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2 Introduction

Measurable combinatorics mostly investigates graph theoretic problems in measure
preserving graphs on standard probability spaces. It is closely related to sparse graph
limit theory [24], the ergodic theory of infinite groups [16], and probability theory on
groups and graphs [27].

In this thesis we examine two topics in measurable combinatorics: local-global
convergence of sparse graph sequences, and the weak containment topology on the
space of actions of a fixed countable group Γ. They will turn out to be two sides of the
same coin.

The motivation for this work is to lay the foundations for future research on the
limit theory of submodular set functions, including matroid rank functions. This line
of research has recently been initiated by Lovász [25], and has developed rapidly [26,
5, 6, 14, 7, 8]. In [6] the authors introduce a convergence notion reminiscent of local-
global convergence, and prove compactness of the corresponding space. We plan to
use the ultraproduct method – presented and shown to be completely parallel to local-
global convergence in section 5.3 – to reprove and hopefully strengthen this result.

In Sections 3 we are going to list some notations and tools that we will use later.
Then in Section 4 we introduce the notions of local- and local-global convergence. We
also introduce the corresponding limit objects, namely unimodular random graphs
and graphings. The main theorem of Section 4 is Theorem 4.29, which claims that
every local-global sequence of graphs has a limit. Then we turn to a somewhat different
setting, and examine the space of probability measure preserving actions of a fixed
countable group Γ. The main goal is to define a suitable space for the actions of
Γ, in which isomorphic actions are not distinguished. The space of actions is going
to be a compact metric space with the so called partition metric. We prove this in
Theorem 5.2, and the result we get is paralell to Theorem 4.29. In Section 5.2 we
explain the connection between local- and local-global convergence of graphs and the
convergence of actions in the partition metric.

3 Preliminaries

In this section we list some well-known results that we will use later in the thesis. We
will not include most of the theorems’s proofs, but we will give references to them. We
assume that the reader is familiar with basic notions and definitions from topology,
measure theory, graph theory and group theory.
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Definition 3.1 (Independence ratio of a finite graph). Let G be a finite graph. Then the
independence ratio of G, denoted by i(G), is the size of the largest independent set in G

divided by |V (G)|.

Definition 3.2 (Zero-dimesional topological space). We say that a topological space is
zero dimensional, if it admits a base consisting of clopen subsets.

Definition 3.3 (Weak convergence of measures). Let X be a Polish space. We denote by
P (X) the set of Borel probability measures on X . We say that a sequence of probability
measures µ1, µ2 . . . ∈ P (X) weakly converges to µ ∈ P (X), if for all bounded continuous
functions f ∈ Cb(X) ∫

X
fdµn →

∫
X

fdµ as n → ∞.

The Portmanteau theorem (see, e.g. [20] Theorem 17.20) provides several equivalent
conditions for weak convergence. We present an equivalent form for zero-dimensional
Polish spaces.

Lemma 3.4. Let X be a zero-dimensional Polish space. Then µn → µ weakly if and only if
limn→∞ µn(B) = µ(B) for all clopen sets B (or for all B ∈ B for a base B consisting of clopen
sets).

Proof. The only if part follows immediately from [20, Theorem 17.20 v)]. For the if part
we are going to prove that for every open set U we have µ(U) ≤ lim infn→∞ µn(U),
which is equivalent to weak convergence by the Portmanteau theorem. We can write
U as a countable disjoint union of clopen sets U = ⊔∞

k=1 Uk. Then

µ(U) =
∞∑

k=1
µ(Uk) =

∞∑
k=1

lim inf
n→∞

µn(Uk) ≤ lim inf
n→∞

∞∑
k=1

µn(Uk) = lim inf
n→∞

µn(U),

where we used the assumption that limn→∞ µn(Uk) = µ(Uk) for all k ∈ N in the second
step, and Fatou’s lemma in the third step.

We are going to use the following theorem (for the proof see [20] Theorem 17.22).

Theorem 3.5. If X is a compact metrizable space, so is P (X) with the weak convergence.

In Section 5 we are going to examine measure preserving actions of groups on a
standard probability space.

Notation 3.6 (Standard Borel space). A measurable space (X, B) is said to be a standard
Borel space if there exists a metric on X that makes it a complete separable metric space
such that B is exactly the σ-algebra of the Borel sets of the metric topology.
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Notation 3.7. A standard probability measure space (X, B, µ), or standard probability
space for short, is a standard Borel space (X, B) equipped with a continuous probability
measure µ, that is, singletons have measure 0.

Remark 3.8. In fact there is a unique standard probability space up to isomorphism.
That is, for any standard probability spaces (X, B, µ) there is a measure preserving
Borel bijection with the space (2N, B(2N), λ), where λ denotes the Lebesgue measure,
and B(2N) denotes the Borel σ-algebra of 2N. See e.g. [20, Theorem 17.41].

Notation 3.9. There is a natural topology on the measurable subsets of a standard
probability space (X, B, µ), induced by the distance function dµ(A, B) := µ(A△B).
We call this metric space the measure algebra of (X, B, µ) and denote it with MALGµ.
We do not distinguish sets which differ only by a µ-null set. Let us denote the set of
measure preserving Borel bijections of the standard Borel probability space (X, B, µ)
by Aut(X, B, µ).

The space Aut(X, B, µ) is usually equipped with the weak or the uniform topology
(see Chapter 1 in [21]). We are going to use the the former, so we recall its definition.
As usual, we identify two automorphisms f, g ∈ Aut(X, B, µ) if they only differ by a
µ-null set.

Definition 3.10. We call the weak topology on Aut(X, B, µ) the smallest topology in
which the functions φA : Aut(X, B, µ) → MALGµ, φA(T ) = T (A) are continuous for
all A ∈ MALGµ.

We recall the definition of a group action. Throughout the thesis we are going to
work with left actions.

Definition 3.11 (Group action). Let G be group and X be an arbitrary set. Then (left)
group action a of G on X is a function a : G × X → X such that

1. a(1G, x) = x for all x ∈ X

2. a(gh, x) = a(g, a(h, x)) for all g, h ∈ G and x ∈ X .

We will denote an action a of G on X by G
a↷ X . Notice that for fixed g ∈ G the

function a(g, .) : X → X is a bijection of X , and we are going to denote it by ga.

Definition 3.12 (Measure preserving action of a group). Let (X, B, µ) be an arbitrary
measurable space. We say that an action a of a group G on X is measure preserving, if
for all g ∈ G the bijection ga : X → X is measure preserving, that is µ(ga(B)) = µ(B)
for all B ∈ B.
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We can encode group actions by their so called Schreier graphs.

Definition 3.13 (Schreier graph). Let Γ be a group generated by the finite set S, and
let a be a transitive action of Γ on the countable set X . We define the Schreier graph of
this action as follows. The vertex set is X , and for every s ∈ S and x ∈ X we draw an
s-labelled directed edge from x to sa(x). We say that the Schreier graph is rooted, if X

has a distinguished point x, which we call the root of the Schreier graph.

3.1 Ultraproducts of probability spaces

In Section 5.3 we are going to use an ultraproduct construction. So in this chapter
we recall the notions and results related to ultraproducts that we will use later. Our
primary source is [13]. First we recall the definition of an ultrafilter.

Definition 3.14. An ultrafilter U on a set X is a subset of P(X) with the following
properties:

1. ∅ /∈ U

2. if A, B ∈ U then A ∩ B ∈ U

3. if A ∈ U and B ⊇ A then B ∈ U

4. for every A ⊆ X either A ∈ U or X \ A ∈ U .

We call an ultrafilter on X non-principal if for every x ∈ X the set {x} /∈ U .

Remark 3.15. Throughout the thesis we will take ultrafilters on the set N. A benefit of
working with ultrafilters is that we can take the ultralimit of any bounded sequence,
which can be useful if the sequence is not convergent in the usual sense. For a sequence
(an)n∈N of real numbers (or even elements from a topological space) let a be the limit
of (an)n∈N along U (denoted a = limn∈U an) if for all neighbourhoods V of a the set
{n : an ∈ V } ∈ U . It is easy to see that bounded sequences of real numbers always
admit an ultralimit.

Now we define the ultraproduct of a sequence of sets {Xn}n∈N.

Definition 3.16. Let X1, X2 . . . be a sequence of sets and let X denote their product,
that is X = ∏

n∈N Xn. Let us fix an ultrafilter U on N. We introduce a relation ∼U on X :

(xn)n∈N ∼ (yn)n∈N ⇐⇒ {n : xn = yn} ∈ U .

It is easy to see from the ultrafilter axioms that this is an equivalence relation. We
define the ultraproduct XU of the sequence {Xn}n∈N as the quotient XU := X/ ∼U .
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As usual, we are going to use the notation [xn]U to denote the equivalence class
of a sequence (xn)n∈N. Similarly, for a sequence of subsets An ⊆ Xn we are going
to denote by [An]n∈U (or simply by [An]U if there is no danger of confusion) the set
{[xn]U : {n : xn ∈ An} ∈ U}. Notice that [An]U ∩ [Bn]U = [An ∩ Bn]U , and similarly for
taking unions and complements. Usually we are going to denote by AU , xU etc. the
subsets and respectively, elements of XU .

In Section 5.3 we are going to work with ultraproducts of measure spaces, which
we define below. Let (Xn, Bn, µn)n∈N be a family of probability spaces. Let XU denote
the ultraproduct of the sets Xn along U . The ultraproduct measure will be defined on
XU , and it will arise as a measure associated to a set function. Let θ0 be the following
set funtion on the algebra {[An]n∈U : An ⊆ Xn∀n ∈ N}:

θ0([An]U) := lim
n∈U

µn(An).

Now we define the following associated outer measure θ : P(XU) → [0, ∞] on every
subset AU ⊆ XU :

θ(AU) := inf{
∞∑

i=1
θ0([Ai

n]n∈U) : AU ⊆
⋃
i∈N

[Ai
n]n∈U , Ai

n ∈ Bn ∀n, i ∈ N}.

The usual calculations show that this is indeed an outer measure, that is, monotone,
σ-subadditive and θ(∅) = 0. According to the Carathéodory theorem, the family of
subsets

BU := {AU ⊂ XU : θ(BU) = θ(BU ∩ AU) + θ(BU \ AU)}

is a σ-algebra and θ restricted to this famility is a measure. Let us denote by µU the
restriction of θ to BU and let us call elements of BU the measurable sets. Notice that XU

is of course measurable, and its measure is 1.

Notation 3.17. For a family of probability spaces {(Xn, Bn, µn)}n∈N we call the probabi-
lity space (XU , BU , µU) constructed above the ultraproduct measure space associated to
the sequence {(Xn, Bn, µn)}n∈N.

In the following proposition we prove that the cylinder sets [An]U are measurable,
and conversely, every set is a cylinder set modulo a θ-null set.

