az A koercivitásából és az előző becslésből, hogy

$$\langle Au, u \rangle \ge m_A ||u||^2 \quad \Rightarrow \quad \langle A^{-1}v, v \rangle \ge m_A ||A^{-1}v||^2 \ge \frac{m_A}{||A||^2} ||v||^2.$$

Ezt felhasználva az S operátorra adódik, hogy

$$\langle Sp,p\rangle = \langle B^*A^{-1}Bp,p\rangle = \langle A^{-1}Bp,Bp\rangle \ge \frac{m_A}{\|A\|^2} \|Bp\|^2 \ge \frac{m_A\gamma^2}{\|A\|^2} \|p\|^2 \quad (\forall p \in K). \quad \Box$$

1.3. Állítás. *Ha A egyenletesen pozitív operátor, akkor az 1.2. állításban az S operátor alsó határa m* = $\frac{\gamma^2}{\|A\|}$.

Bizonyítás. Azt kell megmutatni, hogy ebben az esetben $\langle A^{-1}v, v \rangle \ge \frac{1}{\|A\|} \|v\|^2 \quad (\forall v \in H).$

$$\langle A^{-1}v,v\rangle = \langle A^{-\frac{1}{2}}v,A^{-\frac{1}{2}}v\rangle = \|A^{-\frac{1}{2}}v\|^2 \ge \frac{1}{\|A\|}\|v\|^2,$$

ahol az utolsó becslés azért teljesül, mert az $u := A^{-\frac{1}{2}}v$ jelöléssel

$$\|v\|^{2} = \|A^{\frac{1}{2}}u\|^{2} \le \|A^{\frac{1}{2}}\|^{2}\|u\|^{2} = \|A\|\|A^{-\frac{1}{2}}v\|^{2}.$$

1.4. Következmény. Legyen H, K valós Hilbert-tér, illetve $A : H \to H$ és $B : K \to H$ korlátos lineáris operátor, emellett legyen A koercív is. Ha az inf-sup-feltétel teljesül, akkor bármely $f \in H$ függvény esetén létezik egyértelműen $(u, p) \in H \times K$ megoldása az (1) feladatnak.

Ezek az eredmények közvetlenül átvihetők bilineáris formákkal megadott feladatokra is:

$$\begin{cases} \langle Au, v \rangle + \langle Bp, v \rangle = \langle f, v \rangle & (\forall v \in H) \\ \langle Bq, u \rangle &= 0 & (\forall q \in K) \end{cases}$$
(3)

Legyen $a: H \times H \to \mathbb{R}$ és $b: K \times H \to \mathbb{R}$ az a bilineáris forma, melyre $a(u,v) := \langle Au, v \rangle$ és $b(p,v) := \langle Bp, v \rangle$. A $\phi: H \to \mathbb{R}$, $\phi v := \langle f, v \rangle$ korlátos lineáris funkcionált bevezetve az (1) feladat átírható

$$\begin{cases} a(u,v) + b(p,v) = \phi v & (\forall v \in H) \\ b(q,u) = 0 & (\forall q \in K) \end{cases}$$
(4)

alakra. A korlátos bilineáris formák Riesz-reprezentációjával pedig egy ilyen feladat átírható az (1) alakba. Az inf-sup-feltétel ezzel a felírással

$$\inf_{p \in K \setminus \{0\}} \sup_{u \in H \setminus \{0\}} \frac{b(p, u)}{\|p\| \|u\|} =: \gamma > 0.$$

Mivel az *A*, *B* operátorok korlátossága és koercivitása érvényes lesz az *a*, *b* bilineáris formákra is, ezért az 1.4. megoldhatósági tétel átvihető.

1.5. Következmény. Legyen H, K valós Hilbert-tér, illetve $a : H \times H \to \mathbb{R}$ és $b : K \times H \to \mathbb{R}$ korlátos bilineáris forma, emellett legyen a koercív is. Ha az inf-sup-feltétel teljesül, akkor bármely $\phi : H \to \mathbb{R}$ korlátos lineáris funkcionál esetén létezik egyértelműen $(u, p) \in H \times K$ megoldása a (4) feladatnak.

1.2. Galjorkin-módszer nyeregpont-feladatokra

Tekintsünk egy (1) alakú általános nyeregpont-feladatot, és írjuk fel az ehhez tartozó variációs problémát bilineáris formák segítségével, ami a (4)-nél megadott feladatot eredményezi. Legyenek $V_h \subset H$ és $P_h \subset K$ adott véges dimenziós alterek, és keressük azon $(u^h, p^h) \in V_h \times P_h$ függvénypárt, amelyre

$$\begin{cases} a(u^h, v^h) + b(p^h, v^h) = \phi v^h & (\forall v^h \in V_h) \\ b(q^h, u^h) &= 0 & (\forall q^h \in P_h) \end{cases}$$
(5)

A diszkretizált feladat megoldhatóságát az 1.5. állítás szerint vizsgálhatjuk. Az *a* és *b* bilineáris formák korlátosak lesznek az *A* és *B* operátor korlátossága miatt, és hasonló okokból az *a* koercív is. Azonban az inf-sup-feltétel csak akkor fog teljesülni, ha a V_h és P_h alterekre további feltételeket teszünk.

1.6. Definíció. A V_h és P_h altér teljesíti az *LBB-feltételt* vagy a *diszkrét inf-sup-feltételt*, ha a *h* rácsparamétertől függetlenül létezik olyan $\gamma_0 > 0$ állandó, amelyre

$$\inf_{p^h \in P_h \setminus \{0\}} \sup_{u^h \in V_h \setminus \{0\}} \frac{b(p^n, u^n)}{\|p^h\|_K \|u^h\|_H} \geq \gamma_0.$$

Ekkor a V_h és P_h altér *LBB-stabil* párt alkot.

1.7. Állítás. *Ha az LBB-feltétel teljesül, akkor létezik egyértelműen* $(u_*^h, p_*^h) \in V_h \times P_h$ megoldása az (5) feladatnak.

A Galjorkin-módszerrel kapott lineáris egyenletrendszer

$$\begin{bmatrix} A_h & B_h \\ B_h^T & 0 \end{bmatrix} \begin{bmatrix} c^h \\ s^h \end{bmatrix} = \begin{bmatrix} f^h \\ 0 \end{bmatrix}$$
(6)

alakban írható fel, ahol c^h és s^h a bázisfüggvények együtthatóit adja meg az u^h -t és p^h -t előállító lineáris kombinációban. A módszer konvergenciáját a Céa-lemmához hasonló tétel biztosítja, melynek részletei a Stokes-feladatra kidolgozva megtalálható a [2] könyv 3.4. fejezetében.

2. Iteratív módszerek nyeregpont-feladatok megoldására

Az iteratív módszerek alapgondolata az, hogy a feladat nehézsége miatt a pontos megoldás kiszámítása helyett a megoldást egy függvénysorozat szerint közelítjük, melyet rekurzívan számolunk, és az egyes iterációs lépések során az eredetinél könnyebb feladatokat oldunk meg. Ezek a módszerek alkalmazhatóak közvetlenül az operátorokkal megadott feladatokra, illetve használhatóak a Galjorkin-módszerrel kapott diszkretizált feladatra és az ebből származtatott lineáris egyenletrendszer megoldására is. Ebben a fejezetben áttekintjük a dolgozatban használt szimmetrikus és nem szimmetrikus iteratív módszerek algoritmusát, a konvergenciájukkal kapcsolatos eredményeket, és alkalmazhatóságukat az előző fejezetben ismertetett nyeregpontfeladatra felírt $Sp = \tilde{f}$ operátoregyenlet megoldására.

2.1. A Schur-féle komplementeroperátorra vonatkozó módszerek

2.1.1. Szimmetrikus operátorokra alkalmazható módszerek

Ebben az alfejezetben feltesszük, hogy a nyeregpont-feladatban szereplő A operátor szimmetrikus, ezért az $S := B^*A^{-1}B$ operátor is szimmetrikus, és így ha A koercív, akkor S egyenletesen pozitív operátor.

Legyen K valós Hilbert-tér, $S: K \to K$ egyenletesen pozitív korlátos lineáris operátor, tehát vannak olyan $M \ge m > 0$ állandók, melyekre

$$m\|p\|^2 \le \langle Sp,p \rangle \le M\|p\|^2 \qquad (\forall p \in K).$$

2.1. Algoritmus. Egyszerű iteráció.

- Legyen $p_0 \in K$ tetszőleges kezdőfüggvény, $\alpha > 0$ adott paraméter.
- Minden $k \in \mathbb{N}$ -re, ha már p_k -t ismerjük:

$$p_{k+1} := p_k - \alpha(Sp_n - f)$$

2.2. Állítás. *Ha* $0 < \alpha < \frac{2}{M}$, akkor a 2.1. algoritmus lineárisan konvergál az $Sp = \tilde{f}$ egyenlet p^* megoldásához. Az optimális α paraméter $\frac{2}{m+M}$, melyre

$$||p_k - p^*|| \leq \frac{1}{m} ||Sp_0 - \widetilde{f}|| \left(\frac{M-m}{M+m}\right)^k.$$

2.3. Következmény. Szimmetrikus Schur-féle komplementeroperátor esetén az egyszerű iteráció optimális α paramétere

$$lpha_{opt} := rac{2\|A\|^2 m_A}{m_A^2 \gamma^2 + \|A\|^2 \|B\|^2},$$

a konvergenciabecslés pedig

$$\|p_k - p^*\| \leq \frac{\|A\|^2}{m_A \gamma^2} \|Sp_0 - \widetilde{f}\| \left(\frac{\|A\|^2 \|B\|^2 - m_A^2 \gamma^2}{\|A\|^2 \|B\|^2 + m_A^2 \gamma^2} \right)^k.$$

2.4. Algoritmus. Konjugált gradiens-módszer (CG).

- Legyen $p_0 \in K$ tetszőleges kezdőfüggvény és $d_0 := r_0 = Sp_0 \tilde{f}$.
- Minden $k \in \mathbb{N}$ -re, ha már p_k , d_k , r_k -t ismerjük:

$$\begin{cases} \alpha_k := -\frac{\|r_k\|^2}{\langle Sd_k, d_k \rangle} \\ p_{k+1} := p_k + \alpha_k d_k \\ r_{k+1} := r_k + \alpha_k Sd_k \\ \beta_k := \frac{\|r_{k+1}\|^2}{\|r_k\|^2} \\ d_{k+1} := r_{k+1} + \beta_k d_k \end{cases}$$

2.5. Állítás. A 2.4. algoritmus lineárisan konvergál az $Sp = \tilde{f}$ egyenlet p^* megoldásához, és

$$||p_k - p^*||_S \le 2||p_0 - p^*||_S \left(\frac{\sqrt{M} - \sqrt{m}}{\sqrt{M} + \sqrt{m}}\right)^k.$$

2.6. Következmény. Szimmetrikus Schur-féle komplementeroperátor esetén a konjugált gradiens-módszer konvergenciabecslése:

$$||p_k - p^*||_S \le 2||p_0 - p^*||_S \left(\frac{||A|| ||B|| - m_A \gamma}{||A|| ||B|| + m_A \gamma}\right)^k$$

2.7. Algoritmus. MINRES

- Legyen $p_0 \in K$ tetszőleges kezdőfüggvény, $v_0 := w_0 = w_1 = 0$, $v_1 := \tilde{f} Sp_0$, $\gamma_1 := ||v_1||$, $\eta := \gamma_1$, $s_0 := s_1 = 0$, és $c_0 := c_1 = 1$.
- Minden $k \in \mathbb{N}$ -re, ha már p_{k-1} , v_k , w_k , γ_k , s_k , c_k -t ismerjük:

$$\begin{cases} v_{k} := \frac{v_{k}}{\gamma_{k}}; \ \delta_{k} := \langle Sv_{k}, v_{k} \rangle \\ v_{k+1} := Sv_{k} - \delta_{k}v_{k} - \gamma_{k}v_{k-1}; \ \gamma_{k+1} := \|v_{k+1}\| \\ \alpha_{0} := c_{k}\delta_{k} - c_{k-1}s_{k}\gamma_{k}; \ \alpha_{1} := \sqrt{\alpha_{0}^{2} + \gamma_{k+1}^{2}} \\ \alpha_{2} := s_{k}\delta_{k} + c_{k-1}c_{k}\gamma_{k}; \ \alpha_{3} := s_{k-1}\gamma_{k} \\ c_{k+1} := \frac{\alpha_{0}}{\alpha_{1}}; \ s_{k+1} := \frac{\gamma_{k+1}}{\alpha_{1}} \\ w_{k+1} := \frac{v_{k} - \alpha_{3}w_{k-1} - \alpha_{2}w_{k}}{\alpha_{1}} \\ p_{k} := p_{k-1} + c_{k+1}\eta w_{k+1} \\ \eta := -s_{k+1}\eta \end{cases}$$

2.8. Állítás. A 2.7. algoritmus lineárisan konvergál az $Sp = \tilde{f}$ egyenlet p^* megoldásához, és

$$\|r_k\| \le 2\|r_0\| \left(\frac{\sqrt{M} - \sqrt{m}}{\sqrt{M} + \sqrt{m}}\right)^k.$$
(7)

2.9. Következmény. Szimmetrikus Schur-féle komplementeroperátor esetén a MINRES konvergenciabecslése:

$$||r_k|| \le 2||r_0|| \left(\frac{||A|| ||B|| - m_A \gamma}{||A|| ||B|| + m_A \gamma}\right)^k.$$

2.1.2. Nem szimmetrikus operátorokra alkalmazható módszerek

Amennyiben az *A* operátor nem szimmetrikus, az *S* operátor sem szimmetrikus, ezért nem szimmetrikus iteratív módszerekre is szükség lesz a nyeregpont-feladatok megoldásához. A dolgozatban az egyszerű iteráció nem szimmetrikus változata mellett két általánosan elterjedt módszert fogunk vizsgálni: az egyik a CGN-módszer, mely a konjugált gradiens módszer alkalmazása a szimmetrizált normálegyenletre, a másik pedig a GCR-módszer, amely a reziduális hibát minimalizálja. Az alapvető algoritmusok megtalálhatóak a [3] könyvben.

Legyen K valós Hilbert-tér, $S: K \to K$ koercív korlátos lineáris operátor, tehát vannak olyan $M \ge m > 0$ állandók, melyekre

$$\|m\|p\|^2 \leq \langle Sp,p \rangle$$
 és $\|Sp\| \leq M\|p\|$ $(\forall p \in K).$

2.10. Állítás. Ha $0 < \alpha < \frac{2m}{M^2}$, akkor a 2.1. algoritmus lineárisan konvergál az $Sp = \tilde{f}$ egyenlet p^* megoldásához. Az optimális α paraméter $\frac{m}{M^2}$, melyre

$$||p_k - p^*|| \le \frac{1}{m} ||Sp_0 - \widetilde{f}|| \left(1 - \frac{m^2}{M^2}\right)^{\frac{k}{2}}$$

2.11. Következmény. Nem szimmetrikus Schur-féle komplementeroperátor esetén az egyszerű iteráció optimális α paramétere

$$\alpha_{opt} := \frac{m_A^3 \gamma^2}{\|A\|^2 \|B\|^4},$$

a konvergenciabecslés pedig

$$||p_k - p^*|| \le \frac{||A||^2}{m_A \gamma^2} ||Sp_0 - \widetilde{f}|| \left(1 - \left(\frac{m_A \gamma}{||A|| ||B||}\right)^4\right)^{\frac{k}{2}}.$$

Amennyiben az iteratív módszereket közvetlenül alkalmazzuk a megoldandó egyenletre, a konvergencia lassú lehet, ezért általában az egyenletet prekondicionáljuk egy egyenletesen pozitív P operátor segítségével, és az eredeti helyett a $P^{-1}Sp = P^{-1}\tilde{f}$ egyenletet oldjuk meg. Ebben a formában lett megadva a CGN-módszer 2.12. és a GCR-módszer 2.13. algoritmusa.

Legyen a *P* által indukált energia-skalárszorzat $\langle x, y \rangle_P := \langle Px, y \rangle$, és az ehhez tartozó *P*-norma $||x||_P := \sqrt{\langle x, x \rangle_P}$, amely megjelenik az algoritmusokban és a konvergenciabecslésekben egyaránt. Prekondicionálás esetén az algoritmusokban az $x = P^{-1}y$ alakú lépéseknél P^{-1} meghatározása helyett a Px = y alakú egyszerűbb segédfeladatot oldjuk meg.

Az $r_k := P^{-1}Sp_k - P^{-1}\tilde{f}$ reziduális hibavektor *P*-normája a *k*. iteratív lépésben lineárisan becsülhető, ami a $P^{-1}S$ operátor *m* koercivitási és *M* korlátossági együtthatójától függ:

$$m := \inf \left\{ \left\langle P^{-1} Sp, p \right\rangle_{P} : \|p\|_{P} = 1 \right\} = \inf \left\{ \left\langle Sp, p \right\rangle : \|p\|_{P} = 1 \right\} > 0$$

$$M := \|P^{-1} S\|_{P} = \sup \left\{ \left\langle Sp, q \right\rangle : \|p\|_{P} = \|q\|_{P} = 1 \right\}$$

(8)

2.12. Algoritmus. Prekondicionált CGN

 $p_0 := 0;$ $r_0 := P^{-1}Sp_0 - P^{-1}\widetilde{f};$ $s_0 := P^{-1} S^* r_0;$ $d_0 := s_0;$ k := 0;while $||r_k||_P > TOL$ do $x_k := P^{-1}Sd_k;$ $\alpha_k = -\frac{\|s_k\|_P^2}{\|x_k\|_P^2};$ $p_{k+1} := p_k + \alpha_k d_k;$ $r_{k+1} := r_k + \alpha_k x_k;$ $s_{k+1} := P^{-1} S^* r_{k+1};$ $\beta_k = \frac{\|s_{k+1}\|_P^2}{\|s_k\|_P^2};$ $d_{k+1} := s_{k+1} + \beta_k d_k;$ k := k + 1;end

2.13. Algoritmus. Prekondicionált GCR

$$p_{0} := \mathbf{0};$$

$$r_{0} := P^{-1}Sp_{0} - P^{-1}\tilde{f};$$

$$d_{0} := r_{0};$$

$$x_{0} := P^{-1}Sd_{0};$$

$$k := 0;$$
while $||r_{k}||_{P} > TOL$ do
$$\left| \begin{array}{c} \alpha_{k} := -\frac{\langle r_{k}, x_{k} \rangle_{P}}{||x_{k}||_{P}^{2}}; \\ p_{k+1} := p_{k} + \alpha_{k}d_{k}; \\ r_{k+1} := r_{k} + \alpha_{k}x_{k}; \\ s_{k} := P^{-1}Sr_{k+1}; \\ \mathbf{for} \ i = 0, 1, \dots, k \ \mathbf{do} \\ \left| \begin{array}{c} \beta_{i,k} := -\frac{\langle s_{k}, x_{i} \rangle_{P}}{||x_{i}||_{P}^{2}}; \\ \mathbf{end} \\ d_{k+1} := r_{k+1} + \sum_{i=0}^{k} \beta_{i,k}d_{i}; \\ x_{k+1} := s_{k} + \sum_{i=0}^{k} \beta_{i,k}x_{i}; \\ k := k+1; \\ \mathbf{end} \end{array} \right|$$

,

2.14. Állítás. A 2.12. és 2.13. algoritmus lineárisan konvergál az $Sp = \tilde{f}$ egyenlet p^* megoldásához, és

a CGN-módszer lineáris becslése:

$$\|r_k\|_P \le 2\|r_0\|_P \left(\frac{M-m}{M+m}\right)^k; \quad (9)$$
a GCR-módszer lineáris becslése:

$$\|r_k\|_P \le \|r_0\|_P \left(1-\frac{m^2}{M^2}\right)^{\frac{k}{2}}. \quad (10)$$

2.15. Következmény. Nem szimmetrikus Schur-féle komplementeroperátor esetén a CGN-módszer konvergenciabecslése:

$$\|r_k\|_P \le 2\|r_0\|_P \left(\frac{\|A\|^2 \|B\|^2 - m_A^2 \gamma^2}{\|A\|^2 \|B\|^2 + m_A^2 \gamma^2}\right)^k$$

2.16. Következmény. Nem szimmetrikus Schur-féle komplementeroperátor esetén a GCR-módszer konvergenciabecslése:

$$||r_k||_P \le ||r_0||_P \left(1 - \left(\frac{m_A \gamma}{||A|| ||B||}\right)^4\right)^{\frac{\kappa}{2}}$$

2.17. Megjegyzés. A 2.16. következményben szereplő becslés nagyságrendileg ugyanaz, mint a nem szimmetrikus egyszerű iteráció 2.11. következménybeli konvergenciabecslése. A gyakorlati alkalmazásoknál azonban a GCR-módszer jellemzően ennél lényegesen gyorsabban konvergál, tehát ez az elméleti becslés pesszimista a tapasztalt konvergenciához képest.

