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Introduction

In recent years, the study of random matrices and their perturbations has become increasingly
relevant in statistics, data science and network theory. These tools offer powerful methods for
uncovering hidden structures in complex datasets, especially when data are represented in matrix
form, such as in adjacency matrices of graphs or covariance matrices in multivariate statistics.

This thesis is centered around the interplay between random matrix theory and statistical
applications, with a special focus on the behavior of singular and eigenvectors under random
perturbations. In the first part, we examine how singular vectors of low-rank matrices are affected
by the addition of noise. This analysis is crucial for understanding the robustness of spectral
methods and for developing algorithms that remain reliable under uncertainty.

The second part of the thesis focuses on the Stochastic Block Model (SBM), a widely studied
probabilistic model for community detection in networks. We investigate both theoretical aspects
and practical implementations of the SBM, including its relation to the Z2 synchronization
problem, as well as the performance of spectral methods in noisy environments. Through
simulations, we evaluate misclassification rates and explore how well the underlying structure of
a graph can be recovered when observations are corrupted by noise.

In the final chapter, we extend the SBM framework by considering graph powers, which allow
us to better capture community structure in sparse graphs. We analyze the spectral properties of
the corresponding matrices and show how these techniques lead to improved classification even
under adversarial perturbations.

By combining tools from linear algebra, probability theory and statistical inference, this
thesis aims to contribute to the understanding of when and how spectral algorithms succeed in
reconstructing latent structures from noisy and high-dimensional data.
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Chapter 1

Behavior of Singular Vectors of Random
Matrices under Perturbation Effects

The study of singular vectors and singular values of random matrices plays a crucial role in
understanding complex data structures. In many applications, data can be represented as matrices,
where rows correspond to observations and columns to different features. The Singular Value
Decomposition (SVD) is a key mathematical tool that decomposes a matrix into singular values
and singular vectors, enabling us to extract meaningful patterns. This decomposition allows us
to better understand data variability and dependencies, revealing significant properties of the
dataset. The singular values and singular vectors of a matrix have several crucial applications in
data analysis:

• Dimensionality Reduction: The leading singular vectors capture the most significant
directions of variation, which is essential in techniques such as Principal Component
Analysis (PCA).

• Noise Filtering: Retaining only the dominant singular values enables the removal of noise
while preserving the essential information in the data (cf. [9]).

• Feature Extraction and Interpretation: In high-dimensional datasets, singular vectors
often correspond to meaningful structures, which aids in machine learning and pattern
recognition (cf. [14]).

• Understanding Covariance Structure: In statistics, the singular vectors of covariance
matrices reveal key dependencies among variables, playing a crucial role in applications
ranging from finance to physics and biological sciences.

• Stability of Solutions: Many optimization problems involve matrices, and their singular
vectors determine the stability and sensitivity of numerical solutions (cf. [19]).
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1.1 Singular vectors and values of matrices

By analyzing singular vectors and values, we gain a deeper understanding of data structure,
covariance properties and the relationships between variables. This knowledge is essential for
effective statistical modeling, machine learning applications and signal processing. In real-world
scenarios, data is often subject to measurement errors, missing values or external disturbances.
These perturbations can significantly impact the singular values, singular vectors and overall
structure of the data matrix. Therefore, studying how small changes affect matrix properties is
essential. Key aspects of perturbation analysis include:

• Sensitivity of Singular Values and Vectors: Small perturbations in data can lead to
significant variations in singular values and singular vectors. Understanding these effects
helps in designing robust algorithms (cf. [18]).

• Low-Rank Approximations in Noisy Data: Many applications rely on approximating
a matrix with a low-rank version (e.g., truncated SVD) to reduce noise and enhance
interpretability (cf. [11]).

• Stability of Covariance Matrices: Covariance matrices computed from noisy data may be
unstable. Perturbation analysis helps determine when eigenvalue shifts lead to unreliable
conclusions (cf. [15]).

• Applications in Machine Learning and Signal Processing: Many machine learning
algorithms depend on singular values and vectors. Studying perturbations allows us to
assess algorithm robustness in noisy environments (cf. [20]).

Understanding these aspects ensures that matrix decompositions remain useful even in the
presence of uncertainty, making perturbation analysis a critical tool in modern data-driven
applications. After this, we can define the singular values and singular vectors of matrices.
Let ∥ · ∥ denote the Euclidean norm in Rn.
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Definition 1.1 Let σ1 be the first singular value of the matrix A, i.e.

σ1 := max
∥v∥=1

∥Av∥,

and let denote the first singular vector of the matrix A by v1:

v1 := argmax
∥v∥=1

∥Av∥.

Let σ2 be the second singular value of the matrix A, i.e.

σ2 := max
v⊥v1

∥Av∥,

and let denote the second singular vector of the matrix A by v2:

v2 = argmax
v⊥v1

∥Av∥.

By induction let vi and σi be the i-th singular vector and singular value of A (for
i = 3,4, . . . ,r), i.e.

σi := max
v⊥v1,v2,...,vi−1

∥Av∥ > 0 and vi := argmax
v⊥v1,v2...,vi−1

∥Av∥.

In this situation we have
max

v⊥v1,v2,...,vr
∥Av∥ = 0.

After this definition we will be able to see that for each 1 ≤ k ≤ r the space Vk is the best-fit k-
dimensional subspace for the rows of A matrix, where Vk is the subspace spanned by v1,v2, . . . vk.

Theorem 1.2 (cf. [17]) For every A ∈ Rm×n the space Vk is the best-fit k-dimensional
subspace for the rows of A.

Proof.
By definition, the singular vectors are orthogonal to each other and have unit norms.

Now, we seek a subspace of Rn that is closest to the row vectors of A. Thus, we aim to
minimize the following quantity:

min
W

k∑
j=1

d(aj,W).

Here W is a subspace of Rn, and ai denotes the i-th row of the matrix A.
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Let w1,w2, . . . ,wk be an orthonormal basis of an arbitrary subspace W, which exists.
By the Pythagorean theorem, the distance between ai and W is minimized if the norm of the
orthogonal projection of ai onto W is maximized. We know that w1,w2, . . . ,wk forms an
orthonormal basis of W, so the norm of the orthogonal projection of ai onto W is given by

k∑
j=1

⟨wj,ai⟩2.

Thus, we wish to maximize this function:

max
w1,w2,...,wk

k∑
j=1

m∑
i=1

⟨wj,ai⟩2 = max
w1,w2,...,wk

k∑
j=1

∥Awj∥2.

We assert that the minimum occurs at Vk. We will prove this assertion by mathematical
induction.

For k = 1, the result is trivial due to the definition of the first singular vector. Now,
assume that the best-fit (k− 1)-dimensional subspace of A is Vk−1. Thus, for any subspace
W with an orthonormal basis w1,w2, . . . ,wk−1, we have

k−1∑
j=1

∥Awj∥2 ≤
k−1∑
j=1

∥Avj∥2.

We can assume that wk is orthogonal to the vectors v1,v2, . . . ,vk−1. Therefore, by the
definition of the singular vectors,

∥Awk∥2 ≤ ∥Avk∥2.

By adding the two inequalities, we obtain the proof of the theorem.

From now on, we focus on the problem of how the singular vectors change when a random noise
matrix E is added to A. First, we examine the case when the noise matrix is a Bernoulli matrix,
i.e.

Definition 1.3 An E matrix is called a Bernoulli matrix if its components are independent
and each component is a random sign different from zero, that is,

E = [E]i,j, P(Ei,j = 1) = P(Ei,j = −1) =
1

2
.

If a matrix has large singular values, it indicates that the matrix performs strong transformations
and is well-conditioned. This means that the matrix can stretch or compress data significantly,
and its inverse (if it exists) is stable. On the other hand, if a matrix has small singular values, it
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suggests that the matrix is poorly conditioned, meaning it may cause instability or numerical
problems when performing transformations. Small singular values indicate that the matrix
compresses data in certain directions, and its inverse (if it exists) may be sensitive to small
perturbations in the input. The following theorem states that if the first singular value of a matrix
is sufficiently large, and a Bernoulli noise matrix is added to it, the first singular vector of the
resulting new matrix will be close to the first singular vector of the original matrix:

Theorem 1.4 (cf. [17]) Assume that E is a Bernoulli matrix and A,E ∈ Rn×n, furthermore
let the rank of A be denoted by r. For every ε > 0 there exist constants C,δ0 > 0 such that
if

δ ≥ δ0 and σ1 ≥ max{n,
√
n · δ}

then with a probability at least 1− ε the inequality

sin(< (v1,v
′
1)) ≤ C ·

√
r

δ

fulfils. Here v1 is the first singular vector of matrix A and v ′
1 is the first singular vector of

A+ E (the new matrix).