Proposition 3.18. Let (Xn, Bn, µn) be a sequence of measurable spaces, and let (XU , BU , µU)
be the measure space constructed above. Then for every sequence An ∈ Bn the cylinder set
[An]U ∈ BU and µU([An]U) = limn∈U µn(An). Moreover for every AU ∈ BU there is a sequence
{Bn}n∈N (Bn ∈ Bn ∀n ∈ N), such that µU(AU△[Bn]U) = 0.

In the proof of Proposition 3.18 the following lemma will be crucial.
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Lemma 3.19. Let {Bi
n}i,n∈N be a family of subsets such that Bi

n ∈ Bn for all i, n ∈ N. Then
there exist a sequence of sets Cn ∈ Bn with the following properties:

lim
n∈U

µn(Cn) = lim
i→∞

lim
n∈U

µn

 i⋃
j=1

Bj
n

 and [Cn]U ⊇
∞⋃

i=1
[Bi

n]U .

The proof of the lemma is a standard diagonalization argument, and can be found
in [13] as Lemma 1.1.8. We have the following corollary of Lemma 3.19, which says
that we can use one set to cover instead of the countable cover in the definition of θ.

Corollary 3.20. For any set AU ⊆ XU we have

θ(AU) = inf{θ0([An]U) : AU ⊆ [An]U , An ∈ Bn ∀n ∈ N}.

Proof. Indeed, take any sequence of sets Ai
n ∈ Bn such that AU ⊆ ⋃

i∈N[Ai
n]n∈U . Take the

measurable sets An ∈ Bn according to Lemma 3.19. Then on one hand ⋃∞
i=1[Ai

n]n∈U ⊆
[An]U and therefore AU ⊆ [An]U . On the other hand,

θ0([An]U) = lim
n∈U

µn(An) = lim
i→∞

lim
n∈U

µn

 i⋃
j=1

Aj
n

 ≤ lim
i→∞

i∑
j=1

lim
n∈U

µn

(
Aj

n

)
=

∞∑
j=1

θ0([Aj
n]n∈U).

And since we are taking the infimum for such covers, we are done.

Proof of Proposition 3.18. First we prove that [An]U ∈ BU . Fix an arbitrary set BU ⊆ XU .
From the fact that θ is an outer measure it follows that

θ(BU) ≤ θ(BU ∩ [An]U) + θ(BU \ [An]U).

For the other direction fix an arbitrary ε > 0. Then using Corollary 3.20 there are
measurable sets Cn ∈ Bn, such that θ0([Cn]U) ≤ θ(BU) + ε and BU ⊆ [Cn]U . Thus

θ(BU ∩ [An]U) + θ(BU \ [An]U) ≤ θ([Cn]U ∩ [An]U) + θ([Cn]U \ [An]U) ≤

≤ θ0([Cn ∩ An]U) + θ0([Cn \ An]U) = θ0([Cn]U) ≤ θ(BU) + ε.

Since ε > 0 was arbitrary, this proves that [An]U ∈ BU . Now we calculate the µU([An]U).
Using Corollary 3.20 again, we can suppose that there is a sequence Cn ∈ Bn such that
θ0([Cn]U) ≤ θ([An]U) + ε and [An]U ⊆ [Cn]U . But the second expression implies that for
ultrafilter many n An ⊆ Cn and therefore θ0([An]U) ≤ θ0([Cn]U) ≤ θ([An]U) + ε. Since
ε > 0 was arbitrary, we can conclude that θ0([An]U) ≤ θ([An]U). The other direction
follows directly from the trivial cover [An]U ⊆ [An]U .
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For the second part of the proposition, take an arbitrary measurable set AU ∈ BU .
Using Corollary 3.20 and the first part of the proposition, we can take measurable sets
Bi

n ∈ Bn such that for every i ∈ N

AU ⊆ [Bi
n]n∈U and µU([Bi

n]n∈U) ≤ µU(AU) + 1
2i

.

Now using Lemma 3.19 for the sequence [Xn \Bi
n]n∈U , we get measurable sets Cn ∈ Bn

such that [Cn]U ⊇ ⋃∞
i=1[Xn \ Bi

n] and

µU([Cn]U) = lim
n∈U

µn(Cn) = lim
i→∞

lim
n∈U

µn(
i⋃

j=1
(Xn \ Bj

n)) = lim
i→∞

µU([
i⋃

j=1
(Xn \ Bj

n)]n∈U).

Now using the fact that [⋃i
j=1 Xn \ Bj

n]n∈U = XU \ ⋂i
j=1[Bj

n]n∈U ⊆ XU \ AU we get by
the continuity of measures that µU([Cn]U) = 1 − limi→∞ µU(⋂i

j=1[Bj
n]n∈U) = 1−µU(AU).

Therefore µU([Xn \ Cn]U) = µU(AU), on the other hand both AU and [Xn \ Cn]U are
contained in the measurable set ⋂∞

j=1[Bj
n]n∈U which has the same measure. From this

we can derive that µU(AU△[Xn \ Cn]U) = 0, which concludes the proof.

4 Local and local-global convergence of graphs

The limit theory of graphs is a very active field. Interestingly, there is no unified
theory of graph convergence. Instead, there are various notions which work well in
different situations. The limit theory of dense graphs, i.e. when the number of edges
is quadratic in the number of vertices, is well understood field. It turned out that
understanding the limit object, called graphons, helps to understand the behaviuor of
finite dense graphs. In this thesis we focus to the other end of the spectrum, i.e. very
sparse graphs, which have degrees bounded by a fixed constant d. Our primary source
for this section is [17] and [2].

Unless stated otherwise, in this section every graph and graphing is supposed to
have all degrees bounded by some constant d.

We begin by defining the notion of local and local-global convergence, and we
examine some fundamental statements related to them.

We say that a pair (G, o) is a rooted graph if o is a distinguished vertex (the root) of the
graph G. We say that (G, o) and (G, o′) are isomorphic if there is a graph isomorphism
φ : G → G′ for which φ(o) = o′. The radius of a rooted graph is the distance of
the farthest vertex in G to o (in the graph distance). Let us denote by U r the set of
(isomorphism classes of) rooted graphs with radius at most r. Since the degree is
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bounded by a fixed constant d, obviously |U r| < ∞. For a finite graph G we can
associate a natural probability measure on U r denoted by PG,r as follows.

For a finite (not necessary connected) graph G let us choose a vertex v ∈ V (G)
uniformly at random, and for a chosen vertex v consider the r-neighbourhood (in the
graph distance) of v in G (with the inherited graph structure) as rooted graph with
root v. This associated rooted graph will be denoted by NG,r(v). Then PG,r denotes the
distribution of NG,r(v) in U r, that is

PG,r((S, o)) = |{v ∈ G : NG,r(v) is isomorphic to (S, o)}|
|V (G)| ,

where (S, o) is an arbitrary element of U r. With this data we can define local convergence
of finite graphs.

Definition 4.1. A sequence of finite graphs (Gn)n∈N is locally convergent (or Benjamini-
Schram convergent) if for all fixed r, PGn,r converges to a limit distribution as n → ∞
for all r. That is, PGn,r((S, o)) converges for all (S, o) ∈ U r as n → ∞.

Example 4.2. Consider a sequence of d-regular graphs Gn for which the size of the
shortest cycle converges to infinity as n → ∞. This sequence is locally convergent.
A much stronger statement is also true, namely that if we choose a random d-regular
graph on n vertices for every n, then with probability 1 the sequence we get converges
locally. This can be derived from Theorem 2.5 in [28].

Remark 4.3. An important result proved in [9] is that the independece ratio of the
sequence of sequence random d-regular graphs is bounded away from 1

2 (with positive
probabilty). On the other hand if we consider random d-regular bipartite graphs, their
independence ratio is always 1

2 . However if we merge the two sequences, we still
get a locally convergent graph sequence. We conclude the independece ratio is not
countinuous with respect to the local convergence.

As we discussed in Remark 4.3, the local convergence is not strong enough to
capture the global structure of a sequence of graphs. The following refinement of it,
called local-global convergence, was introduced in [10]. The idea is that we would
like to measure the distribution of colored r-neighbourhoods instead of just the r-
neighbourhoods. Let us denote by U r,k the set of all triples (H, o, c), where (H, o) ∈ U r

and c is a k-coloring of H . Notice that for a finite graph G, a vertex v ∈ G and a
k-coloring c : G → [k], the restriction of c to NG,r(v) is in U r,k. Similarly as in the
uncolored version, a fixed finite graph G and a fixed k-coloring c : G → [k] induce a
distribution PG,r[c] on U r,k (we refer to these as local statistics of c). Now let us denote
by QG,r,k the set of all local statistics, that is:

QG,r,k := {PG,r[c] : c is a k-coloring of G} ⊆ [0, 1]Ur,k .

9



As there are only finitely many k-colorings for a fixed finite graph, QG,r,k is a finite (and
thus compact) subset of [0, 1]Ur,k . Now we are ready to define local-global convergence
of graphs.

Definition 4.4. A sequence of finite graphs (Gn)n∈N is locally-globally convergent if for
all fixed r, k ≥ 1 the sequence of sets (QGn,r,k)n∈N converge in the Hausdorff distance
in K([0, 1]Ur,k).

Here K([0, 1]Ur,k) denotes the compact sets of [0, 1]Ur,k , and we equip [0, 1]Ur,k with
the usual product topology. In particular we are going to use the ||.||1 metric on it.
Notice that since K([0, 1]Ur,k) is compact, we can pass to a subsequence (mn)n∈N of
(Gn)n∈N such that (QGmn ,r,k)n∈N is convergent for every r, k ∈ N, and therefore we can
conclude that every graph sequence admits a local-global convergent subsequence.

Remark 4.5. Notice that local convergence is implied by local-global convergence, since
it just means the convergence of the sequences (QGn,r,1)n∈N for all r.

The following remark shows that local-global convergence is a strictly stronger
notion than local convergence.

Remark 4.6. In Remark 4.3 we have seen that the independece ratio is not continuous
with respect to the local convergence. We show that for the local-global convergence
it is. Indeed, i(G) can be decoded from QG,1,2. It is the maximal value of sum of those
coordinates in elements of QG,1,2, in which the root has color 0 and all other vertices
have color 1. The convergence of QGn,1,2 in the Hausdorff distance implies that the
maximum of this sum converges. Therefore the graph sequence from Example 4.2
converges locally, but does not converge locally-globally.

Remark 4.7. There is a family of graphs (the so called hyperfinite graphs) for which
local and local-global convergence coincide. This was shown in Theorem 8 in [15].

Remark 4.8. It is natural to ask if we obtain a different notion of convergence if instead
of vertex coloring we examine the local statistics of more complicated locally definable
structures. However it turns out that vertex colorings already capture these, here for
the sake of simplicity we show that edge colorings are encoded by vertex colorings.
We claim that every edge k-coloring c of a graph (with degrees bounded by d) can
be encoded by a 25d2k-coloring of its vertices. Indeed, first modify c to a 5d2k edge
coloring c′ by setting c′(e) = (c(e), l), where l ∈ [5d2], and if two edges e1 and e2 have
distance at most two then c′(e1) ̸= c′(e2). Obviously c′ encodes c. Now let d(v) encode
the subset of the 5d2k many colors which are used by c′ on an edge that contains v.
This way d encodes c′, since the color of an edge e = (v, w) is just the unique common
element of d(v) and d(w).
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4.1 The limit object of the convergence

In Definition 4.1 and 4.4 we gave two notions of convergence of finite graphs, but we
did not define what they converge towards.