A két módszer lineáris becslését összehasonlíthatjuk aszerint, hogy mely *m* és *M* számok esetén lesz a GCR-módszer (10) becslésében szereplő felső korlát kisebb a CGN-módszer (9) becslésében találhatónál. Ezzel kapcsolatban idézem egy korábbi eredményemet a [4] TDK dolgoza-tomból:

2.18. Tétel. Legyen $k \in \{1, ..., N\}$ egy tetszőleges index. A GCR-módszer lineáris becslése a k. iteratív lépésben pontosan akkor lesz jobb a CGN-módszer lineáris becslésénél, ha $\frac{M}{m} > L_k$, ahol m és M a (8) szerint értendő, és L_k az egyértelműen létező valós gyöke az

$$f_k(x) = (1 - 4^{\frac{1}{k}})x^3 + (3 + 4^{\frac{1}{k}})x^2 + 3x + 1$$

harmadfokú polinomnak.

k	1	2	3	4	5	6	7	8	9	10
L_k	2.7423	5.5708	8.4388	11.3158	14.1962	17.0783	19.9614	22.8450	25.7291	28.6134

1. táblázat. Az L_k sorozat első tíz tagja.

Az L_k sorozat szigorú monoton növekedéséből következik az alábbi állítás:

2.19. Állítás. *Ha a CGN-módszer lineáris becslése jobb a GCR-módszer becslésénél egy adott* $k' \in \{1, ..., N\}$ index *esetén is jobb lesz.*

2.20. Megjegyzés. Amennyiben a Schur-féle komplementeroperátor szimmetrikus, a 2.7. MIN-RES és a 2.13. GCR-módszer (prekondicionálás nélkül, azaz a P := I esetben) reziduális hibavektorai megegyeznek (lásd [5], p. 244), ezért a reziduális norma (7) és (10) lineáris becslése egyszerre teljesül, tehát vehetjük a (7) és (10)-ben szereplő becslések minimumát, és ezt összehasonlíthatjuk a CGN-módszer (9) becslésével.

2.21. Állítás. Legyen K valós Hilbert tér és $S: K \to K$ egyenletesen pozitív korlátos lineáris operátor. Ekkor bármely $f \in K$ esetén az $Sp = \tilde{f}$ operátoregyenletre alkalmazott CGN- és MINRES-módszer lineáris konvergenciabecslése közül mindig a MINRES becslése az élesebb. A két konvergenciabecslés pontosan akkor esik egybe, ha az S határai egybeesnek, azaz m = M. Ez csak akkor lehetséges, ha S = mI alakú, ahol m > 0.

Bizonyítás. A 2.20. megjegyzés szerint a (7) és (10)-ben szereplő becslések minimumát kell összehasonlítani a (9) becsléssel. Megmutatjuk, hogy a becslések minimuma helyett önmagában csak a (7) becslés is élesebb a CGN-módszer becslésénél. A $\kappa := \frac{M}{m} \ge 1$ állandó bevezetésével a vizsgálandó egyenlőtlenség:

$$\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} \le \frac{\kappa-1}{\kappa+1}.$$

Az $f(x) = \frac{x-1}{x+1} = 1 - \frac{2}{x+1}$ függvény szigorúan monoton növő a pozitív félegyenesen. Ha $\kappa > 1$, akkor $\sqrt{\kappa} < \kappa$, tehát $f(\sqrt{\kappa}) < f(\kappa)$, ezért az egyenlőtlenség szigorúan teljesül. Ha $\kappa = 1$, akkor $\sqrt{\kappa} = \kappa$, vagyis a két becslés megegyezik. Egyenlőség tehát pontosan akkor teljesül, ha

$$\kappa = \frac{M}{m} = 1 \quad \Leftrightarrow \quad m = M.$$

Ha m = M, akkor az S határai egybeesnek, így

$$m\|p\|^{2} \leq \langle Sp,p \rangle \leq m\|p\|^{2} \quad \Rightarrow \quad m\|p\|^{2} = m \langle p,p \rangle = \langle mIp,p \rangle = \langle Sp,p \rangle \quad (\forall p \in K).$$

9

Ez pedig az S önadjungáltsága miatt pontosan akkor teljesül, ha S = mI.

2.22. Megjegyzés. Ha a GCR-módszerrel oldunk meg egy egyenletesen pozitív operátorra felírt operátoregyenletet, akkor a GCR-módszer (10) konvergenciabecslése helyett a szimmetria miatt áttérhetünk a MINRES 2.8. állításban megadott becslésére a 2.20. megjegyzés szerint. A CGN-módszerrel összevetve tehát a 2.21. állítás szerint a GCR-módszer konvergenciabecslése mindig jobb lesz (vagy esetleg azonos) a szimmetrikus esetben.

2.23. Következmény. Szimmetrikus Schur-féle komplementeroperátor esetén a CGN-módszer és a MINRES konvergenciabecslése pontosan akkor esik egybe, ha

$$\gamma = \frac{\sqrt{\|A\|} \|B\|}{\sqrt{m_A}}$$

Ez csak akkor lehetséges, ha $m_A = ||A||$ és $\gamma = ||B||$, ami miatt $A = m_A I$ alakú.

Bizonyítás. A 2.21. állítás szerint azt kell megvizsgálni, hogy m = M mikor teljesül, ahol az 1.2. és 1.3. állítás szerint $m = \frac{\gamma^2}{\|A\|}$ és $M = \frac{\|B\|^2}{m_A}$.

$$\frac{\gamma^2}{\|A\|} = \frac{\|B\|^2}{m_A} \quad \Leftrightarrow \quad m_A \gamma^2 = \|A\| \|B\|^2 \quad \Rightarrow \quad \gamma = \frac{\sqrt{\|A\|}}{\sqrt{m_A}} \|B\|.$$

Mivel $1 \leq \frac{\|A\|}{m_A}$ és $1 \leq \frac{\|B\|}{\gamma}$, ezért $1 \leq \frac{\sqrt{\|A\|}\|B\|}{\sqrt{m_A\gamma}}$, ami csak akkor teljesülhet egyenlőséggel, ha külön-külön $m_A = \|A\|$ és $\gamma = \|B\|$. Az A önadjungáltsága miatt a határok egybeesése a 2.21. állítás bizonyításához hasonlóan itt is magával vonja az $A = m_A I$ feltételt.

2.2. Az operátormátrixszal felírt nagy rendszerre vonatkozó módszerek

2.2.1. Szimmetrikus indefinit mátrixokra alkalmazható módszerek

Az $Sp = \tilde{f}$ operátoregyenletet megoldó Uzawa-típusú algoritmusok helyett a nyeregpont-feladat speciális alakjának kihasználása nélkül közvetlenül megoldhatjuk az alábbi nagy egyenletrend-szert is:

$$Gv := \begin{bmatrix} A_h & B_h \\ B_h^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{c}^h \\ s^h \end{bmatrix} = \begin{bmatrix} \mathbf{f}^h \\ 0 \end{bmatrix} := g,$$

ahol az A_h , B_h mátrix az A és B operátor, az \mathbf{f}^h vektor pedig az f függvény megfelelő végeselemmódszerrel kapott diszkretizáltjai. A lineáris egyenletrendszer G mátrixa pontosan akkor szimmetrikus, ha A_h szimmetrikus, azonban ettől nem lesz G pozitív definit, sőt igazolható, hogy G indefinit. A koercivitás hiányában az előző alfejezetekben bemutatott egyszerű iteráció és a konjugált gradiens-módszer (közvetlenül) nem használható. A szimmetrikus esetben a bemutatott iteratív módszerek közül a MINRES, a nem szimmetrikus esetben pedig a CGN- és a GCR-módszer alkalmazható a prekondicionált $P^{-1}Gv = P^{-1}g$ egyenletre, ahol P szimmetrikus pozitív definit mátrix.

A továbbiakban ezen alfejezeten belül feltesszük, hogy az A_h mátrix szimmetrikus.

Ha A_h szimmetrikus és M_h a nyomáshoz tartozó tömegmátrix, akkor a

$$\widetilde{P} := \begin{bmatrix} A_h & 0\\ 0 & M_h \end{bmatrix}$$

prekondicionáló mátrix jó választás lehet, lásd [2] 4.2.1. fejezetét.

2.24. Állítás. $Az M_h^{-1} B_h^T A_h^{-1} B_h$ mátrix sajátértékei az [m, M] intervallumban vannak, ahol m és M az S operátor határai az 1.6. definíció szerinti diszkrét inf-sup-konstanssal.

Bizonyítás. Lásd [2] 3.22. tételét.

2.25. Állítás. A $\tilde{P}^{-1}G$ mátrix sajátértékei az

$$\left[\frac{1-\sqrt{1+4M}}{2}, \frac{1-\sqrt{1+4m}}{2}\right] \cup \{1\} \cup \left[\frac{1+\sqrt{1+4m}}{2}, \frac{1+\sqrt{1+4M}}{2}\right]$$

intervallumokban helyezkednek el.

Bizonyítás. A számolás menete a [2] 4.2.1. fejezetét követi. Az alábbi sajátérték-feladatot kell megoldani:

$$\begin{bmatrix} A_h & B_h \\ B_h^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \lambda \begin{bmatrix} A_h & 0 \\ 0 & M_h \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix}.$$

Ez átírható az alábbi alakba:

$$\begin{cases} A_h \mathbf{u} + B_h p = \lambda A_h \mathbf{u} \\ B_h^T \mathbf{u} = \lambda M_h p \end{cases}$$

A $\lambda = 1$ biztosan sajátérték azon sajátvektorokkal, ahol p = 0, és **u**-ra teljesül az, hogy $B_h^T \mathbf{u} = 0$. Itt kihasználjuk, hogy létezik ilyen $\mathbf{u} \neq \mathbf{0}$ vektor, mert B_h^T téglalapmátrix. Tegyük fel, hogy $\lambda \neq 1$. Ekkor az első egyenletből kifejezhetjük az **u** változót:

$$B_h p = (\lambda - 1)A_h \mathbf{u} \quad \Rightarrow \quad \mathbf{u} = (\lambda - 1)^{-1}A_h^{-1}B_h p$$

Helyettesítsük be **u**-t a második egyenletbe:

$$(\lambda - 1)^{-1} B_h^T A_h^{-1} B_h p = \lambda M_h p \quad \Rightarrow \quad B_h^T A_h^{-1} B_h p = \lambda (\lambda - 1) M_h p =: \mu M_h p$$

A 2.24. állítás szerint $\mu \in [m, M]$. A $\lambda^2 - \lambda - \mu = 0$ másodfokú egyenlet megoldásával a μ ismeretében kifejezhetőek a λ sajátértékek:

$$\lambda_1(\mu)=\frac{1-\sqrt{1+4\mu}}{2}<0\quad\text{és}\quad\lambda_2(\mu)=\frac{1+\sqrt{1+4\mu}}{2}>1$$

A keresett intervallumok végpontjait ezek szélsőértékei határozzák meg:

$$\begin{split} \min_{\mu \in [m,M]} \lambda_1(\mu) &= \frac{1 - \sqrt{1 + 4M}}{2}; \qquad \max_{\mu \in [m,M]} \lambda_1(\mu) = \frac{1 - \sqrt{1 + 4m}}{2} \\ \min_{\mu \in [m,M]} \lambda_2(\mu) &= \frac{1 + \sqrt{1 + 4m}}{2}; \qquad \max_{\mu \in [m,M]} \lambda_2(\mu) = \frac{1 + \sqrt{1 + 4M}}{2} \end{split}$$

Ezek ismeretében már megadható az állításban szereplő intervallumok uniója.

2.26. Algoritmus. *Prekondicionált MINRES a* $P^{-1}Gx = P^{-1}g$ megoldására.

Legyen x₀ ∈ ℝ^N tetszőleges kezdővektor, ahol N a G mátrix oszlopainak száma. Legyen továbbá v₀ := w₀ = w₁ = **0**, γ₀ := 0, v₁ := g - Gx₀. Oldjuk meg a Pz₁ = v₁ egyenletrendszert, majd legyen γ₁ := √⟨z₁, v₁⟩, η := γ₁, s₀ := s₁ = 0 és c₀ := c₁ = 1. • Minden $k \in \mathbb{N}$ -re, ha már x_{k-1} , v_k , w_k , γ_k , z_k , s_k , c_k -t ismerjük:

$$\begin{cases} z_{k} := \frac{z_{k}}{\gamma_{k}}; \ \delta_{k} := \langle Gz_{k}, z_{k} \rangle \\ v_{k+1} := Gz_{k} - \frac{\delta_{k}}{\gamma_{k}} v_{k} - \frac{\gamma_{k}}{\gamma_{k-1}} v_{k-1} \\ Pz_{k+1} := v_{k+1}; \ \gamma_{k+1} := \sqrt{\langle z_{k+1}, v_{k+1} \rangle} \\ \alpha_{0} := c_{k} \delta_{k} - c_{k-1} s_{k} \gamma_{k}; \ \alpha_{1} := \sqrt{\alpha_{0}^{2} + \gamma_{k+1}^{2}} \\ \alpha_{2} := s_{k} \delta_{k} + c_{k-1} c_{k} \gamma_{k}; \ \alpha_{3} := s_{k-1} \gamma_{k} \\ c_{k+1} := \frac{\alpha_{0}}{\alpha_{1}}; \ s_{k+1} := \frac{\gamma_{k+1}}{\alpha_{1}} \\ w_{k+1} := \frac{z_{k} - \alpha_{3} w_{k-1} - \alpha_{2} w_{k}}{\alpha_{1}} \\ x_{k} := x_{k-1} + c_{k+1} \eta w_{k+1} \\ \eta := -s_{k+1} \eta \end{cases}$$

2.27. Állítás. Legyenek $a, b, c, d \in \mathbb{R}^+$ olyan konstansok, melyekre $P^{-1}G$ negatív sajátértékei a [-a, -b], pozitív sajátértékei a [c, d] intervallumban helyezkednek el, és a két intervallum hossza megegyezik. Ekkor a 2.26. prekondicionált MINRES lineárisan konvergál, és

$$||r_{2k}||_{P^{-1}} \leq 2||r_0||_{P^{-1}} \left(\frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}\right)^k.$$

Bizonyítás. Lásd a [2] könyv 4.14. tételét.

2.28. Állítás. A 2.27. állítás teljesül a \tilde{P} prekondicionáló mátrix esetén az

$$a := \frac{\sqrt{1+4m} + \sqrt{1+4M}}{2} - 1; \quad b := \frac{\sqrt{1+4m} - 1}{2}; \quad c := 1; \quad d := \frac{1 + \sqrt{1+4M}}{2}$$

pozitív számokkal.

Bizonyítás. A 2.25. állításban megadott két intervallum hossza megegyezik, azonban a második intervallumot meg kell növelni annyival, hogy a bal végpontja az 1 legyen. Ezzel megkaptuk a *c* és a *d* számokat. Az intervallum hossza $\frac{1+\sqrt{1+4m}}{2} - 1 = \frac{-1+\sqrt{1+4m}}{2}$ -vel nőtt, tehát az első intervallum bal végpontját ennyivel csökkenteni kell, hogy az intervallumok hossza ismét azonos legyen:

$$\frac{1 - \sqrt{1 + 4M}}{2} - \frac{-1 + \sqrt{1 + 4m}}{2} = 1 + \frac{-\sqrt{1 + 4M} - \sqrt{1 + 4m}}{2}$$

Az a szám ennek az ellentettje lesz, a b pedig az eredeti intervallum jobb végpontjának az ellentettje. $\hfill \Box$

2.29. Következmény. A $\tilde{P}^{-1}Gv = \tilde{P}^{-1}g$ egyenletre alkalmazott MINRES lineárisan konvergál, méghozzá

$$\|r_{2k}\|_{\widetilde{P}^{-1}} \leq 2\|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k, \text{ abol } \kappa = \frac{(\sqrt{1+4m}+\sqrt{1+4M}-2)(1+\sqrt{1+4M})}{2(\sqrt{1+4m}-1)}$$

Bizonyítás. Alkalmazzuk a 2.27. állításban szereplő konvergenciatételt a 2.28. állításban kiszámolt együtthatókkal, és bevezetjük a $\kappa := \frac{ad}{bc}$ jelölést.

2.30. Állítás. Legyenek $a \le b < 0 < c \le d$ olyan konstansok, melyekre $P^{-1}G$ negatív sajátértékei az [a,b], pozitív sajátértékei a [c,d] intervallumban helyezkednek el. Ekkor a 2.12. prekondicionált CGN-módszer lineárisan konvergál, és

$$\|r_k\|_P \le \frac{2\|r_0\|_P}{(\xi + \sqrt{\xi^2 - 1})^k + (\xi - \sqrt{\xi^2 - 1})^k},\tag{11}$$

ahol $\xi = \frac{\widetilde{M} + \widetilde{m}}{\widetilde{M} - \widetilde{m}}$ az $\widetilde{m} := \min\{b^2, c^2\}$ és $\widetilde{M} := \max\{a^2, d^2\}$ számokkal.

Bizonyítás. Lásd [5] 4. fejezetét.

2.31. Állítás. A (11) becslés átírható az alábbi alakba:

$$\|r_k\|_P \le \frac{\|r_0\|_P}{\operatorname{ch}(k\operatorname{arch}(\xi))}.$$
(12)

Bizonyítás. Vezessük be az $\eta := \operatorname{arch}(\xi)$ változót! Ezt megtehetjük, hiszen $\xi \ge 1$ biztosan teljesül. Ekkor $\xi = \operatorname{ch}(\eta)$, és így $\sqrt{\xi^2 - 1} = \sqrt{\operatorname{ch}^2(\eta) - 1} = \operatorname{sh}(\eta)$. Ezzel az átalakítással:

$$\|r_k\|_P \le \frac{2\|r_0\|_P}{(ch(\eta) + sh(\eta))^k + (ch(\eta) - sh(\eta))^k} = \frac{2\|r_0\|_P}{e^{k\eta} + e^{-k\eta}} = \frac{\|r_0\|_P}{ch(k\eta)} = \frac{\|r_0\|_P}{ch(k\operatorname{arch}(\xi))}. \quad \Box$$

2.32. Következmény. Bármely $k \in \mathbb{N}^+$ index esetén a (11)-ben szereplő ξ -től függő felső becslés szigorúan monoton csökkenő függvény.

