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1. Introduction

In recent years, the field of artificial intelligence (AI) has seen rapid growth

and widespread application across various domains, ranging from healthcare and

finance to climate science and public safety. As models become increasingly

powerful, they often function as ”black boxes”, providing accurate predictions

without transparency into their decision-making processes. This opacity presents

significant challenges related to trust, accountability, and interpretability.

To address these issues, the field of Explainable AI (XAI) has emerged,

aiming to make complex models more understandable without sacrificing per-

formance. Among the most popular approaches in XAI is SHapley Additive

exPlanations (SHAP), which draws from cooperative game theory. Originally

proposed by Lloyd Shapley in 1953, Shapley values offer a fair way to attribute

the contribution of each feature to a model’s prediction. This thesis investigates

the application of Shapley values in machine learning, focusing on SHAP as a

post-hoc explanation tool.

In Section 2, the theoretical foundations of Shapley values are introduced,

tracing their origins in cooperative game theory. Section 3 provides a com-

prehensive description of XAI methods. Subsequently, Section 4 discusses the

adaptation of Shapley values to machine learning models and their practical ap-

proximation, including the SHAP methodology. Section 5 presents the practi-

cal component of the thesis, beginning with numerical experiments on synthetic

data, followed by a real-world case study focused on wildfire hazard estimation

in the United Kingdom. Leveraging publicly available satellite and meteorolog-

ical data from 2019 to 2023, classification models–such as XGBoost and neural

networks–are trained and interpreted using SHAP values to identify the key fea-

tures influencing fire hazard predictions.

This thesis connects game-theoretic fairness with practical interpretability

in machine learning, demonstrating the value of Shapley-based explanations in

applied AI.
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2. Shapley Values in Game Theory

2.1. Game Theoretical Framework

One major field of game theory is cooperative games, where players can

form coalitions in order to maximize their utility. In this section, I will discuss

this topic in as much generality as necessary to establish a sound basis for the

remainder of the thesis, based on [6] and [9].

In cooperative games, the utility can be transferable or non-transferable, de-

pending on whether the profit can be redistributed among the players in the coali-

tion or not. In the first case, with transferable utility, it is an important question,

what share of the payoff each participant ”deserves”. Intuitively, this proportion

should represent the players’ contributions to the coalition’s success.

We can define transferable utility (TU) games precisely with characteristic

functions:

Definition 2.1. Given n players, let v : 2n → R be a set-function that assigns a

value to each subset S of the players as the maximum utility that coalition S can

achieve. This function is the characteristic function and v(S ) is the value of S.

The characteristic function should satisfy the following criteria:

◦ v(∅) = 0,

◦ if S ⊂ T ⇒ v(S ) ≤ v(T ) (monotonicity).

After establishing the characteristic function of the game, we can also define the

system of allocation among the players:

Definition 2.2. ϕ(v) ∈ Rn is an allocation vector to the characteristic function

v, where ϕi(v) is the payoff share of player i in the game defined by v.

We say that an allocation vector is in the core of the game if it is

◦ efficient:
∑n

i=1 ϕi = v([n]), [n] = {1, . . . , n} and

◦ stable:
∑

i∈S ϕi ≥ v(S ) ∀S ⊂ [n],

meaning no sub-coalition has an incentive to break away from the grand coalition.[14]
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Example 2.1 (Miners and Gold). Consider a group of miners who have dis-

covered several large bars of gold. The total value of the loot to the group is

determined by the number of bars they can carry home. It takes two miners to

carry a single bar, so the value of the loot to any subset of k miners is given by:

v(k) =
⌊

k
2

⌋
.

If the total number of miners n is even, then the payoff vector ϕ =
(

1
2 , . . . ,

1
2

)
lies in the core. However, if the number of miners is odd, for instance, n = 3,

then the core conditions require the following:

ϕ1 + ϕ2 ≥ 1

ϕ1 + ϕ3 ≥ 1

ϕ2 + ϕ3 ≥ 1

ϕ1 + ϕ2 + ϕ3 = 1

This system of inequalities has no feasible solution, and therefore, the core is
empty.

Example 2.2 (Splitting a Dollar). A parent offers their two children $100 to split,

but only if they can agree on how to divide it. If they fail to reach an agreement,

each child receives only $10.

In cooperative game terms: v({1, 2}) = 100, v({1}) = v({2}) = 10. The core

consists of all payoff vectors satisfying:

ϕ1 ≥ 10

ϕ2 ≥ 10

ϕ1 + ϕ2 = 100

This system clearly admits multiple solutions, meaning the core is non-empty
and contains many possible agreements.

Remark 2.1. In general, it is not always easy or feasible to decide whether a

game has a non-empty core, but there are several special cases where we can be
5



sure. For example, for simple games, where the value of a coalition is either 0 or

1, the core of the game is empty if and only if there are no veto players (a player

that belongs to all winning coalitions).[14]

2.2. Shapley Values in n-person Games

Any allocation vector within the core can be considered a rational decision.

However, as the examples above illustrate, the core may either be empty or con-

tain multiple elements, which limits its practical applicability. To address this,

it can be useful to define a unique allocation vector for each game, providing a

more concrete and actionable solution concept while remaining fair.

L. S. Shapley introduced his axioms in his 1952 paper[13] that list the ex-

pected properties of the allocation vector of a game. Later, we will see that these

axioms define a unique allocation vector for each game.

Shapley’s axioms for the allocation vector ϕ are:

1. Efficiency:
∑n

i=1 ϕi = v([n]),

2. Symmetry: if v(S ∪ {i}) = v(S ∪ { j})∀S , if i, j < S then ϕi = ϕ j,

3. Dummy: if v(S ∪ {i}) = v(S )∀S , then ϕi = 0 and

4. Additivity: ϕi(u + v) = ϕi(u) + ϕi(v) where u, v are characteristic functions.

The efficiency criterion is the same as in the definition of the core, meaning that

the sum of players’ shares should be equal to the value of the coalition of all

players. The symmetry axiom guarantees the same payoff for players with the

same added value, while the dummy axiom guarantees no share for players with

no added value. The additivity property ensures that the allocation of different

games do not affect each other.

Theorem 2.1 (Shapley’s Theorem). Consider a fixed ordering of the players,

defined by a permutation π of [n]. The players are arriving according to this

permutation π, and define ρi(v, π) to be the marginal contribution of player i at

the time of his arrival. That is:

ρi(v, π) = v(π{1, . . . , k}) − v(π{1, . . . , k − 1}),
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where π(k) = i. With this notation, Shapley’s four axioms uniquely determine the

functions ϕi, given by the so called random arrival formula:

ϕi(v) =
1
n!

∑
π∈S n

ρi(v, π).

The value assigned to the players by this allocation vector is the Shapley value.

Remark 2.2. The Shapley value of i is the expected value ρi(v, π), when π is

chosen uniformly at random.

Remark 2.3. The Shapley value of player i can be written in the following form:

ϕi(v) =
1
n

∑
S⊆[n]\{i}

1(
n−1
|S |

) (v(S ∪ {i}) − v(S )) =

=
∑

S⊆[n]\{i}

|S |!(n − |S | − 1)!
n!

(v(S ∪ {i}) − v(S )).

Proof. [6] First let us show that the values given by the theorem’s statement

satisfy Shapley’s axioms, then prove the uniqueness.

(A) Notice that for any fixed π, the dummy, efficiency, and additivity axioms

would be satisfied with ρi(v, π). Based on the theorem, we get the alloca-

tion vector by averaging ρi(v, π) over all permutations, and since averaging

preserves these properties, the final allocation vector ϕi(v) does as well.

To show that the symmetry property holds, define π∗ to be the permutation

obtained from π by swapping the positions of players i and j while leaving

all other positions unchanged and v(S ∪ {i}) = v(S ∪ { j}) ∀S , if i, j < S .