It is evident that the two vectors in question have unit length, and if the conditions of the
theorem are satisfied, they form a small angle. Therefore, the first singular vector describing the
system does not change in our case. (The proofs are omitted in the original paper.) According to
the article by O’Rourke, Wang, and Vu, two lemmas played a crucial role in the proof of this
theorem. By the way, although the proof of the first lemma was only superficially presented in
the article, we developed the essential part of the proof independently. Regarding the second
lemma, no proof was provided by the authors; however, after understanding the first, we were
able to construct a proof ourselves. Below, we present the proofs of these two lemmas.

Lemma 1.5 (cf. [17]) Let E = (ξij)
n
i,j=1 be an n×n real symmetric random matrix, where

{ξij : 1 ≤ i ≤ j ≤ n} is a collection of independent random variables, each with mean
zero. Further assume that

sup
1≤i≤j≤n

|ξij| ≤ K

with probability 1, for some K ≥ 1. Then for any fixed unit vectors u,v and every t > 0,

P(|uTEv| ≥ t) ≤ 2 · exp
(
−

t2

8K2

)
.
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Proof. In the proof, we will apply the Azuma-Hoeffding inequality, which states the
following:
Let X1, . . ., Xn be independent random variables where, for each i, Xi takes values in [ai,bi]

with −∞ < ai ≤ bi < +∞. Let

Sn :=

n∑
i=1

Xi.

Then for all t > 0 we have

P(|Sn − E[Sn]| ≥ t) ≤ 2 · exp
(
−

2t2∑n
i=1(bi − ai)2

)
.

It is evident that

uTEv =

n∑
i=1

(
n∑
j=1

ξijuj

)
vi =

n∑
i=1

ξiiuivi +
∑
i<j

ξij (uivj + ujvi) .

We define X1, X2, . . . Xn as follows:

X1 := u1v1ξ11 +

n∑
j=2

ξ1j(u1vj + ujv1),

...

Xn := unvnξnn +

n−1∑
j=1

ξnj(unvj + ujvn).

Then X1, X2, . . . ,Xn are independent random variables, and

Sn =

n∑
i=1

Xi = uTEv.

Now for i = 1, . . . ,n

E(Xi) = 0 ⇒ E(Sn) = 0.

In this case

|X1| ≤

(
|u1v1|+

n∑
j=2

|u1vj|+ |ujv1|

)
K =: b1, a1 := −b1,

...

|Xn| ≤

(
|unvn|+

n−1∑
j=1

|unvj|+ |ujvn|

)
K =: bn, an := −bn.

We can use the following:
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(b1 − a1)
2 + . . .+ (bn − an)

2 = 4(b2
1 + · · ·+ b2

n)

= 4K2

(∑
i<j

|uivj|
2 + |viuj|

2 + 2
∑
i<j

|uivjujvi|+

n∑
i=1

|uivi|
2

)

≤ 4K2 · 4

(
n∑
i=1

n∑
j=1

|uivj|
2

)
= 16K2

(
n∑
i=1

u2
i

)(
n∑
j=1

v2j

)
= 16K2 · 1 · 1 = 16K2.

Therefore

P(
∣∣uTEv

∣∣ ≥ t) = P(|Sn − E[Sn]| ≥ t) ≤ 2 · exp
(
−

2t2

16K2

)
= 2 · exp

(
−

t2

8K2

)
.

The second lemma is very similar to the first one, but here the random matrix in question is not
necessarily symmetric.

Lemma 1.6 (cf. [17]) Let E = (ξij)1≤i≤m,1≤j≤n be an m× n real random matrix, where
{ξij : 1 ≤ i ≤ m,1 ≤ j ≤ n} is a collection of independent random variables, each with
mean zero. Furthermore, assume that for some K ≥ 1,

sup
1≤i≤m,1≤j≤n

|ξij| ≤ K

holds with probability 1. Then, for any fixed unit vectors u ∈ Rm and v ∈ Rn, and for
every t > 0, we have

P(|uTEv| ≥ t) ≤ 2 exp
(
−

t2

2K2

)
. (1.1.1)

Proof. The proof is also very similar to the proof of the previous lemma, so we only present
the essential changes. Due to the definition of the energy inner product

uTEv =

n∑
j=1

m∑
i=1

ξijuivj.

We can express this in summation form:

X1 :=

m∑
i=1

ξi1uiv1

...

Xn :=

m∑
i=1

ξinuivn.
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Similarly to the previous cases:

|X1| ≤ K ·
∑m

i=1 |uiv1| =: b1, a1 := −b1,

...
|Xn| ≤ K ·

∑m
i=1 |uivn| =: bn, an := −bn,

Our previous estimate is modified as follows:

n∑
j=1

(bj − aj)
2 = 4 ·

n∑
j=1

b2
j = 4K2

n∑
j=1

(
m∑
i=1

|uivj|

)2

= 4K2

(
n∑
j=1

v2j

)
·

(
m∑
i=1

u2
i

)

= 4K2 · 1 · 1 = 4K2.

And finally, using the Azuma-Hoeffding inequality

P(
∣∣uTEv

∣∣ ≥ t) = P(|Sn − E[Sn]| ≥ t) ≤ 2 · exp
(
−
2t2

4K2

)
= 2 · exp

(
−

t2

2K2

)
.

Note. Lemma 1.5 and Lemma 1.6 mean that if the energy scalar products of unit vectors are
associated with a random matrix having independent, zero mean and bounded components, then
these scalar products are unlikely to take large values with high probability.

1.2 Singular Value Decomposition (SVD)

Singular Value Decomposition is essential for revealing the underlying structure of complex
datasets. It simplifies data by breaking it down into its most significant components, making
it easier to identify patterns. SVD is crucial for reducing dimensionality, which helps improve
computational efficiency without losing critical information. It plays a vital role in extracting
features from large datasets, enhancing the interpretability of machine learning models. Addi-
tionally, SVD aids in identifying relationships between variables, contributing to better statistical
analysis and data-driven decision-making. Using singular value decomposition, we can redefine
the singular values and singular vectors of matrices.
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Definition 1.7 The Singular Value Decomposition (SVD) says if A ∈ Rd1×d2 , r(A) = n

then there exists only one U ∈ Rd1×n, Σ ∈ Rn×n and V ∈ Rd2×n such that

A = UΣVT =

n∑
i=1

σiuiv
T
i ,

where U and V matrices are orthogonal with u1, u2,. . . , un and v1, v2, . . . , vn column
vectors and Σ is a diagonal matrix with

σ1 ≥ σ2 ≥ . . . ≥ σn > 0

in the main diagonal. We say that vi and σi are the i-th singular vector and value of matrix
A (for i = 1, . . . ,n).

Note. The Singular Value Decomposition is not unique.

Figure 1.2.1: Sine of closed angles of the first singular vector of A and A + E with a simple
two-rank matrix A and Bernoulli matrix E.

We will now examine how the first singular vector of the signal matrix behaves differently
from the new low-rank matrix, when the noise matrix follows a Bernoulli distribution, i.e.

P(Eij = 1) = P(Eij = −1) =
1

2

with independent entries. In creating Figure 2.1.1, we simulated 400 independent Bernoulli
matrices and added three simple deterministic sparse matrices to them, each containing only four
nonzero components. These matrices had dimensions of 400 × 400, with a rank of two. We
computed the first singular vectors of both the deterministic matrices and the new matrices (the
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deterministic matrices plus the Bernoulli matrices). Next, we calculated the sine of the closed
angles between these vectors and plotted their cumulative distribution functions. Figure 2.1.1
resembles the figure from the article by Wang, Vu, and O’Rourke in [17] on page 31. This is
because Theorem 9 in the article states that if the difference between the first and second singular
values of the deterministic matrix is sufficiently large, then the sine of the closed angles between
these vectors will be small with high probability. However, a difference is noticeable between
our figure and the diagram in the article: the cumulative distribution function converges to 1
more quickly in my figure. We believe this is because we used different deterministic matrices;
our matrices were simple sparse ones, which likely led to faster convergence in this case.

In Figure 2.1.2, another cumulative distribution function is shown. In this case we simulated
a Wishart matrix with rank 2 as the data matrix. Then we added 100 independent random
Bernoulli matrices to it, resulting in 100 new matrices. Finally, we calculated the sine of the
closed angles between the first singular vector of my Wishart matrix and the first singular vectors
of the new matrices. The cumulative distribution function represents these sine values. Here,
one can observe that the convergence to 1 is somewhat slower compared to the previous case.
This could be because the Wishart matrix is more complex. It can be verified that the cumulative
distribution function reaches 1 at approximately 0.16.

Figure 1.2.2: Sine of closed angles with Wishart matrix A and Bernoulli matrix E.