Bizonyítás. Tekintsük a (11)-el ekvivalens (12) alakot! Az arch függvény szigorúan monoton növő, ezért a *k* arch is az, és pozitív értékeket vesz fel. A ch függvény a pozitív félegyenesen szigorúan monoton növő, ezért a *k* arch-al vett kompozíciója is az lesz. Mivel a kompozíciófüggvény értékkészlete is pozitív, így ennek reciproka szigorúan monoton csökkenő.

2.33. Állítás. A 2.30. állítás teljesül a \widetilde{P} prekondicionáló mátrix esetén az

$$a := \frac{1 - \sqrt{1 + 4M}}{2}; \quad b := \frac{1 - \sqrt{1 + 4m}}{2}; \quad c := 1; \quad d := \frac{1 + \sqrt{1 + 4M}}{2}$$

pozitív számokkal.

Bizonyítás. A 2.25. állítás közvetlen következménye.

2.34. Következmény. A $\tilde{P}^{-1}Gv = \tilde{P}^{-1}g$ egyenletre alkalmazott CGN-módszer lineárisan konvergál. A becslésben szereplő \tilde{M} és \tilde{m} konstansok:

$$\widetilde{M} = \frac{1 + 2M + \sqrt{1 + 4M}}{2}; \qquad \widetilde{m} = \begin{cases} \frac{1 + 2m - \sqrt{1 + 4m}}{2} &, ha \quad 0 < m < 2\\ 1 &, ha \quad 2 \le m \end{cases}$$

Bizonyítás. A 2.33. állításban szereplő számokkal kell meghatározni a 2.30. állítás szerint az $\widetilde{m} := \min\{b^2, c^2\}$ és $\widetilde{M} := \max\{a^2, d^2\}$ számokat.

Mivel az *a* és a *d* az $\frac{1}{2}$ -hez képest szimmetrikusan helyezkedik el, ezért |a| < |d| minden esetben, tehát $a^2 < d^2$, és így $\widetilde{M} = d^2 = \frac{2+4M+2\sqrt{1+4M}}{4} = \frac{1+2M+\sqrt{1+4M}}{2}$.

Ha m = 0, akkor b = 0, m = 2 esetén pedig b = -1. A *b* az *m* függvényében szigorúan monoton csökkenő, ezért pozitív *m* számok esetén *b* mindig negatív, és ennek megfelelően b^2 szigorúan monoton növő pozitív *m* számokra, és pontosan akkor teljesül $b^2 < c^2 = 1$, ha $m \in (0,2)$.

3. A Stokes-feladat

Legyen $\Omega \subset \mathbb{R}^2$ korlátos tartomány szakaszonként sima peremmel, és legyen $\mathbf{f} : \Omega \to \mathbb{R}^2$ egy adott függvény, mely a tartományban fellépő külső erőhatást írja le. Tekintsük az alábbi másod-rendű lineáris parciális differenciálegyenlet-rendszert homogén Dirichlet peremfeltétel mellett, ahol az ismeretlen függvények közül $\mathbf{u} : \Omega \to \mathbb{R}^2$ a stacionárius áramlás sebességvektorát adja meg, $p : \Omega \to \mathbb{R}$ pedig a nyomást írja le.

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f} \\ \operatorname{div} \mathbf{u} = 0 \\ \mathbf{u}|_{\partial \Omega} = 0 \end{cases}$$
(13)

Ezt az elliptikus PDE-rendszert *Stokes-feladatnak* nevezzük. A $-\Delta$ operátort és a peremfeltételt koordinátánként kell értelmezni.

3.1. Megoldhatóság

A következő állítás segítségével a Stokes-feladat megoldhatóságát visszavezetjük általános nyeregpont-feladatok megoldhatóságára.

3.1. Állítás. $A \nabla : H^1(\Omega) \to L^2(\Omega)^2$ operátor adjungáltjára teljesül, hogy

$$\nabla^* \boldsymbol{u} = -\operatorname{div} \boldsymbol{u} \qquad (\forall \boldsymbol{u} \in H^1_0(\Omega)^2).$$

Bizonyítás. Megmutatjuk, hogy $\int_{\Omega} \nabla p \cdot \mathbf{u} = -\int_{\Omega} p \operatorname{div} \mathbf{u}$ teljesül minden $\mathbf{u} \in H_0^1(\Omega)^2$ és $p \in H^1(\Omega)$ függvényre. Ehhez felhasználjuk az ismert $\operatorname{div}(p\mathbf{u}) = \nabla p \cdot \mathbf{u} + p \operatorname{div} \mathbf{u}$ azonosságot. A bizonyítás befejezéséhez a Gauss–Osztrogradszkij-tételre és a peremfeltétel felhasználására van még szükség:

$$\int_{\Omega} \nabla p \cdot \mathbf{u} + \int_{\Omega} p \operatorname{div} \mathbf{u} = \int_{\Omega} \operatorname{div}(p\mathbf{u}) = \int_{\partial\Omega} (p\mathbf{u}) \cdot \vec{\mathbf{n}} \, \mathrm{dS} = 0. \qquad \Box$$

Ezek alapján a Stokes-feladat az alábbi nyeregpont-feladat alakjában vizsgálható:

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f} \\ \nabla^* \mathbf{u} = 0 \end{cases}$$
(14)

Mivel tetszőleges $c \in \mathbb{R}$ konstans esetén $\nabla p = \nabla(p+c)$, ezért a (14) nyeregpont-feladat egyértelmű megoldhatóságához szükséges, hogy bevezessük a megszorított

$$\dot{L}^2(\Omega) := \{ p \in L^2(\Omega) : \int_{\Omega} p = 0 \}$$

$$(15)$$

teret. A Green-formula és a 3.1. állítás felhasználásával a Stokes-feladat gyenge megoldását az alábbi módon definiálhatjuk:

3.2. Definíció. Az $(\mathbf{u}, p) \in H_0^1(\Omega)^2 \times \dot{L}^2(\Omega)$ függvénypárt a Stokes-feladat gyenge megoldásának nevezzük, ha

$$\begin{cases} \int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} - \int_{\Omega} p \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} & (\forall \mathbf{v} \in H_0^1(\Omega)^2) \\ \int_{\Omega} q \operatorname{div} \mathbf{u} = 0 & (\forall q \in \dot{L}^2(\Omega)) \end{cases}$$

ahol $\nabla \mathbf{u} : \nabla \mathbf{v} := \nabla u_1 \cdot \nabla v_1 + \nabla u_2 \cdot \nabla v_2$ a Frobenius-skalárszorzat.

3.3. Megjegyzés. Az általános nyeregpont-feladat bilineáris formákkal vett (4) szerinti felírásában a Stokes-feladat esetében $a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v}, \ b(p, \mathbf{v}) = -\int_{\Omega} p \operatorname{div} \mathbf{v}, \ \phi \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v},$ a megfelelő Hilbert-terek pedig $H = H_0^1(\Omega)^2$ és $K = \dot{L}^2(\Omega)$. Az *a* szimmetrikus korlátos koercív bilineáris forma $m_A = ||a|| = 1$ állandókkal, a *b* korlátos bilineáris forma ||b|| = 1 állandóval, a ϕ korlátos lineáris funkcionál, lásd [1] 12.1.2. fejezetét.

3.4. Definíció. A Stokes-feladathoz tartozó *inf-sup-feltétel* az, hogy létezik olyan $\gamma > 0$ konstans, melyre

$$\inf_{\substack{p \in L^2(\Omega)\\p \neq 0}} \sup_{\substack{\mathbf{u} \in H_1^1(\Omega)^2\\\mathbf{u} \neq \mathbf{0}}} \frac{-\int_{\Omega} p \operatorname{div} \mathbf{u}}{\|p\|_{L^2} \|\mathbf{u}\|_{H_0^1}} = \gamma > 0,$$
(16)

ahol $\langle \mathbf{u}, \mathbf{v} \rangle_{H_0^1} := \int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v}$ és $\|\mathbf{u}\|_{H_0^1} := \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle_{H_0^1}}$.

3.5. Állítás. Bármely $f \in L^2(\Omega)^2$ függvény esetén létezik egyetlen gyenge megoldása a Stokes-feladatnak.

Bizonyítás. A bizonyítás a bilineáris formákkal megadott általános nyeregpont-feladatok 1.5. megoldhatósági tételén alapul. Megmutatható, hogy az inf-sup-feltétel a Stokes-feladat esetében teljesül. A bizonyítás részletei megtalálhatóak a [1] könyv 12.1.2. fejezetében.

Fontos megjegyezni, hogy a γ inf-sup-konstans az Ω tartománytól függ, és nincs rá általános képlet, azonban értéke becsülhető, és speciális tartományokon meg is adható pontosan. Ennek vizsgálatával később külön foglalkozunk, mert a dolgozatban szereplő iterációs módszerek konvergenciája erősen függ a γ értékétől.

3.2. Az Uzawa- és Krylov–Uzawa-algoritmus

Uzawa-algoritmusnak nevezzük az $Sp = \tilde{f}$ operátoregyenletre alkalmazott 2.1. egyszerű iterációt, ahol most $A = -\Delta$ és $B = \nabla$, így $Sp := -\operatorname{div}(-\Delta)^{-1}\nabla p$ és $\tilde{f} := -\operatorname{div}(-\Delta)^{-1}\mathbf{f}$. Az $S : \dot{L}^2(\Omega) \to \dot{L}^2(\Omega)$ Schur-féle komplementeroperátor egyenletesen pozitív és korlátos, határai pedig az 1.2. és 1.3. állítás illetve a 3.3. megjegyzés szerint:

$$\gamma^{2} \|p\|_{L^{2}}^{2} \leq \langle Sp, p \rangle_{L^{2}} \leq \|p\|_{L^{2}}^{2} \qquad (\forall p \in \dot{L}^{2}(\Omega)),$$
(17)

ahol $\gamma > 0$ az inf-sup-konstans az Ω tartományon. Az egyszerű iterációnál tetszőleges $p_0 \in \dot{L}^2(\Omega)$ függvényből kiindulva az iterációs lépés:

$$p_{k+1} := p_k - \alpha(Sp_k - f),$$

ahol α a lépésköz nagyságát meghatározó választható paraméter. Ha bevezetjük az

$$\mathbf{u}_{k+1} := (-\Delta)^{-1} (\mathbf{f} - \nabla p_k) \tag{18}$$

változót, akkor az Uzawa-algoritmust operátorszinten a 3.6. algoritmus szerinti alakban írhatjuk fel.

3.6. Algoritmus. Uzawa-algoritmus operátorszinten.

• Legyen $p_0 \in \dot{L}^2(\Omega)$ tetszőleges kezdőfüggvény és $\alpha > 0$ adott paraméter.

• Minden $k \in \mathbb{N}$ -re, ha már p_k -t ismerjük:

$$\begin{cases} -\Delta \mathbf{u}_{k+1} + \nabla p_k = \mathbf{f} \\ \mathbf{u}_{k+1}|_{\partial \Omega} = 0 \\ p_{k+1} := p_k - \alpha \operatorname{div} \mathbf{u}_{k+1} \end{cases}$$

A 2.3. következmény szerint a 3.3. megjegyzésben szereplő konstansokkal számolva az iteráció optimális α paramétere $\alpha_{opt} := \frac{2}{1+\gamma^2}$, mely lineáris konvergenciát eredményez a $q := \frac{1-\gamma^2}{1+\gamma^2}$ konvergenciahányadossal, azaz létezik olyan c > 0 konstans, hogy

$$||p_k - p^*||_{L^2} \le c \left(\frac{1 - \gamma^2}{1 + \gamma^2}\right)^k.$$
 (19)

Amennyiben γ értéke 0-hoz közeli, a konvergenciahányados 1-hez közeli értéket vesz fel, ami lassú konvergenciát eredményez. A konvergenciát gyorsíthatjuk, ha az operátoregyenletet másik iterációs módszer segítségével oldjuk meg. Amennyiben az egyszerű iteráció helyett a 2.4. konjugált gradiens-módszert használjuk, megkapjuk az ún. Krylov–Uzawa-algoritmust. A (18)ban bevezetett \mathbf{u}_{k+1} és a $\mathbf{z}_k := \Delta^{-1} \nabla d_k$ változó segítségével az algoritmus [6] alapján az alábbi formában írható fel:

3.7. Algoritmus. Krylov–Uzawa-algoritmus operátorszinten.

• Legyen $p_0 \in \dot{L}^2(\Omega)$ tetszőleges kezdőfüggvény.

$$\begin{cases} -\Delta \mathbf{u}_0 + \nabla p_0 = \mathbf{f} \\ \mathbf{u}_0|_{\partial\Omega} = 0 \\ d_0 := r_0 = \operatorname{div} \mathbf{u}_0 \end{cases}$$

• Minden $k \in \mathbb{N}$ -re, ha már p_k , \mathbf{u}_k , d_k , r_k -t ismerjük:

$$\begin{cases} -\Delta \mathbf{z}_k + \nabla d_k = \mathbf{0} \\ \mathbf{z}_k|_{\partial\Omega} = 0 \end{cases}$$
$$\boldsymbol{\alpha}_k := -\frac{\|r_k\|_{L^2}^2}{\langle \operatorname{div} \mathbf{z}_k, d_k \rangle_{L^2}}$$
$$p_{k+1} := p_k + \boldsymbol{\alpha}_k d_k$$
$$\mathbf{u}_{k+1} := \mathbf{u}_k + \boldsymbol{\alpha}_k \mathbf{z}_k$$
$$r_{k+1} := r_k + \boldsymbol{\alpha}_k \operatorname{div} \mathbf{z}_k$$
$$\boldsymbol{\beta}_k := \frac{\|r_{k+1}\|_{L^2}^2}{\|r_k\|_{L^2}^2}$$
$$d_{k+1} := r_{k+1} + \boldsymbol{\beta}_k d_k$$

Az Uzawa-algoritmussal összevetve a Krylov–Uzawa-algoritmus több változót használ, és az α_k , β_k együtthatók meghatározása is növeli az iterációnkénti számítási költséget, azonban a konvergenciahányados ennél a módszernél a 2.6. következmény szerint $\frac{1-\gamma}{1+\gamma}$, amely az 1. ábra szerint tetszőleges $\gamma \in (0, 1)$ esetén kisebb az Uzawa-algoritmusnál szereplő hányadosnál.

3.8. Megjegyzés. A p_k -ra vonatkozó L^2 -beli konvergenciabecslés teljesül az \mathbf{u}_{k+1} -re is a H_0^1 -normában, azaz $\|\mathbf{u}_{k+1} - \mathbf{u}^*\|_{H_0^1} \le \|p_k - p^*\|_{L^2}$. Ez igazolható a [6] végén található számolással analóg módon.

1. ábra. Az Uzawa- és a Krylov–Uzawa-algoritmus konvergenciahányadosa a γ függvényében.

3.3. A nagy rendszer megoldása

A 2.2.1. fejezet szerint a nagy lineáris egyenletrendszert szimmetrikus esetben megoldhatjuk a MINRES- vagy a CGN-módszerrel. A javasolt \tilde{P} prekondicionáló mátrix esetén a két módszer konvergenciabecslése itt is a $m = \gamma^2$ és M = 1 állandóktól függ. Ebben az alfejezetben azt vizsgáljuk, hogy a Stokes-feladat esetén hogyan néznek ki a becslések, és a két becslés hogyan viszonyul egymáshoz a γ függvényében.

3.9. Állítás. Stokes-feladat esetén a $\tilde{P}^{-1}Gv = \tilde{P}^{-1}g$ egyenletre alkalmazott MINRES lineárisan konvergál, méghozzá páros k indexekre

$$\|r_k\|_{\widetilde{P}^{-1}} \le 2\|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{\kappa_1}-1}{\sqrt{\kappa_1}+1}\right)^{\frac{k}{2}}, \text{ abol } \kappa_1 = \frac{(\sqrt{1+4\gamma^2}+\sqrt{5}-2)(1+\sqrt{5})}{2(\sqrt{1+4\gamma^2}-1)}.$$
 (20)

Bizonyítás. Alkalmazzuk a 2.29. következményt az $m = \gamma^2$ és M = 1 állandókkal.

3.10. Állítás. Stokes-feladat esetén a $\tilde{P}^{-1}Gv = \tilde{P}^{-1}g$ egyenletre alkalmazott CGN-módszer lineárisan konvergál, méghozzá

$$\|r_k\|_{\widetilde{P}} \leq \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(\frac{\kappa_2+1}{\kappa_2-1}\right)\right)}, \text{ abol } \kappa_2 = \frac{3+\sqrt{5}}{1+2\gamma^2-\sqrt{1+4\gamma^2}}.$$
(21)

Bizonyítás. A 2.30. és 2.31. állítást használjuk a 2.34. következménnyel és az $m = \gamma^2$ ill. M = 1 állandókkal. Mivel $\gamma^2 \leq \frac{1}{2} < 2$ (lásd (24)), ezért az m < 2 esetet kell használni \tilde{m} megadásánál.

3.11. Megjegyzés. A prekondicionált esetben a MINRES-el előállított reziduális hibavektorok \tilde{P}^{-1} normája megegyezik a GCR-módszerrel kapott reziduális hibavektorok \tilde{P} -normájával, ha az egyenletrendszer mátrixa szimmetrikus.

3.12. Állítás. Legyen $0 < \gamma \leq \frac{1}{\sqrt{2}}$ az Ω tartomány inf-sup-konstansa. Ekkor létezik egyértelműen egy $L_{\gamma} > 1$ szám, amire teljesül, hogy a CGN-módszer (21) becslése és a MINRES (20) becslése megegyezik $k = L_{\gamma}$ esetén (a $k \in \mathbb{R}^+$ kiterjesztés mellett), és a $k = 0, 1, \ldots, \lfloor L_{\gamma} \rfloor$ indexekre a CGN-módszer becslése jobb a MINRES becslésénél, a $k = \lceil L_{\gamma} \rceil, \ldots, N$ indexekre pedig a MINRES becslése a jobb. Ha $\gamma \in [0.26, 0.71]$, akkor $L_{\gamma} \in [1.9, 2.94]$. **Bizonyítás.** A vizsgálandó függvények komplikáltsága miatt az állítást MATLAB-ban igazoltam numerikus számítások segítségével. A 2. ábrán látható néhány γ értékre a MINRES- és a CGN-módszer lineáris becslése. Ugyanez látható logaritmikus skálán a 3. ábrán. Az ábrákon jól látszik az L_{γ} metszéspont, és a becslések egymáshoz képesti viszonya a metszéspont előtt és után. Az L_{γ} értékkészlete látható a 4. ábrán a [0.26, 0.71] intervallumban.

Az $L_{\gamma} > 1$ igazolásához ellenőrizhetjük, hogy k = 0 és k = 1 esetén még biztosan a CGNmódszer becslése a jobb. A k = 0 esetben (a kezdeti reziduális hibától eltekintve) a grafikonokon is látszik, hogy a CGN becslése 1, a MINRES becslése pedig mindig 2. A k = 1 esetben pedig azt kell ellenőriznünk, hogy

$$\frac{\kappa_2-1}{\kappa_2+1} < 2\sqrt{\frac{\sqrt{\kappa_1}-1}{\sqrt{\kappa_1}+1}}.$$

Ennek numerikus ellenőrzése szintén a 4. ábrán látható.

2. ábra. A MINRES- és a CGN-módszer lineáris becslése $\gamma = 0.3, 0.42, 0.71$ értékekre.

3. ábra. A MINRES- és a CGN-módszer lineáris becslése logaritmikus skálán ábrázolva $\gamma = 0.3, 0.42, 0.71$ értékekre.

3.13. Állítás. Tetszőleges $k \in \mathbb{N}^+$ indexre a CGN-módszer (21) becslése és a MINRES (20) becslése szigorúan monoton csökken a γ függvényében.