In the case of local convergence the natural limit objects are unimodular random
graphs, while in the local-global case graphings serve this purpose. We introduce these
notions in the following Section 4.1.1 and 4.1.2.

4.1.1 Unimodular random graphs

The notion of unimodular random graph is due to Benjamini and Schram [4]. Let G be
the space of (isomorphism classes of) rooted connected graphs, in which every degree
is at most d. Notice that the size of such graphs is possibly infinite, but due to the
connectivity assumption, it is at most countable. We put a topology on G as follows.
For a fixed finite rooted graph (S, o) with radius at most r we denote by Gr(S, o) those
elements (G, σ) in G for which NG,r(σ) is isomorphic to (S, o). Let us consider the the
topology on G where we declare the family

B := {Gr(S, o) : r ∈ N, (S, o) is a finite rooted graph with radius at most r}

to be basic open sets.

Lemma 4.9. With the topology described above G is a compact, zero-dimensional, second
countable and Hausdorff space, in which finite graphs form a countable discrete set.

Proof. First of all let us notice that B indeed satisfies the basis property (since every pair
of sets in B is either disjoint or contain eachother), thus it is the basis of the topology
generated by it. Therefore the second countable property follows immeditaley from
the fact that B is countable. Notice, that every element of B is clopen, thus G is zero-
dimensoinal. It is trivial to see that G is Hausdorff. It is also easy to see that for every
finite graph (G, σ) the one element set {(G, σ)} is open, since if the radius of (G, σ) is
r, then Gk(G, σ) = {(G, σ)} if k > r.

Now we prove compactness. It is well known that sequential compactness and
compactness are equivalent notions in second countable spaces. So let (Gn, σn) ∈ G

be an arbitrary sequence of graphs. Then by a standard diagonalization argument we
can find a convergent subsequence as follows. For every r the set U r is finite, so for
every r let (Gkr

n
, σkr

n
) be a subsequence of (Gkr−1

n
, σkr−1

n
) such that (NG,r(o), o) is constant

for every (G, o) ∈ {(Gkr
n
, σkr

n
) : n ∈ N}. (Here we set k0

n = n). Then the subsequence
(Gkr

r
, σkr

r
) of the original sequence is indeed convergent.
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Actually, G is homeomorphic to the Cantor set plus a dense (in G) set of discrete
points, and so it is a standard Borel space.

In Definition 4.10 we are going to need so called payoff functions. For this we need
to introduce the space of double rooted, connected, bounded degree graphs, that is,
graphs with an ordered pair of distinguished vertices. We are going to denote this
space by G2. The topology on G2 is defined analoguously to the topology on G,
i.e. declare those subsets open, for which the r-neighbourhood of the first root is
isomorphic to a fixed double rooted finite graph. Now we are ready to define the
notion of unimodular random graphs. There are many versions of this definition, we
follow Definition 2.1 in [2].

Definition 4.10. We call a Borel probability measure ν on G a unimodular random graph
(hereafter referred to as URG), if it satisfies the mass-transport principle, that is for all
Borel function f : G2 → [0, ∞] the following holds:

∫ ∑
x∈V (G)

f(G, o, x)dν(G, o) =
∫ ∑

x∈V (G)
f(G, x, o)dν(G, o). (4.1)

Remark 4.11. To be very precise one should check that ∑
x∈V (G) f(G, o, x) is a Borel

G → [0, ∞] function in (G, o). This is an elementary calculation that only uses the
definitions, and therefore we leave it to the reader.

The mass-transport principle (4.1) intuitively says that the expected income of the
payoff function f is the same as the expected out pay. This definition often turns out
to be useful, as an appropriately choosen payoff function often makes proofs more
convenient. To illustrate this, we present here a short proof sketch. For a countable
graph G we define the number of ends in G as the supremum of the number of infinite
connected components of the graph G|V (G)\F where F ⊆ V (G) is finite.

Example 4.12. A uniform random graph ν has 0, 1, 2 or infinitely many ends with
probability 1. We show this using the payoff function described as follows. Vertices
of graphs with e ≤ 2 or e = ∞ many ends do not pay anything. Let G be a graph
with e many ends where 3 ≤ e < ∞. Then every vertex in G pays 1 to every vertex
which is the element of a finite set F ⊆ V (G) for which G|V (G)\F has e many infinite
connected components and F has the smallest possible size and diameter. It is easy to
see that the expected out pay is finite, while the expected income is infinite if ν({(G, o) :
G has finitely many but more than 2 ends}) > 0, which would contradict the mass-
transport principle.

In the following we give an other definition to URGs, which is often easier to check.
We follow Section 3 in [17].
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Definition 4.13. Let G̃ denote the space of the graphs in G, with a distinguished edge
incident to the root. The topology on G̃ is defined analogously to the topology on G,
that is, for a finite rooted graph (with radius at most r) (G, o, e) with the edge e incident
to o we denote by G̃r(G, o, e) those elements of G̃, for which their r-neighbourhood is
isomorphic to (G, o, e). Then it is easy to see that the function α : G̃ → G̃, which moves
the root along the selected edge, is continuous. For every measure µ on G let us denote
with µ⋆ the probability measure for which the Radon-Nikodym derivative dµ⋆/dµ is
proportional to the degree of the root in the graph. That is,

µ⋆(Gr(S, o)) = degS(o)
c

µ(Gr(S, o)),

where c =
∫

degG(o)dµ(G, o). Let us denote by µ̃ the following measure on G: first we
pick a µ⋆-random rooted graph, then we distinguish a uniform random edge incident
to the root of the picked graph. By formula:

µ̃(G̃r(S, o, e)) = 1
degG(o)µ⋆(Gr(S, o)) = 1

c
µ(Gr(S, o)). (4.2)

We say that µ is involution-invariant, if µ̃ is α invariant, that is the pushforward of µ̃ by
the map α is µ̃.

We show that Definition 4.10 and 4.13 describe the same notion.

Proposition 4.14. Let µ be a measure on G. Then µ is a unimodular random graph if and
only if it is involution-invariant.

Sketch of the proof. Let µ be a unimodular random graph. To show, that it is involution-
invariant it is enough to prove that

µ̃(G̃r(S, o, e)) = µ̃(α(G̃r(S, o, e))) (4.3)

for every basic clopen set G̃r(S, o, e). Set the payoff function f to be 1 on (G, o, x) if
(G, o, (o, x)) ∈ G̃r(S, o, e), and 0 otherwise. It is easy to see that the mass-transport
principle implies 4.3 directly. For the converse it is enough to consider payoff functions
that are continuous and have finite range. Moreover we can assume by [2, Proposition
2.2] that f is supported on (G, o, x) where o and x are neighbours. Therefore it is
enough to consider payoff functions of form χB where B is a basic clopen set. For these
functions mass-transport principle is directly implied by involution-invariance.

For a sequence of locally convergent graphs (Gn)n∈N we can associate the following
natural URG ν. We prove that it is indeed unimodular in Proposition 4.16.
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ν(Gr(S, o)) := lim
n→∞

PGn,r(S, o). (4.4)

Example 4.15. We can turn a finite graph into a URG by picking the root uniformly
and randomly. That is for a finite graph G

νG = 1
|G|

∑
o∈V (G)

χ(Go,o),

where Go denotes the connected component of G which contains o. In this case (4.1) is
just a double counting. It says that for every non-negative function f on the pairs of
vertices of G the following holds:

1
|G|

∑
o∈V (G)

∑
x∈V (G)

f(G, o, x) = 1
|G|

∑
o∈V (G)

∑
x∈V (G)

f(G, x, o).

Proposition 4.16. The measure defined in (4.4) is a URG.

Proposition 4.16 will be an easy corollary of the following lemma, which says that
URGs are closed under weak convergence (see Definition 3.3).

Lemma 4.17. The set of uniform random graphs on G is closed under weak convergence.

Proof. We are going to use involution-invariance of URGs described in Definition 4.13.
So let µn be a weakly converging sequence of URGs, with limn→∞ µn = µ. Let us fix a
finite rooted graph (with radius at most r) (G, σ, e) with a distinguished edge e incident
to the root σ. It is enough to show that the basic clopen sets are α invariant, that is

µ̃(G̃r(G, σ, e)) = µ̃(α(G̃r(G, σ, e))). (4.5)

Notice that G̃r(G, σ, e) is a basic clopen set and α(G̃r(G, σ, e)) can be written as a finite
disjoint union of basic clopen sets ⊔k

m=1 Grm(Sm, om, em). Let cn =
∫

degG(o)dµn(G, o),
and c =

∫
degG(o)dµ(G, o), then by the definition of weak convergence and the fact

that degG(o) is bounded and continuous, we get that limn→∞ cn = c. Using this, the
formula (4.2) and Lemma 3.4 we get that

µ̃(G̃r(G, σ, e)) = 1
c
µ(Gr(G, σ)) = lim

n→∞

1
cn

µn(Gr(G, σ))

and

µ̃(α(G̃r(G, σ, e))) =
k∑

m=1

1
c
µ(Grm(Gm, om)) =

k∑
m=1

lim
n→∞

1
cn

µn(Grm(Gm, om)).
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But using the involution-invariance of the measures µn we know that 1
cn

µn(Gr(G, σ)) =∑k
m=1

1
cn

µn(Grm(Gm, om)), and thus (4.5) holds.

Proof of Proposition 4.16. Let µn denote the URG associated to the finite graph Gn as in
Example 4.15. Then µn(Gr(S, o)) = PGn,r(S, o), and therefore using Lemma 3.4 we can
conclude that (4.4) exactly says that ν is defined as the weak limit of the measures µn.
Here we used the fact that G is zero-dimensional. Therefore by Lemma 4.17 we get
that ν is a URG too.

Remark 4.18. The converse of Proposition 4.16 (whether every URG arises as the local
limit of finite graphs) is called the Aldous-Lyons conjecture (see Question 10.1 in [2]).
It is considered to be one of the most important problem of the area and it was a central
open question in the last two decades. The conjecture was answered negatively very
recently in [11] and [12].

Notation 4.19. To close this section, we introduce the space of decorated rooted graphs,
which we will use in the next Section 4.1.2. Let C be a compact Polish space. Then we
denote by G(C) the space of (isomorphism classes of) rooted connected graphs, in
which every degree is at most d and every vertex is labelled with an element of C.
That is, the points of G(C) are triples (G, o, c) where (G, o) ∈ G and c is a V (G) → C

function. The topology in G(C) is defined analogously as in the case of G. For a fixed
finite rooted graph (S, o) of radius at most r and a collection of open sets V of C indexed
by V (S), let us denote by Gr(S, o, V) those elements (G, σ, c) in G(C) for which there
is a rooted graph isomorphism φ : (NG,r(σ), σ) → (S, o) such that c(φ−1(v)) ∈ V(v) for
every v ∈ V (S). An analogous proof as of Lemma 4.9 shows that G(C) is a compact
Polish space.