In Figure 2.1.3, we again simulated 3 deterministic matrices and added 400 independent
random Bernoulli matrices to them, similarly to the first case. The difference here is that
we worked with two rank matrices that are less sparse. The first two columns were linearly
independent, and the remaining columns were linear combinations of these two. It can be
observed that these matrices are now more similar to one another, so the difference between the
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first and second singular values does not play as important a role as it did in the first case.

Figure 1.2.3: Sine of closed angles with more complex two-rank matrix A and Bernoulli matrix
E.

1.2.1 l∞ eigenvector bounds

To study the strength of a theorem on perturbed low-rank matrices (as in [10]), we conducted
simulations for the following problem. In this setup, we assume that we have A ′ = A+ E, where
A is a signal matrix and E is the sum of a sparse and a noise matrix. The matrix E was always a
Bernoulli matrix, and the signal matrix A was drawn from either a normal or Wishart distribution.

We performed singular value decomposition (SVD) for both A ′ and A, obtaining the matrices
V ′ and V , where

A ′ := U ′Σ ′V ′T =

n∑
i=1

σ ′
iu

′
iv

′T
i and A := UΣVT =

n∑
i=1

σiuiv
T
i

where
U,U ′ ∈ Rd1×n and V,V ′ ∈ Rd2×n.

Let σ1, . . . ,σn be the singular values of A. We define µ(U) and µ(V) as follows:

µ(U) :=
d1

n
· max

i

n∑
j=1

U2
ij and µ(V) :=

d2

n
· max

i

n∑
j=1

V2
ij.

Next, we define Ar, the best rank-r approximation of A under the Frobenius norm:

Ar :=

r∑
i=1

σiuiv
T
i .
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For completeness, we define two norms for a matrix M = [Mij] ∈ Rd1×d2 as follows:

∥M∥max := max
ij

|Mij|, ∥M∥∞ := max
i

d2∑
j=1

|Mij|.

Now we can formulate our

Theorem 1.8 (cf. [10]) We suppose that δ > ∥E∥ and σr − ε = Ω(r3µ2∥E∥∞), where
ε := ∥A−Ar∥∞. If A is symmetric and for any i = 1, . . . r the interval [σi − δ,σi + δ]

does not contain any singular values of A other than σi, then

∥V ′ − V∥max = O

(
r4µ2∥E∥∞
(σr − ε)

√
n
+

√
r3µ∥E∥2
δ
√
n

)
.

We note that f = Ω(g) means that f = O (g) and g = O (f) .

Figure 1.2.4: Simulation results for Theorem 1 with 0 ≤ c ≤ 100.

To illustrate Theorem 1.8, we created two diagrams to examine the accuracy of the upper
bound provided by the theorem. I generated E from a Bernoulli distribution and A from both a
Wishart and a standard normal distribution, repeating this process twenty times independently.
For each c ∈ [0,100], we computed the singular value decomposition of (A ′ = A + c · E,A),
obtaining the matrices (V ′,V). Then we plotted the mean of ∥V ′ − V∥max over the twenty cases
as a function of c. In Figure 2.1.4, one can observe that the choice of distribution does not
significantly impact the results, as the norms of the differences exhibit similar behavior for both
distributions.
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Figure 1.2.5: Simulation results for Theorem with 0 ≤ c ≤ 1.

Expanding our simulation to the interval [0,1], we can observe in Figure 2.3.1 that the choice
of distribution does have an impact. The standard normal distribution reaches an average error
of 1.3 between V ′ and V at c = 0.5 significantly more slowly than the Wishart distribution.
Naturally, both curves start from zero, since for c = 0, we have V ′ = V due to the uniqueness of
the singular value decomposition. It is also evident that the condition

σr − ε = Ω(r3µ2∥E∥∞)

does not hold for the Wishart distribution. Specifically, when c is close to zero, the average error
between V ′ and V does not exhibit linear growth. Since ∥cE∥∞ = c · ∥E∥∞, the upper bound
should depend only linearly on the quantities in the Big-O notation when computing the average
error using c · E instead of E.
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Chapter 2

Stochastic Block Model Reconstruction
with Random Error

The Stochastic Block Model (SBM) is a widely used probabilistic model for understanding
community structures in networks. It assumes that nodes belong to hidden groups and that the
probability of connections depends on group membership. By modeling these interactions, SBM
reveals meaningful patterns in network data.

A given network is represented as a graph G = (V,E) with n nodes, where each node i is
assigned to a latent community zi. The community memberships zi are typically unknown and
must be inferred from observed connections, making SBM a powerful tool for network analysis.

The probability of an edge between two nodes is governed by a block matrix P, where Pkl

represents the probability of a link between nodes in groups k and l. If within-group probabilities
are high compared to between-group probabilities, the network exhibits strong community
structure, which SBM effectively captures.

A key advantage of SBM is its ability to model different types of networks. It can describe
assortative networks, where nodes are more likely to connect within their own groups (cf. [13]),
or disassortative networks, where inter-group links dominate (cf. [16]). It can also handle
hierarchical structures, making it applicable to real-world networks.

Various extensions of SBM exist to better capture network complexities. The degree-corrected
SBM (DC-SBM) accounts for degree heterogeneity, allowing nodes with different connectivity
levels to be modeled more accurately (cf. [12]). The hierarchical SBM (hSBM) represents
multi-level structures, where communities exist within larger communities, capturing nested
relationships (cf. [4]).

Inference methods for SBM include Bayesian approaches, expectation-maximization algo-
rithms and spectral clustering techniques. These methods enable researchers to identify latent
communities, detect anomalies and predict missing links in large-scale networks. (cf. [8]).
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SBM has applications in diverse fields, including social network analysis, biological systems
and financial networks. By leveraging probabilistic modeling, it provides a rigorous framework
for studying the modular organization of networks. Its flexibility and extensibility make it a
fundamental tool in network science (cf. [3]).

In the SBM, edges are typically sampled independently from one another, and in our
simulation, we assumed that the community consists of two latent groups.
After the introduction, we can provide a precise mathematical definition of the SBM.

Definition 2.1 Let G = (V,E) be an undirected graph with |V | = n vertices. The SBM
generates a random graph in two steps:
(1) Community assignment: Each node i ∈ {1, . . . ,n} is independently assigned to one
of r communities:

zi ∼ Categorical(π), where π = (π1, . . . ,πr),

r∑
k=1

πk = 1.

(2) Edge generation: For each pair i < j, the edge exists with probability

P[(i,j) ∈ E] = Bzi,zj , where B ∈ [0,1]r×r is a symmetric matrix.

2.1 Simulations on the randomness of classification (his-
tograms) and the misclassification rate

We would now like to study in more details, within four subsections, the results obtained by
Abbe, Fan, Wan, and Zhong regarding the Stochastic Block Model in their 2020 paper (cf. [1]).
Throughout the paper, it is assumed that the relevant community consists of two distinguishable
groups. Let x be the separating vector representing the two groups. More precisely, we assume
that x ∈ {1,− 1}n, where the i-th coordinate of x is 1 if the i-th vertex belongs to the first group
(I), and −1 if it belongs to the second group (J = V \ I). We aim to estimate this vector by
x̂ ∈ {1,− 1}n, with as small an error as possible. The algorithm described in the paper is quite
simple, it consists of computing the second eigenvector of the random adjacency matrix A:

• Compute u2, the eigenvector of A corresponding to its second largest eigenvalue λ2.

• Set x̂i := sgn(ui
2).

The article specifically emphasizes that the entries of the second eigenvector also reflect the
quality of the separation. When the clusters are well separated, these entries can be distinctly
grouped into two sets. The corresponding theorem guarantees that this yields a good estimate:
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Theorem 2.2 (cf. [1]) We assume that the distribution of the entries of the adjacency
matrix of our random graph on n vertices looks like this (with a,b > 0 constants, and
0 < q < p < 1):

P(Aij = 1) =

p, if i ∈ I and j ∈ I, or i ∈ J and j ∈ J,

q, otherwise

where
p := a · ln (n)

n
and q := b · ln (n)

n
.

If
√
a −

√
b >

√
2 then there exist an η(a,b) > 0 and s ∈ {1, − 1} such that with

probability 1− o(1) √
n · min

i∈[n]

(
s · xi · ui

2

)
≥ η(a,b)

holds. And if 0 <
√
a −

√
b ≤

√
2, the misclassification rate will not be too high on

average:

E

[
min
s∈{±1}

1

n

n∑
i=1

1{xi ̸=sx̂i}

]
≤ n−(1+o(1))

(a−b)2

2 .

Theorem 2.1 implies that with high probability, the coordinates of the second eigenvectors
will have the same sign as the coordinates of the separating vector x, so sgn(u2) will be close to
x. We need to take the minimum in s ∈ {1,− 1}, because the opposite of an eigenvector is also
an eigenvector, and due to symmetry, it does not matter whether we identify the first group with
+1 or with −1.