Bizonyítás. A MINRES esetében az $f(x) = \frac{\sqrt{x}-1}{\sqrt{x}+1}$ szigorú monoton növekedése miatt elég $\kappa_1(\gamma)$ szigorú monoton csökkenését megmutatni. Ez rögtön látszik a $\kappa_1(\gamma) = \frac{1+\sqrt{5}}{2} \left(1 + \frac{\sqrt{5}-1}{\sqrt{1+4\gamma^2}-1}\right)$ átírásból. A CGN esetében pedig a $g(x) = \frac{x+1}{x-1}$ függvény szigorú monoton csökkenése és a 2.32. következmény miatt szintén azt kell megmutatni, hogy $\kappa_2(\gamma)$ szigorúan monoton csökkenő. Ehhez elég megmutatni, hogy a $h(x) = \frac{1}{1+x-\sqrt{1+2x}}$ szigorúan monoton csökkenő. Viszont az $x \mapsto \frac{1}{1+x}$ szigorú monoton csökkenése miatt elég megmutatni a $z(x) = x - \sqrt{1+2x}$ szigorú monoton növekedését. Kiszámíthatjuk, hogy $z'(x) = 1 - \frac{1}{\sqrt{1+2x}}$, ami pozitív, ha x > 0, tehát z a vizsgált intervallumon valóban szigorúan monoton növő.

4. ábra. Bal oldalt látható a MINRES- és a CGN-módszer lineáris becslésének L_{γ} metszéspontja a $\gamma \in [0.26, 0.71]$ intervallumban, jobb oldalt pedig a két módszer lineáris becslése a k = 1 esetben γ függvényében.

3.4. Numerikus tesztek

Az 1.2. alfejezetben bemutatott Galjorkin-módszert használhatjuk a Stokes-feladat numerikus megoldására. Ehhez először olyan $V_h \subset H_0^1(\Omega)^2$ és $P_h \subset \dot{L}^2(\Omega)$ altereket kell keresni, ahol teljesül az 1.6. definíció szerinti LBB-feltétel. Jelölje P_k az Ω tartomány egy alkalmas háromszögelésén azon függvények halmazát, amelyek a háromszögekre megszorítva *k*-adfokú polinomok. Legyen továbbá \mathring{P}_k a P_k megszorítása azon függvényekre, melyekre $\int_{\Omega} p = 0$ is teljesül.

Ismert, hogy a (P_1, P_0) altérpárra nem teljesül az LBB-feltétel, azonban a (P_2, P_1) párra már igen, lásd [2] 3.3. fejezetét. Ebben az esetben tehát V_h koordinátánként és háromszögenként másodfokú polinomokból áll, P_h pedig olyan nulla átlagú függvényeket tartalmaz, melyek a háromszögeken elsőfokú polinomok. Ezeket *Taylor–Hood-elemeknek* nevezzük, és a numerikus teszteknél ezt az altérpárt használjuk. Megmutatható, hogy ha a megoldás elég sima, akkor ezekkel az elemekkel a végeselem-módszer konvergenciájának a sebessége $O(h^2)$, ahol *h* a háromszögelés finomságát meghatározó paraméter. Megjegyzendő, hogy tetszőleges $k \in \mathbb{N}^+$ esetén a (P_{k+1}, P_k) alterekre is teljesül az LBB-feltétel. Ezeket általánosított Taylor–Hood-elemeknek nevezzük.

A numerikus megoldáshoz a [10] MATLAB programnyelvet használtam, a programok alapját pedig a [9] iFEM programcsomag képezte. Ez tartalmazta a Stokes-feladat diszkretizációját Taylor–Hood-elemekkel négyzeten, L-alakú tartományon és körön egyaránt, a lineáris egyenletrendszer megoldását néhány beépített módszerrel, és a numerikus megoldás ábrázolását a p^{h} -ra és az \mathbf{u}^{h} két komponensére külön. Ezeket az alapfunkciókat kiegészítettem egyrészt a dolgozatban bemutatott iteratív módszerek programozásával, másrészt ábrázoltam az \mathbf{u}^{h} -t vektormezőként és áramvonalak segítségével is. Emellett ábrázoltam az \mathbf{f} vektormezőt is, hogy össze lehessen hasonlítani az \mathbf{u}^{h} sebességmezővel.

A végeselem-módszer implementációjának első lépése, hogy el kell készíteni az Ω tartomány háromszögelését. Három tartomány esetében végeztem teszteket:

- **1.** $\Omega_1 := [-1, 1]^2$ egy négyzet, egyenletes háromszögeléssel.
- **2.** $\Omega_2 := [-1,1]^2 \setminus [-1,0]^2$ egy L-alakú tartomány, egyenletes háromszögeléssel.
- **3.** $\Omega_3 := B_1(\mathbf{0})$ az origó közepű egységkörlap, a beépített közelítő háromszögeléssel.

Az $n \in \mathbb{N}$ paraméter a rácsfinomságot adja meg. Négyzet alakú tartomány esetén ez soronként és oszloponként 2^{n+1} db négyzet háromszögekre bontását jelenti az átlók mentén a \mathring{P}_1 altérben, a P_2 altérben pedig a még eggyel sűrűbb 2^{n+2} -es rácsfelosztást.

5. ábra. Az Ω_1 , Ω_2 és Ω_3 tartomány háromszögelése n = 3 paraméter mellett.

A következő lépés az, hogy el kell készíteni a diszkretizációs mátrixokat. Ehhez választunk egy alkalmas $\{\psi_k\} \subset P_2$ és $\{\phi_k\} \subset \mathring{P}_1$ bázist mindkét altérben, és a megoldást ezen bázisfüggvények lineáris kombinációjaként keressük alkalmas c^h és s^h együtthatóvektorokkal. A megfelelő bilineáris formákba a tesztfüggvény helyére az adott bázisfüggvényt helyettesítve:

$$\int_{\Omega} \nabla \mathbf{u}^{h} : \nabla \psi_{i} = \sum_{j=1}^{N_{u}} c_{j} \int_{\Omega} \nabla \psi_{j} : \nabla \psi_{i} =: \sum_{j=1}^{N_{u}} c_{j} a_{ij} \qquad (i = 1, \dots, N_{u})$$
$$- \int_{\Omega} p^{h} \operatorname{div} \psi_{i} = \sum_{j=1}^{N_{p}} s_{j} \int_{\Omega} -(\phi_{j} \partial_{x} \psi_{i} + \phi_{j} \partial_{y} \psi_{i}) =: \sum_{j=1}^{N_{p}} s_{j} b_{ij} \qquad (i = 1, \dots, N_{u})$$

Ezek meghatározzák az A_h és B_h merevségi mátrixokat. A mátrix elemeinek meghatározásához integrálokat kell számolnunk, azonban ezeket nem számítjuk ki pontosan, hanem egy alkalmas másodrendű kvadratúra-formula segítségével közelítjük. A lineáris egyenletrendszert a (6) alakban írhatjuk fel, ahol a jobb oldalra az $f_i = \int_{\Omega} f \psi_i$ ($i = 1, ..., N_u$) integrálok közelítése kerül.

A nagy lineáris egyenletrendszer megoldása helyett használhatjuk az Uzawa-algoritmust is végeselemes diszkretizációval. Ehhez szükség van még a \mathring{P}_1 -beli M_h tömegmátrixra, melynek komponenseit az

$$m_{ij} := \int_{\Omega} \phi_i \phi_j \qquad (i, j = 1, \dots, N_p)$$

integrálok közelítő meghatározásával tudjuk megadni.

A programunk teszteléséhez először olyan feladatokat fogunk vizsgálni, ahol ismerjük a pontos megoldást, és ennek segítségével mindhárom tartomány esetében teszteljük a végeselemmódszer konvergenciáját. A lineáris egyenletrendszert a 3.3. alfejezetben ismertetett valamelyik iteratív módszerrel megoldhatjuk, vagy használhatjuk a MATLAB beépített egyenletmegoldóját is. A kidolgozott feladatokat a 3.14., 3.15. és 3.16. példa tartalmazza, numerikus megoldásuk a MATLAB beépített egyenletmegoldójával a 6., 7. és 8. ábrán látható, a konvergenciájukat jellemző adatsorokat pedig a 2., 3. és 4. táblázat szemlélteti.

A példák megadásánál nehézséget jelentett, hogy olyan **u** függvényt kellett találni, ami az adott tartomány peremén teljesíti a homogén Dirichlet peremfeltételt, és emellett divergenciamentes is, míg a p függvény megválasztásánál arra kellett figyelni, hogy az adott tartományon vett integrálja nulla legyen, amit megfelelő páratlansági és antiszimmetrikus tulajdonságok biztosításával lehetett elérni.

3.14. Példa. Tekintsük az $\Omega_1 = [-1,1]^2$ négyzetet, és az alábbi $\mathbf{u} = (u_1, u_2)$ és p függvényt:

$$u_1(x,y) := (x^2 - 1)^2 (y^2 - 1)y;$$
 $u_2(x,y) := -(x^2 - 1)(y^2 - 1)^2 x;$ $p(x,y) := \frac{x^3}{3}$

A homogén Dirichlet peremfeltétel teljesül, mert $\mathbf{u}(x, y) = \mathbf{0}$, ha $x = \pm 1$ vagy $y = \pm 1$. Számoljuk ki az u_1, u_2, p függvények parciális deriváltjait!

$$\begin{aligned} \partial_x u_1(x,y) &= 4(x^2 - 1)(y^2 - 1)xy; \\ \partial_y u_1(x,y) &= (x^2 - 1)^2(3y^2 - 1); \\ \partial_x^2 u_1(x,y) &= 4(3x^2 - 1)(y^2 - 1)y; \\ \partial_y^2 u_1(x,y) &= 6y(x^2 - 1)^2; \\ \partial_y u_2(x,y) &= -4(x^2 - 1)(y^2 - 1)xy; \\ \partial_x^2 u_2(x,y) &= -6x(y^2 - 1)^2; \\ \partial_y^2 u_2(x,y) &= -4(x^2 - 1)(3y^2 - 1)x; \\ \partial_y^2 u_2(x,y) &= -4(x^2 - 1)(3y^2 - 1)x; \\ \partial_y p(x,y) &= x^2; \\ \end{aligned}$$

Megállapítható, hogy div $\mathbf{u} = \partial_x u_1 + \partial_y u_2 = 0$. A jobb oldalon szereplő $\mathbf{f} = (f_1, f_2)$ függvény:

$$f_1(x,y) := -\partial_x^2 u_1(x,y) - \partial_y^2 u_1(x,y) + \partial_x p(x,y) = -4(3x^2 - 1)(y^2 - 1)y - 6y(x^2 - 1)^2 + x^2;$$

$$f_2(x,y) := -\partial_x^2 u_2(x,y) - \partial_y^2 u_2(x,y) + \partial_y p(x,y) = 6x(y^2 - 1)^2 + 4(x^2 - 1)(3y^2 - 1)x + 0.$$

6. ábra. A 3.14. példa numerikus megoldása n = 2 paraméter mellett.

3.15. Példa. Tekintsük az $\Omega_2 = [-1,1]^2 \setminus [-1,0]^2$ L-alakú tartományt, és az alábbi $\mathbf{u} = (u_1, u_2)$ és *p* függvényt:

 $u_1(x,y) := (1 - \cos(2\pi x))\sin(2\pi y); \quad u_2(x,y) := -(1 - \cos(2\pi y))\sin(2\pi x);$ $p(x,y) := \sin(\pi x)\cos(\pi y).$

A homogén Dirichlet peremfeltétel teljesül, mert $\mathbf{u}(x, y) = \mathbf{0}$, ha $x \in \{0, \pm 1\}$ vagy $y \in \{0, \pm 1\}$. Számoljuk ki az u_1, u_2, p függvények parciális deriváltjait!

$$\begin{array}{ll} \partial_{x}u_{1}(x,y) &= 2\pi\sin(2\pi x)\sin(2\pi y); \\ \partial_{y}u_{1}(x,y) &= 2\pi(1-\cos(2\pi x))\cos(2\pi y); \\ \partial_{y}u_{1}(x,y) &= 2\pi(1-\cos(2\pi x))\cos(2\pi y); \\ \partial_{x}^{2}u_{1}(x,y) &= 4\pi^{2}\cos(2\pi x)\sin(2\pi y); \\ \partial_{y}^{2}u_{1}(x,y) &= -4\pi^{2}(1-\cos(2\pi x))\sin(2\pi y); \\ \partial_{y}^{2}u_{1}(x,y) &= -4\pi^{2}(1-\cos(2\pi x))\sin(2\pi y); \\ \partial_{x}p(x,y) &= \pi\cos(\pi x)\cos(\pi y); \\ \end{array}$$

Megállapítható, hogy div $\mathbf{u} = \partial_x u_1 + \partial_y u_2 = 0$. A jobb oldalon szereplő $\mathbf{f} = (f_1, f_2)$ függvény:

$$f_1(x,y) := 4\pi^2 (1 - 2\cos(2\pi x))\sin(2\pi y) + \pi\cos(\pi x)\cos(\pi y);$$

$$f_2(x,y) := -4\pi^2 (1 - 2\cos(2\pi y))\sin(2\pi x) - \pi\sin(\pi x)\sin(\pi y).$$

7. ábra. A 3.15. példa numerikus megoldása n = 3 paraméter mellett.

3.16. Példa. Tekintsük az $\Omega_3 = B_1(\mathbf{0})$ egységkörlapot, és az alábbi $\mathbf{u} = (u_1, u_2)$ és *p* függvényt:

$$u_1(x,y) := -y(1-x^2-y^2);$$
 $u_2(x,y) := x(1-x^2-y^2);$ $p(x,y) := \arctan(x)\arctan(y)$

A homogén Dirichlet peremfeltétel teljesül, mert $\mathbf{u}(x,y) = \mathbf{0}$, ha $x^2 + y^2 = 1$.

Számoljuk ki az u_1, u_2, p függvények parciális deriváltjait!

$$\begin{aligned} \partial_{x}u_{1}(x,y) &= 2xy; & \partial_{x}u_{2}(x,y) &= 1 - 3x^{2} - y^{2}; \\ \partial_{y}u_{1}(x,y) &= -1 + x^{2} + 3y^{2}; & \partial_{y}u_{2}(x,y) &= -2xy; \\ \partial_{x}^{2}u_{1}(x,y) &= 2y; & \partial_{x}^{2}u_{2}(x,y) &= -6x; \\ \partial_{y}^{2}u_{1}(x,y) &= 6y; & \partial_{y}^{2}u_{2}(x,y) &= -2x; \\ \partial_{x}p(x,y) &= \frac{\arctan(y)}{1 + x^{2}}; & \partial_{y}p(x,y) &= \frac{\arctan(x)}{1 + y^{2}}. \end{aligned}$$

Megállapítható, hogy div $\mathbf{u} = \partial_x u_1 + \partial_y u_2 = 0$. A jobb oldalon szereplő $\mathbf{f} = (f_1, f_2)$ függvény:

$$f_1(x,y) := -8y + \frac{\arctan(y)}{1+x^2};$$
 $f_2(x,y) := 8x + \frac{\arctan(x)}{1+y^2}.$

8. ábra. A 3.16. példa numerikus megoldása n = 3 paraméter mellett.

n	0	1	2	3	4	5	6
$\ \mathbf{u}^h-\mathbf{u}^*\ _{H^1_0}$	0.0717	0.0118	0.00171	2.29e-04	2.97e-05	3.79e-06	4.78e-07
u ^h rendje		2.60	2.80	2.89	2.95	2.97	2.99
$\ p^h - p^*\ _{L^2}$	0.0960	0.0147	0.00309	7.54e-04	1.88e-04	4.70e-05	1.17e-05
<i>p^h</i> rendje		2.71	2.25	2.036	2.0038	2.00031	2.00000

2. táblázat. A numerikus és a pontos megoldás rácspontokon vett különbségének a normája és a konvergencia rendje különböző *n* paraméterekre a 3.14. példában.

n	0	1	2	3	4	5	6
$\ \mathbf{u}^h-\mathbf{u}^*\ _{H^1_0}$	3.104	0.783	0.131	0.0178	0.00229	2.89e-04	3.63e-05
u ^h rendje		1.99	2.58	2.88	2.96	2.99	2.99
$\ p^h - p^*\ _{L^2}$	2.284	0.341	0.0361	0.00657	0.00157	3.89e-04	9.72e-05
p^h rendje		2.74	3.24	2.46	2.069	2.0081	2.0010

3. táblázat. A numerikus és a pontos megoldás rácspontokon vett különbségének a normája és a konvergencia rendje különböző *n* paraméterekre a 3.15. példában.

n	0	1	2	3	4	5	6
$\ \mathbf{u}^h-\mathbf{u}^*\ _{H^1_0}$	1.446	0.608	0.185	0.0591	0.0209	0.00737	0.00260
u ^h rendje		1.25	1.72	1.64	1.501	1.503	1.502
$\ p^h - p^*\ _{L^2}$	0.00431	0.0329	0.0159	0.00655	0.00218	7.48e-04	2.64e-04
<i>p^h</i> rendje		-2.93	1.04	1.29	1.59	1.54	1.504

4. táblázat. A numerikus és a pontos megoldás rácspontokon vett különbségének a normája és a konvergencia rendje különböző *n* paraméterekre a 3.16. példában.

9. ábra. A Stokes-feladat numerikus megoldása n = 3 paraméter mellett négyzeten az $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel.

10. ábra. A Stokes-feladat numerikus megoldása n = 3 paraméter mellett L-alakú tartományon az $\mathbf{f}(x, y) = (-y, x)$ függvénnyel.

11. ábra. A Stokes-feladat numerikus megoldása n = 3 paraméter mellett körlapon az $\mathbf{f}(x, y) = ((1 - \cos(x))\sin(y), (1 - \cos(y))\sin(x))$ függvénnyel.

A 9., 10. és 11. ábrán néhány további feladat megoldása látható, ahol a pontos megoldás nem ismert, de a végeselem-módszerrel numerikusan közelíthető. Érdekes megfigyelni egyrészt a keletkező örvényeket, melyeket az áramvonalak szemléltetnek, másrészt azt, hogy az **f** jobb oldal és a sebességkomponensek ill. a nyomás grafikonja nagyon szoros kapcsolatban áll egymással.

A táblázatok adataiból jól látszik, hogy mindhárom tartományon konvergál a pontos megoldáshoz a numerikus módszer. Az \mathbf{u}^h konvergenciáját H_0^1 -normában, míg a p^h konvergenciáját L^2 normában kell mérni. Ezeket a diszkrét esetben az adott vektor A_h -normája illetve M_h -normája adja meg. Az elmélet szerint az implementált módszerek másodrendben konvergálnak, azonban a tapasztalt konvergencia harmad- illetve másodrendű a négyzet és az L-alakú tartomány esetében, a körlapnál pedig a rend 1.5-re csökken a sebességnél és a nyomásnál egyaránt. A 8. ábrán a körlap esetében a nyomás grafikonján megfigyelhető, hogy a közelítés hibája elsősorban a tartomány pereménél jelentkezik nagyobb mértékben, és a körlap háromszögelése sem teljesen egyenletes, de ez nem magyarázza meg teljeskörűen a rendcsökkenést. A négyzet és az L-alakú tartomány esetében pedig a vártnál jobb harmadrend *szuperkonvergenciát* jelent, mely a tartományok szabályos alakja és egyenletes rácsfelosztása miatt jelentkezik. Ezzel kapcsolatban a [7] jegyzet 2.6. fejezete tartalmaz releváns eredményeket.