4.1.2 Graphing

In this section we introduce the limit object of a locally-globally convergent sequence
of finite graphs, which are the so called graphings. This notion was already present
before it became natural to look at it as the limit of finite graphs, namely the original
definition comes from Borel equivalence relations. We are going to consider both
points of view.

Borel equivalence relations and Borel combinatorics have been extensively studied,
for an introduction see e.g. [19] or [22]. In particular, countable Borel equivalence
relations (that is, Borel equivalence relations in which all classes are countable) turn
out to be a highly active research area. One of the earliest papers in the field and at
the same time a brief introduction, is [18]. Borel graphs form a core concept in Borel
combinatorics. We begin with their definition.

15



Definition 4.20. Let X be a standard Borel space. We say that G is a Borel (undirected)
graph on X if the vertex set of G (hereinafter referred to as V (G)) is X and the edge set
(hereinafter referred to as E(G)) is a symmetric Borel subset of X ×X \{(x, x) : x ∈ X}.

We are going consider a special kind of Borel graphs. The idea behind the notion
of graphing is to mimic double counting in finite graphs. The following definition is
from [17].

Definition 4.21. Let X be a standard Borel space and µ be a Borel probablity measure.
We say that a Borel graph G on X is a graphing if all degrees are at most d and the
following property holds for every µ-measurable set A, B ⊆ X :

∫
A

e(x, B)dµ(x) =
∫

B
e(x, A)dµ(x), (4.6)

where e(x, S) denotes the number of edges from x ∈ X to S ⊆ X .

However, the original definition came from a somewhat different setting. First we
define Borel equivalence relations.

Definition 4.22. Let X be a standard Borel space. We say that E ⊆ X × X is a Borel
equivalence relation on X , if it is an equivalence relation and it is a Borel subset of X ×X .

We define measure preserving equivalence relations. For an equivalence relation
E , let [[E ]] denote its full groupoid, i.e. the set of partial isomorphisms θ : A → B such
that (x, θ(x)) ∈ E , for all x ∈ A.

Definition 4.23. Let X be a standard Borel space, and µ be a Borel measure on it.
Let E be a Borel equivalence relation with countable classes on X . We say that E is
a probability measure preserving Borel equivalence relation (hereinafter referred as p.m.p.
equivalence relation), if for every f ∈ [[E ]] which is a partial bijection between A and
B, we have µ(A) = µ(B).

The connection between p.m.p. equivalence relations and graphings is as follows.
For every Borel graph G (with at most countable degrees) we can associate a Borel
equivalence relation EG , whose classes are the connected components of G.

Proposition 4.24. A Borel graph G on a standard measure space (X, µ) is a graphing if and
only if the equivalence relation EG is measure preserving.

Proof. First let G be an arbitrary Borel graph with all degrees bounded by d. Then there
is a proper Borel coloring of its edges by 2d − 1 colors. Indeed, let us take the Borel
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graph on the edge set E(G), and connect two of them if they are incident in G. This
is again a Borel graph, with degrees bounded by 2d − 2, thus it admits a proper Borel
2d − 1 coloring (see e.g. Proposition 4.6 in [23]). Swapping the vertices connected by
edges of color i gives an element of the full groupoid fi ∈ [[E ]].

Now for the ’if’ part, let us fix such a 2d − 1 coloring of the edges. Let us denote
by Ai the set {x ∈ A : fi(x) ∈ B}, and let us define Bi analogously. Notice that
fi(Ai) = Bi. Then ∫

A deg(x, B) = ∑2d−1
i=1 µ(Ai) = ∑2d−1

i=1 µ(Bi) =
∫

A deg(x, B), where the
second equality follows from E being measure preserving.

For the ’only if’ part let f : A → B be an element of the full groupoid. For every
a ∈ A there is a shortest path to f(x) which goes along the edges of G. Let us partition
A = ⊔s∈[2d−1]<ωAs according to the sequence of colors of the edges on this shortest path
(if there are more, fix one in a Borel way, e.g. the lexicographically smallest sequence).
Clearly, it is enough to prove that µ(As) = µ(f(As)) for every s ∈ [2d − 1]<ω. Since
f(As) = fs|s| ◦ . . .◦fs1(As), it suffices to show that µ(fi(H)) = µ(H) for any measurable
set H . Lemma 18.19 in [24] says that every subgraph of a graphing is a graphing, and
the proof turns out to be surprisingly nontrivial. We can apply this to the subgraph
consisting of all edges with color i. Then the graphing property gives that µ(H) =∫

H e(x, fi(H))dµ(x) =
∫

fi(H) e(x, H)dµ(x) = µ(fi(H)).

A natural way to obtain graphings is through group actions.

Example 4.25. Let a be a p.m.p. action of a finitely generated group Γ on a standard
probability space (X, B, µ). Let us fix a symmetric generator set |S| < ∞. We can
associate the following graphing Ga to the action: (x, y) ∈ E(Ga) ⇐⇒ x = γa(y) for
some γ ∈ S. It is easy to show using Definition 4.21 that this is indeed a graphing.

Notice that it makes sense to define the probability distribution PG,r on U r for a
graphing G (with invariant measure µ) in the following way:

PG,r((S, o)) = µ({v ∈ G : NG,r(v) is isomorphic to (S, o)}).

We will also need the local statistics of a graphing, which is also analogous to the
finite case, but we require the coloring to be measurable. Let c : G → [k] be a µ-
measurable (or by changing the value on a null set we can always suppose that it is
Borel measurable) coloring. Then PG,r[c] denotes the natural distribution on U r,k. Thus
QG,r,k can be also defined the following way:

QG,r,k := {PG,r[c] : c is a measurable k-coloring of G}.

Again, as in the finite case, we look at QG,r,k as a subset of [0, 1]Ur,k . Notice that this set
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is usually not closed.

Definition 4.26. For two graphings (G1, X1, µ1) and (G2, X2, µ2) we say that they are
locally-globally equivalent if QG1,r,k = QG1,r,k for all r, k ∈ N. We say that they are
isomorphic, if there is a measure preserving bijection φ : X1 → X2 such that for every
x, y ∈ X1 (x, y) ∈ E(G1) ⇐⇒ (φ(x), φ(y)) ∈ E(G2).

Of course isomorphism implies local-global equivalence. We are ready to define
the limit of a locally-globally convergent graph sequence.

Definition 4.27. We say that a graphing G is the local-global limit of the locally-globally
convergent graph sequence (Gn)n∈N (or the graphing sequence (Gn)n∈N), if QGn,r,k (or
respectively QGn,r,k) converges to QG,r,k in the Hausdorff distance for every r, k ∈ N.

Remark 4.28. The limit object in case of the local convergence was a well defined
measure on the space of rooted graphs G. In case of the local-global convergence
the limit object is a graphing, which has the advantage of being the same type of
object as the converging ones, namely a graph. On the other hand in this case we lose
uniqueness, since it is not hard to construct graphings G1, G2 which are local-global
equivalent but not isomorphic.

The following theorem (which is the main result of [17]) states that we can always
find a limit graphing of a locally-globally converging sequence of graphs.

Theorem 4.29. For every (Gn)n∈N locally-globally convergent sequence of finite graphs with
degree bounded by d there exists a graphing G which is the local-global limit of the sequence.

The following "regularity" lemma plays a key role in the proof.

Lemma 4.30. Fix positive integers k, r and n. Then there exists a constant denoted by tr,k,n

such that for every finite graph G (with all degree at most d) there is a tr,k,n-coloring q of G

with the following properties:

• for every pair of vertices u ̸= v in G if q(u) = q(v) then the graph-distance of u and v is
at least r,

• every k-coloring g of G it is an almost factor of q, that is, there is a function α : [tr,k,n] →
[k] such that

||PG,r[g] − PG,r[α ◦ q]||1 <
1
n

.

Proof. The space [0, 1]Ur,k with the usual ||.||1 distance is compact, so we can fix a 1
2n

-net
N in it. Notice that the size of N depends only on r, k, n and d. Now fix a finite graph
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G. Then let us denote by NG those elements x ∈ N for which there is a k-coloring c

of G such that ||PG,r[c] − x||1 < 1
2n

. Let us fix k-colorings g1, g2 . . . g|NG| of G which are
inducing distributions 1

2n
close to the points of NG. Let f be the coloring which we

get by combining g1, g2 . . . g|GN |, that is, f(v) := (g1(v)), g2(v), . . . g|GN |(v)). Notice that f

uses at most k|NG| ≤ k|N |-many colors, which only depends on r, k, n and d.

To satisfy the first condition, take the following graph: we connect every pair of
distinct vertices in G which are at most r-close in the graph distance. In this graph
every degree is bounded by dr+1. It is well known that such a graph always admits
a dk+1 + 1 coloring f ′. Combining f and f ′ as before into a coloring q, where q(v) =
(f(v), f ′(v)) concludes the proof, since the arity of q (which is going to be tr,k,n) only
depends on r, k, n and d, and for every k-coloring g there is i such that ||PG,r[g] −
PG,r[gi]||1 < 1

n
and gi is a factor of q.

Proof of Theorem 4.29. We are ready to introduce the base space of the graphing which
will be the local-global limit of the sequence (Gi)i∈N. Let us denote by C be the compact
metric space ∏

r,k,n∈N[tr,k,n], where tr,k,n comes from Lemma 4.30. The vertex set of the
limit graphing will be X := G(C) (see Notation 4.19). We put a measure on it as
follows. Let us fix colorings qi

r,k,n : V (Gi) → [tr,k,n] for every graph Gi guarateed by
Lemma 4.30. Let us denote by ci the C-decoration of V (Gi) which we get by ci(v) :=
(qi

r,k,n(v)). Analogously to for the uncolored version in Example 4.15 we can associate
a probability measure µi ∈ P (X) to (Gi, ci) by choosing a random vertex of Gi to be the
root, and considering the restriction of ci to its connected component. Using Theorem
3.5 and the fact that X is a compact metrizable space we can take a weakly convergent
subsequence of (µi)i∈N. Since obviously the local-global limit of a subsequence of a
local-global convergent sequence is the limit of the original one, we may assume that
(µi)i∈N was already weakly convergent. Let the weak limit be µ ∈ P (X). Now we put
the following graph structure G on X . Let (G1, o1, c1) and (G2, o2, c2) be connected if
G1 = G2 = G, c1 = c2 moreover o1 and o2 are neighbours in G. Notice that loop edges
can arise this way, but we show that only on a set with µ measure 0. Indeed, µ a.e.
point (G, o, c) has the property that c is injective on G, since the following set is open:

BK := {(G, o, c) ∈ X : c|∏
r,k,n≤2K

[tr,k,n] is not injective on the K neighbourhood of o},

moreover µi(BK) = 0 by the first property of the coloring qi
2K,k,n, and ⋃

K∈N BK covers
every point (G, o, c) for which c is not injective on G. Thus, using weak convergence,
from [23, Theorem 17.20 iv)] it follows that µ(⋃

K∈N BK) = 0.

