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Chapter 1

Introduction

This thesis is based on an article with the same title and authors Kristóf Bérczi,

Áron Jánosik and Bence Mátravölgyi [2].

Throughout the thesis, we denote a matroid by M = (S,B), where S is a finite

ground set and B is the family of bases, satisfying the so-called basis axioms: (B1)

∅ ∈ B, and (B2) for any B1, B2 ∈ B and e ∈ B1 −B2, there exists f ∈ B2 −B1 such

that B1 − e + f ∈ B. The latter property, called the basis exchange axiom, is one

of the most fundamental tools in matroid theory. Nevertheless, it only provides a

local characterization of the relationship between bases, which presents a significant

stumbling block to further progress.

A rank-r matroid M = (S,B) with |S| = n is cyclically orderable if there exists

an ordering S = {s1, . . . , sn} such that {si, si+1, . . . , si+r−1} ∈ B for all i ∈ [n],

where indices are understood in a cyclic order. While studying the structure of

symmetric exchanges in matroids, Gabow [15] formulated a beautiful conjecture,

stating that every matroid whose ground set decomposes into two disjoint bases

is cyclically orderable. This question was raised independently by Wiedemann [24]

and by Cordovil and Moreira [8]. The conjecture makes a stronger claim: for a fixed

partition, the cyclic ordering can be chosen such that the elements of the two bases

in the partition form contiguous intervals.

Conjecture 1 (Gabow). Let M = (S,B) be a matroid and S = B1 ∪ B2 be a

partition of the ground set into two disjoint bases. Then, M has a cyclic ordering in

which the elements of B1 and B2 form intervals.

It is not difficult to see that the statement holds for strongly base orderable

matroids. The conjecture was settled for graphic matroids [8, 17, 24], sparse paving

matroids [7], matroids of rank at most 4 [19] and 5 [18], split matroids [6], and
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regular matroids [4]. However, the existence of a cyclic ordering remains open in

general, even without the constraint of the bases forming intervals.

In [17], Kajitani, Ueno, and Miyano proposed a conjecture that would provide

a full characterization of cyclically orderable matroids. A matroid M = (S,B) with
rank function rM is called uniformly dense if |S| · rM(X) ≥ rM(S) · |X| holds for

all X ⊆ S. It is not difficult to see that a cyclically orderable matroid is neces-

sarily uniformly dense as well, and the conjecture states that this condition is also

sufficient.

Conjecture 2 (Kajitani, Ueno, and Miyano). A matroid is cyclically orderable if

and only if it is uniformly dense.

Despite the fact that the conjecture would provide entirely new insights into the

structure of matroids, very little progress has been made so far. Van den Heuvel and

Thomassé [22] showed that the conjecture is true if |S| and r(S) are coprimes, and

Bonin’s result [7] for sparse paving matroids remains true also in this more general

setting.

It is worth taking a moment to consider the interpretation of the uniformly

dense property. By the matroid union theorem of Edmonds and Fulkerson [10],

the ground set of a matroid M = (S,B) can be covered by k bases if and only if

k · rM(X) ≥ |X| holds for all X ⊆ S. Using this, a matroid is uniformly dense if

and only if its ground set can be covered by ⌈|S|/rM(S)⌉ bases. In other words, the

ground set can be decomposed in ‘almost’ disjoint bases, where almost means that

the total overlapping between distinct bases is bounded by rM(S)−1. In particular,

any matroid whose ground set decomposes into pairwise disjoint bases is uniformly

dense. This observation motivates the following strengthening of Gabow’s conjecture.

Conjecture 3. Let M = (S,B) be a matroid and S = B1 ∪ · · · ∪ Bk be a partition

of the ground set into k pairwise disjoint bases. Then, M has a cyclic ordering in

which the elements of Bi form an interval for each i ∈ [k].

To the best of our knowledge, Conjecture 3 has not been previously considered

and remains open even for very restricted classes of matroids, such as strongly base

orderable matroids. Our main contribution is proving the conjecture for the class

of split matroids. Split matroids were first introduced by Joswig and Schröter [16]

while studying matroid polytopes from a geometric point of view. Since then, this

class of matroids has gained importance in many contexts, primarily due to the work

of Ferroni and Schröter [11–14].



8

Theorem 1. Conjecture 3 is true for split matroids.

It is worth emphasizing that our proof is algorithmic, hence it provides a pro-

cedure for determining a cyclic ordering in question using a polynomial number of

independence oracle calls.

Remark 2. In fact, we prove a slightly stronger statement: in the cyclic ordering

obtained, the bases B1, . . . , Bk form intervals that follow each other in this order.

The rest of the thesis is organized as follows. Basic definitions and notation are

introduced in Chapter 2. We prove Conjecture 3 for split matroids in Chapter 3.

In Chapter 4, we give a list of related open questions and conjectures that are

subject of future research. Finally, in Chapter 5, we consider a matroid class that is

a generalization of split matroids with similar structure.



Chapter 2

Preliminaries

2.1 General notation

We denote the set of nonnegative integers by Z+. For k ∈ Z+, we use [k] = {1, . . . , k}.
Given a ground set S, the difference of X, Y ⊆ S is denoted by X−Y . If Y consists

of a single element y, then X − {y} and X ∪ {y} are abbreviated as X − y and

X + y, respectively. The symmetric difference of X and Y is denoted by X△Y :=

(X − Y ) ∪ (Y −X). Given a set system F , we use F∪2 := {F1 ∪ F2 : F1, F2 ∈ F}.
We call a function f : F∪2 → R F -submodular, if F is closed under intersection and

∀F1, F2 ∈ F we have f(F1) + f(F2) ≥ f(F1 ∪ F2) + f(F1 ∩ F2).

2.2 Split matroids

For basic definitions on matroids, we refer the reader to [21]. Let S be a ground set

of size at least r, H = {H1, . . . , Hq} be a (possibly empty) collection of subsets of

S, and r, r1, . . . , rq be nonnegative integers satisfying

|Hi ∩Hj| ≤ ri + rj − r for distinct i, j ∈ [q],(H1)

|S −Hi|+ ri ≥ r for all i ∈ [q].(H2)

Then the corresponding elementary split matroid M = (S,B) is given by B = {X ⊆
S | |X| = r, |X ∩ Hi| ≤ ri for all i ∈ [q]}; see [3] for details. It is easy to see that

the underlying hypergraph can be chosen in such a way that

ri ≤ r − 1 for all i ∈ [q],(H3)

|Hi| ≥ ri + 1 for all i ∈ [q].(H4)
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The representation is called non-redundant if all of (H1)–(H4) hold. A set F ⊆ S is

called Hi-tight if |F ∩Hi| = ri. Finally, a split matroid is the direct sum of a single

elementary split matroid and some (maybe zero) uniform matroids. The connection

between elementary and connected split matroids is given by the following result [3].

Lemma 3 (Bérczi, Király, Schwarcz, Yamaguchi and Yokoi). The classes of con-

nected split matroids and connected elementary split matroids coincide.

A nice feature of split matroids is that they generalize paving and sparse paving

matroids: paving matroids correspond to the special case when ri = r − 1 for all

i ∈ [q], while we get back the class of sparse paving matroids if, in addition, |Hi| = r

holds for all i ∈ [q]. However, unlike the class of paving matroids, split matroids are

closed not only under truncation and taking minors but also under duality [16]. The

following result appeared in [3].