The natural definition of the misclassification rate when estimating x with x̂:

r(x,x̂) :=
1

n

n∑
i=1

1{xi ̸=x̂i}

We tested the algorithm written in the article in a specific case with a fixed number of vertices.
We took n = 600 vertices, with the first 300 vertices belonging to the first group and the rest to
the second. Edges appeared with a probability of 0.55 between two vertices in the same group
and with a probability of 0.43 between vertices in different groups. We plotted a histogram to
show how the coordinates of

√
n · u2 behave.

In the second case, edges appeared with a probability of 0.65 between two vertices in the same
group, and with a probability of 0.43 between vertices in different groups. It is evident that
now the coordinates of

√
n · u2 are more separated from zero, so the sign of u2 depends less on

randomness, resulting in more confident decisions when grouping the vertices. This corresponds
to the expectation that, since p − q is larger than in the previous case, it becomes easier to
reconstruct the groups from the random edges, as we can see it in Figure 2.1.1 and in Figure
2.1.2.
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Figure 2.1.1: Histogram of
√
n · u2 coordinates (p = 0.55,q = 0.43)

Figure 2.1.2: Histogram of
√
n · u2 coordinates (p = 0.65,q = 0.43)

We calculated the average misclassification rates in 8 different cases by generating graphs
independently ten times with the appropriate edge probabilities. The rows of the table corre-
sponded to the edge probabilities between vertices in the same group (pin values), while the
columns corresponded to those in different groups (pout values). As expected, the closer these
two numbers are, the more difficult it was to reconstruct the groups from the random edges,
leading to an increased misclassification rate. If the difference between the two numbers is at
least 0.06, we still classified 85% of the vertices correctly.
After that we did not change the 8 cases, nor did we alter the graphs. We ran the algorithm on the
true separating vector (where the first 300 coordinates are 1 and the remaining 300 coordinates
are −1) and calculated the estimated separating vector of the algorithm, recording the average of
their L2-distances for the 10 graphs in the 8 cases. The L2-distance between the separating and
estimated vector can be estimated by averaging such observations:

∥x− x̂∥ =

√√√√ n∑
i=1

(xi − x̂i)2.

The article mentions that the norm of the difference between the two vectors does not necessarily
measure the quality of classification well. This can also be observed from the table; several times,

21



when the pin values and the pout values became closer to each other, in principle, it would have
been more difficult to identify the groups from the graphs, yet the distance between the vectors in
L2-norm was still smaller even with averaging, despite the fact that the misclassification rates
increased on average.

Figure 2.1.3: The average of the misclassification rates

Figure 2.1.4: The average of the 2-norms of the differences

Figure 2.1.3 and Figure 2.1.4 illustrate the average misclassification probability and the average
distance (in the Euclidean norm) between the estimated separating vector and the true separating
vector across ten randomly and independently sampled graphs, given appropriate edge probabilities.
For these histograms and misclassification rates, we obtained surprisingly good results, despite
using only small sample sizes. Since our graphs had 600 vertices, even a sample size of ten
graphs significantly increased the runtime.

22



2.2 Z2 synchronization

As noted in the article by Abbe, Fan, Wan and Zhong, the Z2 synchronization problem is
closely related to the Stochastic Block Model task. In the latter, the goal is to cluster the vertices
of a graph into groups based on random edge connections. In the Z2 synchronization problem,
we observe noisy versions of random ±1 values and aim to recover the original signal by filtering
out the noise, which is typically drawn from a normal distribution.

Definition 2.3 We assume that we know the random matrix Y, generated as follows:

Yij = xi · xj + σ ·Wij, where

x ∈ {±1}n, i < j ⇒ Wij ∼ N(0,1), and

σ > 0, Wii = 0 Wij = Wji.

Let us further assume that variables {Wij : i < j} are independent from one another.
Our aim is to recover x from Y.

Our algorithm that solves the problem is very similar to the algorithm of the Stochastic Block
Model; however, here we need to work with the first (not the second!) eigenvector of Y:

1. Compute the leading eigenvector of Y, denoted by u;

2. Take the estimate x̂i := sgn(ui).

Our next theorem states that the threshold for exact recovery is σ =

√
n

2 logn
, and exact recovery

is achievable for noise levels smaller than this.

Theorem 2.4 (cf. [1]) We suppose that for some ε > 0

σ ≤
√

n

(2+ ε) logn

holds. Then, with probability 1− o(1), the leading eigenvector u of Y with unit ℓ2 norm
satisfies

√
n · min

i∈[n]
{s · xi · ui} ≥ 1−

√
2

2+ ε
+

C√
logn

,

for a suitable s ∈ {±1}, where C > 0 is an absolute constant.

According to Theorem 2.3, with high probability, the coordinates of x and u will all have the
same sign for nonzero elements, so x̂ equals to x. The factor s ∈ {±1} is included in the theorem
because, due to symmetry, it does not matter whether we identify the first group with +1 or −1.
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2.3 Stochastic Block Model combined with noise

Figure 2.3.1: The average misclassification rates with different noises, pin = 0.5, pout = 0.4

Figure 2.3.2: Error rates with noise (sigma = 0.4) – second eigenvector

Figure 2.3.1 illustrates the following process: we fixed two edge probabilities, one for
within-group connections and another for between-group connections, and then independently
generated ten random graphs, each with 600 vertices, using these probabilities. To the adjacency
matrix of each graph, we added a scaled version of a 600×600 symmetric matrix sampled from a
standard normal multivariate distribution, with the scaling factor σ varying according to the noise
levels shown on the left-hand side of the table. This differs from our Z2 synchronization theorem
because, in that case, we added noise to the matrix x⊤x aiming to recover x from the noisy
matrix. Here, the error could arise from two sources: first, the edges themselves are random;
second, we could only observe the adjacency matrix in a noisy environment. Thus, we applied the
Stochastic Block Model algorithm to the noisy adjacency matrix and evaluated the accuracy of
the reconstruction with the added noise. For our case, σ = 0.4 was the highest noise level where
the misclassification rate did not exceed 5%. For larger noise levels, the results deteriorated
significantly. We also plotted the misclassification rate for different edge probabilities with a
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sigma of 0.4. Due to the noise, this turned out slightly worse, which can be seen in Figure 2.3.2.
When we implemented it ourselves to compute the misclassification rate in the case where the
simulation uses noise of the same type as in the theorem, we obtained a misclassification rate
of 45%. This probably occurred because, in our simulation, we grouped the vertices based on
the sign of the second eigenvector of the noisy adjacency matrix, rather than on the sign of the
leading eigenvector of the noisy matrix x⊤x. (The i-th row and j-th element of x⊤x is 1 if the
i-th vertex and the j-th vertex belong to the same group, and -1 if they belong to different groups,
x is the separating vector.)

Figure 2.3.3: The histogram of the coordinates of
√
n · u2 with pin = 0.65, pout = 0.43, σ = 1

Figure 2.3.4: The histogram of the coordinates of
√
n · u2 with pin = 0.65, pout = 0.43,

σ = 0.4
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In Figure 2.3.3 and Figure 2.3.4 we considered the same problem, calculated the second
eigenvector of the noisy version of the adjacency matrix, and assigned the vertices to groups
based on their sign. It can be observed that with larger noise (σ = 1), the eigenvector coordinates
are less separated from 0, making the classification of a vertex into the correct group more
dependent on randomness compared to when smaller noise is chosen (σ = 0.4).

2.4 Application on real data

We tested the Stochastic Block Model algorithm on a deterministic graph as well, where the
edge between two vertices does not depend on randomness. We downloaded the graph from [22].
We ran the algorithm, which works well on random graphs, on the graph and divided the vertices
into two groups. The graph contained 1,226 vertices and 2,615 edges. An interesting question is
how much stronger certain properties of graphs are within the groups compared to the entire
graph. To address this question, we can define the concepts of edge density:

Definition 2.5 The density of a graph with n vertices and m edges is m

(n2)
. This indicates

how dense the edges are in the graph relative to the complete graph.

and clustering coefficient:

Definition 2.6 For a graph (G = (V,E)), the clustering coefficient of a vertex v ∈ V is
defined as follows:

C(v) =
|{{u,w} ∈ E : u,w ∈ N(v)}|(deg(v)

2

) ,

where N(v) is the set of neighbors of vertex v, and deg(v) is the degree of vertex v. The
overall clustering coefficient of the graph is the average of the clustering coefficients of all
vertices:

C =
1

n
·
∑
v∈V

C(v).

This concept also describes the cohesion of the elements of a graph. Suppose the vertices of the
graph represent people, and there is an edge between two vertices if the corresponding people
know each other. The clustering coefficient in the graph will be high if many of a given person’s
acquaintances know each other as well. These concepts can similarly be defined for a subset of
the vertices of a graph.