We will show that G together with the measure µ is a graphing. Since the σ-algebra
generated by the clopen sets of X is the σ-algebra of the Borel sets, it is enough to
prove that clopen sets A, B ⊆ X satisfy (4.6). For this notice that both of the the
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functions f ⋆(x) = χA(x) · e(x, B) and f⋆(x) = χB(x) · e(x, A) are continuous and
bounded, and therefore by the definition of the weak convergence ∫

X f ⋆(x)dµ(x) =
limn→∞

∫
X f ⋆(x)dµn(x) and ∫

f⋆(x)dµ(x) = limn→∞
∫

X f⋆(x)dµn(x). On the other hand∫
X f⋆(x)dµn(x) =

∫
X f ⋆(x)dµn(x), since both sides expresses the edges between the

finite sets {v : ((Gn)v, v, cn) ∈ A} and {v : ((Gn)v, v, cn) ∈ B} divided by |V (Gn)|. Thus
G together with the probability measure µ is indeed a graphing.

We introduce a C-decoration of the vertices of the graphing G. Let q(G, o, c) = c(o),
that is, the decoration of the root. Of course q is a measurable function, in fact it is
countinuous. Let us denote by qr,k,n the (r, k, n)-th coordinate function of q. The key
observation for completing the proof of the theorem is the following. Recall that we
interpret both PG,r[c] and PG,r[c] as an element of [0, 1]Ur,k .

Lemma 4.31. The probability distributions PGi,r[qi
r,k,n] converge to PG,r[qr,k,n].

Proof of Lemma 4.31. It is enough to show the statement coordinatewise, that is

PGi,r[qi
r,k,n](S, o, c) = PG,r[qr,k,n](S, o, c)

for all (S, o, c) ∈ U r,tr,k,n . By definition, PGi,r[qi
r,k,n](S, o, c) is the proprtion of vertices

v in Gi for which the r-neighbourhood of v is isomorphic with (S, o, c). Notice that
µi(Gr(S)(S, o, V)) encodes the same expression (see Notation 4.19), where V(v) denotes
the open set {x ∈ C : x(r, k, n) = c(v)} inside C. The set Gr(S)(S, o, V) is a basic clopen
set in X , so by Lemma 3.4 we know that limi→∞ µi(G(S, o, V)) = µ((Gr(S)(S, o, V)),
which by the definition of qr,k,n equals PG,r[qr,k,n] and this concludes the proof of the
lemma.

To finish the proof of the theorem, we have to show that QGi,r,k converges to the
compact set QG,r,k in the Hausdorff distance, i.e. (G, µ) is the local-global limit of
(Gi)i∈N. This is exactly the statement of the following two claims.

Claim 1. For every r, k ∈ N and ε > 0 there is i0 such that for every i ≥ i0

and a k-coloring c : V (Gi) → [k] there is a measurable k-coloring c′ of X such that
||PGi,r[c], PG,r[c′]||1 ≤ ε.
Proof. Let n ≥ 2

ε
. By Lemma 4.31 there is an index i0 such that

||PGi,r[qi
r,k,n] − PG,r[qr,k,n]||1 ≤ ε

2

for every i ≥ i0. Let us fix i ≥ i0 and a k-coloring c of Gi. By Lemma 4.30 there is a
map α : [tr,k,n] → [k] such that

||PGi,r[c] − PGi,r[α ◦ qi
r,k,n]||1 ≤ 1

n
≤ ε

2 .

20



It is easy to see that ||PGi,r[α ◦ qi
r,k,n] − PG,r[α ◦ qr,k,n]||1 ≤ ||PGi,r[qi

r,k,n] − PG,r[qr,k,n]||1,
and therefore combining the above two equations we get that c′ = α ◦ qr,k,n satisfies
the required condition of the claim.

Claim 2. For every r, k ∈ N, ε > 0 and for every measurable k-coloring c of X

there is i0 such that for every i ≥ i0 there is a k-coloring c′ : V (Gi) → [k] such that
||PGi,r[c′], PG,r[c]||1 ≤ ε.
Proof. Let c : X → [k] be a measurable k-coloring. Then for every δ > 0 there a
continuous k-coloring cδ : X → [k] such that µ(c−1(a)△c−1

δ (a)) < δ for every a ∈ [k].
By choosing δ sufficiently small (e.g. smaller than 1

|Ur,k| · ε
2dr+1 ) we can make sure that

||PG,r[cδ], PG,r[c]||1 ≤ ε

2 .

Fix some i ∈ N. Let us create the following k-coloring c′ of Gi: for every vertex v let
c′(v) := cδ((Gi)v, v, qi). We claim that if i is large enough, then PG,r[cδ] and PGi,r[c′] are
closer than ε

2 in the ||.||1 distance. Indeed, we can take a clopen partition of X such that
on every piece the PG,r[cδ] value is constant, and therefore the µ-measure of the pieces
determines PG,r[cδ]. On one hand the µi measures of the same pieces converge to the
µ measure of them, on the other hand PGi,r[c′] is also determined by the µi measure
of the pieces which concludes the proof of the claim and with that the proof of the
theorem.

5 Measure preserving group actions

In this section we present a language that closely parallels the notions introduced in
Section 4. We are going to examine measure preserving actions of a countable group
on a fixed standard Borel space. Theorem 5.2 turns out to be the perfect analog of
Theorem 4.29 in this setting. In Section 5.2 we discuss the connections between the
two languages in detail. We mainly follow [13], [1] and [21] throughout the section.

For the rest of the section let us fix a countable group Γ and a standard Borel
probability space (X0, B, λ). For a fixed measure space (X, B, µ) let Aut(X, B, µ) denote
the group of automorphisms, that is, the group of measure preserving Borel bijections of
(X, B, µ) equipped with composition as group operation. As usual, we endow the
space Aut(X, B, µ) with the weak topology (see Definition 3.10). The set of measure
preserving actions (see Definition 3.12) of the group Γ on X can be embedded into the
space Aut(X, B, µ)Γ, by sending an action a to the element (γa)γ∈Γ. We will denote this
subspace by Act(Γ, X), or when the fixed measure space is (X0, B, λ), then simply by
Act(Γ). The elements of Act(Γ, X) will usually be denoted by a, b, c etc.
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Working directly with the space Act(Γ) comes with a disadvantage. It is natural not
to distinguish actions a, b ∈ Act(Γ) that are isomorphic in the sense that the structure
of the two action is the same. That is, there is an automorphism f ∈ Aut(X0, B, λ)
such that γa ◦ f = f ◦ γb for all γ ∈ Γ. For isomorphic actions a and b we will use the
notation a ∼= b. We denote by C(a) the actions that are isomorphic to a. The problem
is that conjugacy classes can have infimal distance zero. Thus taking the quotient by
the conjugacy classes does not yield a nice topological space. So we introduce weak
containment and weak equivalence for two action a, b ∈ Act(Γ). Here we follow [1].

Definition 5.1. For two actions a, b ∈ Act(Γ) we say that a weakly contains b if b ∈ C(a)
(where the closure is in the weak topology, see Observation 5.3). We denote weak
containment by ≺ a. We say that a and b are weakly equivalent if a ≺ b and b ≺ a, and
denote this by a ∼ b.

We are going to put a pseudometric on the space Act(Γ) called partition metric,
which, following [1], will be denoted by pd. The main result of this section is the
following theorem (see Theorem 1 in [1] or Theorem 1.2.22 in [13]).

Theorem 5.2. The zero classes of pd are exactly the weak equivalence classes of the space
Act(Γ), moreover the space we get by identifying the zero classes of pd is compact with respect
to the inherited metric.

5.1 The space (Act(Γ), pd)

In this section we are going to define the metric pd on Act(Γ), and prove the first part
of Theorem 5.2, namely that pd zero-classes in Act(Γ) are exactly weak equivalence
classes.

We begin by analyzing the topology on Act(Γ). As we wrote in the introduction of
Section 5, a natural topology on it is the subspace topology, that Act(Γ) inherits from
the Polish space Aut(X0, B, λ)Γ.

Observation 5.3. Notice that Act(Γ) is a closed subspace in Aut(X0, B, λ)Γ, so it is
Polish as well. Let us call this topology the weak topology on Act(Γ).

It will be more convenient to work with another description of the weak topology.
First we will introduce some notations, most of them are based on Section 1.2 in [13].
For a measure space (X, B, µ) we will denote by Partfin(X) the set of finite partitions
of X , and respectively, Partk(X) denotes the set of partitions with k atoms. When we
say partition, it will always mean a partition with measurable atoms and we neglect
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mistakes on a measure zero set (e.g. atoms can overlap on a set of measure 0). For
α ∈ Partfin(X) we will denote by |α| the number of atoms in the partition. For a
given action a ∈ Act(Γ, X), a finite set F ⊂ Γ and a partition α ∈ Partfin(X), α =
(A1, . . . , A|α|) we introduce the following vector:

c(a, F, α) := (µ(Ai ∩ γaAj))i,j≤|α|,γ∈F .

As usual, for two actions a, b, partitions α = {A1, . . . , Ak}, β = {B1, . . . , Bk} ∈ Partk(X)
and a finite set F ⊂ Γ we are going to denote by ||c(a, F, α)− c(b, F, β)||1 the following
expression: ∑

i,j≤k

∑
γ∈F

|µ(Ai ∩ fAj) − µ(Bi ∩ γBj)|.

This allows us to give an alternative description of the weak topology on Act(Γ).
Lemma 5.4. The sets of the form

{b ∈ Act(Γ) : ||c(a, F, α) − c(b, F, α)||1 < ε}

for all α ∈ Partfin(X0), F ⊂ Γ finite and ε > 0 form an open base for the weak topology.

The proof is an easy calculation and only uses the definitions, so we leave it to the
reader.

We are ready to define the pseudometric pd. It will be the sum of a countable family
of pseudometrics described in the following definition.
Definition 5.5. For given actions a, b ∈ Act(Γ), a finite subset F ⊂ Γ and k ∈ N we set:

dF,α(a, b) := inf
β∈Part|α|(X0)

||c(a, F, α) − c(b, F, β)||1 for every α ∈ Partk(X0), and

dF,k(a, b) := sup
α∈Partk(X0)

dF,α(a, b).

The goal is to produce a pseudometric and dF,k is not symmetric, so let us define
dF,k(a, b) := dF,k(a, b) + dF,k(b, a). In the following lemma we prove that dF,k is a
pseudometric for every fixed F ⊂ Γ finite and k ∈ N.
Lemma 5.6. For every three actions a, b, c ∈ Act(Γ) and partition α ∈ Partk(X0) we have

dF,α(a, c) ≤ dF,α(a, b) + dF,k(b, c). (5.1)

Moreover the function dF,k is a pseudometric on Act(Γ).