Lemma 4 (Bérczi, Király, Schwarcz, Yamaguchi and Yokoi). Let M be a rank-r

elementary split matroid with a non-redundant representation H = {H1, . . . , Hq}
and r, r1, . . . , rq. Let F be a set of size r.

(a) If F is Hi-tight for some index i ∈ [q] then F is a basis of M .

(b) If F is both Hi-tight and Hj-tight for distinct i, j ∈ [q] then Hi ∩ Hj ⊆ F ⊆
Hi ∪Hj.

Proof. (a) Assume F is Hi-tight, so |F ∩ Hi| = ri. Then we need to verify that F

satisfies the independence conditions for all other Hj. We have that

ri + |F ∩Hj| = |F ∩Hi|+ |F ∩Hj| = |F ∩ (Hi ∩Hj)|+ |F ∩ (Hi ∪Hj)| ≤

|Hi ∩Hj|+ |F | ≤ (ri + rj − r) + r = ri + rj,

so |F ∩Hj| ≤ rj follows immediately for i ̸= j ∈ [q].

(b) Assume F is both Hi-tight and Hj-tight for i ̸= j, then from the same

inequality chain:

ri + rj = |F ∩Hi|+ |F ∩Hj| = |F ∩ (Hi ∩Hj)|+ |F ∩ (Hi ∪Hj)| ≤

|Hi ∩Hj|+ |F | ≤ (ri + rj − r) + r = ri + rj,

therefore all inequalities are satisfied with equality, that is

|F ∩ (Hi ∩Hj)| = |Hi ∩Hj| and |F ∩ (Hi ∪Hj)| = |F |,

that implies

Hi ∩Hj ⊆ F and F ⊆ Hi ∪Hj,

so we are done.
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By Lemma 4(a), any set of size r that is tight with respect to one of the hyper-

edges is a basis. We will use this observation throughout without explicitly citing

the lemma, to avoid repeatedly referring to part (a).



Chapter 3

Proof of Theorem 1

Proof of Theorem 1. Throughout the proof, we use the following notation conven-

tion: given an ordered sequence X1, . . . , Xk of sets or elements x1, . . . , xk, indices

are meant cyclically, meaning that Xk+1 = X1, x
k+1 = x1, X0 = Xk and x0 = xk. In

addition, we interpret the set {xi, . . . , xj} as empty when i > j.

The theorem clearly holds if k = 1, while the case when k = 2 was proved

in [6]. Therefore, we assume that k ≥ 3. Let M = (S,B) be a split matroid and

S = B1 ∪ · · · ∪ Bk be a partition of its ground set into k pairwise disjoint bases.

First we show that it suffices to consider connected split matroids. To see this, let

M1 = (S1,B1), . . . ,Mt = (St,Bt) be the connected components ofM , where |Sj| = nj

and the rank of Mj is rj for j ∈ [t]. For all i ∈ [k] and j ∈ [t], let Bj
i := Bi ∩ Sj.

Then, Sj = Bj
1 ∪· · ·∪Bj

k is a decomposition of Sj into pairwise disjoint bases of Mj.

Let Sj = {sj1, . . . , sjnj
} be a cyclic ordering of Mj in which the elements of Bj

i form

the interval Iji := {sj(i−1)·rj+1, . . . , s
j
i·rj} for each i ∈ [k]. Then,

S = {I11 , I21 , . . . , I t1, I12 , I22 , . . . , I t2, . . . , I1k , I2k , . . . , I tk}

is a cyclic ordering of M in which Bi forms an interval for each i ∈ [k]. Since Conjec-

ture 3 clearly holds for uniform matroids, the combination of the above observation

and Lemma 3 allows us to assume that M is a rank-r elementary split matroid,

defined by a non-redundant representation H.

The high-level idea of the algorithm is as follows. We build up the orderings

for the bases simultaneously in phases. At the beginning of the j-th phase, the

first (j − 1) elements in each of the bases are ordered and the goal is to find the

j-th element for all of them. We denote the first (j − 1) elements that we have

already ordered in the i-th basis by (bi1, . . . , b
i
j−1). The elements that are not yet

ordered will be referred to as remaining elements in Bi and their set is denoted
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by Ci, that is, Ci = Bi − {bi1, . . . , bij−1}. The goal is to choose bij in such a way

that (Ci − bij) ∪ (bi+1
1 , . . . , bi+1

j ) forms a basis for all i ∈ [k]; we call such a choice

(b1j , . . . , b
k
j ) valid. Note that the condition is satisfied in the beginning as it simply

requires Ci = Bi to be a basis for each i ∈ [k]. If valid choices exist up to the

r-th phase, then we get a cyclic ordering of the matroid with the desired properties

simply by putting the ordered bases after each other. However, if the next elements

cannot be chosen while satisfying the above constraints, we will slightly modify the

order of the first (j − 1) elements to allow further steps.

Now we turn to the detailed description of the proof. For ease of discussion,

we present it as an indirect proof; however, it implicitly implies an algorithm as

described above. Let j ∈ [r + 1] be maximal with respect to the property that, for

all i ∈ [k], there exist bi1, . . . , b
i
j−1 ∈ Bi such that

(⋆) (biℓ, . . . , b
i
j−1) ∪ Ci ∪ (bi+1

1 , . . . , bi+1
ℓ−1) forms a basis for all i ∈ [k], ℓ ∈ [j + 1],

where Ci = Bi − {bi1, . . . , bij−1}. If j = r + 1 then we are done. Therefore, suppose

that j ≤ r. In particular, this means that there is no valid choice of j-th elements

in the bases. Let Ri := Ci ∪ {bi+1
1 , . . . , bi+1

j−1} for all i ∈ [k]. Then, Ri is a basis by

applying (⋆) for ℓ = j + 1.

Claim 5. For all i ∈ [k], there exist distinct elements pi, qi ∈ Ci and a hyperedge

Hi with value ri satisfying the following:

(a) pk ∈ Hk −H1 and pi ∈ Hi ∩Hi+1 for all i ∈ [k − 1],

(b) qk /∈ Hk and qi /∈ Hi ∪Hi+1 for all i ∈ [k − 1],

(c) Ri−1 is Hi-tight for all i ∈ [k].

Proof. Let p1 ∈ C1 be an arbitrary element. By the basis exchange property for R1

and B2, there exists an element p2 ∈ C2 such that R1 − p1 + p2 forms a basis. By

the repeated application of this argument we get pi ∈ Ci such that Ri − pi + pi+1

forms a basis for all i ∈ [k − 1].