A 3.2. alfejezetben operátorszinten bemutatott Uzawa- és Krylov–Uzawa-algoritmust szeretnénk a végeselem-módszer segítségével véges dimenziós altérben mátrixszinten megvalósítani. Ehhez a 3.6. és 3.7. algoritmust szeretnénk átírni végeselemes gyenge alakra. A megvalósítás módját az Uzawa-algoritmus esetében részletesen tárgyaljuk, a többi esetben pedig néhány általános megjegyzés mellett nagyon hasonlóan elvégezhető az implementáció.

3.17. Algoritmus. Uzawa-algoritmus gyenge alakban.

- Legyen $p_0^h \in P_h$ tetszőleges kezdőfüggvény és $\alpha > 0$ adott paraméter.
- Minden $k \in \mathbb{N}$ -re, ha már p_k^h -t ismerjük:

$$\int_{\Omega} \nabla \mathbf{u}_{k+1}^{h} : \nabla \mathbf{v}^{h} - \int_{\Omega} p_{k}^{h} (\operatorname{div} \mathbf{v}^{h}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}^{h} \qquad (\forall \mathbf{v}^{h} \in V_{h})$$
$$\int_{\Omega} p_{k+1}^{h} q^{h} = \int_{\Omega} p_{k}^{h} q^{h} - \alpha \int_{\Omega} (\operatorname{div} \mathbf{u}_{k+1}^{h}) q^{h} \qquad (\forall q^{h} \in P_{h})$$

3.18. Algoritmus. Uzawa-algoritmus mátrixszinten.

- Legyen $p_0^h \in \mathbb{R}^{N_p}$ tetszőleges kezdővektor és $\alpha > 0$ adott paraméter.
- Minden $k \in \mathbb{N}$ -re, ha már p_k^h -t ismerjük:

$$A_h \mathbf{u}_{k+1}^h = \mathbf{f}^h - B_h p_k^h$$
$$M_h p_{k+1}^h = M_h p_k^h + \alpha B_h^T \mathbf{u}_{k+1}^h$$

A konvergencia vizsgálatához ki kell számítani lépésenként az

$$M_h r_{k+1}^h = -B_h^T \mathbf{u}_{k+1}^h$$

reziduális hibavektorokat is. A közelítés hibáját az $||r_k||_{L^2} := \sqrt{\langle M_h r_k^h, r_k^h \rangle}$ számsorozat adja meg, ahol a vektorok skaláris szorzata a szokásos értelemben vett euklideszi skalárszorzat. Ha valahol pedig két vektor L^2 -es skalárszorzatát kell kiszámolni, akkor azt $\langle v^h, z^h \rangle_{L^2} := \langle M_h v^h, z^h \rangle$ szerint számíthatjuk ki.

12. ábra. A Stokes-feladat numerikus megoldása az Uzawa-algoritmussal n = 3 paraméter mellett 20 iteratív lépésig az $\mathbf{f}(x,y) = (\cos(x), \cos(x))$ függvény esetén. A felső ábrán az elért reziduális norma látható nagyobb lépésközzel mindhárom tartomány esetén, alul pedig külön-külön kinagyítva az optimális α körüli értékek az egyes tartományokon.

13. ábra. Az Uzawa- és a Krylov–Uzawa-algoritmus konvergenciájának összehasonlítása a kimért α_{opt} paraméterre mindhárom tartomány esetén az $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvényre.

14. ábra. A nagy egyenletrendszerre alkalmazott prekondicionált CGN- és MINRES-algoritmus konvergenciájának összehasonlítása mindhárom tartomány esetén az $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvényre.

Az Uzawa-algoritmus tartalmaz egy választható α paramétert. Az optimális paraméter megválasztásához egy adott **f** függvényre futtatjuk az algoritmust különböző $\alpha \in (0,2)$ értékekre mindhárom tartományon 20 iteratív lépésig, és megvizsgáljuk, hogy az utolsó lépésben mekkora volt a reziduális hibavektor normája. A 12. ábrán láthatóak a grafikonok. A numerikus teszt eredménye szerint az optimális α_{opt} érték négyzeten 1.672, L-alakon 1.715, körlapon pedig 1.411. Ez egyben becslést is ad a γ inf-sup-konstansra, mivel $\gamma = \sqrt{\frac{2}{\alpha_{opt}} - 1}$. Ennek megfelelően γ hozzávetőlegesen 0.443 négyzeten, 0.408 L-alakon és 0.646 körlapon.

A γ -ra adott tapasztalati becslések nagyságrendileg közelítik az elmélet szerint várt γ értéket. A γ néhány speciális Ω tartomány esetén megadható, ezzel kapcsolatban a [8] cikk 2.2. fejezete tartalmaz eredményeket. Egyrészt az általunk vizsgált kétdimenziós esetben általánosan elmondható, hogy $\gamma \leq \frac{1}{\sqrt{2}}$, másrészt bizonyítható, hogy az Ω_3 körlap esetén $\gamma_3 = \frac{1}{\sqrt{2}} \approx 0.707$. Az Ω_1 négyzetre a pontos érték nem ismert, de $\gamma_1 \in [0.382, 0.427]$ biztosan teljesül. Az Ω_2 L-alakú tartományra nincsenek éles becslések, de $\gamma_2 \in [0.160, 0.427]$ teljesül.

A 13. ábrán megfigyelhető mindhárom tartomány esetén a mért α_{opt} paraméterrel futtatott Uzawa-algoritmus és a Krylov–Uzawa-algoritmus futása során előállt reziduális normák konvergenciája. Várakozásunknak megfelelően mindhárom esetben a Krylov–Uzawa-algoritmus konvergál gyorsabban. Az 1. ábra szerint várhatóan az L-alakú tartomány esetében lesz a legnagyobb a különbség a két algoritmus konvergenciája között, a körlapnál a nagy γ_3 konstans miatt pedig a legkisebb. Ezt láthatjuk a 13. ábra grafikonjain is. Megfigyelhető emellett az is, hogy kisebb lépésszámokat tapasztalunk olyan tartományokon, melyeknek nagyobb a γ konstansa. Ez megfelel annak, hogy az 1. ábra szerint γ növelésével mindkét módszer konvergenciahányadosa szigorúan monoton csökken és közelít a nullához.

A 14. ábrán ugyanazt a feladatot oldjuk meg, csak az Uzawa-algoritmus helyett a (6) nagy egyenletrendszerre alkalmazott prekondicionált CGN- és MINRES-módszer konvergenciája látható. Megfigyelhető, hogy a MINRES konvergenciája mindhárom esetben lényegesen jobb, ami nem váratlan, hiszen a MINRES kimondottan szimmetrikus mátrixokra lett kifejlesztve, míg a CGN általánosabb nem szimmetrikus mátrixokra is alkalmazható, ami megnöveli a számítási komplexitását. Ugyanakkor érdemes mégis bevenni az összehasonlításba a CGN-módszert, mert ha a Stokes-feladat egyenletében a másodrendű tagot megszoroznánk egy viszkozitást leíró v > 0 számmal, akkor elegendően kis v esetén a MINRES konvergenciája lelassul, és a CGN lényegesen jobban teljesít. Ennek részletes elméleti és numerikus elemzése a következő fejezetben található.

A nagy egyenletrendszerre alkalmazott módszerek elméleti konvergenciáját a Stokes-feladatra (azaz v := 1 viszkozitási paraméter esetén) a 3.3. alfejezetben vizsgáltuk. Megállapítható, hogy a numerikus eredmények teljes összhangban vannak az elmélet alapján vártakkal. A 3.12. állításban megmutattuk, hogy az első pár lépésben a CGN-módszer van előnyösebb helyzetben, majd legkésőbb a 3. iteratív lépéstől kezdve a MINRES lineáris becslése a jobb, tehát azt várjuk, hogy a numerikus teszteknél is ez fog érvényesülni. A 14. ábra grafikonjain látható, hogy a k = 1 első ábrázolt iteratív lépésnél mindhárom esetben a CGN-hez tartozó reziduális norma a kisebb, majd utána a MINRES látványosan átveszi a vezetést.

Egy másik fontos tulajdonság, ami megfigyelhető a 14. ábra grafikonjain az az, hogy a γ növekedésével a konvergencia felgyorsul, azaz egy adott toleranciaszint eléréséhez nagyobb γ esetén kevesebb iteratív lépésre van szükség. Látható az ábrákon, hogy a legkisebb γ -val rendelkező L-alakú tartomány esetén tapasztaljuk a legnagyobb lépésszámokat. A négyzeten már kevesebb lépés szükséges, és végül a lehető legnagyobb γ inf-sup-konstanssal rendelkező körlapon a leggyorsabb a konvergencia. Ezt várjuk a 3.13. állítás alapján, hiszen a γ növelésével a lineáris becslések egyre csökkennek. Emellett nagyobb γ -ra az *S* operátor határai is egyre közelebb kerülnek egymáshoz, ami szintén a gyorsabb konvergencia mellett szól.

A 15. ábrán láthatóak a 13. és 14. ábra közös grafikonjai, melyek segítségével összehasonlítható egymás mellett mind a négy iteratív módszer konvergenciája. Ezek alapján megállapítható, hogy a vizsgált Stokes-feladatnál a módszerek hatékonyságának sorrendje jellemzően:

- 1. Krylov–Uzawa-algoritmus.
- 2. A nagy rendszerre alkalmazott prekondicionált MINRES.
- **3.** Uzawa-algoritmus az optimális α_{opt} paraméterrel.
- 4. A nagy rendszerre alkalmazott prekondicionált CGN-módszer.

Megjegyzendő azonban egyrészt, hogy a körlapnál például 10^{-8} toleranciaszintig a MINRES és az Uzawa-algoritmus konvergenciája nagyon hasonló. Másrészt pedig fontos szem előtt tartani, hogy a különböző módszereknél más normában mérjük a konvergenciát: Uzawa-típusúnál a természetes norma a függvénytérbeli L^2 -norma, míg a prekondicionált nagy rendszernél a MINRES-nél a \tilde{P}^{-1} -, a CGN-nél pedig a \tilde{P} -norma.

15. ábra. A 13. és 14. ábra grafikonjainak egyesítése, mely tartományonként szemlélteti mind a négy iteratív módszer konvergenciáját a vizsgált Stokes-feladatra.

4. Az Oseen-egyenlet

A Stokes-feladat általánosításaként írhatjuk fel az Oseen-egyenletet, mely az előzőekhez képest kiegészül egy v > 0 viszkozitási együtthatóval, és a differenciálegyenlethez hozzávesszük a $\mathbf{w} \cdot \nabla \mathbf{u}$ konvekciós tagot, ahol $\mathbf{w} \in C^1(\overline{\Omega}, \mathbb{R}^2)$ egy adott vektormező, melyre div $\mathbf{w} = 0$.

$$\begin{cases} -v\Delta \mathbf{u} + \mathbf{w} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{f} \\ \operatorname{div} \mathbf{u} = 0 \\ \mathbf{u}|_{\partial \Omega} = 0 \end{cases}$$
(22)

4.1. Megoldhatóság

A Stokes-feladathoz hasonlóan az Oseen-egyenlet is nyeregpont-feladatként vizsgálható. Az Oseen-egyenlet gyenge megoldását az alábbi módon definiálhatjuk:

4.1. Definíció. Az $(\mathbf{u}, p) \in H_0^1(\Omega)^2 \times \dot{L}^2(\Omega)$ függvénypárt az Oseen-egyenlet gyenge megoldásának nevezzük, ha

$$\begin{cases} \int_{\Omega} (\mathbf{v}\nabla\mathbf{u} : \nabla\mathbf{v} + (\mathbf{w} \cdot \nabla\mathbf{u}) \cdot \mathbf{v}) - \int_{\Omega} p \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} & (\forall \mathbf{v} \in H_0^1(\Omega)^2) \\ \int_{\Omega} q \operatorname{div} \mathbf{u} = 0 & (\forall q \in \dot{L}^2(\Omega)) \end{cases}$$

4.2. Megjegyzés. Az általános nyeregpont-feladat bilineáris formákkal vett (4) szerinti felírásában az Oseen-egyenlet esetében

$$a(\mathbf{u},\mathbf{v}) = \int_{\Omega} (\mathbf{v}\nabla\mathbf{u}:\nabla\mathbf{v} + (\mathbf{w}\cdot\nabla\mathbf{u})\cdot\mathbf{v}); \quad b(p,\mathbf{v}) = -\int_{\Omega} p \operatorname{div}\mathbf{v}; \quad \phi\mathbf{v} = \int_{\Omega} \mathbf{f}\cdot\mathbf{v},$$

a megfelelő Hilbert-terek pedig $H = H_0^1(\Omega)^2$ és $K = \dot{L}^2(\Omega)$. A Stokes-feladathoz képest tehát csak az *a* bilineáris forma definíciója változik. Most az *a* bilineáris forma egyenletes pozitivitása helyett csak a gyengébb koercivitási feltétel teljesül, mivel a konvekciós tag nem szimmetrikus. Az *a* tehát általánosan egy nem szimmetrikus korlátos koercív bilineáris forma $m_A = v$ és M = $v + C_{\Omega} ||\mathbf{w}||_{L^{\infty}}$ állandókkal, ahol C_{Ω} a Poincaré–Friedrichs-egyenlőtlenség konstansa, lásd [1] 8.1.2. állítását. Azonban ha a konvekciós tag nélkül (azaz a $\mathbf{w} = \mathbf{0}$ esetben) nézzük az Oseenegyenletet, akkor a szimmetria teljesül, mert erre a viszkozitási paraméter bevezetése nincs hatással. A Stokes-feladathoz hasonlóan *b* korlátos bilineáris forma ||b|| = 1 állandóval, a ϕ pedig korlátos lineáris funkcionál. Mivel a *b* bilineáris forma és a *H*, *K* Hilbert-terek ugyanazok, mint a Stokes-feladatnál, ezért az inf-sup-konstans 3.4-beli definíciója sem változik.

4.3. Állítás. Bármely $f \in L^2(\Omega)^2$ függvény esetén létezik egyetlen gyenge megoldása az Oseenegyenletnek.

Bizonyítás. Az 1.5. következmény feltételei teljesülnek a Stokes-feladathoz hasonlóan.

4.2. A CGN- és GCR-Uzawa-algoritmus

Szeretnénk a 3.2. alfejezet mintájára Uzawa-típusú iteratív módszerrel megoldani az Oseenegyenletet. Az Oseen-egyenlet nem szimmetrikus konvekciós tagja miatt az S Schur-féle komplementeroperátor nem lesz önadjungált, tehát nem is egyenletesen pozitív, így a 2.1.2. alfejezet módszereit lehet alkalmazni ebben az esetben.

4.4. Állítás. Az Oseen-egyenlethez tartozó $S = -\operatorname{div}(-v\Delta + w \cdot \nabla)^{-1}\nabla$ Schur-féle komplementeroperátor határai

$$m = \frac{v\gamma^2}{\left(v + C_{\Omega} \|\boldsymbol{w}\|_{L^{\infty}}\right)^2} \qquad \text{és} \qquad M = \frac{1}{v}$$

Bizonyítás. Formálisan elegendően sima függvényekre $\langle -\Delta u, v \rangle_{L^2} = \langle u, v \rangle_{H_0^1}$ teljesül a Greenformula és a homogén Dirichlet peremfeltétel miatt, ezért $\langle u, v \rangle_{L^2} = \langle (-\Delta)^{-1}u, v \rangle_{H_0^1}$, melynek segítségével formálisan ill. gyenge alakban definiálhatók az alábbi operátorok:

• $B: \dot{L}^2(\Omega) \to H^1_0(\Omega)^2$ legyen az a korlátos lineáris operátor, melyre gyenge alakban

$$\langle Bp, \mathbf{v} \rangle_{H_0^1} = -\int_{\Omega} p \operatorname{div} \mathbf{v} \qquad (\forall p \in \dot{L}^2(\Omega), \forall \mathbf{v} \in H_0^1(\Omega)^2),$$

azaz formálisan $B = (-\Delta)^{-1} \nabla$.

• $A: H_0^1(\Omega)^2 \to H_0^1(\Omega)^2$ legyen az a korlátos lineáris operátor, melyre $A = \begin{pmatrix} A_0 \\ \widetilde{A_0} \end{pmatrix}$, ahol gyenge alakban

$$\left\langle \widetilde{A_0}u,v\right\rangle_{H_0^1} = \int_{\Omega} (v\nabla u\cdot\nabla v + (\mathbf{w}\cdot\nabla u)v) \qquad (\forall u,v\in H_0^1(\Omega)),$$

azaz formálisan $\widetilde{A_0} = (-\Delta)^{-1}A_0$, ahol az $A_0 := -\nu\Delta + \mathbf{w} \cdot \nabla$ operátor egy konvekciódiffúziós feladatot ír le. Az $\widetilde{A_0}$ operátor határai (lásd [1], 8.1.2. állítás):

$$\mathbf{v} \|u\|_{H_0^1}^2 = \left\langle \widetilde{A_0} u, u \right\rangle_{H_0^1} \qquad (\forall u \in H_0^1(\Omega));$$
$$\left\langle \widetilde{A_0} u, v \right\rangle_{H_0^1} \le (\mathbf{v} + C_{\Omega} \|\mathbf{w}\|_{L^{\infty}}) \|u\|_{H_0^1} \|v\|_{H_0^1} \qquad (\forall u, v \in H_0^1(\Omega))$$

• $B^*: H^1_0(\Omega)^2 \to \dot{L}^2(\Omega)$ legyen az a korlátos lineáris operátor, melyre gyenge alakban

$$\langle B^* \mathbf{v}, q \rangle_{L^2} = -\int_{\Omega} (\operatorname{div} \mathbf{v}) q = \langle Bq, \mathbf{v} \rangle_{H^1_0} \qquad (\forall p \in \dot{L}^2(\Omega), \forall \mathbf{v} \in H^1_0(\Omega)^2),$$

azaz formálisan $B^* = -\operatorname{div}$.

Vizsgáljuk meg először az $S = B^*A^{-1}B$ operátor koercivitását! Az A_0 ismert határait és az 1.2. állítás bizonyításában szereplő eredményt felhasználva

$$\left\langle \widetilde{A_0}^{-1}v, v \right\rangle_{H_0^1} \ge \frac{v}{\left(v + C_{\Omega} \|\mathbf{w}\|_{L^{\infty}}\right)^2} \|v\|_{H_0^1}^2 \qquad (\forall v \in H_0^1(\Omega)).$$

Ezzel pedig az S operátor alsó határa:

$$\begin{split} \langle Sp,p\rangle_{L^2} = & \left\langle B^*A^{-1}Bp,p\right\rangle_{L^2} = \left\langle A^{-1}Bp,Bp\right\rangle_{H^1_0} \ge \frac{\nu}{\left(\nu + C_{\Omega} \|\mathbf{w}\|_{L^{\infty}}\right)^2} \|Bp\|_{H^1_0}^2 \ge \\ \ge & \frac{\nu\gamma^2}{\left(\nu + C_{\Omega} \|\mathbf{w}\|_{L^{\infty}}\right)^2} \|p\|_{L^2}^2 \qquad (\forall p \in \dot{L}^2(\Omega)). \end{split}$$

Ezután vizsgáljuk meg az *S* operátor korlátosságát! A becsléseknél az alábbi ismert eredmény használható (lásd [1], 12.1.9. tétel):

$$\langle B^* \mathbf{v}, q \rangle_{L^2} \leq \| \mathbf{v} \|_{H^1_0} \| q \|_{L^2} \qquad (\forall q \in \dot{L}^2(\Omega), \forall \mathbf{v} \in H^1_0(\Omega)^2).$$

Ezzel pedig az S operátor felső határa:

$$egin{aligned} &\langle Sp,q
angle_{L^2} = ig\langle A^{-1}Bp,Bqig
angle_{H^1_0} \leq \|A^{-1}Bp\|_{H^1_0}\|Bq\|_{H^1_0} \leq rac{1}{
u}\|Bp\|_{H^1_0}\|Bq\|_{H^1_0} \leq & \ &\leq rac{1}{
u}\|p\|_{L^2}\|q\|_{L^2} \qquad (orall p,q\in\dot{L}^2(\Omega)), \end{aligned}$$

ahol az utolsó becslés a

$$\|Bp\|_{H_0^1}^2 = \langle Bp, Bp \rangle_{H_0^1} = \langle B^*Bp, p \rangle_{L^2} \le \|Bp\|_{H_0^1} \|p\|_{L^2}$$

összefüggés miatt teljesül.