After the definitions, we can illustrate the graph on which we ran the Stochastic Block Model.
The graph and the two groups generated by the model are depicted in 2.5.1. We expect higher
edge density and clustering coefficient within the groups.
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Figure 2.4.1: The two groups of our graph (adjacency matrix)

The description of our graph is as follows: "This network was constructed from the USA’s
FAA (Federal Aviation Administration) National Flight Data Center (NFDC), Preferred Routes
Database. Nodes in this network represent airports or service centers and links are created from
strings of preferred routes recommended by the NFDC." It is evident that the natural expectations
related to the algorithm are met, namely, the edge density and clustering coefficient are higher
within the groups than in the entire graph:

Number of nodes in group 1: 616
Number of nodes in group 2: 610
Edge density in the entire graph: 0.0032093751040383526
Clustering coefficient in the entire graph: 0.06750771494491796
Edge density in Group 1: 0.0054465209587160807
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Edge density in Group 2: 0.006389001049826375
Clustering coefficient in Group 1: 0.09009508348794063
Clustering coefficient in Group 2: 0.10314207650273224

As we expected, the Stochastic Block Model algorithm doesn’t perform too badly, as both
the edge density and the clustering coefficient are higher when we narrow the graph down to
the groups. In other words, among the American cities that belong to the same group, there is a
higher probability of flights between them. Moreover, if a city has flights to two other cities,
there is a higher likelihood of a flight between those two cities, provided these cities are in the
same group. In the second group, the cohesion is slightly stronger than in the first one. However,
the algorithm is not perfect. The histogram of the coordinates of the second eigenvector of the
adjacency matrix unfortunately doesn’t separate well enough from zero, as shown in Figure 2.4.2.
This means that randomness plays a significant role in whether the two groups are sufficiently
separated from each other.

Figure 2.4.2: The coordinates of the second eigenvector, real data

2.5 Stochastic Block Model for sparse graphs

In the following, we will study the article by Ludovic Stephan and Laurent Massoulié
published in 2018 (see [21]), and examine its main results through simulations. They also worked
with the Stochastic Block Model, but in their paper, they generally assumed the existence of more
than two groups, and their results perform well on sparser graphs. Although their method for two
groups resembles the algorithm described by Abbe, Fan, Wan, and Zhong ([1]) in their 2020
paper, they worked with different matrices and their eigenvalues and eigenvectors. To understand
their algorithm, we need to define certain matrices, whose leading eigenvectors will play a key
role.
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Definition 2.7 Let G be any graph, and let ℓ be a positive integer. We define two matrices
associated with G:

(i) the path expansion matrix B(ℓ) (studied in Massoulié (2014)), whose (i,j) coefficient
counts the number of self-avoiding paths (that is, paths that do not go through the
same vertex twice) of length ℓ between i and j,

(ii) the distance matrix D(ℓ), defined by

D
(ℓ)
ij :=

1, if d(i,j) = ℓ,

0, otherwise

where d denotes the usual graph distance.

Example. We provide the two matrices above for a specific graph when considering paths of
length 3.

1 2 3 4 5

The path expansion matrix B(3) counts the number of self-avoiding paths of length 3 between
each pair of nodes, while the distance matrix D(3) indicates whether the graph distance between
two nodes is exactly 3:

B(3) =


0 0 0 2 1

0 0 0 1 1

0 0 0 0 1

2 1 0 0 0

1 1 1 0 0

 , D(3) =


0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

 .

In this paper, the authors considered multiple groups and studied, with the help of the
eigenvectors of B(ℓ) and D(ℓ), to what extent it is possible to construct an algorithm that performs
better than random guessing; in other words, assigning each vertex to a group based on prior
information.

Let the prior distribution be denoted by π. If there are r groups, then under π, each vertex is
assigned to group k with probability π(k), for k = 1,2, . . . ,r. (Under the uniform distribution,
this corresponds to random guessing.)

In our setting, we will denote the true separating vector by σ, which corresponds to the vector
denoted by x in the previous two-group analysis.
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Let the entry in the ith row and jth column of the matrix W represent the probability that an
edge exists between two vertices, where the first vertex belongs to group i, and the second one
belongs to group j (where 1 ≤ i,j ≤ r). This matrix has its maximum values along the diagonal,
since edges are more likely to occur between vertices within the same group; in other words, the
connections are stronger within groups. After introducing the key concepts, we can now explore
the various aspects from which the article defines the Stochastic Block Model.

Definition 2.8 Let r ∈ N be fixed, let W be an r× r symmetric matrix with nonnegative
entries, and let π be a probability vector on [r]. A random graph G = (V,E) with |V | = n

is said to be distributed according to the Stochastic Block Model (SBM) with r blocks and
parameters (W, π) if:

(i) each vertex v ∈ V is assigned to a type σ(v) sampled independently from π,

(ii) any two vertices u,v ∈ V are joined with an edge randomly and independently from
every other edge, with probability

min
{
Wσ(u),σ(v)

n
, 1

}
.

The probability of an edge between two vertices is given by the corresponding entry of W
scaled by 1/n, so that the expected degree of each vertex remains asymptotically constant as
n approaches infinity. The article does not deal with exact recovery, as it focuses solely on
sparse graphs. In such cases, identifying the underlying communities from random edges is more
challenging, since the graph contains fewer dense subgraphs. As a result, we can only hope for a
weaker notion of reconstruction, which is referred to as partial reconstruction.

Partial reconstruction is defined as the case when the liminf of the correct classification rate
is strictly greater than the proportion of nodes that would be correctly classified under random
guessing, that is, according to the relative size of the groups. This means that, for sufficiently
large n, the algorithm assigns nodes to their correct groups with higher accuracy than random
assignment based solely on group proportions:
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Definition 2.9 Let σ be the true type assignment, and σ̂ an estimate of σ. The empirical
overlap between σ and σ̂ is defined as

ov(σ,σ̂) = max
τ∈Sr

(
1

n

n∑
v=1

1{σ̂(v)=τ(σ(v))}

)
− max

k∈[r]
πk,

where Sr is the set of permutations of [r].

For a given algorithm that produces estimates σ̂ for all n vertices, we say that the algorithm
achieves partial reconstruction if

lim inf
n→∞ ov(σ,σ̂) > 0 with high probability.

The main result of the article is that the groups can be partially recovered from the random
edges using the eigenvectors of B(ℓ) and D(ℓ). Although the article does not provide an explicit
algorithm, it becomes clear that if certain coordinates of the relevant eigenvector (the second
eigenvector of either B(ℓ) or D(ℓ)) behave similarly, then the corresponding vertices are likely to
belong to the same group. In the case of two groups, such similar behavior can be, for example,
having the same sign. In that case, we essentially recover the algorithm of Abbe, Fan, Wan
and Zhong. In their work, the sign of the second eigenvector of the random adjacency matrix
determined the classification; here, it is the sign of the second eigenvector of B(ℓ)or D(ℓ) that
plays the same role.

Theorem 2.10 (cf. [21]) Assume that π ≡ 1/r and that W is a stochastic, positive regular
matrix. Let µ1 and µ2 denote the two largest eigenvalues of W, and suppose that the
following condition holds:

µ2
2 > µ1.

Then there exists an algorithm, based solely on an eigenvector of B(ℓ) associated with its
second largest eigenvalue, that achieves partial reconstruction whenever ℓ ∼ δ log(n) for
small enough δ.
The same algorithm also achieves partial reconstruction when applied to D(ℓ) instead of
B(ℓ), under the same condition on ℓ.

In the above theorem, the second eigenvector of B(ℓ) is also considered. In the case of two
groups, the sign of this eigenvector determines which group each vertex belongs to. We now
compare this algorithm to the one where the sign of the eigenvector of the adjacency matrix was
used for classification. The comparison is performed on the same deterministic graph as in the
previous subsection. The sign of the second eigenvector of the path extension matrix divided the
vertices into two groups as follows:
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Number of nodes in group 1: 718
Number of nodes in group 2: 508
Edge density in the entire graph: 0.0032093751040383526
Clustering coefficient in the entire graph: 0.06750771494491796
Edge density in Group 1: 0.005077640897736235
Edge density in Group 2: 0.006367547251859789
Clustering coefficient in Group 1: 0.09712993577158519
Clustering coefficient in Group 2: 0.10473646477136406

We found that the two algorithms classify the elements into clusters with similar strength;
however, interestingly, the assignments were entirely different. Specifically, the program computed
that only 53.67% of the vertices were assigned to the same group by both procedures. By the
way, during the simulation, we divided the vertices into two parts by examining paths of length
l = 3. That is, if there are many paths of length 3 between two vertices, then they are more likely
to be assigned to the same group.