If Rk − pk + p1 forms a basis, then (p1, . . . , pk) is a valid choice, contradicting

the maximality of j. Otherwise, there exists a hyperedge H1 with value r1 such that

|H1 ∩ (Rk − pk + p1)| > r1. Since Rk is a basis, we conclude that Rk is H1-tight,

pk /∈ H1, p1 ∈ H1 and |H1∩ (Rk−pk+p1)| = r1+1. By the basis exchange property,

there exists an element q1 ∈ C1 − p1 such that Rk − pk + q1 forms a basis, implying

q1 /∈ H1. As the choice (q1, p2, . . . , pk) cannot be valid, then there exists a hyperedge

H2 with value r2 such that |H2 ∩ (R1 − q1 + p2)| > r2. Since R1 and R1 − p1 + p2
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are both bases, we conclude that R1 is H2-tight, p1 ∈ H2, p2 ∈ H2, q1 /∈ H2 and

|H2∩(R1−q1+p2)| = r2+1. By the basis exchange property, there exists an element

q2 ∈ C2− p2 such that R1− q1+ q2 forms a basis, implying q2 /∈ H2. Continuing this

procedure, we get elements p1, . . . , pk, q1, . . . , qk and hyperedges H1, . . . , Hk with

values r1, . . . , rk satisfying the conditions of the claim.

It is worth noting that the hyperedges H1, . . . , Hk provided by the claim are not

necessarily distinct. We give an analogous claim where the roles of p1, . . . , pk and

q1, . . . , qk are reversed. The proof follows the same reasoning as in Claim 5; however,

we include it here for completeness.

Claim 6. For all i ∈ [k], there exist a hyperedge H ′
i with value r′i satisfying the

following:

(a) pk ∈ H ′
1 −H ′

k and pi /∈ H ′
i ∪H ′

i+1 for all i ∈ [k − 1],

(b) qk ∈ (H1 ∩H ′
k)−H ′

1 and qi ∈ H ′
i ∩H ′

i+1 for all i ∈ [k − 1],

(c) Ri−1 is H ′
i-tight for all i ∈ [k],

(d) Hi ∩H ′
i ⊆ Ri−1 ⊆ Hi ∪H ′

i for all i ∈ [k].

Proof. As the choice (q1, . . . , qk) cannot be valid, there exists a hyperedge H ′
1 with

value r′1 such that qk /∈ H ′
1, q1 ∈ H ′

1 and Rk is H ′
1-tight. Note that since q1 ∈ H ′

1

and q1 /∈ H1 we have that H1 and H ′
1 are distinct hyperedges. Since Rk is both H1

and H ′
1-tight, Lemma 4(b) implies that H1 ∩ H ′

1 ⊆ Rk ⊆ H1 ∪ H ′
1, thus qk ∈ H1,

pk ∈ H ′
1 and p1 /∈ H ′

1. As the choice (p1, q2, . . . , qk) cannot be valid and Rk is H1-

tight by Claim 5 and qk ∈ H1 therefore Rk − qk + p1 is also H1-tight, there exists a

hyperedge H ′
2 with value r′2 such that p1 /∈ H ′

2, q2 ∈ H ′
2 and R1 is H ′

2-tight. Again

as q2 ∈ H ′
2 and q2 /∈ H2 we have that H2 and H ′

2 are distinct hyperedges. Since R1

is both H2 and H ′
2-tight, Lemma 4(b) implies that H2 ∩H ′

2 ⊆ R1 ⊆ H2 ∪H ′
2, thus

q1 ∈ H ′
2, p2 /∈ H ′

2. Continuing this procedure, we get hyperedges H ′
1, . . . , H

′
k with

values r′1, . . . , r
′
k satisfying the conditions of the claim.

Again, let us note that the hyperedges H ′
1, . . . , H

′
k provided by the claim are not

necessarily distinct.

Claim 7. For all i ∈ [k − 1] and x ∈ Ci, either x ∈ (Hi ∩Hi+1) − (H ′
i ∪H ′

i+1) or

x ∈ (H ′
i ∩ H ′

i+1) − (Hi ∪ Hi+1). For x ∈ Ck, either x ∈ (Hk ∩ H ′
1) − (H ′

k ∪ H1) or

x ∈ (H ′
k ∩H1)− (Hk ∪H ′

1).
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Proof. Consider any element x ∈ Ci for some i ∈ [k− 1]. By Claim 6, we know that

x ∈ Hi+1 ∪H ′
i+1. We distinguish two cases based on which set x belongs to.

Assume first that x ∈ Hi+1. If x /∈ Hi, then (q1, . . . , qi−1, x, pi+1, . . . , pk) is a

valid choice for the set of j-th elements, contradicting the maximality of j. This

is because Rℓ is Hℓ+1-tight for all ℓ ∈ [k] by Claim 5, so Ri−1 − qi−1 + x and

Ri − x + pi+1 are Hi and Hi+1-tight, respectively, if i ≥ 2, while for i = 1, replace

qi−1 with pk in the reasoning and observe that pk /∈ H1 by Claim 5. Thus we have

x ∈ Hi. By Claim 6, Hi∩H ′
i ⊆ Ri−1. As x /∈ Ri−1, we have x /∈ H ′

i. If x ∈ H ′
i+1, then

(p1, . . . pi−1, x, qi+1, . . . , qk) is a valid choice for the set of j-th elements, contradicting

the maximality of j. This is because Rℓ is H
′
ℓ+1-tight for all ℓ ∈ [k] by Claim 6, so

Ri−1 − pi−1 + x and Ri − x+ qi+1 are H
′
i and H ′

i+1-tight, respectively, if i ≥ 2, while

for i = 1, replace pi−1 by qk in the reasoning and observe that qk /∈ H ′
1 by Claim 6.

Thus we have x /∈ H ′
i+1.

Consider now the case x ∈ H ′
i+1. If x /∈ H ′

i, then (p1, . . . , pi−1, x, qi+1, . . . , qk)

is a valid choice for the set of j-th elements, contradicting the maximality of j.

This is because Rℓ is H ′
ℓ+1-tight for all ℓ ∈ [k] by Claim 6, so Ri−1 − pi−1 + x

and Ri − x + qi+1 are H ′
i and H ′

i+1-tight, respectively, if i ≥ 2, while for i = 1,

replace pi−1 by qk in the reasoning and observe that qk /∈ H ′
1 by Claim 6. Thus

we have x ∈ H ′
i. By Claim 6, Hi ∩ H ′

i ⊆ Ri−1. As x /∈ Ri−1, we have x /∈ Hi.

If x ∈ Hi+1, then (q1, . . . , qi−1, x, pi+1, . . . , pk) is a valid choice for the set of j-th

elements, contradicting the maximality of j. This is because Rℓ is Hℓ+1-tight for all

ℓ ∈ [k] by Claim 5, so Ri−1 − qi−1 + x and Ri − x + pi+1 are Hi and Hi+1-tight,

respectively, if i ≥ 2, while for i = 1, replace qi−1 by pk in the reasoning and observe

that pk /∈ H1 by Claim 5. This implies x /∈ Hi+1.

Finally, the statement for x ∈ Ck follows by replacing Hk+1 with H ′
1 and H ′

k+1

with H1 in the argument above and using the right notion of tightness everywhere.

For all i ∈ [k − 1], we define Ĉi := {x ∈ Ci | x ∈ (Hi ∩Hi+1)− (H ′
i ∪H ′

i+1)} and

Ĉ ′
i := {x ∈ Ci | x ∈ (H ′

i ∩ H ′
i+1) − (Hi ∪ Hi+1)}. We further set Ĉk := {x ∈ Ck |

x ∈ (Hk ∩H ′
1)− (H ′

k ∪H1)} and Ĉ ′
k := {x ∈ Ck | x ∈ (H ′

k ∩H1)− (Hk ∪H ′
1)}. By

Claim 7, Ci = Ĉi ∪ Ĉ ′
i and Ĉi ∩ Ĉ ′

i = ∅ holds for each i ∈ [k].