A 2.1. egyszerű iteráció a nem szimmetrikus esetben is alkalmazható lenne, azonban a lineáris konvergenciához szükséges feltétel a 2.10. és a 4.4. állítás szerint

$$\alpha < \frac{2\nu^3\gamma^2}{(\nu + C_{\Omega} \|\mathbf{w}\|_{L^{\infty}})^2},$$

amely kis viszkozitási együttható esetén csak kis lépésközt enged meg, és jelentősen lassítja a konvergencia sebességét. Egy lehetséges megoldás lehet, ha a Krylov–Uzawa-algoritmus mintájára az operátoregyenletet a nem szimmetrikus operátorok esetén használható CGN- vagy GCR-módszerrel oldjuk meg. Az alábbiakban ezt a két iterációs módszert fogjuk levezetni az Oseen-egyenlet esetében.

A módszerek alapját a 2.12. és a 2.13. algoritmus képezi, melyeket most prekondicionálás nélkül, azaz P := I választás mellett fogjuk alkalmazni az $Sp = \tilde{f}$ egyenletre, ahol az Oseenegyenlet esetében $A = -v\Delta + \mathbf{w} \cdot \nabla$ és $B = \nabla$, így

$$S = -\operatorname{div}(-\nu\Delta + \mathbf{w}\cdot\nabla)^{-1}\nabla$$
 és $\tilde{f} = -\operatorname{div}(-\nu\Delta + \mathbf{w}\cdot\nabla)^{-1}\mathbf{f}.$

Az Uzawa-algoritmushoz hasonló módszert itt is az $\mathbf{u}_{k+1} := (-\mathbf{v}\Delta + \mathbf{w} \cdot \nabla)^{-1} (\mathbf{f} - \nabla p_k)$, a $\mathbf{z}_k := -(-\mathbf{v}\Delta + \mathbf{w} \cdot \nabla)^{-1} \nabla d_k$, és a CGN-módszer esetében a $\mathbf{v}_k := -(-\mathbf{v}\Delta - \mathbf{w} \cdot \nabla)^{-1} \nabla r_{k+1}$, míg a GCR-módszer esetében a $\mathbf{v}_k := -(-\mathbf{v}\Delta + \mathbf{w} \cdot \nabla)^{-1} \nabla r_{k+1}$ változó bevezetésével kapjuk a korábban látott átírások segítségével.

A CGN-módszernél \mathbf{v}_k egy S*-ra felírt operátoregyenlet megoldása, ahol S* megadható

$$S^* = \nabla^* ((-\nu\Delta + \mathbf{w} \cdot \nabla)^{-1})^* (-\operatorname{div})^* = -\operatorname{div} ((-\nu\Delta + \mathbf{w} \cdot \nabla)^*)^{-1} \nabla = -\operatorname{div} (-\nu\Delta - \mathbf{w} \cdot \nabla)^{-1} \nabla$$

alakban, mivel a konvekciós tag antiszimmetrikus.

Fontos megjegyezni, hogy míg a Stokes-feladatnál az Uzawa-algoritmus iterációs lépésenként 1-1 Poisson-egyenlet megoldását követelte meg, ezeknél az algoritmusoknál iterációs lépésenként 2-2 konvekció-diffúziós egyenletet kell megoldani, ami tovább növeli a módszerek számítási költségeit.

4.5. Algoritmus. A CGN-Uzawa-algoritmus operátorszinten.

Legyen $p_0 \in \dot{L}^2(\Omega)$ tetszőleges kezdőfüggvény.

$$\begin{cases} -\nu\Delta\mathbf{u}_{0} + \mathbf{w}\cdot\nabla\mathbf{u}_{0} + \nabla p_{0} = \mathbf{f} \\ \mathbf{u}_{0}|_{\partial\Omega} = 0 \\ r_{0} := \operatorname{div}\mathbf{u}_{0} \\ \begin{cases} -\nu\Delta\mathbf{v}_{0} - \mathbf{w}\cdot\nabla\mathbf{v}_{0} + \nabla r_{0} = \mathbf{0} \\ \mathbf{v}_{0}|_{\partial\Omega} = 0 \\ s_{0} := \operatorname{div}\mathbf{v}_{0} \\ d_{0} := s_{0} \end{cases}$$

Minden $k \in \mathbb{N}$ -re, ha már p_k , \mathbf{u}_k , r_k , d_k , s_k -t ismerjük:

$$\begin{cases} -\mathbf{v}\Delta\mathbf{z}_{k} + \mathbf{w}\cdot\nabla\mathbf{z}_{k} + \nabla d_{k} = \mathbf{0} \\ \mathbf{z}_{k}|_{\partial\Omega} = 0 \\ x_{k} := \operatorname{div}\mathbf{z}_{k} \\ \boldsymbol{\alpha}_{k} := -\frac{\|s_{k}\|_{L^{2}}^{2}}{\|x_{k}\|_{L^{2}}^{2}} \\ p_{k+1} := p_{k} + \boldsymbol{\alpha}_{k}d_{k} \\ \mathbf{u}_{k+1} := \mathbf{u}_{k} + \boldsymbol{\alpha}_{k}\mathbf{z}_{k} \\ r_{k+1} := r_{k} + \boldsymbol{\alpha}_{k}\mathbf{x}_{k} \\ \begin{cases} -\mathbf{v}\Delta\mathbf{v}_{k} - \mathbf{w}\cdot\nabla\mathbf{v}_{k} + \nabla r_{k+1} = \mathbf{0} \\ \mathbf{v}_{k}|_{\partial\Omega} = 0 \\ s_{k+1} := \operatorname{div}\mathbf{v}_{k} \\ \boldsymbol{\beta}_{k} := \frac{\|s_{k+1}\|_{L^{2}}^{2}}{\|s_{k}\|_{L^{2}}^{2}} \\ d_{k+1} := s_{k+1} + \boldsymbol{\beta}_{k}d_{k} \end{cases}$$

4.6. Algoritmus. A GCR-Uzawa-algoritmus operátorszinten.

Legyen $p_0 \in \dot{L}^2(\Omega)$ tetszőleges kezdőfüggvény.

$$\begin{cases} -\nu\Delta\mathbf{u}_{0} + \mathbf{w}\cdot\nabla\mathbf{u}_{0} + \nabla p_{0} = \mathbf{f} \\ \mathbf{u}_{0}|_{\partial\Omega} = 0 \\ r_{0} := \operatorname{div}\mathbf{u}_{0} \\ d_{0} := r_{0} \\ \begin{cases} -\nu\Delta\mathbf{z}_{0} + \mathbf{w}\cdot\nabla\mathbf{z}_{0} + \nabla d_{0} = \mathbf{0} \\ \mathbf{z}_{0}|_{\partial\Omega} = 0 \\ x_{0} := \operatorname{div}\mathbf{z}_{0} \end{cases}$$

Minden $k \in \mathbb{N}$ -re, ha már p_k , \mathbf{u}_k , r_k , d_k , x_k -t ismerjük:

$$\begin{cases} -\mathbf{v}\Delta\mathbf{z}_k + \mathbf{w}\cdot\nabla\mathbf{z}_k + \nabla d_k = \mathbf{0} \\ \mathbf{z}_k|_{\partial\Omega} = 0 \end{cases}$$

$$\begin{aligned} \boldsymbol{\alpha}_{k} &:= -\frac{\langle r_{k}, x_{k} \rangle_{L^{2}}}{\|x_{k}\|_{L^{2}}^{2}} \\ p_{k+1} &:= p_{k} + \boldsymbol{\alpha}_{k} d_{k} \\ \mathbf{u}_{k+1} &:= \mathbf{u}_{k} + \boldsymbol{\alpha}_{k} \mathbf{z}_{k} \\ r_{k+1} &:= r_{k} + \boldsymbol{\alpha}_{k} \mathbf{x}_{k} \\ \begin{cases} -\nu \Delta \mathbf{v}_{k} + \mathbf{w} \cdot \nabla \mathbf{v}_{k} + \nabla r_{k+1} = \mathbf{0} \\ \mathbf{v}_{k} |_{\partial \Omega} = 0 \end{cases} \\ s_{k} &:= \operatorname{div} \mathbf{v}_{k} \\ \boldsymbol{\beta}_{i,k} &:= -\frac{\langle s_{k}, x_{i} \rangle_{L^{2}}}{\|x_{i}\|_{L^{2}}^{2}} \quad (i = 0, \dots, k) \\ d_{k+1} &:= r_{k+1} + \sum_{i=0}^{k} \boldsymbol{\beta}_{i,k} d_{i} \\ x_{k+1} &:= s_{k} + \sum_{i=0}^{k} \boldsymbol{\beta}_{i,k} x_{i} \end{aligned}$$

4.7. Állítás. Legyen $w = \rho w_0$, ahol $\rho > 0$, és $w_0 \in C^1(\overline{\Omega}, \mathbb{R}^2)$ egy adott divergenciamentes vektormező. A k. iteratív lépésben a GCR-Uzawa lineáris becslése pontosan akkor jobb a CGN-Uzawa lineáris becslésénél, ha

$$\rho > \frac{\nu(\sqrt{L_k}\gamma - 1)}{C_{\Omega} \|\boldsymbol{w}_0\|_{L^{\infty}}}.$$

Bizonyítás. Azt kell vizsgálni a 2.18. tétel szerint, hogy $\frac{M}{m} > L_k$ mikor teljesül. A 4.4. állításban kiszámolt határok szerint

$$\frac{M}{m} = \frac{\frac{1}{\nu}}{\frac{\nu\gamma^2}{(\nu + C_{\Omega}\rho \|\mathbf{w}_0\|_{L^{\infty}})^2}} = \frac{(\nu + C_{\Omega}\rho \|\mathbf{w}_0\|_{L^{\infty}})^2}{\nu^2\gamma^2} = \left(\frac{\nu + C_{\Omega}\rho \|\mathbf{w}_0\|_{L^{\infty}}}{\nu\gamma}\right)^2 > L_k,$$

ami pedig pontosan akkor teljesül, ha

$$\frac{\mathbf{v} + C_{\Omega} \boldsymbol{\rho} \| \mathbf{w}_0 \|_{L^{\infty}}}{\mathbf{v} \boldsymbol{\gamma}} > \sqrt{L_k}$$

Ezt átrendezve megkapjuk a keresett egyenlőtlenséget.

4.8. Következmény. Ha van olyan $k' \in \{1, \ldots, N\}$ index, amelyre $L_{k'} < \frac{1}{\gamma^2}$, akkor bármely $k \in \{1, \dots, k'\}$ index esetén a GCR-Uzawa lineáris becslése jobb a CGN-Uzawa lineáris becslésénél függetlenül attól, hogy az Oseen-egyenlet milyen v viszkozitási paramétert és w vektormezőt tartalmaz.

Bizonyítás. A 4.7. állításban szereplő alsó becslésben ezzel a feltétellel $\sqrt{L_{k'}}\gamma - 1 < 0$, tehát

$$ho > 0 > rac{oldsymbol{v}(\sqrt{L_{k'}}\gamma - 1)}{C_\Omega \|oldsymbol{w}_0\|_{L^\infty}},$$

amely tetszőleges pozitív ρ esetén teljesül. Mivel az L_k sorozat a 2.19. állítás szerint szigorúan monoton növekszik, így

$$\sqrt{L_k}\gamma - 1 < \sqrt{L_{k'}}\gamma - 1 < 0$$

teljesül bármely $k \in \{1, \dots, k'\}$ index esetén.

4.9. Megjegyzés. Néhány konkrét γ konstansra érdemes megadni a 4.8. következményben szereplő k' indexet az 1. táblázat segítségével:

• $\gamma = 0.3 \Rightarrow \frac{1}{\gamma^2} \approx 11.11 \Rightarrow k' = 3$ (de majdnem 4-re is teljesül).

•
$$\gamma = 0.42 \Rightarrow \frac{1}{\sqrt{2}} \approx 5.67 \Rightarrow k' = 2$$

• $\gamma = 0.71 \Rightarrow \frac{1}{\gamma^2} \approx 1.98$, tehát nincs ilyen k'.

4.10. Állítás. *Ha az Oseen-egyenletben* w = 0, akkor az $S = -\operatorname{div}(-v\Delta)^{-1}\nabla$ operátor határai

$$\frac{\gamma^2}{\nu} \|p\|_{L^2}^2 \le \langle Sp, p \rangle_{L^2} \le \frac{1}{\nu} \|p\|_{L^2}^2 \qquad (\forall p \in \dot{L}^2(\Omega)).$$
(23)

Bizonyítás. Alkalmazzuk az 1.2. és 1.3. állítást az $m_A = ||A|| = v$ konstansokkal.

4.11. Megjegyzés. Ha az Oseen-egyenletben $\mathbf{w} = \mathbf{0}$, akkor megkapjuk a Stokes-feladatot $\mathbf{v} = 1$ választás esetén. A 4.10. állításban szereplő eredmény biztosítja, hogy tetszőleges v > 0 viszkozitási paraméter választása esetén is a Stokes-feladathoz tartozó konvergenciahányadost kapjuk a (9) és a (10) konvergenciabecslésekből, hiszen ezek csak a $\kappa := \frac{M}{m}$ hányadostól függenek, ahol most $m = \frac{\gamma^2}{\nu}$ és $M = \frac{1}{\nu}$, ezért $\kappa = \frac{\nu}{\nu\gamma^2} = \frac{1}{\gamma^2}$, amely ν értékétől független.

 \square

4.12. Állítás. Ha az Oseen-egyenletben w = 0, akkor a MINRES algoritmus lineáris becslése jobb a CGN-módszer lineáris becslésénél bármely $k \in \mathbb{N}$ index esetén.

Bizonyítás. A 2.21. állítás szerint a MINRES algoritmus becslése mindig jobb a CGN-módszer becslésénél, és ugyanolyan jó csak abban az esetben lehetne, ha a 2.23. következmény szerint $\gamma = ||B|| = 1$. Ez azonban az általunk vizsgált kétdimenziós feladatok esetében nem lehetséges, mert ismert, hogy

$$\gamma \le \frac{1}{\sqrt{2}} \approx 0.71 < 1. \tag{24}$$

Ennek az eredménynek a levezetése megtalálható a [8] cikk 2.2. fejezetében.

4.13. Állítás. A $\rho = 0$ esetben a GCR-módszer konvergenciája mindig gyorsabb a CGN-módszerhez képest.

Bizonyítás. A 2.22. megjegyzés szerint ilyenkor a GCR és a MINRES konvergenciája megegyezik, a $\rho = 0$ paraméter pedig a $\mathbf{w} = \mathbf{0}$ vektormezőt eredményezi, ezért alkalmazható a 4.12. állítás.

4.3. A nagy rendszer megoldása

A 2.2.1. fejezet szerint a nagy lineáris egyenletrendszert szimmetrikus esetben megoldhatjuk a MINRES- vagy a CGN-módszerrel. Ezt a Stokes-feladatnál vizsgáltuk a 3.3. fejezetben. Az Oseen-egyenletnél azonban a nagy rendszer csak akkor lesz szimmetrikus, ha w = 0, és ilyenkor csak a viszkozitási paraméter bevezetése jelenti a változást a Stokes-feladathoz képest. Látni fogjuk azonban, hogy míg a 3.12. állítás és a Stokes-feladatra végzett későbbi numerikus tesztek szerint is a v = 1 esetben a MINRES észszerű γ konstansok esetén gyorsabban konvergál a CGN-módszernél, addig $v \ll 1$ esetén ez megfordulhat.

A javasolt \widetilde{P} prekondicionáló mátrix esetén a két módszer konvergenciabecslése a 4.10. állításban megadott határok szerint az $m = \frac{\gamma^2}{v}$ és $M = \frac{1}{v}$ állandóktól függ a szimmetrikus esetben. A következőkben megvizsgáljuk, hogy v és γ függvényében hogyan néznek ki az egyes módszerek konvergenciabecslései, és hogyan viszonyulnak ezek egymáshoz.

4.14. Állítás. Szimmetrikus Oseen-egyenlet esetén a $\tilde{P}^{-1}Gv = \tilde{P}^{-1}g$ egyenletre alkalmazott MINRES lineárisan konvergál, méghozzá páros k indexekre a $\mu := \frac{1}{v}$ bevezetésével

$$\|r_k\|_{\widetilde{P}^{-1}} \le 2\|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{\kappa_1}-1}{\sqrt{\kappa_1}+1}\right)^{\frac{k}{2}}, \text{ abol } \kappa_1 = \frac{(\sqrt{1+4\mu\gamma^2}+\sqrt{1+4\mu}-2)(1+\sqrt{1+4\mu})}{2(\sqrt{1+4\mu\gamma^2}-1)}.$$
 (25)

Bizonyítás. Alkalmazzuk a 2.29. következményt az $m = \frac{\gamma^2}{v}$ és $M = \frac{1}{v}$ állandókkal.

4.15. Állítás. Szimmetrikus Oseen-egyenlet esetén a $\tilde{P}^{-1}Gv = \tilde{P}^{-1}g$ egyenletre alkalmazott CGN-módszer lineárisan konvergál, méghozzá a $\mu := \frac{1}{v}$ bevezetésével

$$\|r_k\|_{\widetilde{P}} \leq \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(\frac{\kappa_2+1}{\kappa_2-1}\right)\right)}, \text{ abol } \kappa_2 = \begin{cases} \frac{1+2\mu+\sqrt{1+4\mu}}{1+2\mu\gamma^2-\sqrt{1+4\mu\gamma^2}}, \text{ ha } 0 < \mu\gamma^2 < 2\\ \frac{1+2\mu+\sqrt{1+4\mu}}{2}, \text{ ha } 2 \leq \mu\gamma^2 \end{cases}$$
(26)

Bizonyítás. A 2.30. és 2.31. állítást használjuk a 2.34. következménnyel és az $m = \frac{\gamma^2}{v}$ ill. $M = \frac{1}{v}$ állandókkal.