Then:

ρi(v, π) = ρ j(v, π∗),

and since π∗∗ = π,

ϕi(v) =
1
n!

∑
π∈S n

ρi(v, π) =
1
n!

∑
π∈S n

ρ j(v, π∗) =
1
n!

∑
π∗∈S n

ρ j(v, π∗) = ϕ j(v).
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(B) For the uniqueness, let us introduce S-veto games, where S is a subset of

players holding all the influence, so the value of the coalition T is 1, if

S ⊆ T and 0 otherwise. We can easily see that the axioms hold for the

unique allocation vector, where ϕi(v) = 1/|S |, if i ∈ S and 0 otherwise. To

extend the result to general games, we need the following lemma:

Lemma 2.1. Every game can be expressed as a unique linear combination

of S-veto games.

Proof of lemma. For all nonempty T ⊆ [n] we are looking for the solution

of the following equation:

v(T ) =
∑

S⊆T,S,∅

cS vS (T ),

where v is the characteristic function of the general game and vs is the S-

veto game’s. For all T , we get a linear equation system of 2n−1 equations

with the same amount of unknowns cS . This has a unique solution, because

the matrix of the system is upper triangular.

The unique allocation vector that satisfies the axioms in the general case

can be expressed as:

ϕi(v) =
∑

S⊆[n],S,∅

cS vS =
∑

S⊆[n],i∈S

cSϕi(vS ) =
∑

S⊆[n],i∈S

cS

|S |
.

With sections A and B, the proof of the theorem is complete.

Remark 2.4. The Shapley value has two other convenient properties:

◦ Determination by marginals: if the following holds for characteristic func-

tions v1 and v2: v1(S + i) − v1(S ) = v2(S + i) − v2(S ) ∀S ⊆ [n]\i, then

ϕi(v1) = ϕi(v2). A player’s Shapley value is fully determined by how much

they add to each coalition.

◦ Mutual profit: ϕi(v) − ϕi(v\ j) = ϕ j(v) − ϕ j(v\i) ∀i, j, v. The mutual benefit

between two players is symmetric.
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Example 2.3 (Four Stakeholders/Shapley-Shubik Index). Four individuals own

shares in a corporation. Player i holds i units of stock, for i = 1, 2, 3, 4. A total

of six shares is required to pass a resolution at the board meeting.

The characteristic function v(S ) is defined as follows: v(S ) = 1 if the subset

S ⊆ {1, 2, 3, 4} collectively holds at least six shares, and v(S ) = 0 otherwise.

Notably, the following coalitions can pass a resolution:

v({2, 4}) = v({3, 4}) = v({1, 2, 3, 4}) = 1

All other coalitions have a value of 0. In this setting, the Shapley value ϕi(v) for

each player i represents their voting power and is known as the Shapley–Shubik
power index.

By Lemma 2.1, we can write the value function of the game as the linear

combination of S-veto games:

v =
∑
S⊆N

cS vS

Solving this system yields:

v = v{2,4} + v{3,4} + v{1,2,3} − v{2,3,4} − v{1,2,3,4}.

From this decomposition, we can compute the Shapley values:

ϕ1(v) =
1
3
−

1
4
=

1
12

ϕ2(v) =
1
2
+

1
3
−

1
3
−

1
4
=

1
4

ϕ3(v) =
1
4

(by symmetry with player 2)

ϕ4(v) = 1 − (ϕ1 + ϕ2 + ϕ3) = 1 −
(

1
12
+

1
4
+

1
4

)
=

5
12

It is interesting to observe that the players with two and three shares have

equal power under this index, and also the core of this game is empty.
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2.3. Shapley Values and Convex Games

The relation of the two main concepts discussed so far, the core and the

Shapley values, is not clear in general. In fact, it is shown in [3], that it is NP-

hard to decide if the Shapley value is in the core of a game or not. However, we

can define a subset of cooperative games, where the inclusion is guaranteed.

Definition 2.3. We call a game convex, if its characteristic function v is super-

modular, meaning that ∀X,Y ⊆ [n]:

v(X) + v(Y) ≤ v(X ∪ Y) + v(X ∩ Y).

Theorem 2.2. In convex games, the Shapley value is always in the core.

Proof. [9] Let us consider a fixed ordering on the players, π, and define the

payoff as before:

ρi(v, π) = v(π{1, . . . , k}) − v(π{1, . . . , k − 1}),

where π(k) = i. We will show that this allocation vector lies in the core. Since

the Shapley value is obtained as a convex combination of such vectors, and the

core is a convex set, the Shapley value must also belong to the core.

For contradiction let us assume that ∃U ⊆ [n] :
∑

i∈U ρ(i) < v(U), and choose

a maximal such U. Let j be the smallest index such that j < U.

From the definition of the allocation vector we can derive:

v([ j]) = v([ j − 1]) + ρ( j) = . . . =
∑
i∈[ j]

ρ(i)

v([ j − 1]) = v([ j − 2]) + ρ( j − 1) = . . . =
∑

i∈[ j−1]

ρ(i).
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From the supermodularity:

v([ j]) + v(U) ≤ v([ j] ∩ U) + v([ j] ∪ U) = v([ j − 1]) + v([ j] ∪ U)∑
i∈[ j]

ρ(i) + v(U) ≤
∑

i∈[ j−1]

ρ(i) + v([ j] ∪ U).

On the other hand,∑
i∈[ j]

ρ(i) +
∑
i∈U

ρ(i) =
∑

i∈[ j−1]

ρ(i) +
∑

i∈[ j]∪U

ρ(i),

and we assumed that
∑

i∈U ρ(i) < v(U), so
∑

i∈[ j]∪U ρ(i) < v([ j] ∪ U), which is in

contradiction with U being maximal.

While the game-theoretic approach provides a mathematically grounded frame-

work for evaluating fairness, contribution, and influence through concepts like

the Shapley value, these ideas also resonate beyond cooperative game settings.

In the context of artificial intelligence, especially as models grow more com-

plex and opaque, understanding how individual features or inputs contribute to a

model’s decision becomes a central concern.

This naturally leads to the field of Explainable AI (XAI), which seeks to

make the behavior of AI systems more transparent and interpretable. In the fol-

lowing section, we shift our focus to the broader landscape of XAI methods,

exploring how different techniques aim to provide insights into model behavior

at various stages and scopes.
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3. AI Spring and XAI

In recent years, the development of artificial intelligence has accelerated sig-

nificantly. With the rise of natural language processing (NLP) models and the

availability of publicly accessible AI services, the field has become a topic of

widespread public discourse and increasing attention.

As these models are being adopted in high-stakes domains such as healthcare,

finance, and public safety, understanding their reliability has become critically

important.

3.1. What is Explainable AI?

The need to explain the functioning of artificial intelligence (AI) methods

is not new in scientific circles. However, as AI has become significantly more

widespread, the demand for Explainable AI (XAI) has also grown rapidly.

But what exactly is the core issue? A commonly used term to describe many

modern AI algorithms is the ”black-box model.” This refers to systems where

the user receives little or no insight into the process that leads from the input to

the output. Well-known and highly effective black-box models include ensem-

ble methods such as XGBoost and Random Forest, kernel-based approaches, as

well as neural network-based models like those used in natural language pro-

cessing (NLP), including GPT (Generative Pretrained Transformers). This lack

of transparency–referred to as opacity–can lead to significant challenges. When

users cannot understand the model’s behavior, it becomes difficult to identify po-

tential biases or errors, or to hold the model accountable for its decisions. This

opacity can result in a lack of trust and may hinder the deployment of AI in

high-stakes domains.