Claim 8. There exists an s ∈ Z+ such that |Ĉi| = |Ĉ ′
i| = s for each i ∈ [k].

Proof. As B2 is a basis, we have |B2 ∩H2| ≤ r2. Since |R1 ∩H2| = r2, we get |Ĉ2| =
|C2 ∩H2| ≤ |C1 ∩H2| = |Ĉ1|. A repeated application of the same argument leads to

|Ĉ1| ≥ |Ĉ2| ≥ · · · ≥ |Ĉk|. Similarly, as B1 is a basis, we have |B1 ∩H ′
1| ≤ r′1. Since
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|Rk∩H ′
1| = r′1, we get |Ĉ ′

1| = |C1∩H ′
1| ≤ |Ck∩H ′

1| = |Ĉk|. A repeated application of

the same argument leads to |Ĉk| ≥ |Ĉ ′
1| ≥ |Ĉ ′

2| · · · ≥ |Ĉ ′
k|. Finally, as B1 is a basis, we

have |B1∩H1| ≤ r1. Since |Rk∩H1| = r1, we get |Ĉ1| = |C1∩H1| ≤ |Ck∩H1| = |Ĉ ′
k|.

Concluding the above, we get |Ĉ1| ≥ |Ĉ2| ≥ · · · ≥ |Ĉk| ≥ |Ĉ ′
1| ≥ |Ĉ ′

2| ≥ · · · ≥
|Ĉ ′

k| ≥ |Ĉ1|, finishing the proof of the claim.

Claim 9. For each i ∈ [k], Bi is both Hi and H ′
i-tight.

Proof. Recall that Ri−1 is Hi-tight by Claim 5. Therefore, by Claim 8, we have

|Bi ∩Hi| = |(Bi ∩Ri−1) ∩Hi|+ |(Bi −Ri−1) ∩Hi|

= |(Bi ∩Ri−1) ∩Hi|+ |Ĉi|

= |(Bi ∩Ri−1) ∩Hi|+ |Ĉi−1|

= |Ri−1 ∩Hi|

= ri.

Similarly, recall that Ri−1 is H ′
i-tight by Claim 6. Therefore, by Claim 8, we have

|Bi ∩H ′
i| = |(Bi ∩Ri−1) ∩H ′

i|+ |(Bi −Ri−1) ∩H ′
i|

= |(Bi ∩Ri−1) ∩H ′
i|+ |Ĉ ′

i|

= |(Bi ∩Ri−1) ∩H ′
i|+ |Ĉ ′

i−1|

= |Ri−1 ∩H ′
i|

= r′i.

This concludes the proof of the claim.

By Claim 5 we know that pk ∈ Hk and pk /∈ H1 therefore H1 ̸= Hk. This

means that there must exist consecutive indices p and p + 1 such that Hp ̸= Hp+1.

By definition, we know that |Hp ∩ Hp+1| ≥ |Ĉp| = s. Since Rp−1 is Hp-tight by

Claim 5 and none of the elements in Ĉ ′
p−1 is in Hp, we get |Rp−1| = r ≥ rp + s.

Since Rp is Hp+1-tight by Claim 5 and none of the elements in Ĉ ′
p is in Hp+1, we get

|Rp| = r ≥ rp+1 + s. In the case p = 1 you need to replace Ĉ ′
p−1 by Ĉk and Rp−1 by

Rk in the argument above. These observations give

s ≤ |Hp ∩Hp+1| ≤ rp + rp+1 − r ≤ (r − s) + (r − s)− r = r − 2s,
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thus s ≤ r/3. As r = |Bi| = j−1+|Ci| = j−1+|Ĉi|+|Ĉ ′
i| = j−1+2s ≤ j−1+2r/3,

we get j − 1 ≥ r/3. In particular, this means that at least one element is already

ordered in each of B1, . . . , Bk.

Now we turn our attention to the elements that have been already ordered.

Consider the elements bit for all i ∈ [k], t ∈ [j − 1]. Our goal is to show that the set

of hyperedges containing these elements also have a specific structure.

Claim 10. We have the following.

(a) For all t ∈ [j − 1], bit ∈ (Hi△H ′
i) ∩ (Hi+1△H ′

i+1) for all i ∈ [k].

(b) For all t ∈ [j − 1], either {bit, bi+1
t } ⊆ Hi+1 or {bit, bi+1

t } ⊆ H ′
i+1.

(c) For all t ∈ [j − 1], the set {bit, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

t−1} is Hi+1 and

H ′
i+1-tight.

Proof. Most of the proof is verifying (a) for all t ∈ [j − 1] in a decreasing order,

while (b) and (c) follow easily after. Assume that the statement is true for indices

greater than t and at most j − 1; when t = j − 1, this assumption is vacuously true

since no such indices exist. We first prove that (a) holds for t. Consider an i ∈ [k].

As bit ∈ Bi and Bi is Hi and H ′
i-tight by Claim 9, we get that bit ∈ Hi ∪ H ′

i by

Lemma 4(b).

We first prove that bit ∈ (Hi△H ′
i). Suppose indirectly that bit ∈ Hi ∩ H ′

i. As

bit /∈ Ri, it is contained in at most one of Hi+1 and H ′
i+1 by Claim 6 – we consider

those separately.

Case 1. bit /∈ Hi+1.

Suppose first that i < k. Substitute bit with qi in the ordering of Bi. We claim

that (⋆) remains true. This is because qi /∈ Hi+1 by Claim 5 and {bim, . . . , bij−1} ∪
Ci ∪ {bi+1

1 , . . . , bi+1
m−1} is Hi+1-tight for all m > t by assumption, thus we get that

{bim, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − qi + bit remains Hi+1-tight for all m > t. By

Claim 6, qi ∈ H ′
i and as {bi−1

m , . . . , bi−1
j−1}∪Ci−1∪{bi1, . . . , bim−1} is H ′

i-tight for all m >

t by assumption, we get that {bi−1
m , . . . , bi−1

j−1}∪Ci−1∪{bi1, . . . , bim−1}−bit+qi remains

H ′
i-tight for all m > t. After the modification, the choice (q1, . . . , qi−1, pi, . . . , pk)

is valid for the j-th phase. This is because, by Claim 5, qi−1 /∈ Hi, pi ∈ Hi and

qi /∈ Hi, so Ri−1 − qi−1 − bit + pi + qi is Hi-tight if i ≥ 2, while for i = 1, replace qi−1

with pk in the reasoning and observe that pk /∈ H1 by Claim 5. Also by Claim 5,

pi+1 ∈ Hi+1, pi ∈ Hi+1 and qi /∈ Hi+1, so Ri − pi − qi + bit + pi+1 remains Hi+1-tight.

This contradicts the maximal choice of j.
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Now consider the case i = k and bkt /∈ H1. Substitute bkt with pk in the ordering

of Bk. We claim that (⋆) remains true. This is because pk /∈ H1 by Claim 5 and

{bkm, . . . , bkj−1}∪Ck∪{b11, . . . , b1m−1} is H1-tight for all m > t by assumption, thus we

get that {bkm, . . . , bkj−1}∪Ck∪{b11, . . . , b1m−1}−pk+bkt remains H1-tight for all m > t.