Figure 2.5.1: The two groups of our graph (path expansion matrix)

2.5.1 Simulation of Edge Perturbation and Other Results

We now proceed to discuss the theorem that serves as the basis for our simulations. In the
following problem, we are faced with a form of perturbation, the resolution of which presents
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several difficulties. Since even for large n, each vertex has on average only a constant number
of neighbors, the graph remains sparse. As a result, recovering the underlying communities
becomes more difficult, and according to the previous theorem, we can only guarantee partial
reconstruction. In this setting, perturbation refers to an adversary that is allowed to either delete
edges incident to certain vertices or insert edges between them. Our task is to perform partial
reconstruction even after such edge modifications have occurred in a sparse graph. We now
formally define this problem.

Definition 2.11 Let γ := γ(n) be a positive integer, and let G be any graph on n vertices.
An adversary of strength γ is allowed to arbitrarily add and remove edges, as long as the
number of affected vertices (i.e., vertices that are endpoints of altered edges) is at most γ.

The following theorem, which we validated through simulation, states that if the number of
vertices whose incident edges are modified remains sufficiently small compared to the total
number of vertices, then partial recovery can still be achieved.

Theorem 2.12 (cf. [21]) Under the same assumptions as Theorem 2.9, let G be a
graph generated via the Stochastic Block Model, and let G̃γ be the graph obtained after
perturbation by an adversary of strength γ.
Then, assuming

γ = o


(

µ1

µ2

)ℓ/2
log(n)


the algorithm of Theorem 2.9 still achieves partial reconstruction on G̃γ.
The above result on γ is optimal up to a factor of log(n).

The simulations were conducted as follows: the number of vertices was fixed, with
n = 1000, 2000, . . ., 6000, which correspond to the columns in the table. The rows cor-
respond to different values of γ, indicating how many vertices had their incident edges modified.
In the first row, a large number of vertices were perturbed, but the number was kept constant
(c = 200). In the second row, the same constant was divided by log(n). In the third row,
approximately as many vertices were perturbed as described in Theorem 2.11. Finally, the last
row shows the results corresponding to the setting with zero edge modifications. In each case,
we independently generated 20 random graphs, where the edges were randomly sampled and
subsequently perturbed. Then we calculated the average misclassification rates for the respective
scenarios. As in the previous section, we assumed here as well that the community has a latent
two-group structure.
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γ\n n = 1000 n = 2000 n = 3000 n = 4000 n = 5000 n = 6000

γ = c 0.500 0.454 0.469 0.500 0.499 0.500

γ = c/ log(n) 0.439 0.316 0.406 0.339 0.333 0.315

γ = µ2
2/(µ1 log(n)) 0.317 0.374 0.343 0.302 0.409 0.299

γ = 0 0.247 0.238 0.252 0.246 0.258 0.281

The average misclassification rate for different values of γ (number of modified vertices) and
different values of n (number of vertices).

As shown in the first table, the fewer vertices have their incident edges modified, the lower the
average misclassification rate becomes. Since both pin and pout (i.e., W

n
) converge to zero as the

number of vertices tends to infinity, recovering the community structure becomes increasingly
difficult for larger n. This explains why the corresponding theorem guarantees only partial
recovery in this regime.
We computed the empirical variance of the misclassification rate in each corresponding case,
based on a single run involving 20 independently generated graphs.

γ\n 1000 2000 3000 4000 5000 6000

γ = c 0.100 0.092 0.152 0.096 0.130 0.091

γ = c/ log(n) 0.230 0.206 0.123 0.094 0.162 0.118

γ = µ2
2/(µ1 log(n)) 0.223 0.263 0.127 0.129 0.150 0.104

γ = 0 0.123 0.143 0.135 0.095 0.099 0.017

Empirical standard deviation of the misclassification rate based on 20 graphs.

Although the variances are not low, the data suggest that if we perturb the edges of fewer
vertices, we can recover the groups more accurately. During the simulation, the computation of
statistics using 20 graphs per case significantly increased the runtime.

Finally, we performed one-sample t-tests to assess whether the simulation results were indeed
significantly better than those expected from random guessing, in those cases where the edges of
a certain number of vertices were modified, as specified in the theorem. The null hypothesis H0

stated that the expected value of the misclassification rate is equal to 1
2
. We tested this hypothesis

at a significance level of α = 0.05. To this end, we computed the corresponding p-values for
each case, and whenever the p-value was less than 0.05, we were able to reject the null hypothesis.
This allowed us to establish the alternative hypothesis H1 : mr < 1

2
. Due to the symmetry of

the problem
(
i.e., the existence of only two groups with π(1) = π(2) = 1

2

)
, we expect mr ≤ 1

2

under random guessing, which justifies the direction of the test.
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γ\n n = 1000 n = 2000 n = 3000 n = 4000 n = 5000 n = 6000

γ = c 0.175 0.085 0.077 0.064 0.085 0.087

γ = c/ log(n) 0.006∗ 0.040∗ 0.043∗ 0.084 0.017∗ 0.039∗

γ = µ2
2/(µ1 log(n)) 0.016∗ 0.021∗ 0.006∗ 0.045∗ 0.039∗ 0.016∗

γ = 0 6.9 · 10−8 ∗ 2.4 · 10−9 ∗ 4.3 · 10−10 ∗ 3.5 · 10−5 ∗ 4.8 · 10−12 ∗ 1.9 · 10−6 ∗

Testing the null hypothesis H0 : mr = 1
2

against the alternative hypothesis H1 : mr < 1
2

in the
different cases, with the corresponding p-values reported.

In this table, asterisks indicate the cases in which the null hypothesis could be rejected. It can
be observed that when a large (constant) number of vertices were perturbed, the null hypothesis
was never rejected. This is not surprising, since in those cases the misclassification rate was
consistently close to 1

2
. When the number of perturbed vertices was scaled by the logarithm of the

total number of vertices, the null hypothesis was rejected in 5 out of 6 cases, indicating that the
algorithm outperformed random guessing in most instances. In the case of the value of γ given in
the theorem, the null hypothesis was successfully rejected in all cases. This is even more evident
considering the extremely low p-values obtained when no edge modifications were applied.
In the example above, we use the following parameter values:

• µ1 = 10 (expected number of within-community edges)

• µ2 = 4 (expected number of between-community edges)

• c = 100 (a constant controlling the number of modified vertices)

• pin =
µ1 + µ2

2n
=

7

n

• pout =
µ1 − µ2

2n
=

3

n

• ℓ =

⌊
1

13
logα n

⌋
=

⌊
1

13
lgn

⌋
This raises the question of how reliable the coordinates of the eigenvector B(ℓ) are, that is,

to what extent their behavior aids in the identification of the groups. We define the matrix M

as follows: M = Π ·W, where Π = diag(π1, . . . ,πr). In this case, W and M are similar, and
hence they share the same eigenvalues. It can be seen that the element in the ith row and jth
column of matrix M corresponds to the expected number of neighbors that a vertex in group i

has in group j.
We order the eigenvalues of M (or W) in decreasing order of absolute value:

µ1 ≥ |µ2| ≥ · · · ≥ |µr|.

To ensure successful recovery of the groups, it is essential to assume that

M is positive regular, α := µ1 > 1, and τ := µ2
2/µ1 > 1.
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We will only be interested in the first few eigenvalues of M, that is, the first r0 eigenvalues, where
r0 is defined as follows:

µ2
r0+1 ≤ µ1 < µ2

r0
.

Since M is symmetric, it is diagonalizable in an orthonormal basis. Therefore, we may introduce
its system of eigenvectors, which forms an orthonormal basis in Rr:

ϕ⊤
i M = µiϕ

⊤
i for all i ∈ [r].

We introduce the following scalars and vectors:

χk(v) = ϕk(σ(v)), φk =
B(ℓ)χk

∥B(ℓ)χk∥
for all k ∈ [r].

The eigenvalues of B(ℓ) are also arranged in decreasing order of absolute value:

λ1(B
(ℓ)) ≥

∣∣λ2(B
(ℓ))
∣∣ ≥ · · · ≥

∣∣λn(B
(ℓ)) |

With all these preparations in place, we are now ready to state our next theorem.

Theorem 2.13 (cf. [21]) Consider a graph G generated as above, and let ℓ ∼ κ logα(n),
with κ < 1

12
. Then, with probability going to 1 as n → +∞:

(i) λk(B
(ℓ)) = Θ(µℓ

k) for k ∈ [r0],

(ii) for k > r0, λk(B
(ℓ)) = O

(
log(n)c αℓ/2

)
for some constant c > 0.

Furthermore, consider µ such that µ2 > α and µ is an eigenvalue of multiplicity d of
M. Let φ(1), . . . ,φ(d) be an orthonormal basis of eigenvectors of M associated to µ, and
ϕ(1), . . . ,ϕ(d) the vectors defined as in (9). There exist orthogonal vectors ξ(1), . . . ,ξ(d) in
Rn such that the following holds:

(iii) for all i, ξ(i) is an eigenvector of B(ℓ) with associated eigenvalue Θ(µℓ),

(iv) there exists an orthogonal matrix Q ∈ O(d) such that

∥φQ− ξ∥ = O
(
αℓ/2µ−ℓ

)
,

where φ (resp. ξ) is the n× d matrix whose columns are the ϕ(i)
(
resp. the ξ(i)

)
.