In contrast, transparent or ”white-box” models offer insights into their inter-

nal mechanisms and the reasoning behind their predictions, making them eas-

ier to interpret and explain. Examples of interpretable models include classic

machine learning algorithms such as logistic regression, decision trees, and k-

nearest neighbors (k-NN). These models are often simpler in structure compared

to black-box models, which typically leads to a trade-off between interpretability
12



and performance [12]. Nonetheless, recent advances in XAI have led to the de-

velopment of state-of-the-art models that aim to bridge this gap, achieving both

strong predictive performance and a degree of explainability.

3.2. Explanation Directions

The aim of XAI methodology is to bridge the gap between accurate black-

box models and understandable white-box models by explaining the more com-

plex models in different ways. I will summarize these directions based on the

comprehensive reviews [10] and [5].

3.2.1. XAI Methods Categorized by Stage of Use

Minh et al. [10] categorize explainability methods according to the stage of

the modeling process at which they are applied. I will summarize their classifi-

cation in the following.

Pre-modeling Explainability

Pre-modeling explainability methods focus on the input data used for training

the model, specifically targeting data preprocessing steps. These techniques are

particularly valuable when dealing with very large datasets, which can be time-

consuming to process directly.

Data analysis provides insights into the statistical properties of the dataset

and helps identify potential issues, such as missing or corrupted data.

Data summarization techniques aim to generate a representative subset of

the original large dataset, allowing the model to be trained efficiently on this

smaller subset without significant loss of accuracy. Unsupervised methods, such

as k-means clustering, are commonly employed for this purpose.

Data transformation involves enriching the dataset with useful metadata,

which can include descriptions of data creation, preparation, collection methods,

as well as relevant legal and ethical considerations. This additional information

enhances the usability and interpretability of the data for downstream users.

13



Interpretable Models

The two main approaches in this category are the use of white-box models, which

are inherently interpretable, and the combination of complex black-box models

with interpretable models. The latter approach leads to hybrid models, where

the simpler interpretable model aids in understanding the complex one by ef-

fectively reducing its complexity, resulting in a model that is both efficient and

explainable.

Post-modeling Explainability

In order to preserve the accuracy of black-box models, it is often more effective

to explain their decisions after they have been made–after the model is trained.

One category of these so-called post-modeling methods can be applied to a

wide range of machine learning models (model-agnostic methods), since they

treat the model as a black box. These methods rely on perturbing inputs and

observing corresponding changes in outputs. Alternatively, some post-modeling

methods are tailored to specific types of models, such as deep learning or hy-

brid architectures (model-specific approaches), allowing them to leverage inter-

nal model details. Let us now focus on a few general model-agnostic methods.

Textual justification uses natural language generation models to provide ex-

planations in the form of phrases or sentences, helping users understand the

model’s predictions.

Visualization techniques analyze how a model captures hidden patterns dur-

ing training or how it makes predictions during testing. By inspecting model

structures, various visualizations can be generated from inputs and outputs. This

method can also be combined with other explanation approaches to improve in-

terpretability.

The simplification approach is perhaps the broadest category of model-agnostic

post-modeling methods. It builds a simpler surrogate model that approximates

the complex model’s behavior while minimizing complexity and maintaining

comparable performance. However, oversimplification can lead to a loss of ac-
14



curacy.

Feature relevance methods evaluate the model’s internal workings by assign-

ing importance scores to input variables. These scores quantify the influence

or sensitivity of each feature, revealing which inputs the model relies on most

when making predictions. This approach is often combined with visualization

techniques to present the results in an accessible way.

One of the most well-known and commonly used feature relevance scoring

is the SHapley Additive exPlanation (SHAP) values, which rely on the Shapley

values from cooperative game theory and which I will discuss in more detail in

the following sections.

3.2.2. XAI Methods Categorized by Scope of Explanation

Hassija et al. propose an alternative categorization system in [5], where one

dimension of classification is based on the scope of the explanation.

Global interpretability refers to methods that aim to explain the overall be-

havior of a model, generating insights that apply across all possible inputs. These

approaches seek to uncover the general logic or structure of the model and typ-

ically include techniques such as model simplification (e.g., model extraction)

and feature-based analyses, like feature importance or feature interaction.

In contrast, local interpretability focuses on explaining individual predic-

tions by examining how specific input features influence the outcome for a given

instance. In such models, each feature is associated with a weight, and predic-

tions are typically formed through a weighted combination of input features and

a bias term. This structure allows for intuitive understanding of feature impact

by isolating the effect of a single variable while holding others constant. Notable

examples of local interpretability methods include various implementations of

Shapley values or LIME (Local Interpretable Model-agnostic Explanations).
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4. Shapley Values in Machine Learning

The application of Shapley values for explaining prediction models was ini-

tially introduced by Strumbelj and Kononenko in [15] and [17]. Their goal was

to develop a model-agnostic, post-hoc explanation method that provides local

interpretations by assigning contribution scores to individual features. To ensure

broad applicability across different model types, their approach treats the model

as a black box, analyzing how variations in input feature values affect the output

predictions.

The following notations and assumptions will be used in this section. Let

X = [0, 1]n be our feature space (so the features X1, . . . , Xn are normalized), and

let Y be the target variable, and {yi; xi,1, . . . , xi,n}
M
i=1 a data set of M instances. The

function f : X → R represents the model that is used to predict the value of the

target variable for an instance x ∈ X.

We are interested in how a specific value of a feature influences the model’s

prediction. To measure this, let us see the following metric [17]:

Definition 4.1. For an x = (x1, . . . , xn) instance we define the situational impor-
tance of Xi = xi as ψi(x) = f (x1, . . . , xn) − E[ f (x1, . . . , Xi, . . . , xn)].

With this definition we assign, to a specific value of a feature, the difference

between a prediction for an instance and the expected prediction for the same

instance if the ith feature had not been known. If the situational importance is

positive, then the actual value of the feature has a positive contribution, if it is

negative, then it has a negative contribution, and if it is 0, it has no contribution.

Naturally, the expected value of Xi should be approximated (or computed,

if the feature’s domain is finite), so we have to perturb the values of the ith

feature, while the values of other input features remain fixed, and then average

the predictions. The ultimate contribution of a feature in a prediction comes from

the aggregation of its situational importances across all instances.

In additive models, where we assume no interactions between the features,

the contribution of a feature is independent of the values of the others. For ex-

16



ample, in the linear regression model, where

f (x) = β0 + β1x1 . . . + βnxn,

the metric is equivalent to the difference between what a feature contributes when

its value is xi and what it is expected to contribute:

ψadd
i (x) = β0 + β1x1 + . . . + βnxn − β0 − β1x1 − . . . − E[βiXi] − . . . − βnxn =

= βixi − E[βiXi].

The situational importance can be easily interpreted, and it is very useful in

the field of additive models, but if we want to take into account the interactions

between features, we need to extend the method.

Definition 4.2. We define the contribution of a subset of feature values as

∆Q(x) = fQ(x) − f{}(x), where

fQ(x) = E[ f (x)|Xi = xi, ∀i ∈ Q],Q ⊆ [n] and f{} = E[ f (x)].

This is the change in prediction caused by observing the values of a certain

subset of features (Q) for some instance x ∈ X.

We can also look at the contribution of Q as the sum of interactions across

all its subsets:

∆Q(x) =
∑
W⊆Q

IW(x), (1)

from which we can uniquely determine the interactions in Q:

IQ(x) = ∆Q(x) −
∑
W⊂Q

IW(x). (2)
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For defining the contribution of one feature value, we should consider the

case where we add feature i to all subsets in [n]\{i}:

ϕi(x) =
∑

Q⊂[n]\{i}

IQ∪{i}(x)
|Q| + 1

. (3)

We can think about our model as a coalitional game in each instance, where

the players are the feature values and the characteristic function is ∆Q(x). Since

∆{}(x) = 0 and ∆Q(x) ≤ ∆R(x)∀Q ⊂ R, this is indeed a valid characteristic

function. In this coalitional game, the concept of feature value contributions–

defining the role of each feature value in the prediction–leads us to the same

payoff formulation as Shapley values.