Proof. The first part is a straightforward calculation which can be found as Proposition
1.2.8 in [13]. For the second statement notice that after taking the supremum in α

23



on both sides it follows from (5.1) that dF,k(a, c) ≤ dF,k(a, b) + dF,k(b, c). Therefore
dF,k(a, c) = dF,k(c, a)+dF,k(a, c) ≤ dF,k(c, b)+dF,k(b, a)+dF,k(a, b)+dF,k(b, c) = dF,k(a, b)+
dF,k(b, c).

Now we create the pseudometric pd as follows: we take a weighted sum of the
pseudometrics dF,k for all F ⊂ Γ finite and k ∈ N in a way that the sum is convergent.
Notice that as long as the sum always converges, these pseudometrics define the same
zero-classes and the same topology. In particular, for two actions a, b ∈ Act(Γ) their pd
distance is 0, if and only if dF,k(a, b) = 0 for all F ⊂ Γ finite and k ∈ N. In the following
we prove the first part of Theorem 5.2, which is the following (see Proposition 10.1 in
[21]).

Theorem 5.7. Let a, b ∈ Act(Γ) be given actions. Then

a ≺ b ⇐⇒ dF,k(a, b) = 0 for all F ⊂ Γ finite and k ∈ N.

In particular a ∼ b ⇐⇒ pd(a, b) = 0.

Proof. By definition of ∼ and pd it is enough to prove the first statement. First we
prove from left to right. By the definition of dF,k it is enough to show that for every
ε > 0, α = {A1, A2 . . . Ak} ∈ Partk(X0) and F ⊂ Γ finite dF,α(a, b) < ε holds. Using
that a ≺ b and Lemma 5.4 we can find an action c ∈ Act(Γ) for which c ∼= b moreover
||c(a, F, α) − c(c, F, α)||1 < ε. Let φ be the measure preserwing bijection of X that
witnesses the isomorphism of b and c (that is, φ ◦ γb = γc ◦ φ for all γ ∈ Γ), and let us
define Bi := φ(Ai). Then we get that (up to an error of measure 0) {B1, . . . , Bk} is a
partition and let us denote it by β. Then clearly

λ(Ai ∩ γc(Aj)) = λ(φ(Ai ∩ γc(Aj))) = λ(Bi ∩ γb(Bj)),

and therefore λ(Ai ∩ γa(Aj)) − λ(Ai ∩ γc(Aj)) = λ(Ai ∩ γa(Aj)) − λ(Bi ∩ γb(Bj)) for
all γ ∈ F and i, j ≤ k. Thus ||c(a, F, α) − c(b, F, β)||1 = ||c(a, F, α) − c(c, F, α)||1 < ε,
which proves that dF,α(a, b) < ε.

Now we prove the other direction. By Lemma 5.4, we have to show that for every
F ⊂ Γ finite and α ∈ Partfin(X0) the basic open neighbourhood

U := {c ∈ Act(Γ) : ||c(a, F, α) − c(c, F, α)||1 < ε}

of a conatains an action that is isomorphic to b. We may assume that the identity
element of Γ is in F . From the fact that dF,α(a, b) < ε

4|α|2|F | , there is a partition β such that
||c(a, F, α)−c(b, F, β)||1 < ε

4|α|2|F | . Since 1Γ ∈ F , we know that |λ(Ai)−λ(Bi)| < ε
4|α|2|F | .

Now we prove the following.
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Claim. There is a partition {C1, . . . C|α|} ∈ Part|α|(X0) such that λ(Ai△Ci) < ε
4|α|2|F |

for every i ≤ |α| with the property, that λ(Ci) = λ(Bi).

Proof. Indeed, we can suppose without loss of generality that there is 1 ≤ m ≤ |α|
such that λ(Bi) ≤ λ(Ai) for all i ≤ m and λ(Bi) ≥ λ(Ai) for all i > m. Then by the
isomorphism theorem of continuous standard Borel measures (see Remark 3.8) there
is a subset Ci of Ai such that λ(Ci) = λ(Bi) for all i ≤ m. Using the same theorem, let
us construct Cj recursively for every j > m such that it is a superset of Aj , Cj \ Aj ⊂⋃

i≤m Ai \ Ci and λ(Cj) = λ(Bj). Since ∑|α|
i=1 λ(Ai) = ∑|α|

i=1 λ(Bi), we can do this for
every j ≤ |α|. Notice that the symmetric difference Ai△Ci is either Ai \ Ci or Ci \ Ai,
and therefore by the assumptoin |λ(Ai) − λ(Ci)| = |λ(Ai) − λ(Bi)| < ε

4|α|2|F | we can
conclude the claim.

To finish the proof of the theorem, {C1, . . . C|α|} ∈ Part|α|(X) be a partition with the
properties ensured by the claim. Then using the isomorphism theorem again, there
is a measure preserving bijection φ on X such that φ(Bi) = Ci for every i ≤ |α|. We
claim that the action φ ◦ b ◦ φ−1 (which is of course isomorphic to b by definition) is in
U . Indeed, for fixed i, j ≤ |α| and γ ∈ F we have the following:

|λ(Ai ∩ γa(Aj)) − λ(Ai ∩ γc(Aj))| ≤ |λ(Ai ∩ γa(Aj)) − λ(Ci ∩ γc(Cj))| + 2 · ε

4|α|2|F |
,

moreover
λ(Ci ∩ γc(Cj)) = λ(φ−1(Ci ∩ γc(Cj))) = λ(Bi ∩ γb(Bj)).

Thus

|λ(Ai∩γa(Aj))−λ(Ai∩γc(Aj))| ≤ |λ(Ai∩γa(Aj))−λ(Bi∩γb(Bj))|+
ε

2|α|2|F |
≤ 3ε

4|α|2|F |
.

Taking the sum for all i, j ≤ |α| and γ ∈ F we get that c ∈ U , and this concludes the
proof of the theorem.

Now we introduce the following space of actions, in which we do not distinguish
actions that are weakly equivalent.

Notation 5.8. Let us denote by Act(Γ) / ∼ the factor of Act(Γ) by the zero-classes of pd.
By a little abuse of notation we are going to denote by pd the metric on Act(Γ) / ∼ that
is inherited from the pseudometric pd on Act(Γ). We say that a sequence of actions
{an}n∈N converges in the partition distance to a, if limn→∞ pd(an, a) = 0.

Remark 5.9. There are two very natural topologies on the space Act(Γ) / ∼. The first
is the factor topology inherited from Act(Γ), the other one is the metric topology
we get from pd (that becomes a metric instead of a pseudometric when factoring
with the pd-zero classes). However, these do not coincide. In fact the factor topology
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is not T1. Indeed, in Theorem 10.7 in [21] the authors claim that there is a dense
conjugacy class of Act(Γ) with respect to the weak topology. Let c ∈ Act(Γ) / ∼ be the
image of this conjugacy class. Then (Act(Γ) / ∼) \ {c} is not open, since its preimage
does not intersect a dense set, namely the dense conjugacy class belonging to c. On
the other hand a metric topology is always T1, which proves that the two topologies
differ. However, an easy calculation shows that the metric topology contains the factor
topology.

Remark 5.10. Notice that so far weak equivalence was interpreted for actions on the
same standard Borel space X0. Theorem 5.7 allows us to extend this definition. Notice
that for p.m.p. actions Γ a↷ (Y, M, ν) and Γ b↷ (Z, N , ϑ) the definition of dF,α(a, b)
makes sense with the following minor change:

dF,α(a, b) := inf
β∈Part|α|(Z)

||c(a, F, α) − c(b, F, β)||1 for α ∈ Part|α|(Y ).

Then dF,k(a, b) and dF,k(a, b) can be defined the same way as before. So we say that a is
weakly contained in b, and denote it by a ≺ b if dF,k(a, b) = 0 for all F and k. Respectively,
we say that a and b are weakly equivalent, and denote it by a ∼ b if a ≺ b and b ≺ a, that
is dF,k(a, b) = 0 for all F and k. By Theorem 5.7 this extends our previously defined
weak containment and equivalence.

5.2 Connections with local and local global convergence

In this section we explain the connection between the language of graphs and actions
of a countable group Γ. Throughout this section we are going to suppose that Γ is
finitely generated by a finite generating set S. In this case an action of Γ is always an
action of the free group freely generated by S (which we will denote by FS) and thus
we are going to focus on actions of FS . Our main source for this section is [1].

5.2.1 The local structure

First we take a look at the local structure of the actions of FS . Let SC(S) denote the set
of (isomorphism classes of) rooted Schreier graphs (see Definition 3.13) of the group
FS . Notice that for a given 2|S|-regular rooted graph (G, o) we can associate a Schreier
graph as follows. The well-known 2-factor theorem says that we can take |S| many
disjoint 2-factors (that is, 2-regular subgraphs) covering E(G). Then if we direct each
2-factor in a way that each vertex x has one edge leaving x and one arriving to x,
and label each 2-factor by an element of S, we get an action of FS on V (G), and the
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correspondig Schreier graph will be exactly the described 2|S|-regular directed edge-
labelled graph. We can put a similar topology on SC(S) as we did toG in the beginning
on Section 4.1.1, that is, we endow it with the rooted neighbourhood topology. An
analogous version of the proof of Lemma 4.9 shows that this space is compact and
totally disconnected. The free group FS acts on SC(S) by moving the root along the
corresponding edges. The notion corresponding to a unimodular random graph (see
Definition 4.10) is an FS-invariant Borel probability measure µ on SC(S), that is, s⋆µ =
µ for every s ∈ S. We will denote the set of these measures by U(S). Notice that
an advantage of this setting is that defining FS-invariance was more convenient than
defining involution-invariance in Definition 4.13. Another way to look at U(S) is via
the so called invariant random subgroups.

Definition 5.11 (Invariant random subgroup). Let Sub(FS) ⊆ 2FS denote the space of
subgroups. It is easy to see that this is a closed subset of 2FS , and therefore a standard
Borel space. The group FS acts naturally on Sub(FS) by conjugation. We say that a
Borel probability measure µ on Sub(FS) is an invariant random subgroup (or IRS for
short), if it is invariant under the action of FS . That is, c(s)⋆µ = µ for all s ∈ S, where
c(s) denotes conjugation by s.

It turns out that there is a translation between IRSs and U(S). First, subgroups
of the free group FS and rooted Schreier graphs are in a one-to-one correspondence.
Indeed, for a rooted Schreier graph (G, o) we can take the stabilzer subgroup of o, that
is StabFS

(o) = {g ∈ FS : g(o) = o}. To construct the inverse of this correspondence,
for every subgroup H ≤ FS we can take the Schreier graph associated to the action of
FS on the left cosets of H , acting by left multiplication, rooted at H . By the fact that
StabFS

(s(o)) = s StabFS
(o)s−1 we get that translating the root along the edge s becomes

conjugation in the this correspondence. Therefore this map is FS-equivariant and thus
induces a bijection between elements of U(S) and IRSs.