Our theorem has important implications for the identification of communities in random
sparse graphs. The matrix M typically contains the expected number of connections between
each pair of groups. If the graph is generated according to this distribution, then the eigenvectors
of M reflect the community structure. Therefore, the ideal group assignment can be determined
based on the first few eigenvectors of M.
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However, in practice, we usually only observe the random edges and the graph itself. Our
theorem states that using the matrix B(ℓ) constructed from the graph, we do not perform the
grouping significantly worse, since the important (first r0) eigenvalues of B(ℓ) differ from those
of M only by a constant factor, independent of the randomness. If the leading eigenvalues of M
and B(ℓ) are close, then their corresponding eigenvectors will also have approximately the same
directions. Moreover, the less significant eigenvalues of B(ℓ) decay at an exponential rate.

It can therefore be observed that the columns of the matrix ξ, which contains the eigenvectors
of B(ℓ), effectively cluster the vertices into groups. The final part of the theorem states that these
vectors can be well approximated by the vectors φk (k = 1, . . . ,r), which can be computed
directly from the graph with fewer calculations. This is because there exists an orthogonal matrix
such that, when multiplied with the matrix φ (whose columns are the vectors φk, k = 1,2, . . . ,r),
the resulting matrix becomes close to ξ. Therefore, by applying an isometric transformation to
the vectors in φ, we obtain a set of vectors whose coordinates can be effectively used to cluster
the vertices.

In the proof of the theorem, elementary linear algebraic tools, such as the Gram-Schmidt
orthogonalization and the triangle inequality, are employed. Furthermore, the authors utilized
the fact that the length of any arbitrary vector does not change when it is multiplied on the left by
an orthogonal matrix (i.e., when it is rotated or reflected). However, the main tool of the proof
was the Weyl’s inequality, which we discuss in the following.

Theorem 2.14 – Weyl’s inequality (cf. [23])
Let A and B be symmetric (or Hermitian) on an inner product space V with dimension n,
with spectrum ordered in descending order

λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X), X ∈ {A, B, A+B}.

We note that these eigenvalues can be ordered, because they are real (as eigenvalues
of symmetric matrices). The following inequality holds for any integers i and j (with
appropriate indices):

λi+j−1(A+ B) ≤ λi(A) + λj(B) ≤ λi+j−n(A+ B).

Proof. Since the matrices are symmetric, by the min-max theorem it suffices to show that
for any subspace W ⊂ V of dimension i+ j− 1, there exists a unit vector w ∈ W such that

⟨w,(A+ B)w⟩ ≤ λi(A) + λj(B).
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By the min-max principle, there exists a subspace WA ⊂ V of codimension i− 1 such that

λi(A) = max
x∈WA
∥x∥=1

⟨x,Ax⟩.

Similarly, there exists a subspace WB ⊂ V of codimension j− 1 satisfying

λj(B) = max
x∈WB
∥x∥=1

⟨x,Bx⟩.

Since the intersection WA∩WB has a codimension at most i+ j−2, it must have a nontrivial
intersection with any subspace W ⊂ V of dimension i+ j− 1. Therefore, we can choose a
unit vector

w ∈ W ∩WA ∩WB.

For this vector, then we have

⟨w, (A+ B)w⟩ = ⟨w, Aw⟩+ ⟨w, Bw⟩ ≤ λi(A) + λj(B).

For the second part of the inequality, let us use the fact that the eigenvalues of the negative
of a symmetric matrix are the negatives of the eigenvalues of the original matrix:

λi(−A) = −λn−i+1(A).

Since −A and −B are also symmetric, we can apply the first inequality to their opposites:

λi+j−1(−A− B) ≤ λi(−A) + λj(−B).

On the left-hand side:

λi+j−1(−A− B) = −λn−(i+j−1)+1(A+ B) = −λn−i−j+2(A+ B).

On the right-hand side:

λi(−A) + λj(−B) = −λn−i+1(A) − λn−j+1(B).

Therefore,
−λn−i−j+2(A+ B) ≤ −λn−i+1(A) − λn−j+1(B).

If we multiply it by −1, we obtain the following. For all indices i ′ = n − i + 1 and
j ′ = n− j+ 1, it holds that

λi ′+j ′−n(A+ B) = λn−i−j+2(A+ B) ≥ λn−i+1(A) + λn−j+1(B) = λi ′(A) + λj ′(B).
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Chapter 3

Application of Graph Powers in the
Stochastic Block Model

In many graph-theoretic and statistical problems, it is useful to consider not only direct
connections between nodes, but also indirect paths of a given length. This motivates the notion
of graph powering, a technique that transforms a given graph into a new one by connecting nodes
that are within a fixed distance ℓ from each other. Specifically, in the ℓ-th power of a graph, two
nodes are connected if there exists a path of length at most ℓ between them in the original graph.

Graph powering has gained significant attention in the context of community detection,
particularly in sparse regimes where local information is limited. By amplifying the connectivity
structure, graph powers help to mitigate the noise in edge observations and enhance the signal
associated with latent clusters.

In the context of the Stochastic Block Model (SBM), powering the graph before applying
spectral methods can lead to improved performance in both detection and reconstruction tasks.
In particular, powering helps to bridge disconnected or weakly connected regions within the
same community, effectively increasing the spectral gap and improving the reliability of leading
eigenvectors.

Before discussing graph powering, we present a new perspective on the Stochastic Block
Model.

3.1 Spectral Properties and Weak Recovery

Before presenting the simulations, we will review the main results of [2].
The Stochastic Block Model can also be examined from a different perspective. In order to
proceed, we first introduce some key concepts. We may specify the probability with which a
fixed vertex is assigned to a particular group, given by the vector p = (p1, . . . ,pk). Additionally,
we can define the probability that an edge is formed between two vertices (not necessarily from
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different groups) as WXi,Xj
, where Xi and Xj denote the group memberships of the respective

vertices.

Definition 3.1
Let n ∈ N+ denote the number of vertices, and let k ∈ N+ be the number of communities.
Let p = (p1, . . . ,pk) be a probability vector on the set [k] := {1, . . . ,k}, representing the
prior distribution over the k communities. Furthermore, let W ∈ [0,1]k×k be a symmetric
matrix, where each entry Wa,b indicates the probability that a vertex from community a

connects to a vertex from community b.
We say that the pair (X,G) is drawn from the Stochastic Block Model, denoted by
SBM(n,p,W), if the followings hold:

• X = (X1, . . . ,Xn) is a random vector where each component Xi is independently
sampled from the distribution p, that is, Xi ∼ p i.i.d. for all i ∈ [n]. The variable Xi

represents the community label of vertex i.

• G is a random undirected graph on n vertices, where each edge between distinct
vertices i and j is included independently with probability WXi,Xj

.

We also define the community sets by

Ωi = Ωi(X) := {v ∈ [n] : Xv = i}, for each i ∈ [k].

We can also define a special case of SBM.
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Definition 3.2
We define a special case of the Stochastic Block Model, denoted by SBM(n,a,b), where
the number of communities is k = 2. In this setting:

1. The community prior is uniform:

p =

(
1

2
,
1

2

)
,

meaning that each vertex is independently assigned to one of the two communities
with equal probability.

2. The connectivity matrix W ∈ R2×2 is symmetric, and its entries are defined as:

W =

[
a
n

b
n

b
n

a
n

]
,

where

• a

n
is the probability that two vertices from the same community are connected,

• b

n
is the probability that two vertices from different communities are connected.

As a result, the graphG contains two equally sized (balanced) clusters, with edge probability
a
n

inside the clusters and b
n

between clusters.

Now we turn to the presentation of the main results of the paper, which are related to theorems
involving spectral methods based on eigenvalues and eigenvectors. To this end, we can introduce
the following new concepts, which are also related to the Stochastic Block Model. We study
various random graph models with planted community structures. In each case, we consider an
ensemble M(n) that defines a probability distribution over pairs (X,G), where

• X is a random vector in Rn with independent and identically distributed (i.i.d.) components,
representing the hidden community labels of the n vertices,

• G is a random graph on n vertices, where the presence or absence of edges depends on the
labels in X.

The central task is to recover the label vector X based solely on the observation of the graph
G, that is, to infer the underlying communities from the network structure.