Theorem 4.1.

ϕi(x) =
∑

Q⊆[n]\{i}

|Q|!(n − |Q| − 1)!
n!

(∆Q∪{i}(x) − ∆Q(x)) =

=
∑

Q⊆[n]\{i}

|Q|!(n − |Q| − 1)!
n!

( fQ∪{i}(x) − fQ(x))

Proof. Let us rewrite the recursive definition in (2) by induction:

IQ(x) =
∑
W⊆Q

(−1)|Q|−|W |∆W(x),

from which (3) is:

ϕi(x) =
∑

Q⊂[n]\{i}

∑
W⊆Q∪{i}(−1)|Q∪{i}|−|W |∆W(x)

|Q ∪ {i}|
.

Every subset W of [n]\{i} appears once in the right side sum in every term, where

it is the subset of the current subset Q.

Let us first calculate the times of appearances for ∆V∪{i}(x),V ⊆ [n], i < V .

The sign of its terms depends on the parity of |Q ∪ {i}| − |V ∪ {i}| = |Q| − |V |.

The total number of subsets that contain V ∪ {i} can be calculated taking all
18



combinations of |Q| − |V | elements from the remaining n − |V | − 1. This can be

written in the following form, and be expressed through the beta function:

M∆V∪{i}(x) =

(
n−|V |−1

0

)
|V | + 1

−

(
n−|V |−1

1

)
|V | + 2

+ . . . + (−1)n−|V |−1

(
n−|V |−1
n−|V |−1

)
n

= B(|V | + 1, n − |V |) =

=
Γ(|V | + 1)Γ(n − |V |)

Γ(n + 1)
=
|V |!(n − |V | − 1)!

n!

Similarly, ∆V(x) appears depending on the parity of |Q ∪ {i}| − |V |, which is

of course the opposite of the previous one. Apart from the sign change, the sum

stays the same:

M∆V (x) = −M∆V∪{i}(x).

Taking the sum on all subsets V the theorem can be proved, since:

ϕi(x) =
∑

V⊆[n]\i

M∆V∪{i}(x)∆V∪{i}(x) + M∆V (x)∆V(x) =

=
∑

V⊆[n]\i

|V |!(n − |V | − 1)!
n!

∆V∪{i}(x) −
|V |!(n − |V | − 1)!

n!
∆V(x)

As we have seen in Section 2, the Shapley values have a lot of practical

attributes and they provide a somewhat fair payoff among the players, which is

now a fair scoring of the feature values’ importance in a single prediction.

Remark 4.1. Let us recall the efficiency property of Shapley values, now mean-

ing that if we sum over all feature values, we get back the prediction for the given

instance f (x).

4.1. Sampling Method for Approximating Shapley Values

It has been established that our machine learning model can be interpreted as

a coalitional game, in which the players correspond to the feature values and the
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value function represents the contribution of a subset of features to the prediction

for a given instance. Furthermore, it has been shown that the contribution of

an individual feature is equivalent to the Shapley value from cooperative game

theory.

However, computing the Shapley values exactly requires knowledge of both

the joint distribution of the features and the predictor function f . In practical

applications, such complete information is rarely available.

As a result, the best achievable approach is to estimate the expected value

of f using the sample mean of predictions. This estimation procedure entails

computing the mean prediction across all possible feature subsets, which leads

to an exponential computational complexity.

In the following section, various estimation algorithms will be presented,

beginning with the sampling approach proposed by the original authors [17].

Let us remember the random arrival formula from Theorem 2.1, which was

an equivalent form of the Shapley values:

ϕi(x) =
1
n!

∑
π∈S n

∆π{1,...,k}(x) − ∆π{1,...,k−1}(x),

where S n is the set of all permutations of instances {1, . . . , n} and π(k) = i. Now

we could sample permutations from S n randomly, but this does not solve our

problem yet, because the computational cost of ∆(x) is still exponential.

Another possible simplification is to express the contributions in the instance

space X and to limit ourselves to such distributions of instances p that individual

features are distributed independently (efficiency is shown in [16]). This results

in the following reformulation:

∆π{1,...,k}(x) = fπ{1,...,k}(x) − f{}(x) =

=
∑

ω∈X,ω j=x j,∀ j∈π{1,...,k}

p(ω) f (ω) −
∑

ω∈X,ω j=x j ∀ j

p(ω) f (ω) =

=
∑
ω∈X

p(ω)[ f (ω|ω j = x j, j ∈ π{1, . . . , k}) − f (ω)].
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Similarly,

∆π{1,...,k−1}(x) =
∑
ω∈X

p(ω)[ f (ω|ω j = x j, j ∈ π{1, . . . , k − 1}) − f (ω)],

so the Shapley value of feature i in instance x can be expressed as:

ϕi(x) =
1
n!

∑
π∈S n

∑
ω∈X

p(ω)[ f (ω|ω j = x j, j ∈ π{1, . . . , k})− f (ω|ω j = x j, j ∈ π{1, . . . , k−1})].

Based on this, the sampling procedure will be the following, including ran-

dom sampling of instances and permutations:

Algorithm 1 Sampling Algorithm
Require: Feature vector x (instance), feature index j, predictor function f , num-

ber of samples m
Ensure: Estimated Shapley value ϕ̂ j(x)

1: for k = 1 to m do
2: Sample a random permutation π ∈ S n of the feature indices
3: Sample an instance ω from the data distribution (according to p)
4: Let S = {i ∈ [n] : π(i) < π( j)}
5: Construct two instances:

◦ xS : instance ω where features in S are set to values from x
◦ xS∪{ j}: instance ω where features in S ∪ { j} are set to values from x

6: Compute marginal contribution:

Vk = f (xS∪{ j}) − f (xS )

7: end for
8: return ϕ̂ j(x) = 1

m

∑m
k=1 Vk

The sampling method described above yields an estimator ϕ̂i(x) that is unbi-

ased and consistent for the true Shapley value ϕi(x). Moreover, under the Central

Limit Theorem, as the sampling size m tends to ∞, ϕ̂i(x) is approximately nor-

mally distributed around ϕi(x), with variance σ2

m , where σ2 denotes the sample

variance of the marginal contributions and m is the number of samples.

It is important to note that, if the number of features is small, then of course
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the total number of distinct permutations (or coalitions) is also small. In such

cases, even taking many samples does not improve the approximation meaning-

fully, since the underlying distribution of marginal contributions is discrete and

of limited support. Therefore, in small feature spaces, the exact Shapley values

can often be computed directly and sampling-based approximation is unneces-

sary or even inappropriate.

Furthermore, the special case where the model function f is constant (i.e.,

f (x) ≡ c for all x) is naturally handled in this framework. In such cases, all

marginal contributions are zero, resulting in a sample variance σ2 = 0, and hence

the estimator ϕ̂i(x) has zero variance for any m. Consequently, ϕ̂i(x) = ϕi(x) = 0

exactly, and the CLT holds trivially.

What is the time complexity of this method? When explaining an instance,

the sampling process has to be repeated for each of the n feature values, so the

time complexity is O(nT (X)), where function T (X) describes the instance clas-

sification time of the model on X (for most machine learning models T (X) ≤ n).

Several strategies have been proposed to improve the efficiency of this base-

line algorithm. One such approach involves adapting the number of samples m

allocated to each feature based on the observed variability of its marginal con-

tributions [17]. Another approach proposed in [11] builds reproducing kernel

Hilbert spaces (RKHS) on the group of permutations using Kendall and Mal-

lows kernels. In that space the so called kernel herding method is used, which

is a greedy optimisation process selecting points for maximum separation, while

also converging to the expected distribution p, resulting in a quasi-Monte Carlo

algorithm. The rate of the convergence for a general Monte Carlo method is

O( 1
√

m ), which is improved by this method to O( 1
m ).