5.2.2 The local-global structure

Now we analyze the local-global structure of an action. The aim of this section is to
argue that local-global convergence of graphs (or graphings) and weak convergence
of actions are genuienly the same phenomenon. First of all, notice that by Example
4.25 we can associate a graphing Ga to any p.m.p action a of FS . Notice that a graphing
that is associated to an action of FS is automatically equipped with an edge labeling.
It makes sense to define the notion of local-global convergence for edge-decorated
graphs the same way as we did for undecorated graphs. So what one can expect is
a correspondence between the pd convergence of actions and the edge labelled local-
global convergence of the associated graphings. The following turnes out to be true.
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Proposition 5.12. Let {an}n∈N be a sequence of actions. Then the corresponding sequence of
graphings Gan locally-globally converges (as edge labelled graphings) if and only if the sequence
{an}n∈N pd-converges. Moreover if an → a in the pd metric, then the local-global limit of Gan

is Ga.

Proof. The ’only if’ part is easy to see. For the other part of the statement let us fix
ε > 0, r, k0 ∈ N. It is enough to show the following. There is η > 0 such that for any
two actions a, b ∈ Act(Γ) with pd(a, b) ≤ η we have that QGa,r,k0 ⊆ B(QGb,r,k0 , ε) for the
corresponding graphings Ga and Gb. Here B(K, ε) denotes the ε neighbourhood of the
compact set K, that is {x ∈ [0, 1]Uk0,r : ∃y ∈ K |x − y| < ε}.

For notational simplicity, let us assume that a acts on (X, µ) and b on (Y, λ), thus
V (Ga) = X , while V (Gb) = Y . Let us fix a coloring c : X → [k0], then we would like to
produce a coloring d : Y → [k0] such that ||PGa,r,k0 [c] − PGb,r,k0 [d]||1 < ε. First, we detail
the construction of d and later prove examine its properties. We start by modifying
c to a k-coloring c0 such that c0 encodes c, moreover whenever the graph distance
of x, y ∈ X is at most 2r, we have that c0(x) ̸= c0(y). Now we create the coloring
c1, such that c1(x) encodes the isomorphism type of the colored and edge labelled r-
neighbourhood of x. Now let us denote the partition of X according to the c1 colors of
the points by α = {AU : U ∈ U r,k

l }, where U r,k
l denotes the isomorphism classes of the

k-colored and edge labelled rooted graphs with radius at most r. Let F denote those
words in FS which have lenght at most 2r. By pd(a, b) ≤ η we know that there is a
partition β = {BU : U ∈ U r,k

l } such that

||c(a, F, α) − c(b, F, β)||1 < δ, (5.2)

where δ will be choosen later. Now we define d0(x) to be the c0 color of the root of U ,
where x ∈ BU . We show that by choosing δ sufficiently small we get that ||PGa,r,k[c0] −
PGb,r,k[d0]||1 < ε.

First we prove that there is a set Y ′ ⊆ Y such that d0(y) ̸= d0(γb(y)) for every
y ∈ Y ′ and γ ∈ F , moreover λ(Y ′) > 1 − δ. Indeed, let y ∈ Y be a point for which
d0(y) = d0(γb(y)) for some γ ∈ F . By definition, there is U, V ∈ U r,k

l for which the root
of U and the root of V have the same color, moreover y ∈ BU and γb(y) ∈ BV . Then
y ∈ BU ∩ (γ−1)b(BV ). By the property of the coloring c0 that close points have different
colors we know that AU ∩ (γ−1)a(AV ) = ∅, and therefore µ(AU ∩ (γ−1)a(AV )) = 0. By
(5.2) we get that the set ⋃

U,V ∈Ur,k
l

,γ∈F (BU ∩ (γ−1)b(BV )) has measure smaller than δ.

Now we claim that the modulo a set of small measure, the β-label of the points in
Y ′ is the same as the actual d0-colored r-neighbourhood of the points. In particular,
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we show that

λ ({y ∈ Y ′ : ∃U y ∈ BU and NGb,r,d0(y) ∼= U}) > 1 − 5δ. (5.3)

Indeed, fix y ∈ Y ′ from the complement. We are going to denote by rU the root of
U , and use the notation γ(rU) for the corresponding vertices in U . Then either there
is γ ∈ F such that γb(y) = y but γ(rU) ̸= rU , or there is γ ∈ F such that γb(y) ̸= y

but γ(rU) = rU , or there is U such that y ∈ BU , but γb(y) does not have the same d0-
color as γ(rU). In the first case we know that the color of rU and γ(rU) are different.
In particular AU ∩ (γ−1)aAU = ∅, and therefore µ(AU ∩ (γ−1)a(AU)) = 0. On the other
hand BU ∩ (γ−1)b(BU). By taking the union for all possible U we get that these points
have measure smaller than δ.

In the second case by the fact that y ∈ Y ′ we know that d0(γb(y)) ̸= d0(y). Therefore
if γb(y) ∈ BV , then U ≇ V . Therefore y ∈ BU \ (γ−1)b(BU). On the other hand
AU ∩ (γ−1)a(AU) = AU , and thus µ(AU ∩ (γ−1)a(AU)) = µ(AU). This implies that∑

U :γ(rU )=rU
|µ(BU∩(γ−1)b(BU))−µ(BU)| < 2δ, and thus µ(⋃

U :γ(rU )=rU
BU\(γ−1)b(BU)) <

2δ.

In the third case there is V ∈ U r,k
l such that γb(y) ∈ BV , and the color of the root in

V does not have the same color as γ(rU) in U . Then y ∈ BU ∩ (γ−1)aBV . By definition
AU ∩ (γ−1)aAV = ∅, thus µ(AU ∩ (γ−1)aAV ) = 0. We get again that the set of these
points has measure smaller than δ, which proves (5.3).

Now to finish the proof let us denote by Y ′′ = {y ∈ Y ′ : ∃U y ∈ BU and NGb,r,d0(y) ∼=
U}. Then for every U we have that PGa,r,k[c0](U) = µ(AU). On the other hand from (5.3)
we have |PGb,r,k[d0](U) − µ(BU)| < 5δ. Taking this for all U ∈ U r,k we can conclude that
||PGa,r,k[c0] − PGb,r,k[d0]||1 < ε if δ is sufficiently small. If c = f ◦ c0, then for d = f ◦ d0

we have that ||PGa,r,k0 [c] − PGb,r,k0 [d]||1 < ε.

5.3 The limit of actions

Finally, in this section we are going to prove the remaining part of Theorem 5.2, namely
that after identifying the pd zero-classes in Act(Γ), we get a compact space. The main
idea is that for a fixed sequence of actions (an)n∈N we build an ultraproduct measure
space (which will not be a standard probability space) and a measure preserving action
on it. After that we find an action a on X0 that is weakly equivalent to the ultraproduct
action, and this a will be the limit of a subsequence of (an)n∈N. First let us build the
ultralimit space. In Section 3.1 we have constructed the ultraproduct measure space
associated to a countable sequence of probability spaces.

29



Notation 5.13. We fix the following notation for the rest of Section 5.3. Let (XU , BU , µU)
denote the ultraproduct measure space associated to the sequence (Xn, Bn, µn), where
each element denotes the standard probability space (X0, B, λ) that we fixed in the
beginning of Section 5. Moreover let {an}n∈N be a sequence of actions in Act(Γ), where
we look at an as a p.m.p. action of (Xn, Bn, µn). The following is the natural action aU

of Γ on (XU , BU , µU)associated to the sequence {an}n∈N:

γaU ([xn]U) := [γan(xn)]U .

Notice that of course for different sequences we get different actions aU . For notational
simplicity, we omit specifying the sequence in the notation to which aU belongs. When
we talk about aU without specifying the original sequence, we always refer to an action
aU associated to an arbitrary sequence of actions from Act(Γ).

The action aU is p.m.p. Indeed, by Proposition 3.18 it is enough to check that for
every γ ∈ Γ and An ∈ Bn we have that µU(γaU ([An]U)) = µU([An]U), which is clear by
the following calculation:

µU(γaU ([An]U)) = µU([γan(An)]U) = lim
n∈U

µn(γan(An)) = lim
n∈U

µn(An) = µU([An]U).

As mentioned in the introduction, we will now prove that there is a p.m.p. action
of the group Γ on a standard Borel space which is weakly equivalent to the action aU on
(XU , BU , µU). (Originally, we defined weak equivalence for actions on the same space,
for clarification see Remark 5.10.) First let us notice in the following lemma that the
ultraproduct space is indeed not standard, so it makes sense to prove Theorem 5.15.

Lemma 5.14. The space (XU , BU , µU) is not a standard probability space.

Proof. It is well known that in the probability space (X0, B, λ) there are measurable sets
A1, . . . , An . . . such that λ(Ai△Aj) = 1

2 (in fact, this follows from Remark 3.8 and the
observation that in 2N the sequence An := {x ∈ 2N : x(n) = 1} possesses this property).
Then let us consider the following family of measurable subsets of the ultraproduct:

A := {[Af(n)]U : where f is a N → N function for which f(k+1) ∈ {2k, 2k+1} ∀k ∈ N}.

Notice that there are continuum many different such functions, and if for g, h : N → N

with the above property there is n such that g(n) ̸= h(n), then for every m ≥ n we
have g(m) ̸= h(m). Thus for two measurable sets [Ag(n)]U , [Ah(n)]U ∈ A with g ̸= h we
have that

µU([Ag(n)]U△[Ah(n)]U) = µU([Ag(n)△Ah(n)]U) = lim
n∈U

µn(Ag(n)△Ah(n)) = 1
2 .
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But it is also well known that for a standard probability measure space its measure
algebra MALGµ is separable when equipped with the usual distance mentioned in
Notation 3.9 (see e.g. Exercise 17.43 in [20]), therefore it cannot contain continuum
many set which have pairwise distance 1

2 . Consequently, the ultraproduct measure
space is not standard.

Theorem 5.15. There is an action a of Γ on the standard Borel space (X0, B, λ) which is weakly
equivalent to the action aU of Γ on (XU , BU , µU).

Before we prove the theorem, let us introduce the following definition of a factor
of an action.

Definition 5.16. Let a be a p.m.p. action of Γ on the space (Y, M, ν). We say that an
action b on (Z, N , ϑ) is a factor of a, if there is a measurable, measure preserving map
π : Y → Z which is Γ-equivariant, that is, π ◦ γa = γb ◦ π for every γ ∈ Γ.

Observation 5.17. Notice that if b is a factor of a, then b ≺ a. By definition, we have
to show that dF,k(b, a) = 0 for every F ⊂ Γ finite and k ∈ N. If a acts on (Y, M, ν), b

on (Z, N , ϑ) and the factor function is π, then for any partition β of Z we can take the
pullback of β by π, that is α := {π−1(Bi) : Bi ∈ β}. It is easy to see that for all F ⊂ Γ
finite we have that ||c(a, F, α)−c(b, F, β)||1 = 0, and thus dF,k(b, a) = 0 for every F ⊂ Γ
finite and k ∈ N.