By Claim 5, pk ∈ Hk and as {bk−1
m , . . . , bk−1

j−1} ∪Ck−1 ∪ {bk1, . . . , bkm−1} is Hk-tight for

allm > t by assumption, we get that {bk−1
m , . . . , bk−1

j−1}∪Ck−1∪{bk1, . . . , bkm−1}−bkt +pk

remains Hk-tight for all m > t. After the modification, the choice (p1, . . . , pk−1, qk)

is valid for the j-th phase. This is because, by Claim 6, pk−1 /∈ H ′
k, pk /∈ H ′

k and

qk ∈ H ′
k, so Rk−1 − pk−1 − bkt + pk + qk is H ′

k-tight. By Claims 5 and 6, p1 ∈ H1,

pk /∈ H1 and qk ∈ H1 so Rk − pk − qk + bkt + p1 remains H1-tight. This contradicts

the maximal choice of j.

Case 2. bit /∈ H ′
i+1.

Suppose first that i < k. Substitute bit with pi in the ordering of Bi. We claim

that (⋆) remains true. This is because pi /∈ H ′
i+1 by Claim 6 and {bim, . . . , bij−1} ∪

Ci ∪ {bi+1
1 , . . . , bi+1

m−1} is H ′
i+1-tight for all m > t by assumption, thus we get that

{bim, . . . , bij−1} ∪Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − pi + bit remains H ′
i+1-tight for all m > t. By

Claim 5, pi ∈ Hi and as {bi−1
m , . . . , bi−1

j−1}∪Ci−1∪{bi1, . . . , bim−1} is Hi-tight for all m >

t by assumption, we get that {bi−1
m , . . . , bi−1

j−1}∪Ci−1∪{bi1, . . . , bim−1}−bit+pi remains

Hi-tight for all m > t. After the modification, the choice (p1, . . . , pi−1, qi, . . . , qk) is

valid for the j-th phase. This is because, by Claim 6, pi−1 /∈ H ′
i, pi /∈ H ′

i and qi ∈ H ′
i

so Ri−1−pi−1−bit+pi+qi is H
′
i-tight if i ≥ 2, while for i = 1, replace pi−1 with qk in

the reasoning and observe that qk /∈ H ′
1 by Claim 6. Also by Claim 6, qi+1 ∈ H ′

i+1,

pi /∈ H ′
i+1 and qi ∈ H ′

i+1, so Ri−pi−qi+bit+qi+1 remains H ′
i+1-tight. This contradicts

the maximal choice of j.

Now consider the case i = k and bkt /∈ H ′
1. Substitute bkt with qk in the ordering

of Bk. We claim that (⋆) remains true. This is because qk /∈ H ′
1 by Claim 6 and

{bkm, . . . , bkj−1}∪Ck∪{b11, . . . , b1m−1} is H ′
1-tight for all m > t by assumption, thus we

get that {bkm, . . . , bkj−1}∪Ck∪{b11, . . . , b1m−1}−qk+bkt remains H ′
1-tight for all m > t.

By Claim 6, qk ∈ H ′
k and as {bk−1

m , . . . , bk−1
j−1} ∪ Ck−1 ∪ {bk1, . . . , bkm−1} is H ′

k-tight for

all m > t by assumption, we get that {bk−1
m , . . . , bk−1

j−1}∪Ck−1∪{bk1, . . . , bkm−1}−bkt +qk

remains H ′
k-tight for all m > t. After the modification, the choice (q1, . . . , qk−1, pk)

is valid for the j-th phase. This is because, by Claim 5, qk−1 /∈ Hk, pk ∈ Hk and

qk /∈ Hk, so Rk−1− qk−1− bkt +pk+ qk is Hk-tight. Also by Claim 6, q1 ∈ H ′
1, pk ∈ H ′

1

and qk /∈ H ′
1 so Rk−pk−qk+bkt +q1 remains H ′

1-tight. This contradicts the maximal

choice of j.
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Summarizing the above, we get bit ∈ (Hi△H ′
i). We now prove that bit ∈

(Hi+1△H ′
i+1). We know that bit /∈ (Hi+1 ∩ H ′

i+1), so it suffices to show that

bit ∈ (Hi+1 ∪ H ′
i+1). Suppose indirectly that bit /∈ (Hi+1 ∪ H ′

i+1). We consider two

cases based on whether bit ∈ Hi− (H ′
i ∪Hi+1∪H ′

i+1) or b
i
t ∈ H ′

i − (Hi∪Hi+1∪H ′
i+1).

Case 1. bit ∈ Hi − (H ′
i ∪Hi+1 ∪H ′

i+1).

Suppose first that i < k. Substitute bit with pi in the ordering of Bi. We claim

that (⋆) remains true. This is because pi /∈ H ′
i+1 by Claim 6 and {bim, . . . , bij−1} ∪

Ci ∪ {bi+1
1 , . . . , bi+1

m−1} is H ′
i+1-tight for all m > t by assumption, thus we get that

{bim, . . . , bij−1} ∪Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − pi + bit remains H ′
i+1-tight for all m > t. By

Claim 5, pi ∈ Hi and as {bi−1
m , . . . , bi−1

j−1}∪Ci−1∪{bi1, . . . , bim−1} is Hi-tight for all m >

t by assumption, we get that {bi−1
m , . . . , bi−1

j−1}∪Ci−1∪{bi1, . . . , bim−1}−bit+pi remains

Hi-tight for all m > t. After the modification, the choice (q1, . . . , qi, pi+1, . . . , pk) is

valid for the j-th phase. This is because, by Claim 6, qi−1 ∈ H ′
i, pi /∈ H ′

i and qi ∈ H ′
i,

so Ri−1−qi−1− bit+pi+qi is H
′
i-tight if i ≥ 2, while for i = 1, replace qi−1 with pk in

the reasoning and observe that pk ∈ H ′
1 by Claim 6. Also by Claim 5, pi+1 ∈ Hi+1,

pi ∈ Hi+1 and qi /∈ Hi+1, so Ri−pi−qi+bit+pi+1 remainsHi+1-tight. This contradicts

the maximal choice of j.

Now consider the case i = k and bkt ∈ Hk − (H ′
k ∪ H1 ∪ H ′

1). Substitute bkt

with pk in the ordering of Bk. We claim that (⋆) remains true. This is because

pk /∈ H1 by Claim 5 and {bkm, . . . , bkj−1} ∪ Ck ∪ {b11, . . . , b1m−1} is H1-tight for all

m > t by assumption, thus we get that {bkm, . . . , bkj−1}∪Ck∪{b11, . . . , b1m−1}−pk+ bkt

remains H1-tight for all m > t. By Claim 5, pk ∈ Hk and as {bk−1
m , . . . , bk−1

j−1}∪Ck−1∪
{bk1, . . . , bkm−1} is Hk-tight for allm > t by assumption, we get that {bk−1

m , . . . , bk−1
j−1}∪

Ck−1∪{bk1, . . . , bkm−1}−bkt +pk remains Hk-tight for all m > t. After the modification,

the choice (q1, . . . , qk) is valid for the j-th phase. This is because, by Claim 5, qk−1 /∈
Hk, pk ∈ Hk and qk /∈ Hk, so Rk−1− qk−1− bkt +pk+ qk is Hk-tight. Also by Claim 6,

q1 ∈ H ′
1, qk /∈ H ′

1 and pk ∈ H ′
1, so Rk − pk − qk + bkt + q1 remains H ′

1-tight. This

contradicts the maximal choice of j.