4.2. SHAP Values

An alternative approach and interpretation of Shapley values is the widely

used SHAP (Shapley Additive Explanation) method. It was introduced by Lund-

berg and Lee in 2017 [7], with the primary objective of unifying existing model

explanation techniques within a general theoretical framework.
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The SHAP approach can be understood as a simplification method, wherein a

complex, black-box model is approximated by a simpler and more interpretable

explanation model. Let the original predictive model be denoted by f , and the

explanation model by g. For simplicity, SHAP employs binary simplified input

vectors x′ ∈ {0, 1}n, which indicate the presence or absence of each original

feature. These simplified inputs are mapped back to the original input space via

a function x = hx(x′).

Under this formulation, the goal is to locally approximate the predictions of

the original model using the explanation model, i.e.,

g(x′) ≈ f (hx(x′)).

Definition 4.3. We call a model additive feature attribution method, if it has an

explanation model which is structured as follows:

g(x′) = ϕ0 +

n∑
i=1

ϕi(x)x′i ,

where x′ is the simplified input feature and ϕi(x) ∈ R.

Since the sum of the Shapley values across all features exactly recovers the

model prediction for a given instance, the method can be interpreted as an addi-

tive feature attribution model. This interpretation holds even when the Shapley

values are approximated using the sampling-based method described in Section

4.1, where the binary variable x′i indicates the presence or absence of feature i in

the simplified input representation.

We can define three desirable properties that the explanation models of the

additive feature attribution method class should satisfy:

1. Local accuracy: f (x) = g(x′).

When approximating the original model f at a specific input x, the ex-

planation model is required to exactly reproduce the output of f at that

point.
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2. Missingness: x′i = 0⇒ ϕi(x) = 0.

If a feature is absent in the simplified input x′, it is assumed to be missing

from the original input. The missingness property states that such features

must have zero contribution in the explanation model.

3. Consistency: for any two models f and f ′, if for all inputs z′,

f ′(hx(z′)) − f ′(hx(z′|z′i = 0)) ≥ f (hx(z′)) − f (hx(z′|z′i = 0)),

then ϕ f ′

i (x) ≥ ϕ f
i (x).

This property ensures that if the model changes in such a way that the

marginal contribution of a feature increases or remains unchanged (re-

gardless of other features), then the feature’s assigned attribution should

not decrease.

Theorem 4.2. For every model f and mapping hx(z) there is only one possible

explanation model g that follows the additive feature attribution definition and

satisfies the previous three properties:

ϕ
f
i (x) =

∑
z′⊆x′

|z′|!(n − z′ − 1)!
n!

[ f (hx(z′)) − f (hx(z′|z′i = 0))],

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all z′

vectors where the non-zero entries are a subset of the non-zero entries in x′.

Proof. Similar to its game theoretic equivalent (Theorem 2.1).

In Section 4.1, we have already seen that feature value contributions lead us

to the Shapley values with fQ(x) = E[ f (x)|Xi = xi, ∀i ∈ Q]. Let us choose the

mapping function in the former theorem as follows:

◦ Let S be the non-zero indices in z′

◦ Let zS be the version of z with missing values in features i < S

◦ hx(z′) B zS .

Definition 4.4. With this mapping function f (hx(z′)) = f (zS ) ≈ E[ f (z)|zS ], and

the values defined with this in Theorem 4.2 are the SHAP values.
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This definition is sufficiently general to encompass other additive feature at-

tribution methods, such as LIME (Local Interpretable Model-agnostic Explana-

tions) and DeepLIFT, while still satisfying the three desirable properties outlined

above: local accuracy, missingness, and consistency.

If we assume feature independence when approximating conditional expec-

tations, then SHAP values can be estimated directly using the Shapley sampling

method. In the following sections, we will explore alternative approaches for es-

timating SHAP values, including both model-agnostic and model-specific meth-

ods.

4.2.1. Model-agnostic Approximation of SHAP Values

Kernel SHAP

Kernel SHAP is a model-agnostic method introduced in [7] for explaining in-

dividual predictions that combines elements from LIME and Shapley values.

While LIME approximates a complex model f locally using a linear surrogate

g, Kernel SHAP seeks to ensure that this approximation also respects the key

theoretical properties unique to SHAP values (local accuracy, missingness, and

consistency).

LIME formulates the explanation problem as a regularized regression in a

simplified binary input space. In this setting, as before, simplified inputs z′ are

binary vectors indicating the presence or absence of features. A mapping hx(z′)

reconstructs the original input x from z, allowing the explanation model g to ap-

proximate the true prediction f (hx(z)). LIME minimizes the following objective:

arg min
g∈G
L( f , g, πx) + Ω(g)

where πx(z′) is a local weighting kernel and Ω(g) is a regularization term con-

trolling the complexity of g.

LIME’s heuristic choice of kernel πx(z′), loss function L, and regularizer

Ω do not generally yield Shapley-consistent attributions. This can result in vi-
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olations of local accuracy or consistency, potentially leading to unintuitive or

misleading feature importances in certain edge cases.

Kernel SHAP addresses this limitation by explicitly identifying the parameter

choices that guarantee consistency with Shapley values. Specifically, it derives

the Shapley kernel:
◦ Weighting kernel:

πx(z′) =
(M − 1)(

M
|z′ |

)
|z′|(M − |z′|)

,

◦ Loss function:
∑

z′∈Z ( f (hx(z′)) − g(z′))2 πx(z′),

weighted squared error between f (hx(z)) and g(z′),

◦ Regularization term: Ω(g) = 0.

By enforcing these settings, Kernel SHAP solves LIME’s regression-based

formulation in a way that satisfies the axioms underpinning Shapley values. For

the proof of this statement see [7].

In practical applications, however, Kernel SHAP does not evaluate the full

power set of simplified inputs due to computational constraints, as the number

of subsets grows exponentially with the number of features. Instead, it relies on

sampling a subset of these inputs to approximate the SHAP values, in order to

scale to moderately high-dimensional problems while maintaining the desirable

theoretical properties of the Shapley framework.

4.2.2. Model-specific Approximation of SHAP Values

Several model-specific SHAP methods have been developed to efficiently

compute SHAP values by leveraging the structure of particular model classes.

For example Linear SHAP [7] provides an exact computation of SHAP values for

linear models by directly using model coefficients and feature distributions, Deep

SHAP [7] extends SHAP value estimation to deep neural networks by combining

the principles of SHAP with the DeepLIFT algorithm, while Max SHAP [7] is

tailored for models such as certain max-pooling neural network layers or max-

based decision rules. In the following I will talk about a method, also introduced

by Lundberg et. al in 2018 [8], designed for tree-based models: Tree SHAP.
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Tree SHAP

Tree SHAP is a model-specific method designed to efficiently compute exact

Shapley values for tree-based models, such as decision trees, random forests,

and gradient-boosting methods. Unlike Kernel SHAP, which is model-agnostic

and relies on sampling to approximate Shapley values, Tree SHAP leverages the

internal structure of tree ensembles to calculate Shapley values in polynomial

time.

Tree SHAP exploits the structure of decision trees to reduce the complexity

of exact SHAP value computation from O(T L2n) to O(T LD2), where T is the

number of trees, L is the maximum number of leaves per tree, n is the number

of features, and D is the maximum depth of any tree. This exponential reduction

in computational complexity enables the exact calculation of SHAP values for

complex models. Both versions of the algorithm can be found in [8].