Proof of Theorem 5.15. We are going to construct a standard factor of aU that is going
to contain aU weakly. Notice that it suffices to show this, since by Observation 5.17 aU

automatically contains the factor weakly. We begin with the construction.

For every fixed k ∈ N, F ⊂ Γ finite, and a partition α ∈ Partk(XU) we can think of
the vector c(aU , F, α) as an element of the space [0, 1]k2|F |. Let us consider the following
subset of [0, 1]k2|F |:

SF,k := {c(aU , F, α) : α ∈ Partk(XU)}.

Then for every k and F let us fix a countable collection of partitions of XU , denoted by
AF,k such that {c(aU , F, α) : α ∈ AF,k} is a dense subset of SF,k. Moreover let

A := {γ(α) : γ ∈ Γ, α ∈ AF,k for some F ⊂ Γ finite, k ∈ N},

where γ(α) denotes the pushforward of α by γ, that is, if α = {A1, . . . , Ak}, then
γ(α) := {γ(A1), . . . , γ(Ak)}. Clearly, A is a countable family of finite partitions, thus
the following set is countable:

I = {A ∈ BU : A ∈ α for some α ∈ A}.
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We are going to define the factor action on the set 2I , which is a standard Borel space
with the usual topology. So let π : XU → 2I be defined as follows:

π(x)(A) =

1 if x ∈ A

0 if x /∈ A.

Moreover let us define µ on 2I to be the pushforward measure π⋆µU (restricted to the
Borel subsets of 2I). Clearly µ is a continuous Borel probability measure on 2I . Finally
we define the action a of Γ on 2I as γa(y)(A) = y((γ−1)aU (A)). One can easily check
that this is indeed a µ-measure preserving action. Now we show that for this action a

the function π is indeed a factor map. Since the measure preserving property follows
by the definition of the pushforward, we just have to justify the Γ-equivariance. This
is shown by the following calculation:

γa(π(x))(A) = 1 ⇐⇒ x ∈ (γ−1)aU (A) ⇐⇒ γaU (x) ∈ A ⇐⇒ π(γaU (x))(A) = 1,

thus γa ◦ π = π ◦ γaU . Now we prove that aU ≺ a. By definition, we have to show
that dF,α(aU , a) = 0 for every F ⊂ Γ finite and every α ∈ Partk(XU). Let us fix ε > 0
arbitrarily. By the definition of AF,k, there is a partition {B1, . . . Bk} = β ∈ AF,k such
that ||c(aU , F, α) − c(aU , F, β)||1 < ε. Consider the sets Ci = {y ∈ 2I : y(Bi) = 1} for all
1 ≤ i ≤ k. First of all noice that η = {C1, . . . , Ck} is a partition of 2I , since µ(Ci ∩ Cj) =
µU(π−1(Ci) ∩ π−1(Cj)) = µU(Bi ∩ Bj) = 0. Now we claim that c(aU , F, β) = c(a, F, η).
Indeed, for any γ ∈ F we have γa(Cj) = {y ∈ 2I : y(γaU (Bj)) = 1}, and therefore

π−1(γa(Cj)) = γaU (Bj).

Using this we get that

µ(Ci ∩ γa(Cj)) = µU(π−1(Ci) ∩ π−1(γa(Cj))) = µU(Bi ∩ γaU (Bj)),

and therefore ||c(aU , F, α) − c(a, F, η)||1 = ||c(aU , F, α) − c(aU , F, β)||1 < ε, from which
dF,α(a, aU) = 0 follows. To conclude Theorem 5.15 we refer to the isomorphism theorem
of continuous standard Borel measures (Remark 3.8), and thus we can replace the
action a on (2I , B(2I), µ) by an isomorphic action a′ on (X0, B, λ).

Remark 5.18. The following is another equivalent definition of factors. Let a be a
p.m.p action of Γ on (Y, M, ν). An action b of Γ on (Z, N , ϑ) is a factor of a if if there
is a Γ-equivariant embedding MALGϑ ↪→ MALGν . It is easy to see that the former
definition of factor implies this notion. Notice that in the proof of Theorem 5.15 we
have proved the converse.

Finally we show that for a fixed sequence of actions an ∈ Act(Γ) the sequence pd-
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converges along U to the associated action on the ultraproduct in the following sense.
From Proposition 5.19 we will get Theorem 5.2 as a corollary.

Proposition 5.19. Let {an}n∈N be a sequence of actions in Act(Γ), U be the fixed ultrafilter
and aU be the action associated to the sequence {an}n∈N. Then for every k ∈ N and F ⊂ Γ
finite both limn∈U dk,F (aU , an) = 0 and limn∈U dk,F (an, aU) = 0 hold.

Proof. Let us fix k and F . For calculating the first limit, we have to show that {n ∈ N :
dF,k(aU , an) < ε} ∈ U for every ε > 0. In the following claim we prove that it suffices
to show this for the functions dF,α.

Claim. It is enough to show that {n ∈ N : dF,α(aU , an) < ε} ∈ U , where α is from
Partk(XU).

Proof. Indeed, let P denote the set {c(aU , F, α) ∈ [0, 1]|F |k2 : α ∈ Partk(XU)}.
Using that the space [0, 1]|F |k2 is compact, we can take a ε

2 -net {x1, . . . , xm} ⊆ P , where
xi = c(aU , F, αi). Now from the fact that for every c(aU , F, α) ∈ P there is j such that
||c(aU , F, α) − c(aU , F, αj)||1 < ε

2 , it follows that

m⋂
j=1

{n ∈ N : dF,αj
(aU , an) <

ε

2} ⊆ {n ∈ N : dF,k(aU , an) < ε}.

But the former set is a finite intersection, so if all the sets {n ∈ N : dF,αj
(aU , an) < ε

2}
are in U , so is {n ∈ N : dF,k(aU , an) < ε}. This concludes the proof of the claim.

So let us fix α ∈ Partk(XU) too. From Proposition 3.18 we may suppose that α is of
the form {[A1

n]n∈U , . . . [Ak
n]n∈U}. By definition for every i, j ≤ k and γ ∈ Γ we have

µU([Ai
n]n∈U ∩ γaU ([Aj

n]n∈U)) = lim
n∈U

µn(Ai
n ∩ γan(Aj

n)). (5.4)

Let us denote the partition {A1
n, . . . Ak

n} ∈ Partk(Xn) by αn, then from (5.4) we have
that

Ui,j :=
{

n ∈ N : |µn(Ai
n ∩ γan(Aj

n)) − µU([Ai
n]n∈U ∩ γaU ([Aj

n]n∈U))| <
ε

|F |k2

}
∈ U .

Since ⋂
i,j≤k Ui,j ⊆ {n ∈ N : c(an, F, αn) − c(aU , F, α) < ε}, the latter is in U as well,

which concludes the proof of dF,k(aU , an) = 0.

For the other part let us suppose to the contrary that limn∈U dF,k(an, aU) > ε for some
ε > 0 (notice that dF,k(an, aU) is bounded, thus the limit exist). Then there is U ∈ U
such that for every n ∈ U there is a partition αn = {A1

n, . . . Ak
n} for which we have

dF,αn(an, aU) > ε. Therefore specifically for the partition α = {[A1
n]n∈U , . . . [Ak

n]n∈U} of
XU we have ||c(an, F, αn) − c(aU , F, α)||1 ≥ dF,αn(an, aU) > ε for every n ∈ U . Thus
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we can conclude that limn∈U ||c(an, F, αn) − c(aU , F, α)||1 ≥ ε. On the other hand this
contradicts the fact that µU([Ai

n]n∈U ∩γaU ([Aj
n]n∈U)) = limn∈U µn(Ai

n ∩γan(Aj
n)) for every

i, j ≤ k.

Now we are ready to prove the remaining part of Theorem 5.2.

Proof of Theorem 5.2. The first part was proved in Theorem 5.7. So we have to show
that Act(Γ) / ∼ (see Notation 5.8) is a compact space when we equip it with the metric
topology we get from the metric pd. It is well known that sequential compactness and
compactness are equivalent in metric spaces and thus it is enough to show the latter.
So let us fix a sequence of actions {an}n∈N ∈ Act(Γ) / ∼. Let us pick an element ãn ∈
Act(Γ) from the preimage of an for every n, moreover let aU denote the ultraproduct
action associated to the sequence {ãn}n∈N. Using Theorem 5.15 we get an action ã ∈
Act(Γ) such that dk,F (ã, aU) = 0 for every F ⊂ Γ finite and k ∈ N. Let a be the ∼-
equivalence class of ã. By Proposition 5.19 we know that limn∈U dk,F (aU , an) = 0 and
limn∈U dk,F (an, aU) = 0, and therefore (using the extended version of Lemma 5.6) we
get that limn∈U dk,F (a, an) = 0. This exactly means that for every ε > 0 there is U ∈ U
such that dF,k(a, an) < ε for every n ∈ U . But since U is a non-principal ultrafilter, for
every ε > 0 there are infinitely many elements in the ε-neighbourhood of a, and thus
we can choose a subsequence of an which converges to a.

6 Outlook

As mentioned in the introduction, this thesis is a stepping stone towards future research.
Recently Lovász in [25] initiated the study of matroids from an analytical point of view.
One can capture the matroids through their rank function, which leads to the study
of submodular functions. Motivated by the definition of local-global convergence
of bounded degree graphs the authors in [6] introduced the quotient-convergence of
submodular functions. They prove that the space of increasing submodular functions
under the quotient-convergence is complete. This result is analogous to Theorem 4.29.
As we highlighted earlier, the statement of Theorem 5.2 is paralell to Theorem 4.29,
while the proof relies on a different technique, namely on the ultraproduct method.
We hope that by understanding the concepts and proofs of this thesis, we will also be
able to approach the following question.

Question 6.1. Is it possible to conclude the completeness of the quotient-convergence
of increasing submodular functions from the ultraproduct method?
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We also mention a couple of other questions we intend to pursue that arose during
the preparation of this thesis.

Question 6.2. Is there a graphing G on a standard probability space for which the sets
QG,r,k are closed?

The ultraproduct technique produces such graphings on non-standard spaces, but
it is not clear if this property can be inherited by a standard factor.

Question 6.3. Does a more careful version of the proof of Proposition 5.12 also show
that local-global equivalence is already witnessed by the colored 1-neighborhoods?
This is an unpublished result of Szegedy, see [3, Theorem 9.1]
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Alulírott Kocsis Anett nyilatkozom, hogy szakdolgozatom elkészítése során az alább
felsorolt feladatok elvégzésére a megadott MI alapú eszközöket alkalmaztam:

Feladat Felhasznált eszköz Felhasználás helye Megjegyzés

Nyelvtani
helyeség
ellenőrzése

ChatGPT A teljes
dokumentum

-

A felsoroltakon túl más MI alapú eszközt nem használtam.

Budapest, 2025. június 1.

Aláírás
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