This work focuses on the sparse regime, where the average degree of the graph remains
bounded as n → ∞, and on the problem of weak recovery, which is formally defined in the
sections below.
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Definition 3.3 – Weak recovery
In the case of k communities, an algorithm

X̂ : 2(
[n]
2 ) → [k]n

is said to recover the communities with accuracy f(n) under the model M(n) if, for
(X,G) ∼ M(n) and defining the true community sets as

Ωi := {v ∈ [n] : Xv = i} for each i ∈ [k],

the following holds:

P

max
π∈Sk

1

k

k∑
i=1

∣∣∣{v ∈ Ωi : π(X̂v) = i
}∣∣∣

|Ωi|
≥ f(n)

 = 1− o(1),

where the maximum is taken over all permutations π of the k labels (to account for label
symmetry).

We say that an algorithm achieves weak recovery if it recovers communities with accuracy
at least 1/k+Ω(1).

The following theorem provides a necessary and sufficient condition for weak recovery.

Theorem 3.4 (cf. [2])
Let X, X̂ ∈ {−1,+ 1}n. Then weak recovery is solvable if and only if

|⟨X,X̂(G)⟩| = Ω(1).

The theorem states that weak recovery holds if the scalar product of the estimated separating
vector and the true separating vector is bounded away from zero (i.e., it is lower bounded by a
positive constant). In other words, the covariance between the two vectors is positive, meaning
that there is some correlation between them.

3.2 Graph Powers

We are now in a position to define powers of graphs, which the authors of the paper introduced
in two different ways.
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Definition 3.5
Let G be a graph and let r ∈ N+ be a positive integer. The r-th power of G, denoted by
G(r), is the graph with the same vertex set as G, in which two vertices are adjacent if there
exists a path of length at most r between them in G.
In other words, G(r) contains all edges of G and adds an edge between any pair of vertices
whose distance in G is at most r.
Note: One may equivalently define G(r) using walks of length at most r, instead of paths,
since both lead to the same adjacency structure in this context.

Adjacency Matrix Formulation:
Let A be the adjacency matrix of the graph G, modified such that all diagonal entries are 1
(i.e., each vertex has a self-loop). Then, the adjacency matrix A(r) of the powered graph
G(r) is defined as:

A(r) = 1{Ar≥1}

where

• Ar denotes the r-th matrix power of A, computed via standard matrix multiplication,

• 1{Ar≥1} is a binary matrix whose entries are 1 if the corresponding entry in Ar is at
least 1, and 0 otherwise.

Thus, A(r) encodes all edges between vertex pairs that are connected by a walk of length at
most r in G.

Our next theorem concerns the eigenvalues of the powered graph’s adjacency matrix and its
spectral gap.
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Theorem 3.6 – Spectral separation for the distance matrix (cf. [2])
Let (X,G) be drawn from SBM(n,a,b) with (a + b)/2 > 1. Let A[r] be the r-distance
matrix of G (i.e., A[r]

ij = 1 if and only if dG(i,j) = r), and let r = ε log(n) such that ε > 0,
and ε log

(
a+b
2

)
< 1

4
.

Then, with high probability:

A. If
a+ b

2
<

(
a− b

2

)2

,

then

λ1

(
A[r]
)
≍
(
a+ b

2

)r

,

λ2

(
A[r]
)
≍
(
a− b

2

)r

,

∣∣λ3

(
A[r]
)∣∣ ≤ (a+ b

2

)r/2

log(n)O(1).

B. If
a+ b

2
>

(
a− b

2

)2

,

then

λ1

(
A[r]
)
≍
(
a+ b

2

)r

,

∣∣λ2

(
A[r]
)∣∣ ≤ (a+ b

2

)r/2

log(n)O(1).

Furthermore, let φ2(A
[r]) denote the eigenvector corresponding to the second largest

eigenvalue λ2(A
[r]). Let the estimated labels X̂ ∈ {−1,+ 1}n be obtained via the rounding

procedure:
X̂i = sign

([
φ2(A

[r])
]
i

)
.

Then X̂ achieves weak recovery whenever

a+ b

2
<

(
a− b

2

)2

.

Our previous theorem, which is based on spectral methods, also has several intuitive
interpretations. The fact that the first (dominant) eigenvalue is large indicates that the graph
exhibits a strong community structure, making it easier to identify the communities using spectral
methods. Another important fact is that the difference between the first two eigenvalues (the
spectral gap) is also not small. This is good news for us, as it means that the spectral characteristics
of the communities are easier to detect, since the graph structure is more robust to noise and
random perturbations. In such cases, spectral algorithms tend to perform better as well. Moreover,
the fact that the third (and hence the remaining) eigenvalues do not stand out implies that there
are no significant substructures in the graph. Since there are only a few dominant eigenvalues,
the structure of the graph is simpler and more interpretable from the perspective of community
detection.

Note. A similar theorem holds not only for the distance matrix but also for the adjacency
matrix of the powered graph (see [2]).
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The following theorem illustrates the relationship between effective density and weak recovery,
where powers of graphs appear again. By the way, the Weyl inequality also plays an important
role in the proof of this theorem.

Theorem 3.7 (cf. [2])
Let {Gn}n≥1 be a sequence of graphs such that diam(Gn) = ω(1), and {rn}n≥1 a sequence
of positive integers such that rn = ε · diam(Gn). Then,

λ2(G
(rn)
n ) ≥ (1− oε(1))(rn + 1)d̂rn/2

rn
(Gn),

where

d̂r(G) =

(
1

r+ 1

r∑
i=0

√
δ(i)(G) · δ(r−i)(G)

)2/r

,

and
δ(i)(G) = min

(x,y)∈E(G)
|{v ∈ V(G) : dG(x,v) = i, dG(y,v) ≥ i}| .

Note. A graph’s diameter is the length of the longest shortest path between any pair of
vertices in the graph. We write f(n) = ω(g(n)) to denote that

lim
n→∞

f(n)

g(n)
= ∞.

We therefore assume that the diameters of the graphs tend to infinity.

In the theorem, for a graph G, the quantity δ(i)(G) is defined as the minimum, taken over all
edges (x,y) ∈ E(G), of the number of vertices v ∈ V(G) such that the shortest path from v to
x has length exactly i, and every path from v to y has length at least i. So the quantity δ(i)(G)

measures, for a given edge, how many vertices "see" one endpoint better than the other at distance
i. The quantity d̂r(G) averages this information symmetrically: for each i ∈ {0,1, . . . ,r}, it takes
the square root of the product δ(i)(G) · δ(r−i)(G), then averages over all such i and normalizes
the result using the r-th root. Intuitively, d̂r(G) measures how well vertices can be distinguished
from each other in the r-step neighborhoods around edges. The larger d̂r(G) is, the more vertices
exist that are symmetrically distinguishable from the two endpoints of an edge at some distance
scale. This indicates that the graph contains more structured information in its r-step local
environment, which in turn supports spectral separation and enhances the robustness of spectral
algorithms. As shown in the theorem, the second eigenvalue becomes large when the spectral
density is also large.
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Summary

This thesis explored the behavior of singular and eigenvectors in random matrix models under
various perturbation settings and examined their applications in statistical problems, particularly
community detection. In the first part, we focused on the theoretical underpinnings of singular
value decomposition (SVD), highlighting how the addition of random noise — such as Bernoulli
or Gaussian perturbations — affects the stability of low-rank approximations and the geometry of
singular vectors. We presented relevant perturbation bounds and supported them with numerical
simulations.

In the second part, we turned to the Stochastic Block Model (SBM), a key framework in
modern network analysis. We studied spectral methods for reconstructing latent group structures
and analyzed the robustness of these techniques when the observed adjacency matrix is corrupted
by random noise. We also investigated the relationship between SBM and the Z2 synchronization
problem, showing how different noise models affect classification accuracy. Both synthetic and
real-world data examples were presented to illustrate the practical implications of theoretical
guarantees.

Finally, we extended our analysis to sparse graphs and adversarial settings by leveraging
powers of graphs. We demonstrated that graph powering enhances spectral separation and enables
weak recovery even when a bounded number of adversarial edge modifications are allowed.
Our simulations confirmed that spectral methods remain effective under these more challenging
circumstances.

In summary, the results of this thesis contribute to a deeper understanding of how spectral
algorithms behave under randomness and noise, offering insights into when reliable reconstruction
is possible and how to design robust techniques for large-scale data analysis.
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NYILTAKOZAT

Alulírott Kovács Sebestyén nyilatkozom, hogy szakdolgozatom elkészítése során az alább
felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye Megjegyzés
Irodalomkeresés – – –
Ábra készítés GPT-4o az ábrák többsége Python kód

generálás
Adatfeldolgozás – – –
Szövegvázlat készítés GPT-4o 1. fejezet, 4. oldal

2. fejezet, 16. oldal
SVD és SBM
gyakorlati
alkalmazásainak
felsorolása

Nyelvhelyesség
ellenőrzése

– – –

A felsoroltakon túl más MI alapú eszközt nem használtam.
Budapest, 2025. május 31.

Kovács Sebestyén
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