The first straightforward recursive algorithm estimates the conditional ex-

pectations E[ f (x) | Xi = xi ∀i ∈ Q] for feature subsets Q, by traversing the tree

nodes, using node values, thresholds, feature splits, and sample cover counts to

weigh the contributions. This direct method has exponential complexity (O(T L2n)).

To overcome this, the algorithm introduces a polynomial-time method with

complexity O(T LD2). The key idea is to recursively track the proportions of all

possible feature subsets flowing through each node, while accounting for subset

sizes to correctly weight their contributions in the Shapley formula.

This is achieved via two complementary procedures: grows subsets along

the tree branches, and reverses previous extensions to maintain correct weight-

ing when features appear multiple times on a path. The algorithm efficiently

aggregates these weighted contributions to compute exact SHAP values for all

features, leveraging the tree structure to avoid the exponential blowup.
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5. Numerical Experiments

5.1. Performance of Shapley Value Estimators on Synthetic Data

To evaluate the performance of various Shapley value estimation methods, I

conducted a series of experiments using synthetic data generated in the R pro-

gramming language. The implementations of the original sampling-based algo-

rithm was utilized via the iml1 and fastshap2 packages, while the SHAP-based

algorithms were utilized via the kernelshap3 and treeshap4 packages. All

scripts from this section can be found in the GitHub repository of this thesis[1].

In Experiments A and B, the focus was on models with known, additive

predictor functions, for regression and classification tasks. This setting allows

for the analytical computation of theoretical Shapley values, which served as a

benchmark to assess the accuracy of the other models.

In contrast, Experiments C involved more complex tree-based models, where

theoretical Shapley values are not easily obtainable. In these cases, the approxi-

mations produced by the methods were compared against the exact Kernel SHAP

values.

5.1.1. Experiment A: Linear Regression

This experiment involved a regression task using a linear regression model

from the lm package. For each simulation, a synthetic dataset of n = 100 ob-

servations was generated, in twenty iterations. Each dataset consisted of M = 5

features independently drawn from a standard uniform distribution. The target

variable was generated according to the following linear model:

Y = X1 + 2X2 − X3 + ϵ, ϵ ∼ N(0, 0.12).

1https://github.com/giuseppec/iml
2https://github.com/bgreenwell/fastshap
3https://github.com/ModelOriented/kernelshap
4https://github.com/ModelOriented/treeshap
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Given the additive structure of the linear model, the exact Shapley values for

each feature i and instance x can be computed as:

ϕExact
i (x) = βi[xi − E(Xi)] = βi[xi − 0.5].

An empirical approximation to the expectation can be computed using the sam-

ple mean:

ϕExhaustive
i (x) = βi[xi − Xi)].

The sampling-based Shapley values were computed using the iml package, with

low sample sizes m = 25, 50, 100.

Another implementation of the sampling method, in the fastshap package,

was used to approximate SHAP values for each instance. This method was ap-

plied with the same sample sizes: m = 25, 50, 100.

I also utilized the Kernel SHAP method, implemented in the kernelshap

package, with the whole sample set.

Figure 1: MSE comparison of estimation methods for a linear regression model

For each method, I computed the mean squared error (MSE) between the

estimated Shapley values and the theoretical values. The MSE was calculated

for each feature i across all instances. To ensure robustness, the simulation was
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repeated twenty times. The resulting MSE values from each simulation were

visualized using boxplots, which are presented in Figure 1.

From the results, it is evident that for the meaningful features X1, X2, X3, the

fastshap implementation consistently outperforms the iml package across all

three sample sizes in pairwise comparisons. The best approximation is achieved

by Kernel SHAP, which is essentially equivalent to the exhaustive method and

provides an almost perfect approximation of the theoretical Shapley values.

5.1.2. Experiment B: Logistic Regression with Log-Odds

In this experiment, I applied a logistic regression model for a binary classifi-

cation task, using synthetic data. The data generation process and model fitting

were similar to those in Experiment A, but the focus here was on the log-odds

scale, which provides the predicted log-odds of the response variable, rather than

the probabilities.

The data was generated as follows: The feature matrix X was composed of

n = 100 instances with M = 5 features sampled from a uniform distribution. The

logits, or the log-odds, were computed using the true model coefficients:

logits = X1 + 2X2 − X3.

The probabilities for the binary outcome y were obtained using the logistic func-

tion:

P(Y = 1) =
1

1 + e−logits .

The response variable y was then sampled from a Bernoulli distribution with

success probability P(Y = 1). The logistic regression model was fitted to the data

using the glm function, and the Shapley values were calculated using different

methods on the log-odds scale.

The theoretical Shapley values for the log-odds were computed using the

known coefficients of the logistic regression model. For each feature i, the Shap-
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ley value was calculated as:

ϕExact
i (x) = βi[xi − E(Xi)] = βi[xi − 0.5],

where E(Xi) is the mean of the feature Xi, which is 0.5 for a uniform distribution.

The exhaustive Shapley values were computed again by replacing the ex-

pected value of each feature with its sample mean across the training data.

In addition to the exact and exhaustive methods, Shapley values were esti-

mated using both the sampling-based algorithms from iml and fastshap on the

log-odds scale, each evaluated at three different sample sizes: m = 25, 50, 100,

and the Kernel SHAP algorithm.

For every method, Shapley values were again computed for all instances in

each dataset. The mean squared error (MSE) was then calculated for each feature

across all instances, using the exact values as the ground truth. This process was

repeated across the twenty simulations, and the resulting MSEs were visualized

using boxplots, as shown in Figure 2.

Figure 2: MSE comparison of estimation methods for a logistic regression model

The results are similar to those observed in the regression task of Experiment

A; however, there are features for which the differences are smaller (e.g., X3)
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and others where they are larger (e.g., X2). The variance also varies accordingly.

Additionally, a noticeable difference is observed for feature X5, which does not

contribute to the predictions.

5.1.3. Experiment C: Regression with Tree-based Models

In this experiment, I investigated more complex, non-linear regression mod-

els, for which theoretical Shapley values are no longer analytically tractable.

Specifically, I considered two model types: a random forest and an eXtreme Gra-

dient Boosting (XGBoost) regressor. These models were trained on synthetic

data, and the Shapley values were estimated using the approximation methods

used before: the sampling method, fastshap and Kernel SHAP, and additionally

with Tree SHAP.

The data was generated the same way as before, and the models were fitted

using the xgboost5 and caret6 packages. Since these models introduce non-

linearities and interactions not present in a linear regression, exact or exhaustive

computation of Shapley values was not feasible. Instead, I used the Kernel SHAP

approximation as a benchmark reference for evaluating the accuracy of the other

SHAP estimation methods. The metrics stayed the same as before.

The resulting MSE values, calculated per feature across all instances, are

shown in Figure 3, according to the models.

Sampling methods exhibit similar performance as previously observed for

features X1, X2, and X3, with the variance of the fastshap implementation being

substantially lower. The scale of errors remains consistent across both Random

Forest and XGBoost models. For features X4 and X5, noticeable differences in

performance are again evident. Tree SHAP performs exceptionally well overall,

although it tends to produce larger errors for the non-important features X4 and

X5, comparable to the error magnitude of fastSHAP-100.

5https://github.com/dmlc/xgboost
6https://github.com/topepo/caret
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Figure 3: MSE comparisom of estimation methods, compared to the Kernel SHAP method, for
a Random Forest and an XGBoost regression model

It is also important to note that for tree-based methods, the Tree SHAP al-

gorithm is significantly faster than the model-agnostic Kernel SHAP method (as

discussed in the previous section). Therefore, Tree SHAP should be our pre-

ferred choice, especially for larger datasets and models with many features.
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5.2. Case Study: Fire Hazard Estimation

As part of a recent project, I contributed to the development of wildfire haz-

ard estimates in the United Kingdom, a region that has traditionally experienced

relatively low wildfire activity. However, in recent years, particularly due to

rising temperatures and prolonged dry periods, wildfires have become more fre-

quent and severe [2]. The project was based on the results on wildfire risk in

California[4].