4.16. Állítás. $\lim_{v \to \infty} 2 \|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{\kappa_1(v,\gamma)} - 1}{\sqrt{\kappa_1(v,\gamma)} + 1} \right)^{\frac{k}{2}} = 2 \|r_0\|_{\widetilde{P}^{-1}} (\sqrt{\gamma^2 + 1} - \gamma)^k \text{ teljesül bármely } k \in \mathbb{N} \text{ index esetén.}$

Bizonyítás. Legyen $\gamma > 0$ tetszőleges rögzített szám, $k \in \mathbb{N}$ tetszőleges rögzített index. A folytonosság miatt elég a $\lim_{v \to \infty} \kappa_1(v, \gamma)$ határértéket meghatározni. Szintén a folytonosság miatt az $\eta := \frac{4}{v} = 4\mu$ változó bevezetésével vizsgálhatjuk az $\eta \to 0$ határértéket:

$$\begin{split} \lim_{\nu \to \infty} \kappa_1(\nu, \gamma) &= \lim_{\eta \to 0} \frac{(\sqrt{1 + \eta \gamma^2} + \sqrt{1 + \eta} - 2)(1 + \sqrt{1 + \eta})}{2(\sqrt{1 + \eta \gamma^2} - 1)} = \\ &= \lim_{\eta \to 0} \frac{(1 + \sqrt{1 + \eta})}{2} \left(1 + \frac{\sqrt{1 + \eta} - 1}{\sqrt{1 + \eta \gamma^2} - 1} \right) = 1 + \lim_{\eta \to 0} \frac{\sqrt{1 + \eta} - 1}{\sqrt{1 + \eta \gamma^2} - 1} = \\ &= 1 + \lim_{\eta \to 0} \frac{\sqrt{1 + \eta \gamma^2}}{\gamma^2 \sqrt{1 + \eta}} = 1 + \frac{1}{\gamma^2} \end{split}$$

Az utolsó sorban a kritikus határérték kiszámítására a L'Hôpital-szabályt használtuk. Ezt felhasználva a keresett határérték:

$$\begin{split} \lim_{\nu \to \infty} 2\|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{\kappa_1(\nu,\gamma)} - 1}{\sqrt{\kappa_1(\nu,\gamma)} + 1} \right)^{\frac{k}{2}} &= 2\|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{1 + \frac{1}{\gamma^2}} - 1}{\sqrt{1 + \frac{1}{\gamma^2}} + 1} \right)^{\frac{k}{2}} \\ &= 2\|r_0\|_{\widetilde{P}^{-1}} \left(\gamma \left(\sqrt{1 + \frac{1}{\gamma^2}} - 1 \right) \right)^k = 2\|r_0\|_{\widetilde{P}^{-1}} (\sqrt{\gamma^2 + 1} - \gamma)^k. \end{split}$$

Ezzel igazoltuk az állítást.

4.17. Állítás. $\lim_{v \to \infty} \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k \operatorname{arch}\left(\frac{\kappa_2(v,\gamma)+1}{\kappa_2(v,\gamma)-1}\right)\right)} = \|r_0\|_{\widetilde{P}} \text{ teljesül bármely } \gamma > 0 \text{ konstans és bármely } k \in \mathbb{N} \text{ index esetén.}$

Bizonyítás. Legyen $\gamma > 0$ tetszőleges rögzített szám. A folytonosság miatt elég a belső függvény határértékét kiszámítani. A becslésben a κ_2 első esetét kell használni, mert bármely $\gamma > 0$ esetén elegendően nagy v-re $\mu \gamma^2 = \frac{\gamma^2}{v} < 2$.

$$\lim_{\nu \to \infty} \frac{\kappa_2(\nu, \gamma) + 1}{\kappa_2(\nu, \gamma) - 1} = \lim_{\nu \to \infty} \frac{1 + \frac{2}{\nu} + \sqrt{1 + \frac{4}{\nu}} + 1 + \frac{2\gamma^2}{\nu} - \sqrt{1 + \frac{4\gamma^2}{\nu}}}{1 + \frac{2}{\nu} + \sqrt{1 + \frac{4}{\nu}} - 1 - \frac{2\gamma^2}{\nu} + \sqrt{1 + \frac{4\gamma^2}{\nu}}} = \frac{1 + 0 + \sqrt{1} + 1 + 0 - \sqrt{1}}{1 + 0 + \sqrt{1} - 1 - 0 + \sqrt{1}} = 1$$

Ezt felhasználva a keresett határérték:

$$\lim_{\nu \to \infty} \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(\frac{\kappa_2(\nu,\gamma)+1}{\kappa_2(\nu,\gamma)-1}\right)\right)} = \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(1\right)\right)} = \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(0\right)} = \|r_0\|_{\widetilde{P}}.$$

4.18. Következmény. Legyen $\gamma > 0$ tetszőleges rögzített szám. A $\nu \to \infty$ aszimptotikus esetben az

$$L_{\gamma} := \frac{\log \frac{1}{2}}{\log(\sqrt{\gamma^2 + 1} - \gamma)}$$

számra teljesül, hogy a CGN-módszer (26) becslése és a MINRES (25) becslése megegyezik $k = L_{\gamma}$ esetén (a $k \in \mathbb{R}^+$ kiterjesztés mellett), és a $k = 0, 1, ..., \lfloor L_{\gamma} \rfloor$ indexekre a CGN-módszer becslése jobb a MINRES becslésénél, a $k = \lceil L_{\gamma} \rceil, ..., N$ indexekre pedig a MINRES becslése a jobb. Ha $\gamma \in [0.26, 0.71]$, akkor $L_{\gamma} \in [1.04, 2.70]$.

Bizonyítás. A 4.16. és a 4.17. állításban szereplő határértékek egyenlőségét vizsgáljuk.

$$2(\sqrt{\gamma^2+1}-\gamma)^k = 1 \qquad \Leftrightarrow \qquad k\log(\sqrt{\gamma^2+1}-\gamma) = \log\frac{1}{2}$$

Ezzel meghatároztuk az L_{γ} -t. A CGN-hez tartozó becslés egy *k*-tól független pozitív szám, míg a MINRES-hez tartozó becslés *k*-tól függ, és tart a 0-hoz, ha $k \to \infty$. Nyilván ez azért teljesül, mert a *k*-adik hatványra emelt mennyiség 1-nél kisebb:

$$\sqrt{\gamma^2 + 1} - \gamma < 1 \quad \Leftrightarrow \quad \sqrt{\gamma^2 + 1} < 1 + \gamma \quad \Leftrightarrow \quad \gamma^2 + 1 < \gamma^2 + 1 + 2\gamma \quad \Leftrightarrow \quad 0 < \gamma$$

Ebből és a folytonosságból következik, hogy a $k \ge \lfloor L_{\gamma} \rfloor$ indexekre a MINRES becslése a jobb, a többi indexre pedig a CGN becslése a jobb. A numerikus tesztek eredménye a 16. és a 17. ábrán látható.

16. ábra. A MINRES- és a CGN-módszer lineáris becslése $\gamma = 0.3, 0.42, 0.71$ értékekre a $\nu \rightarrow \infty$ aszimptotikus esetben.

17. ábra. A MINRES- és a CGN-módszer lineáris becslésének L_{γ} metszéspontja a $\gamma \in [0.26, 0.71]$ intervallumban a $\nu \to \infty$ aszimptotikus esetben.

4.19. Állítás. $\lim_{v \to 0^+} 2\|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{\kappa_1(v,\gamma)}-1}{\sqrt{\kappa_1(v,\gamma)}+1}\right)^{\frac{k}{2}} = 2\|r_0\|_{\widetilde{P}^{-1}} \text{ teljesül bármely } \gamma > 0 \text{ konstans } \text{ és bármely } k \in \mathbb{N} \text{ index esetén.}$

Bizonyítás. Legyen $\gamma > 0$ tetszőleges rögzített szám, $k \in \mathbb{N}$ tetszőleges rögzített index. A folytonosság miatt elég a $\lim_{\nu \to 0^+} \frac{\sqrt{\kappa_1(\nu, \gamma)} - 1}{\sqrt{\kappa_1(\nu, \gamma)} + 1}$ határértéket meghatározni. Szintén a folytonosság miatt az $\eta := \frac{4}{\nu} = 4\mu$ változó bevezetésével vizsgálhatjuk az $\eta \to \infty$ határértéket:

$$\lim_{\nu \to 0^+} \frac{\sqrt{\kappa_1(\nu, \gamma)} - 1}{\sqrt{\kappa_1(\nu, \gamma)} + 1} = \lim_{\eta \to \infty} \frac{\sqrt{(\sqrt{1 + \eta \gamma^2} + \sqrt{1 + \eta} - 2)(1 + \sqrt{1 + \eta})} - \sqrt{2(\sqrt{1 + \eta \gamma^2} - 1)}}{\sqrt{(\sqrt{1 + \eta \gamma^2} + \sqrt{1 + \eta} - 2)(1 + \sqrt{1 + \eta})} + \sqrt{2(\sqrt{1 + \eta \gamma^2} - 1)}} = \lim_{\eta \to \infty} \frac{\sqrt{(\sqrt{\frac{1}{\eta} + \gamma^2} + \sqrt{\frac{1}{\eta} + 1} - \frac{2}{\sqrt{\eta}})(\frac{1}{\sqrt{\eta}} + \sqrt{\frac{1}{\eta} + 1})}}{\sqrt{(\sqrt{\frac{1}{\eta} + \gamma^2} + \sqrt{\frac{1}{\eta} + 1} - \frac{2}{\sqrt{\eta}})(\frac{1}{\sqrt{\eta}} + \sqrt{\frac{1}{\eta} + 1})} + \sqrt{2(\sqrt{\frac{1}{\eta^2} + \frac{\gamma^2}{\eta}} - \frac{1}{\eta})}} = \frac{\sqrt{\gamma + 1}}{\sqrt{\gamma + 1}} = 1$$

Ezt felhasználva a folytonosság miatt:

$$\lim_{\mathbf{v}\to 0^+} 2\|r_0\|_{\widetilde{P}^{-1}} \left(\frac{\sqrt{\kappa_1(\mathbf{v},\boldsymbol{\gamma})}-1}{\sqrt{\kappa_1(\mathbf{v},\boldsymbol{\gamma})}+1}\right)^{\frac{k}{2}} = 2\|r_0\|_{\widetilde{P}^{-1}}(1)^{\frac{k}{2}} = 2\|r_0\|_{\widetilde{P}^{-1}}.$$

4.20. Állítás. $\lim_{v \to 0^+} \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k \operatorname{arch}\left(\frac{\kappa_2(v,\gamma)+1}{\kappa_2(v,\gamma)-1}\right)\right)} = \|r_0\|_{\widetilde{P}} \text{ teljesül bármely } \gamma > 0 \text{ konstans és bármely } k \in \mathbb{N} \text{ index esetén.}$

Bizonyítás. Legyen $\gamma > 0$ tetszőleges rögzített szám. A folytonosság miatt elég a belső függvény határértékét kiszámítani, és az eredeti helyett vizsgálhatjuk a $\mu \to \infty$ határértéket. A becslésben a κ_2 második esetét kell használni, mert bármely $\gamma > 0$ esetén elegendően kicsi *v*-re $\mu \gamma^2 = \frac{\gamma^2}{\nu} \ge 2$.

$$\lim_{\nu \to 0^+} \frac{\kappa_2(\nu, \gamma) + 1}{\kappa_2(\nu, \gamma) - 1} = \lim_{\mu \to \infty} \frac{3 + 2\mu + \sqrt{1 + 4\mu}}{-1 + 2\mu + \sqrt{1 + 4\mu}} = \lim_{\mu \to \infty} \frac{\frac{3}{\mu} + 2 + \sqrt{\frac{1}{\mu^2} + \frac{4}{\mu}}}{-\frac{1}{\mu} + 2 + \sqrt{\frac{1}{\mu^2} + \frac{4}{\mu}}} = \frac{2}{2} = 1$$

Ezt felhasználva a folytonosság miatt:

$$\lim_{\nu \to 0^+} \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(\frac{\kappa_2(\nu,\gamma)+1}{\kappa_2(\nu,\gamma)-1}\right)\right)} = \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(1\right)\right)} = \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(0\right)} = \|r_0\|_{\widetilde{P}}.$$

4.21. Következmény. Legyen $\gamma > 0$ tetszőleges rögzített szám. A $v \to 0^+$ aszimptotikus esetben a CGN-módszer becslése jobb a MINRES becslésénél tetszőleges $k \in \mathbb{N}$ index esetén.

Bizonyítás. A 4.19. és 4.20. állításban szereplő határértékek γ -tól és *k*-tól függetlenek, és a kettő közül a CGN-módszer becslésében szereplő konstans szorzó a kisebb.

4.22. Állítás. Legyen $\gamma > 0$ tetszőleges rögzített szám. A $v := \frac{\gamma^2}{2}$ esetben a CGN-módszer becslése jobb a MINRES becslésénél tetszőleges $k \in \mathbb{N}$ index esetén.

Bizonyítás. A becslésekben $\mu = \frac{1}{\nu} = \frac{2}{\gamma^2}$. A MINRES lineáris becslésében:

$$\kappa_{1} = \frac{(\sqrt{1+4\mu\gamma^{2}}+\sqrt{1+4\mu}-2)(1+\sqrt{1+4\mu})}{2(\sqrt{1+4\mu\gamma^{2}}-1)} = \frac{\left(1+\sqrt{1+\frac{8}{\gamma^{2}}}\right)^{2}}{4} \quad \Rightarrow \quad \sqrt{\kappa_{1}} = \frac{1+\sqrt{1+\frac{8}{\gamma^{2}}}}{2}$$

Ezt felhasználva a MINRES lineáris becslése:

$$2\|r_0\|_{\widetilde{P}^{-1}}\left(\frac{\sqrt{\kappa_1}-1}{\sqrt{\kappa_1}+1}\right)^{\frac{k}{2}} = 2\|r_0\|_{\widetilde{P}^{-1}}\left(\frac{-1+\sqrt{1+\frac{8}{\gamma^2}}}{3+\sqrt{1+\frac{8}{\gamma^2}}}\right)^{\frac{5}{2}}$$
(27)

ŀ

A CGN-módszer lineáris becslésében ennél a kritikus v értéknél a κ_2 mindkét esetben ugyanazt az értéket veszi fel, méghozzá:

$$\kappa_2 = \frac{1 + \frac{4}{\gamma^2} + \sqrt{1 + \frac{8}{\gamma^2}}}{2}$$

Ezt felhasználva a CGN-módszer lineáris becslése:

$$\frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(\frac{\kappa_2+1}{\kappa_2-1}\right)\right)} = \frac{\|r_0\|_{\widetilde{P}}}{\operatorname{ch}\left(k\operatorname{arch}\left(\frac{3+\frac{4}{\gamma^2}+\sqrt{1+\frac{8}{\gamma^2}}}{-1+\frac{4}{\gamma^2}+\sqrt{1+\frac{8}{\gamma^2}}}\right)\right)}$$
(28)

Annak eldöntéséhez, hogy melyik becslés ad jobb konvergenciát, a (27) és (28) *k*-tól függő függvényeket kell összehasonlítani tetszőleges $\gamma > 0$ rögzített paraméter esetén. Ennek precíz analitikus vizsgálata a függvények komplikáltsága miatt nehézkes, ezért helyette MATLAB-ban numerikus vizsgálatokat végeztem. Néhány konkrét γ értékre a 18. ábra grafikonjain látható, hogy minden iteratív lépésben a CGN-módszerhez tartozó becslés a kisebb.

4.23. Megjegyzés. A 4.17., 4.19. és 4.20. állításban az aszimptotikus eset konvergenciabecslése k-tól független, azaz úgy tűnhet, hogy a módszerek nem konvergálnak. Fontos viszont megjegyezni, hogy bármely v > 0 paraméter esetén a konvergenciahányados 1-nél kisebb, tehát az iteratív módszerek konvergálnak, csak esetleg az aszimptotikus értékekhez közelítve csökken a konvergencia sebessége.

18. ábra. A MINRES- és a CGN-módszer lineáris becslése logaritmikus skálán a $\gamma = 0.3, 0.42, 0.71$ értékekre a $v = \frac{\gamma^2}{2}$ esetben.

4.4. Numerikus tesztek

A 3.4. fejezethez hasonlóan az Oseen-egyenlet esetén is végeselem-módszer segítségével diszkretizáljuk a peremérték-feladatot, és vagy a 4.2. fejezetben bemutatott nem szimmetrikus Uzawa-típusú algoritmusokat használjuk, vagy közvetlenül megoldjuk a 4.3. fejezetben tárgyalt nagy lineáris egyenletrendszert.

Mivel az Oseen-egyenlet esetén az *a* bilineáris forma kiegészült a konvekciós taggal és a v paraméterrel, így az A_h merevségi mátrix definíciója is változik:

$$\int_{\Omega} (\mathbf{v} \nabla \mathbf{u}^h : \nabla \psi_i + (\mathbf{w} \cdot \nabla \mathbf{u}^h) \cdot \psi_i) = \sum_{j=1}^{N_u} c_j \int_{\Omega} (\nabla \psi_j : \nabla \psi_i + (\mathbf{w} \cdot \nabla \psi_j) \cdot \psi_i) =: \sum_{j=1}^{N_u} c_j a_{ij} \quad (i = 1, \dots, N_u)$$

Az A_h mátrix definícióján kívül a numerikus módszer konstrukciója és implementációja megegyezik a Stokes-feladatnál leírtakkal.

Az Oseen-egyenlet megoldására készített MATLAB programot is érdemes tesztelnünk, ezért a 3.14. példában bemutatott tesztfeladatot módosítjuk úgy, hogy a megadott függvények az Oseen-egyenlet pontos megoldásai legyenek. Az ezzel kapcsolatos számolást a 4.24. példában részletezzük, a módszer konvergenciáját jellemző adatsorokat pedig az 5. táblázat szemlélteti. A táblázat adatai azt mutatják, hogy az Ω_1 négyzeten az Oseen-egyenlet esetén is a konvergencia harmad- illetve másodrendű.

A 19., 20. és 21. ábrán néhány további feladat megoldása látható, ahol a pontos megoldás nem ismert, de a végeselem-módszerrel numerikusan közelíthető. A Stokes-feladatnál szereplő ábrákkal ellentétben most az **f** jobb oldal helyett az utolsó grafikonon a **w** vektormezőt ábrázoltuk. Érdemes összevetni ezeket az ábrákat a 9., 10. és 11. ábrákkal, különösen az sebességmezőt szemléltető áramvonalakkal, ahol közvetlenül megfigyelhető a **w** vektormező forgató ill. eltoló hatása.

A 22., 23. és 24. ábrán megfigyelhető egy v = 1, 0.1, 0.01 viszkozitási paraméterrel és w = 0 vektormezővel ellátott Oseen-egyenletre alkalmazott CGN- és GCR-Uzawa-algoritmus konvergenciája. A 4.13. állítás és a 4.11. megjegyzés szerint azt várjuk, hogy ilyenkor v-től függetlenül a GCR-Uzawa-algoritmus konvergál gyorsabban. Ezt rendre megfigyelhetjük mindegyik grafikonon. Látszik továbbá az is, hogy a v csökkentése nem befolyásolja számottevően a grafikonok alakját és a két görbe egymáshoz képesti viszonyát, azonban kisebb v esetén az iterációs lépések száma mindhárom tartomány esetén növekszik. Ábránként a három tartomány grafikonjait összevetve megállapítható, hogy a Stokes-feladathoz hasonlóan itt is egy nagyobb γ inf-supkonstanshoz kisebb iterációszámok mérhetők.

A 25., 26. és 27. ábrán ugyanazt a feladatot oldjuk meg v = 1, 0.1, 0.01 viszkozitási paraméterrel, csak az Uzawa-algoritmus helyett a (6) nagy egyenletrendszerre alkalmazott prekondicionált CGN- és GCR-módszer konvergenciája látható. Megfigyelhető, hogy az Uzawa-típusú algoritmusokkal ellentétben ezeknél a v paraméter értéke nagy hatással van arra, hogy a két módszer közül melyik konvergál gyorsabban. A v = 1 esetben ugyanazokat a grafikonokat látjuk, mint a Stokes-feladatnál a 14. ábrán, mivel w = 0 esetén a MINRES- és a GCR-módszer konvergenciája megegyezik. Ebben az esetben tehát a GCR-módszer konvergál gyorsabban. A v = 0.1 ill. v = 0.01 esetben viszont a CGN-módszer konvergál gyorsabban, sőt a grafikonokon az is látszik, hogy a v csökkentésével egyre nagyobb előnyre tesz szert a CGN-módszer. Ábránként a három tartomány grafikonjait összevetve megállapítható, hogy itt is nagyobb γ inf-sup-konstans esetén kisebb iterációszámok mérhetők. **4.24. Példa.** Tekintsük az $\Omega_1 = [-1, 1]^2$ négyzeten a 3.14. példában megadott $\mathbf{u} = (u_1, u_2)$ és *p* függvényt:

$$u_1(x,y) := (x^2 - 1)^2 (y^2 - 1)y;$$
 $u_2(x,y) := -(x^2 - 1)(y^2 - 1)^2 x;$ $p(x,y) := \frac{x^3}{3}$

Emellett legyen v := 1 és $\mathbf{w}(x, y) := (e^x \sin(y), e^x \cos(y))$, ami egyrészt folytonosan differenciálható, másrészt pedig div $\mathbf{w} = \partial_x (e^x \sin(y)) + \partial_y (e^x \cos(y)) = e^x \sin(y) - e^x \sin(y) = 0$.