Case 2. bit ∈ H ′
i − (Hi ∪Hi+1 ∪H ′

i+1).

Suppose first that i < k. Substitute bit with qi in the ordering of Bi. We claim

that (⋆) remains true. This is because qi /∈ Hi+1 by Claim 5 and {bim, . . . , bij−1} ∪
Ci ∪ {bi+1

1 , . . . , bi+1
m−1} is Hi+1-tight for all m > t by assumption, thus we get that

{bim, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − qi + bit remains Hi+1-tight for all m > t. By

Claim 6, qi ∈ H ′
i and as {bi−1

m , . . . , bi−1
j−1}∪Ci−1∪{bi1, . . . , bim−1} is H ′

i-tight for all m >
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t by assumption, we get that {bi−1
m , . . . , bi−1

j−1}∪Ci−1∪{bi1, . . . , bim−1}−bit+qi remains

H ′
i-tight for all m > t. After the modification, the choice (p1, . . . , pi, qi+1, . . . , qk)

is valid for the j-th phase. This is because, by Claim 5, pi−1 ∈ Hi, pi ∈ Hi and

qi /∈ Hi, so Ri−1 − pi−1 − bit + pi + qi is Hi-tight if i ≥ 2, while for i = 1, replace pi−1

with qk in the reasoning and observe that qk ∈ H1 by Claim 6. Also by Claim 6,

qi+1 ∈ H ′
i+1, pi /∈ H ′

i+1 and qi ∈ H ′
i+1, so Ri − pi − qi + bit + qi+1 remains H ′

i+1-tight.

This contradicts the maximal choice of j.

Now consider the case i = k and bkt ∈ H ′
k − (Hk ∪ H1 ∪ H ′

1). Substitute bkt

with qk in the ordering of Bk. We claim that (⋆) remains true. This is because

qk /∈ H ′
1 by Claim 6 and {bkm, . . . , bkj−1} ∪ Ck ∪ {b11, . . . , b1m−1} is H ′

1-tight for all

m > t by assumption, thus we get that {bkm, . . . , bkj−1}∪Ck ∪{b11, . . . , b1m−1}− qk+ bkt

remains H ′
1-tight for all m > t. By Claim 6, qk ∈ H ′

k and as {bk−1
m , . . . , bk−1

j−1}∪Ck−1∪
{bk1, . . . , bkm−1} is H ′

k-tight for allm > t by assumption, we get that {bk−1
m , . . . , bk−1

j−1}∪
Ck−1∪{bk1, . . . , bkm−1}−bkt +qk remains H ′

k-tight for all m > t. After the modification,

the choice (p1, . . . , pk) is valid for the j-th phase. This is because, by Claim 6,

pk−1 /∈ H ′
k, pk /∈ H ′

k and qk ∈ H ′
k, so Rk−1 − pk−1 − bkt + pk + qk is H ′

k-tight. Also by

Claims 5 and 6, p1 ∈ H1, qk ∈ H1 and pk /∈ H1, so Rk − pk − qk + bkt + p1 remains

H1-tight. This contradicts the maximal choice of j.

This finishes the proof of (a), that is, bit ∈ (Hi△H ′
i)∩ (Hi+1△H ′

i+1). To prove the

remaining two properties, observe that {bit+1, . . . , b
i
j−1}∪Ci∪{bi+1

1 , . . . , bi+1
t }−bi+1

t +bit

is a basis by (⋆). As {bit+1, . . . , b
i
j−1}∪Ci∪{bi+1

1 , . . . , bi+1
t } is bothHi+1 andH ′

i+1-tight,

together with bit ∈ (Hi+1△H ′
i+1) and bi+1

t ∈ (Hi+1△H ′
i+1), necessarily {bit, bi+1

t } ⊆
Hi+1 or {bit, bi+1

t } ⊆ H ′
i+1 as otherwise the basis would have too large intersection

with Hi+1 or H ′
i+1. This implies

|({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t }) ∩Hi+1| =

= |({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t } − bi+1

t + bit) ∩Hi+1|

and

|({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t }) ∩H ′

i+1| =

= |({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t } − bi+1

t + bit) ∩H ′
i+1|,

which means that properties (b) and (c) hold as well.

Claims 9 and 10 imply that Bi is tight with respect to Hi, H
′
i, Hi+1 and H ′

i+1.

We know that Hm ̸= Hm+1 for some m < k. Then, Bm ⊆ Hm ∪Hm+1 which implies
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qm ∈ Bm ⊆ Hm ∪ Hm+1. However, by Claim 5, qm /∈ Hm ∪ Hm+1, a contradiction.

This concludes the proof of the theorem.



Chapter 4

Further remarks and open

problems

4.1 Comments on Conjecture 2

The most important result toward verifying Conjecture 2 is due to Van den Heuvel

and Thomassé [22].

Theorem 11 (Van den Heuvel and Thomassé). Let M = (S,B) be a loopless matroid

with rank function r : 2S → Z+ and |S| = n, and let g denote the greatest common

divisor of r(S) and n. Then, there exists a partition S = G1 ∪ · · · ∪ Gn/g into

sets of size g such that
⋃r(S)/g−1

t=0 Gi+t is a basis for all i ∈ [n/g] if and only if

r(S) · |X| ≤ n · r(X) for X ⊆ S.

In particular, Theorem 11 settles Conjecture 2 in the affirmative if r(S) and n

are coprimes. Therefore, to prove Conjecture 2, it would be enough to verify that,

when M is uniformly dense, the elements inside each Gi admit an ordering that

together induces a cyclic ordering of M . Unfortunately, such an approach cannot

work as shown by the following example.

Example 12. Let S = {a1, . . . , a10} and consider the sparse paving ma-

troid defined by the following hyperedges: {a1, a2, a3, a10}, {a1, a2, a4, a9},
{a1, a3, a4, a5}, {a2, a3, a4, a6}, {a3, a5, a6, a7}, {a4, a5, a6, a8}, {a5, a7, a8, a9},
{a6, a7, a8, a10},{a1, a7, a9, a10}, {a2, a8, a9, a10}, with the value of r being 4; see

Section 2 for the definition. If Gi = {a2i−1, a2i} for all i ∈ [5], then it is not difficult

to check that Gi ∪Gi+1 is a basis for all i ∈ [10].

However, we claim that the pairs in the sets Gi cannot be ordered in such a

way that we get a cyclic ordering of the matroid M . To see this, observe that each
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Gi is contained in two of the hyperedges, which excludes two of the four possible

orderings of the neighboring groups Gi−1 and Gi+1. Due to the exclusion of these

ordering possibilities, it is not difficult to verify that no suitable ordering exists.