To analyze this shift in the UK, we worked with openly available weather

and satellite data spanning the wildfire seasons (May to September) from 2019

to 2023. The core of our analysis involved modeling wildfire hazard as a classi-

fication problem, using XGBoost models to make predictions.

For a more comprehensive understanding of wildfire risk and its causes in

the UK, my contribution is twofold now: first, to present and evaluate the results

of our previous work by applying SHAP values. And second, to extend the

modeling framework by training a neural network and interpret these new results

with SHAP values to identify the most influential factors driving wildfire risk.

5.2.1. Dataset Design

Figure 4: The studied area

During the dataset building we gath-

ered openly available data as explanatory

variables such as weather and satelite data,

land cover or roads, settlements. Our tar-

get variable contained the burnt pixels on

a given timestamp.

The spatial resolution and temporal

extent of our data were determined based

on the availability of data and taking into

account our computational capacity. The

resolution of the variables was adjusted to

the target variable, burnt areas, using in-

terpolation or aggregation when needed.
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In Table 1, the parameters of the final dataset are presented. The data is fully

available through the GitHub repository associated with this thesis [1]. Tables

2 and 3 list the variables of the dataset along with their original attributes and

sources.

Table 1: Spatial and temporal attributes of the dataset

Extent Resolution

Temporal 2019-2022, May-

September; 2023

May-July

weekly

Spatial Latitude:

(50.6◦) − (54.6◦)

Longitude:

(−3.6◦) − (1.4◦)

300 × 300 m

Most of the variables originate from the Land Copernicus and Climate Coper-

nicus portals, which provide openly accessible data for Europe. Spatial informa-

tion, such as distances from major roads or residential areas, was derived using

Mapbox, while elevation data was obtained from NASADEM.

Table 2: Static variables of the dataset, with their original attributes

Variable Name Abbr. Unit of Measure-
ment

Spatial res.

Elevation1 EL m 30m
Distance from railways2 rail dist km 300m
Distance from main
roads2

main dist km 300m

Distance from minor
roads2

small dist km 300m

Distance from residen-
tial areas2

city dist km 300m

1 https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.

032021.4326.2
2 https://docs.mapbox.com/data/tilesets/reference/mapbox-streets-v8/
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Table 3: Dynamic variables of the dataset, with their original attributes

Variable Name Abbrevia-
tion

Unit of Mea-
surement

Spatial res-
olution

Temporal
resolution

Burnt Area (target vari-
able)1

BA bin m 300 m daily

Normalised difference
vegetation index2

NDVI – 300 m 10 daily

Fraction of absorbed
photosynthetically ac-
tive radiation3

FAPAR – 300 m 10 daily

Land surface
temperature4

LST ◦C 5 km 10 daily

Soil water index5 SWI % 1 km daily
Mean temperature (2m
height)6

MT ◦C 0.1◦ daily

Max. temperature (2m
height)6

MXT ◦C 0.1◦ daily

Precipitation amount6 PA mm 0.1◦ daily
Relative humidity (2m
height)6

RH % 0.1◦ daily

Wind speed (10m
height)6

WS m
s 0.1◦ daily

Land cover7 LC factor 300 m yearly
1 https://land.copernicus.eu/en/products/vegetation/burnt-area-v3-1-daily-

300m
2 https://land.copernicus.eu/en/products/vegetation/normalized-difference-

vegetation-index-300m-v1.0
3 https://land.copernicus.eu/en/products/vegetation/fraction-of-absorbed-

photosynthetically-active-radiation-v1-0-300m
4 https://land.copernicus.eu/en/products/temperature-and-reflectance/10-

daily-land-surface-temperature-daily-cycle-global-v1-0-5km
5 https://land.copernicus.eu/en/products/soil-moisture/daily-soil-water-

index-euro
6 https://cds.climate.copernicus.eu/datasets/insitu-gridded-observations-

europe?tab=overview
7 https://cds-beta.climate.copernicus.eu/datasets/satellite-land-

cover?tab=overview
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5.2.2. Modeling

The modeling was conducted in Python, utilizing widely used scientific li-

braries including NumPy, pandas, scikit-learn and XGBoost. The boosting

model presented here was developed during the previous year’s project, whereas

the neural network has been newly trained for this work. All scripts used for

model development and evaluation are available in the accompanying GitHub

repository[1] as well as the fine-tuned models.

Both models were trained and validated using data from 2019 to 2022, and

subsequently tested on data from July 2023.

XGBoost

As part of the data preprocessing phase, Synthetic Minority Over-sampling Tech-

nique (SMOTE) was employed to mitigate class imbalance by oversampling the

minority class of burnt pixels, which initially comprised 3, 246 samples. To rep-

resent the majority class, 8, 000 non-burnt pixels were randomly selected from

each of the four years in the training dataset.

Model training was conducted using the XGBoostClassifier from the XG-

Boost library. For the purpose of hyperparameter optimization we utilized the

Randomized SearchCV function from the scikit-learn library, which samples

combinations of hyperparameters at random from predefined ranges. In our case,

250 unique configurations were evaluated. While this approach does not guar-

antee convergence to a global optimum, it significantly reduces computational

overhead compared to exhaustive grid-based methods. The number of boosting

rounds (i.e., gradient-boosted decision trees) was fixed at 200 across all runs to

ensure comparability.

The final model was selected based on its performance measured by the area

under the receiver operating characteristic curve (ROC-AUC) evaluation met-

ric. When tested on an unseen dataset corresponding to July 2023, the model

achieved a ROC-AUC score of 0.8224, indicating strong discriminative ability

in distinguishing between burnt and non-burnt pixels. The parameters of this
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best model can be found in Table 4.

Table 4: Hyperparameters of the fine-tuned XGBoost model

Parameter Value Meaning

tree method ’approx’ specify which training boosted tree
method to use

reg lambda 3.5 L2 regularization term on weights

reg alpha 0.5 L1 regularization term on weights

max depth 5 maximum tree depth for base learn-
ers

learning rate 0.26 boosting algorithm learning rate per
iteration

grow policy ’depthwise’ tree growing policy

booster ’gbtree’ specify which booster to use

Neural Network

To reduce computational demands, the study area was restricted to the South-

East England region, bounded by 50.97◦–52.1◦N latitude and 0◦–1◦ E longitude.

This region includes the eastern area of London, where one of the most signifi-

cant grassland fires of the 2022 heatwave–the Wennington wildfire–occurred7.

During data preprocessing, the same undersampling and oversampling strate-

gies used for the boosting model were applied. However, a key enhancement

in this approach was the inclusion of both temporal and spatial neighborhood

context for each observation. Specifically, aggregated feature values were de-

rived from the same week at neighboring spatial coordinates (using the arith-

metic mean for numerical features and the mode for categorical ones), along

with feature values from the same coordinates during the previous week.

7https://en.wikipedia.org/wiki/Wennington_wildfire
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The model architecture consisted of a multilayer perceptron (MLP), imple-

mented via the MLPClassifier class from the scikit-learn library. Model

hyperparameters were selected heuristically and are summarized in Table 5.

The trained neural network was evaluated on the dataset from July 2023,

achieving a ROC-AUC score of 0.7547.

Table 5: Hyperparameters of the MLPClassifier model

Parameter Value Meaning

hidden layer sizes (100, 50) number of neurons in each hidden
layer

activation ’relu’ activation function for the hidden
layers

solver ’adam’ the optimization algorithm used for
training

alpha 0.001 L2 regularization term

max iter 200 maximum number of training itera-
tions (epochs)

early stopping True training stops early if validation
score doesn’t improve for several
epochs

5.2.3. Evaluating the Results with SHAP Values

Based on the experiments presented in Section 5.1, we can conclude that the

SHAP estimations provide sufficiently accurate explanations. Therefore, SHAP

values were used to interpret the decisions made by both the XGBoost and the

Neural Network models. The analysis was conducted using the shap8 package

in Python, which includes implementations of both the Kernel SHAP and Tree

SHAP algorithms, along with convenient visualization tools.