Számoljuk ki az u_1, u_2, p függvények parciális deriváltjait!

$$\begin{array}{ll} \partial_{x}u_{1}(x,y) = 4(x^{2}-1)(y^{2}-1)xy; & \partial_{x}u_{2}(x,y) = -(3x^{2}-1)(y^{2}-1)^{2}; \\ \partial_{y}u_{1}(x,y) = (x^{2}-1)^{2}(3y^{2}-1); & \partial_{y}u_{2}(x,y) = -4(x^{2}-1)(y^{2}-1)xy; \\ \partial_{x}^{2}u_{1}(x,y) = 4(3x^{2}-1)(y^{2}-1)y; & \partial_{x}^{2}u_{2}(x,y) = -6x(y^{2}-1)^{2}; \\ \partial_{y}^{2}u_{1}(x,y) = 6y(x^{2}-1)^{2}; & \partial_{y}^{2}u_{2}(x,y) = -4(x^{2}-1)(3y^{2}-1)x; \\ \partial_{x}p(x,y) = x^{2}; & \partial_{y}p(x,y) = 0. \end{array}$$

A jobb oldalon szereplő $\mathbf{f} = (f_1, f_2)$ függvény most az alábbi alakban írható fel:

$$f_{1}(x,y) := -\Delta u_{1}(x,y) + \mathbf{w} \cdot \nabla u_{1}(x,y) + \partial_{x}p(x,y)$$

= $-\partial_{x}^{2}u_{1}(x,y) - \partial_{y}^{2}u_{1}(x,y) + w_{1}(x,y)\partial_{x}u_{1}(x,y) + w_{2}(x,y)\partial_{y}u_{1}(x,y) + \partial_{x}p(x,y)$
= $-4(3x^{2}-1)(y^{2}-1)y - 6y(x^{2}-1)^{2} + e^{x}\sin(y)4(x^{2}-1)(y^{2}-1)xy + e^{x}\cos(y)(x^{2}-1)^{2}(3y^{2}-1) + x^{2};$

$$f_{2}(x,y) := -\Delta u_{2}(x,y) + \mathbf{w} \cdot \nabla u_{2}(x,y) + \partial_{y}p(x,y)$$

= $-\partial_{x}^{2}u_{2}(x,y) - \partial_{y}^{2}u_{2}(x,y) + w_{1}(x,y)\partial_{x}u_{2}(x,y) + w_{2}(x,y)\partial_{y}u_{2}(x,y) + \partial_{y}p(x,y)$
= $6x(y^{2}-1)^{2} + 4(x^{2}-1)(3y^{2}-1)x - e^{x}\sin(y)(3x^{2}-1)(y^{2}-1)^{2} - e^{x}\cos(y)4(x^{2}-1)(y^{2}-1)xy + 0.$

A numerikus megoldás ábrái nagyon hasonlóak a 6. ábrához az **f** jobb oldal kivételével, ezért ezt itt nem ábrázoltam külön. Az 5. és a 2. táblázat adatai is nagyon hasonlóak, ezért a végeselemmódszer konvergenciájáról ugyanaz mondható el, mint a Stokes-feladat esetében.

n	0	1	2	3	4	5	6
$\ \mathbf{u}^h-\mathbf{u}^*\ _{H^1_0}$	0.0714	0.0116	0.00167	2.26e-04	2.94e-05	3.74e-06	4.73e-07
u ^h rendje		2.62	2.80	2.89	2.94	2.97	2.99
$\ p^h - p^*\ _{L^2}$	0.100	0.0151	0.00312	7.56e-04	1.88e-04	4.70e-05	1.17e-05
<i>p^h</i> rendje		2.73	2.27	2.047	2.0066	2.0010	2.00017

5. táblázat. A numerikus és a pontos megoldás rácspontokon vett különbségének a normája és a konvergencia rendje különböző *n* paraméterekre a 4.24. példában.

19. ábra. Az Oseen-egyenlet numerikus megoldása n = 3 paraméter mellett négyzeten az $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, v = 1 viszkozitással és $\mathbf{w}(x, y) = 50(e^x \sin(y), e^x \cos(y))$ vektormezővel.

20. ábra. Az Oseen-egyenlet numerikus megoldása n = 3 paraméter mellett L-alakú tartományon az $\mathbf{f}(x, y) = (-y, x)$ függvénnyel, v = 1 viszkozitással és $\mathbf{w}(x, y) = (50, 50)$ vektormezővel.

21. ábra. Az Oseen-egyenlet numerikus megoldása n = 3 paraméter mellett körlapon az $\mathbf{f}(x, y) = ((1 - \cos(x)) \sin(y), (1 - \cos(y)) \sin(x))$ függvénnyel, v = 1 viszkozitással és $\mathbf{w}(x, y) = 50(-y, x)$ vektormezővel.

22. ábra. Az Oseen-egyenletre alkalmazott CGN- és GCR-Uzawa-algoritmus konvergenciájának összehasonlítása n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = \mathbf{0}$ vektormezővel és v = 1 viszkozitással mindhárom tartomány esetén.

23. ábra. Az Oseen-egyenletre alkalmazott CGN- és GCR-Uzawa-algoritmus konvergenciájának összehasonlítása n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = \mathbf{0}$ vektormezővel és v = 0.1 viszkozitással mindhárom tartomány esetén.

24. ábra. Az Oseen-egyenletre alkalmazott CGN- és GCR-Uzawa-algoritmus konvergenciájának összehasonlítása n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = \mathbf{0}$ vektormezővel és v = 0.01 viszkozitással mindhárom tartomány esetén.

25. ábra. A nagy egyenletrendszerre alkalmazott prekondicionált CGN- és GCR-algoritmus konvergenciájának összehasonlítása n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = \mathbf{0}$ vektormezővel és v = 1 viszkozitással mindhárom tartomány esetén.

26. ábra. A nagy egyenletrendszerre alkalmazott prekondicionált CGN- és GCR-algoritmus konvergenciájának összehasonlítása n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = \mathbf{0}$ vektormezővel és v = 0.1 viszkozitással mindhárom tartomány esetén.

27. ábra. A nagy egyenletrendszerre alkalmazott prekondicionált CGN- és GCR-algoritmus konvergenciájának összehasonlítása n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = \mathbf{0}$ vektormezővel és v = 0.01 viszkozitással mindhárom tartomány esetén.

28. ábra. A 22. és 25. ábra grafikonjainak egyesítése, mely tartományonként szemlélteti a CGNés GCR-Uzawa-algoritmus ill. a prekondicionált CGN- és GCR-módszer konvergenciáját, amikor az Oseen-egyenlet paraméterei v = 1 és w = 0.

29. ábra. A 23. és 26. ábra grafikonjainak egyesítése, mely tartományonként szemlélteti a CGNés GCR-Uzawa-algoritmus ill. a prekondicionált CGN- és GCR-módszer konvergenciáját, amikor az Oseen-egyenlet paraméterei v = 0.1 és w = 0.

30. ábra. A 24. és 27. ábra grafikonjainak egyesítése, mely tartományonként szemlélteti a CGNés GCR-Uzawa-algoritmus ill. a prekondicionált CGN- és GCR-módszer konvergenciáját, amikor az Oseen-egyenlet paraméterei v = 0.01 és w = 0.

A nagy rendszer megoldásánál a v = 1 esetet a Stokes-feladatnál részletesen tárgyaltuk a 3.3. fejezetben. Amennyiben v > 1, a becslések gyorsan közelítenek a 4.18. következményben vizsgált $v \rightarrow \infty$ aszimptotikus esethez, ahol szintén a v = 1 esethez hasonló konvergenciát várunk, és a numerikus tesztek során is ezt tapasztaltuk.

A 4.21. és 4.22. állításban megmutattuk, hogy elegendően kicsi v paraméter esetén a módszerek lineáris becslését alapul véve várhatóan a CGN-módszer konvergál gyorsabban. A numerikus tesztek ezzel összhangban vannak, hiszen a v = 0.1 esetben a 26. ábrán és a v = 0.01 esetben a 27. ábrán pontosan ez figyelhető meg mindhárom tartomány esetén: már az első iteratív lépéstől kezdve a prekondicionált CGN-módszer által előállított reziduális hibavektorok normája kisebb a prekondicionált GCR-módszer futása során tapasztalt normákhoz képes, és a v = 0.01 esetben ez a különbség egészen számottevő.

A 28., 29. és 30. ábrán láthatóak tartományonként egyesítve a korábban bemutatott grafikonok, melyek együttesen szemléltetik a CGN- és GCR-Uzawa-algoritmus ill. a prekondicionált CGN- és GCR-módszer konvergenciáját. Megállapítható, hogy a vizsgált tartományokon és v paraméterek mellett minden esetben a GCR-Uzawa-algoritmus konvergál a leggyorsabban. A többi algoritmus sorrendjének felállításához azonban figyelembe kell venni a tartomány alakját és a v értékét egyaránt. Ennek áttekintését a 6., 7. és 8. táblázat adatai szolgáltatják, ahol v értéke szerinti bontásban látható a módszerek sorrendje az egyes tartományokon. Megfigyelhető, hogy a GCR-Uzawa-algoritmus egyértelmű fölénye mellett v = 1 esetén a CGN-módszer konvergenciája a leglassabb, viszont a v = 0.01 esetben már annyit javul a konvergenciája, hogy a második helyre kerül. A többi esetben a sorrend tartományonként nagy változatosságot mutat, főleg a CGN-Uzawa- és a GCR-módszer között.

	1.	2.	3.	4.
Négyzet	GCR-Uzawa	CGN-Uzawa	GCR	CGN
L-alak	GCR-Uzawa	GCR	CGN-Uzawa	CGN
Körlap	GCR-Uzawa	CGN-Uzawa	GCR	CGN

6. táblázat. A négy iteratív módszer hatékonyságának sorrendje tartományonként a v = 1 és w = 0 esetben a 28. ábra grafikonjai alapján.

	1.	2.	3.	4.
Négyzet	GCR-Uzawa	CGN	CGN-Uzawa	GCR
L-alak	GCR-Uzawa	CGN	GCR	CGN-Uzawa
Körlap	GCR-Uzawa	CGN-Uzawa	CGN	GCR

7. táblázat. A négy iteratív módszer hatékonyságának sorrendje tartományonként a v = 0.1 és w = 0 esetben a 29. ábra grafikonjai alapján.

	1.	2.	3.	4.
Négyzet	GCR-Uzawa	CGN	CGN-Uzawa	GCR
L-alak	GCR-Uzawa	CGN	GCR	CGN-Uzawa
Körlap	GCR-Uzawa	CGN	CGN-Uzawa	GCR

8. táblázat. A négy iteratív módszer hatékonyságának sorrendje tartományonként a v = 0.01 és w = 0 esetben a 30. ábra grafikonjai alapján.

A 31. és 32. ábra grafikonjain tartományonként az látható, hogy a $\mathbf{w} = (\rho, 0)$ vektormező esetén ($\rho \in \mathbb{N}$) hogyan változik az iteratív lépések száma TOL = 10^{-8} toleranciaszinttel a v = 1és v = 0.1 értékekre a CGN- és GCR-Uzawa-algoritmus esetén, ha a ρ értékét 0-ról elkezdjük növelni. A grafikonok legelején a $\rho = 0$ esetben $\mathbf{w} = \mathbf{0}$, tehát a 22. és 23. ábrán látható konvergenciát tapasztaljuk itt is, és ennek megfelelően a grafikonok elején biztosan a GCR-Uzawa-algoritmus konvergál gyorsabban. Ezután a fekete és a piros görbék metszik egymást, és a metszéspont után a CGN-Uzawa-algoritmus konvergál gyorsabban. A v = 0.1 esetben jól látható, hogy a CGN-Uzawa-algoritmus dominanciája csak egy szakaszon érvényes, és elegendően nagy ρ esetén a két görbe ismét metszi egymást, és utána megint a GCR-Uzawa-algoritmus konvergál gyorsabban. Ugyanezt a jelenséget figyeltük meg a [4] TDK-dolgozatban is, ahol hasonló keretek között a prekondicionált CGN- és GCR-módszer konvergenciáját vizsgáltuk konvekció-diffúziós egyenletek esetén.

A 33. ábra grafikonjain tartományonként ugyanez az összehasonlítás látható a prekondicionált CGN- és GCR-módszer esetén. A grafikonok elején a $\rho = 0$ esetben itt is a 25. ábrán látható konvergencia jelenik meg. Mivel itt jelentősen megnőtt az iteratív lépések száma, ezért csak a v = 1 eset grafikonjait sikerült elkészíteni, mert már v = 0.1 viszkozitásnál is nehezen konvergáltak az algoritmusok, és akár az 1000 iteratív lépést is meghaladták egyes esetekben. Ezeken a grafikonokon szintén az Uzawa-típusú algoritmusoknál leírtak figyelhetőek meg: először a prekondicionált GCR-módszer konvergál gyorsabban, majd a CGN-módszer átveszi a vezetést, és elegendően nagy ρ esetén feltételezhetően ezeknél is lenne egy második metszéspont, ami után ismét a GCR-módszer konvergálna gyorsabban. Kisebb v esetén a 26. és 27. ábrák szerint a $\rho = 0$ esetben rögtön a CGN-módszer konvergál gyorsabban, tehát az első szakasz kimarad, és feltehetően ott is megfigyelhető lenne egy későbbi metszéspont, amitől kezdve a GCR-módszer konvergálna gyorsabban.

A 31. és 33. ábrát összehasonlítva a v = 1 esetben megállapítható, hogy a vizsgált Oseenegyenletre a $\mathbf{w} = (\rho, 0)$ vektormező esetén a nem szimmetrikus esetben nem érdemes a nagy egyenletrendszert (legalábbis a vizsgált prekondicionáló mátrixszal) megoldani, mert már $\rho =$ 20 esetén is 200-nál nagyobb iterációszámokat tapasztalunk, ami ρ növelésével egyre inkább növekszik. Helyette a CGN-Uzawa- vagy a GCR-Uzawa-algoritmust érdemes használni: a kettő közül azt, amelyik ρ függvényében gyorsabban konvergál. A korábbi megállapítások szerint tehát a görbék két metszéspontja közti ρ értékek esetén a CGN-Uzawa-algoritmust, ezen szakaszon kívül pedig a GCR-Uzawa-algoritmust javasolt használni az Oseen-egyenlet megoldására.

A 34., 35. és 36. ábrán látható a négy módszer konvergenciája a $\mathbf{w} = (1,0)$ vektormezőre v = 1, 0.1, 0.01 viszkozitással. Megfigyelhető, hogy v = 0.01 esetén a CGN-módszer teljesít a legjobban mindhárom tartományon, és a GCR-módszer jelentősen lemarad a többihez képest.

31. ábra. Az Oseen-egyenletre alkalmazott CGN- és GCR-Uzawa-algoritmus által megtett iteratív lépések száma TOL = 10^{-8} toleranciával, n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = (\rho, 0)$ vektormezővel és v = 1 viszkozitással mindhárom tartomány esetén.

32. ábra. Az Oseen-egyenletre alkalmazott CGN- és GCR-Uzawa-algoritmus által megtett iteratív lépések száma TOL = 10^{-8} toleranciával, n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = (\rho, 0)$ vektormezővel és v = 0.1 viszkozitással mindhárom tartomány esetén.

33. ábra. A nagy egyenletrendszerre alkalmazott prekondicionált CGN- és GCR-algoritmus által megtett iteratív lépések száma TOL = 10^{-8} toleranciával, n = 3 paraméterrel, $\mathbf{f}(x, y) = (\cos(x), \cos(x))$ függvénnyel, $\mathbf{w} = (\rho, 0)$ vektormezővel és v = 1 viszkozitással mindhárom tartomány esetén.

34. ábra. A négy iteratív módszer egyesített grafikonjai, mely tartományonként szemlélteti a CGN- és GCR-Uzawa-algoritmus ill. a prekondicionált CGN- és GCR-módszer konvergenciáját, amikor az Oseen-egyenlet paraméterei $\mathbf{f}(x, y) = (\cos(x), \cos(x)), \mathbf{w} = (1, 0), v = 1, n = 3$ és TOL = 10^{-8} .

35. ábra. A négy iteratív módszer egyesített grafikonjai, mely tartományonként szemlélteti a CGN- és GCR-Uzawa-algoritmus ill. a prekondicionált CGN- és GCR-módszer konvergenciáját, amikor az Oseen-egyenlet paraméterei $\mathbf{f}(x, y) = (\cos(x), \cos(x)), \mathbf{w} = (1, 0), v = 0.1, n = 3$ és TOL = 10^{-8} .

36. ábra. A négy iteratív módszer egyesített grafikonjai, mely tartományonként szemlélteti a CGN- és GCR-Uzawa-algoritmus ill. a prekondicionált CGN- és GCR-módszer konvergenciáját, amikor az Oseen-egyenlet paraméterei $\mathbf{f}(x, y) = (\cos(x), \cos(x)), \mathbf{w} = (1, 0), v = 0.01, n = 3$ és TOL = 10^{-3} ill. 10^{-2} .

Hivatkozások

- [1] KARÁTSON, J.; HORVÁTH, R.: Numerical Methods for Elliptic Partial Differential Equations. URL: https://kajkaat.web.elte.hu/pdnmell-ang-2024.pdf
- [2] ELMAN, H. C.; SILVESTER, D. J.; WATHEN, A. J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press, 2014.
- [3] SAAD, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia, 2003.
- [4] LADOS, B. I.: Comparison of iterative methods for discretized nonsymmetric elliptic problems. TDK dolgozat, ELTE, 2024.
- [5] LAI, Y. L.; LIN, W. W.; PIERCE, D.: Conjugate gradient and minimal residual methods for solving symmetric indefinite systems. Journal of Computational and Applied Mathematics, Volume 84, Issue 2, p. 243-256, 1997.
- [6] AXELSSON, O.; KARÁTSON, J.: *Krylov improvements of the Uzawa method for Stokes type operator matrices*. Numer. Math. 148, p. 611–631, 2021.
- [7] SÜLI, E.: Lecture Notes on Finite Element Methods for Partial Differential Equations. University of Oxford, 2025.
 URL: https://people.maths.ox.ac.uk/suli/fem.pdf
- [8] STOYAN, G.: Towards discrete velte decompositions and narrow bounds for inf-sup constants. Computers & Mathematics with Applications, Volume 38, Issues 7–8, p. 243-261, 1999.
- [9] CHEN, L.: *iFEM: an integrated finite element methods package in MATLAB.* Technical Report, University of California at Irvine, 2009. URL: https://lyc102.github.io/ifem/
- [10] THE MATHWORKS, INC.: *MATLAB R2024b Update 3*. Natick, Massachusetts, 2024. URL: https://www.mathworks.com/help/matlab/

Nyilatkozat

Alulírott **Lados Bálint István** nyilatkozom, hogy szakdolgozatom elkészítése során MI alapú eszközöket **nem alkalmaztam**.

Budapest, 2025. június 1.

Lados Balint

Lados Bálint István