4.2 Exchange distance of basis sequences

Note that Gabow’s conjecture can be interpreted as follows: for any two disjoint

bases B1 and B2 of a matroid M of rank r, there is a sequence of r symmetric

exchanges that transforms the pair (B1, B2) into (B2, B1). The closely related prob-

lem of transforming a sequence (B1, . . . , Bk) of bases into another (B′
1, . . . , B

′
k) was

proposed by White [23]. Let (B1, . . . , Bk) be a sequence of k bases of a matroid

M , and assume that there exist e ∈ Bi, f ∈ Bj for some 1 ≤ i < j ≤ k such

that both Bi − e + f and Bj − f + e are bases. Then we say that the sequence

(B1, . . . , Bi−1, Bi − e+ f,Bi+1, . . . , Bj−1, Bj − f + e, Bj+1, . . . , Bk) is obtained from

the original one by a symmetric exchange. Accordingly, two sequences of bases are

called equivalent if one can be obtained from the other by a composition of symmet-

ric exchanges. White studied the following question: what is the characterization of

two sequences of bases being equivalent?

There is an easy necessary condition. Namely, two sequences (B1, . . . , Bk) and

(B′
1, . . . , B

′
k) are called compatible if the union of the Bis as a multiset coincides with

the union of the B′
is as a multiset. Compatibility is obviously a necessary condition

for two sequences being equivalent, and White conjectured that it is also sufficient.

Conjecture 4 (White). Two sequences of k bases are equivalent if and only if they

are compatible.

In this context, Gabow’s conjecture would verify White’s conjecture for two pairs

of bases of the form (B1, B2) and (B2, B1). Note that, however, the conjecture says

nothing on the minimum number of exchanges needed to transform one of the pairs

into the other. As a common generalization of Gabow’s conjecture and the special

case of White’s conjecture when k = 2, Hamidoune [8] proposed an optimization

variant.

Conjecture 5 (Hamidoune). Let (B1, B2) and (B′
1, B

′
2) be compatible basis pairs of

a rank-r matroid M = (S,B). Then, (B1, B2) can be transformed into (B′
1, B

′
2) by

using at most r symmetric exchanges.

In [5], Bérczi, Mátravölgyi and Schwarcz formulated a weighted extension of

Hamidoune’s conjecture. Let M = (S,B) be a matroid and w : S → R+ be a weight
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function on the elements of the ground set S. Given a pair (B1, B2) of bases, we define

the weight of a symmetric exchange B1−e+f and B2−f+e to be w(e)/2+w(f)/2,

that is, the average of the weights of the exchanged elements.

Conjecture 6 (Bérczi, Mátravölgyi, Schwarcz). Let (B1, B2) and (B′
1, B

′
2) be com-

patible basis pairs of a matroid M = (S,B), and let w : S → R+. Then, (B1, B2) can

be transformed into (B′
1, B

′
2) by using symmetric exchanges of total weight at most

w(B1)/2 + w(B2)/2 = w(B′
1)/2 + w(B′

2)/2.

By setting the weights to be identically 1, we get back Hamidoune’s conjecture.

The question naturally arises: can we formulate extensions of Conjectures 5 and 6

for basis sequences of length greater than two?

Let (B1, . . . , Bk) be a sequence of k bases of a matroid M , and assume that

there exists distinct indices {i1, . . . , iq} ⊆ [k] and ej ∈ Bij such that Bij − ej + ej+1

is a basis for each j ∈ [q]. Then, we say that the sequence (B′
1, . . . , B

′
k) where

B′
ℓ = Bij − ej + ej+1 if ℓ = ij for some j ∈ [q] and B′

ℓ = Bℓ otherwise, is obtained by

a cyclic exchange. As a generalization of Conjecture 5, we propose the following.

Conjecture 7. Let (B1, . . . , Bk) and (B′
1, . . . , B

′
k) be compatible sequences of k bases

of a rank-r matroid. Then, (B1, . . . , Bk) can be transformed into (B′
1, . . . , B

′
k) by

using at most r cyclic exchanges.

Given a weight function w : S → R+ on the elements of the ground set, let us

define the weight of a cyclic exchange that moves elements ej ∈ Bij for j ∈ [q] to

be 1
k

∑q
j=1 w(ej). As a generalization of Conjecture 6, the weighted counterpart is

as follows.

Conjecture 8. Let (B1, . . . , Bk) and (B′
1, . . . , B

′
k) be compatible sequences of k bases

of a matroid M = (S,B), and let w : S → R+. Then, (B1, . . . , Bk) can be transformed

into (B′
1, . . . , B

′
k) by using cyclic exchanges of total weight at most 1

k

∑k
i=1w(Bi) =

1
k

∑k
i=1 w(B

′
i).

Note that in both cases, the bounds are tight in the sense that r cyclic ex-

changes are definitely needed to transform the sequence (B1, . . . , Bk−1, Bk) into

(B2, . . . , Bk, B1).



Chapter 5

A more general matroid class

A conjecture of Crapo and Rota [9], that was made precise by Mayhew, Newman,

Welsh and Whittle [20], suggests that the asymptotic fraction of matroids on n

elements that are paving tends to 1 as n tends to infinity. This is based on the

well-known fact that the number of paving matroids on n elements is already doubly

exponential in n. The consequence of the mentioned conjecture would be that almost

all matroids have a similar underlying hypergraph structure. The class of paving

matroids can be generalized into the class of split matroids while keeping some of

the hypergraph representation. Moreover, split matroids are closed under duality

and taking minors. It raises the following question: Is there a similar, even more

general underlying structure for all matroids? In this chapter, we take a look at a

definition by Balcan and Harvey [1] and conclude that with a slight modification,

this class provides a structure for all matroids. We define another matroid class as

well as considering some variations of these classes.

Theorem 13. Let n, k, t and r be positive integers. Let {A1, . . . , Ak} be a collection

of subsets of a ground set S with n elements. Let F be a collection of subsets of(
[k]
≤t

)
, which is closed under taking intersection and ∅ ∈ F . Let f : F∪2 → Z be a

nonnegative function such that f(∅) = r and f is F-submodular. Then if f(J) ≥
|A∩(J)| for all J ∈ F∪2 −F , where A∩(J) = ∩j∈JAj, then

I = {I ⊆ S : |I ∩ A∩(J)| ≤ f(J), ∀J ∈ F}

forms the independent sets of a matroid.

Proof. We will show that the set system I satisfies the independence axioms. Since

f is nonnegative, it is clear that ∅ ∈ I.
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Suppose X ⊆ Y and Y ∈ I. Then for all J ∈ F ,

|X ∩ A∩(J)| ≤ |Y ∩ A∩(J)| ≤ f(J),

thus X ∈ I as well.

We show that the size of a maximal subset of Z ⊆ S that is in I is given by

r(Z) = min

{
|Z|,min

J∈F
{f(J) + |Z − A∩(J)|}

}
.

Clearly, r(Z) ≤ |Z|. Now, let X ∈ I be an arbitrary set contained in Z. For each

J ∈ F , we have

|X| = |X ∩ A∩(J)|+ |X − A∩(J)| ≤ f(J) + |Z − A∩(J)|.

Thus,

r(Z) ≤ min

{
|Z|,min

J∈F
{f(J) + |Z − A∩(J)|}

}
.