8https://github.com/shap/shap

39

https://github.com/shap/shap


Predictions were made with both models on the test set from July 2023, and

the results were interpreted using SHAP values computed on a randomly sam-

pled subset. Since the Tree SHAP algorithm, compatible with the XGBoost

model, is significantly faster, here 100, 000 instances were sampled for each

week, while in the case of the MLP model, Kernel SHAP was used on ∼ 1, 000

samples.

XGBoost

In Figure 5, we present beeswarm plots of the SHAP values for the XGBoost

model across four weeks of July 2023. In each plot, every point represents the

SHAP value of a specific feature value for a given instance. The color of the

point reflects the feature’s actual value, while the x-axis shows the SHAP value,

indicating the feature’s impact on the model output. Features are ranked by their

overall importance, measured by the mean absolute SHAP value.

Although there are differences between the weekly plots, several consistent

patterns emerge. Land cover variables typically show low importance, suggest-

ing they play a limited role in fire hazard prediction. Interestingly, all weekly

indices tend to push the prediction slightly toward zero, possibly indicating that

fire risk increases in August compared to July.

Satellite-derived indices appear among the most important predictors. High

values of FAPAR (fraction of absorbed photosynthetically active radiation), NDVI

(normalised difference vegetation index), and RH (relative humidity) generally

reduce predicted fire hazard, consistent with their association with vegetation

health and moisture. In contrast, PA (precipitation amount), MT (mean temper-

ature), and MXT (maximum temperature) show more ambiguous or inconsistent

effects, possibly due to interactions or regional variability.

Elevation shows a clear negative relationship with fire risk–higher elevations

tend to lower the hazard, which is intuitively reasonable given climate and vege-

tation changes with altitude.

Among distance-related features, distance from railways has the most notable
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effect: the closer an area is to a railway, the higher the predicted fire hazard.

This may reflect fire ignition risks associated with train traffic. Distance to main

roads shows the opposite trend, though with a smaller average effect. Notably,

proximity to minor roads and cities tends to increase hazard predictions, possibly

due to increased human activity and ignition sources in these areas, bringing

attention to suburban regions.

(a) Week 27 (b) Week 28

(c) Week 29 (d) Week 30

Figure 5: SHAP values for the XGBoost model for the weeks of July 2023
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Neural Network

Figure 6 displays a beeswarm plot of the SHAP values corresponding to the

neural network model’s predictions for July 2023. Due to the computational

intensity of Kernel SHAP compared to Tree SHAP, the analysis is based on ap-

proximately 1,000 randomly sampled instances.

Figure 6: SHAP values for the MLP model for July 2023

Consistent with previous observations, land cover variables exhibit minimal

importance and do not prominently appear in the plot, suggesting their limited

contribution in this context. In contrast, satellite-derived indices emerge as some

of the most influential predictors. Specifically, high values of FAPAR (Frac-

tion of Absorbed Photosynthetically Active Radiation) and NDVI (Normalized

Difference Vegetation Index) are generally associated with a reduced predicted

fire hazard. This negative association is particularly pronounced in neighboring
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spatial locations, highlighting the spatial consistency of vegetation health as a

protective factor against fire risk.

Elevated mean temperatures and low FAPAR values from the previous week

tend to increase the predicted fire probability. However, the model attributes a

surprisingly strong positive effect to high precipitation amounts from the pre-

vious week, which traditionally would be expected to decrease fire hazard by

moistening fuels. This counterintuitive finding might reflect complex interac-

tions in the data, such as delayed effects of rainfall on vegetation growth or pos-

sible noise in the precipitation measurements.

Elevation of neighboring areas continues to show a clear inverse relationship

with fire risk, consistent with known climatic gradients.

Among distance-based features, the distance to main roads exhibits the most

notable influence: greater distance from roads is associated with a lower pre-

dicted fire hazard. Similarly, distance to railways maintains a comparable but

weaker negative effect.

The SHAP analysis of both models reveals several consistent patterns in fire

hazard prediction for the UK. Both the XGBoost and neural network models

identify satellite-derived vegetation indices (FAPAR and NDVI) as key protec-

tive factors, with higher values consistently reducing predicted fire risk. Distance-

based features, particularly proximity to transportation infrastructure like rail-

ways and roads, emerge as important risk factors across both models, highlight-

ing the role of human activity in fire ignition. Temperature-related variables

show complex, sometimes counterintuitive effects that may reflect the intricate

temporal dynamics of fire risk. While the models differ in their treatment of

certain variables—such as the neural network’s unexpected positive association

between previous week’s precipitation and fire risk—the overall patterns align

well with established fire science principles. These findings demonstrate that

SHAP values provide valuable insights into model behavior while revealing the

multifaceted nature of wildfire risk factors in regions experiencing changing cli-

mate conditions.
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6. Conclusion

This thesis explored the game-theoretic foundation of cooperative games and

Shapley values, emphasizing their desirable properties across different payoff

functions. After that I provided an overview of explainable artificial intelli-

gence methods, highlighting various approaches to interpret model predictions

and demonstrating how Shapley values offer a principled framework for post-

modeling, local feature importance attribution.

In particular, I examined two main estimation techniques for Shapley val-

ues: the sampling-based approach and the SHAP framework, which approxi-

mates Shapley values via weighted linear regression. Within SHAP, I focused

on Kernel SHAP–a model-agnostic method–and Tree SHAP, an efficient, exact

algorithm tailored for tree-based models.

Through multiple experiments implemented in R, I compared these estima-

tion methods across simpler models such as linear regression and logistic regres-

sion, and tree-based models. The results indicate that Kernel SHAP and Tree

SHAP consistently produce accurate explanations, with Tree SHAP offering a

significant advantage in computational speed for tree ensembles.

As a practical application, I conducted a case study on fire hazard predic-

tion in the UK. I presented the dataset, which I contributed to compiling, and

analyzed our existing XGBoost model. Additionally, I trained a multi-layer per-

ceptron neural network incorporating novel spatial and temporal aggregate fea-

tures. Using Python, I applied Tree SHAP to interpret the XGBoost model and

Kernel SHAP for the neural network. The explanation results were comparable

and aligned well with domain knowledge, reinforcing the reliability and inter-

pretability of these methods in real-world scenarios.

The primary goal of this thesis was to demonstrate the mathematical founda-

tion of Shapley values and to examine their practical usefulness, complemented

by a real-world case study. The findings confirm that Shapley value-based meth-

ods provide both theoretically sound and practically effective tools for explaining

complex machine learning models.
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[16] E. Štrumbelj and I. Kononenko. A general method for visualizing and explaining black-

box regression models. In Adaptive and Natural Computing Algorithms: 10th International

45

https://github.com/BabolcsayBarbara/BB_thesis_materials
https://github.com/BabolcsayBarbara/BB_thesis_materials
https://www.math.elte.hu/thesisupload/thesisfiles/2023bsc_alkmat3y-cj49ch.pdf
https://www.math.elte.hu/thesisupload/thesisfiles/2023bsc_alkmat3y-cj49ch.pdf
https://tkiraly.web.elte.hu/students/jatekelmelet_jegyzet.pdf
https://tkiraly.web.elte.hu/students/jatekelmelet_jegyzet.pdf


Conference, ICANNGA 2011, Ljubljana, Slovenia, April 14-16, 2011, Proceedings, Part II

10, pages 21–30. Springer, 2011.
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