For the reverse inequality, consider an arbitrary maximal subsetX ∈ I of Z. Suppose

that |X| < |Z|, as otherwise r(Z) = |Z| and we are done. We will show that there

exists a set J0 ∈ F such that X + x /∈ I for every element x ∈ Z −X because the

condition for J0 does not hold:

|(X + x) ∩ A∩(J0)| > f(J0).

Suppose that the addition of elements u, v ∈ Z − X to X would violate the

independence condition for sets Ju and Jv, respectively, chosen to be minimal with

respect to inclusion. Then by assumption we have

|(X + u) ∩ A∩(Ju)| > f(Ju) and |(X + v) ∩ A∩(Jv)| > f(Jv).

On the other hand, X is in I, so

|X ∩ A∩(Ju)| ≤ f(Ju) and |X ∩ A∩(Jv)| ≤ f(Jv).

These can only hold if

|X ∩ A∩(Ju)| = f(Ju) and |X ∩ A∩(Jv)| = f(Jv),

u ∈ A∩(Ju) and v ∈ A∩(Jv).

By submodularity of f , it follows that

f(Ju) + f(Jv) ≥ f(Ju ∩ Jv) + f(Ju ∪ Jv).
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On the other hand,

f(Ju) + f(Jv) = |X ∩ A∩(Ju)|+ |X ∩ A∩(Jv)|

= |X ∩ (A∩(Ju) ∩ A∩(Jv))|+ |X ∩ (A∩(Ju) ∪ A∩(Jv))|

≤ |X ∩ A∩(Ju ∪ Jv)|+ |X ∩ A∩(Ju ∩ Jv)|,

since A∩(Ju) ∩ A∩(Jv) = A∩(Ju ∪ Jv) and A∩(Ju) ∪ A∩(Jv) ⊆ A∩(Ju ∩ Jv) because

if an element is in A∩(Ju) ∪ A∩(Jv), then it is in all sets corresponding to Ju or Jv,

so it is also in all sets corresponding to Ju ∩ Jv.

Thus, we obtain

f(Ju ∩ Jv) + f(Ju ∪ Jv) ≤ |X ∩ A∩(Ju ∩ Jv)|+ |X ∩ A∩(Ju ∪ Jv)|.

Since F is closed under intersection, Ju ∩ Jv ∈ F , implying

f(Ju ∩ Jv) ≥ |X ∩ A∩(Ju ∩ Jv)|.

We now distinguish two cases:

• If Ju ∪ Jv ∈ F , then

f(Ju ∪ Jv) ≥ |X ∩ A∩(Ju ∪ Jv)|,

and thus all inequalities become equalities. So we have

f(Ju ∩ Jv) = |X ∩ A∩(Ju ∩ Jv)|,

and since u ∈ A∩(Ju) and v ∈ A∩(Jv), we get u, v ∈ A∩(Ju ∩ Jv), implying

|(X+u)∩A∩(Ju∩Jv)| > f(Ju∩Jv) and |(X+v)∩A∩(Ju∩Jv)| > f(Ju∩Jv).

Hence, the addition of elements u and v to X would also violate the indepen-

dence condition for Ju ∩ Jv, contradicting the minimality of Ju and Jv, unless

Ju = Jv.

• If Ju ∪ Jv /∈ F , then by the definition of f , we have

f(Ju ∪ Jv) ≥ |A∩(Ju ∪ Jv)| ≥ |X ∩ A∩(Ju ∪ Jv)|,

leading again to equality in all inequalities. Similarly, this implies that the

addition of u and v to X would also violate the independence condition for

Ju ∩ Jv, contradicting minimality unless Ju = Jv.
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Hence, all elements of Z − X violate the independence condition for the same

minimal set J0. Thus, we have

Z −X ⊆ A∩(J0) and |X ∩ A∩(J0)| = f(J0),

which implies

|X| = |X ∩ A∩(J0)|+ |X − A∩(J0)| = f(J0) + |Z − A∩(J0)|.

Definition 14. We call these matroids submodular F -cap matroids.

Remark 15. The rank function of a submodular F -cap matroid is r(Z) =

min{|Z|,minJ∈F{f(J) + |Z − A∩(J)|}}. If f(J) + |S − A∩(J)| ≥ f(∅) = r for

all J ∈ F , then the rank of the matroid is r(S) = f(∅) + |S − A∩(∅)| = f(∅) = r.

We may assume this as we can decrease the value of a submodular function on the

empty set and it still remains submodular. The independent sets of the matroid do

not change either as we only strengthen the condition for the empty set that gives

|X| ≤ r, and every independent set satisfies this if r is the rank of the matroid.

Definition 16. If f is modular, we call these matroids modular F -cap matroids.

Definition 17. If F =
(
n
≤t

)
, then we call these matroids submodular/modular t-cap

matroids accordingly.

Theorem 18. Let n, k, t and r be positive integers. Let {A1, . . . , Ak} be a collection

of subsets of a ground set S with n elements. Let F be a collection of subsets of
(
[k]
≤t

)
,

which is closed under taking intersection and ∅ ∈ F . Let g : F∪2 → Z be a function

such that g(∅) = 0, g is F-submodular, and g(J) + |A∪(J)| ≥ 0 for all J ∈ F . Then

if g(J) + |A∪(J)| ≥ r for all J ∈ F∪2 −F , where A∪(J) = ∪j∈JAj, then

I = {I ⊆ S : |I ∩ A∪(J)| ≤ g(J) + |A∪(J)|, ∀J ∈ F}

forms the independent sets of a matroid.

Proof. We will show that the independence axioms hold for the set system I. Since
for all J ∈ F , g(J) + |A∪(J)| ≥ 0, clearly ∅ ∈ I.

Suppose that X ⊆ Y and that Y ∈ I. Then for all J ∈ F ,

|X ∩ A∪(J)| ≤ |Y ∩ A∪(J)| ≤ g(J) + |A∪(J)|,
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therefore X ∈ I as well.

For the last axiom we prove that the size of a maximal set from I in any set

Z ⊆ S is given by

r(Z) = min{|Z|,min
J∈F

{g(J) + |A∪(J)|+ |Z − A∪(J)|}}.

Clearly, r(Z) ≤ Z. Now, consider an arbitrary set X ∈ I contained in Z. Then for

all J ∈ F , we have

|X| = |X ∩ A∪(J)|+ |X − A∪(J)| ≤ g(J) + |A∪(J)|+ |Z − A∪(J)|.

Thus,

r(Z) ≤ min{|Z|,min
J∈F

{g(J) + |A∪(J)|+ |Z − A∪(J)|}}

.

For the other direction, consider an arbitrary maximal subset X ∈ I of Z.

Assume |X| < |Z|, as otherwise r(Z) = |Z| and we are done. Now we prove that

there exists a set J0 ∈ F such that X + x /∈ I for every element x ∈ Z −X because

the condition for J0 does not hold:

|(X + x) ∩ A∪(J0)| > g(J0) + |A∪(J0)|.

Suppose that the addition of elements u, v ∈ Z − X to X would violate the

independence condition for sets Ju and Jv, respectively, chosen to be minimal with

respect to inclusion. By assumption we have

|(X+u)∩A∪(Ju)| > g(Ju)+ |A∪(Ju)| and |(X+ v)∩A∪(Jv)| > g(Jv)+ |A∪(Jv)|.

On the other hand, X is in I, so

|X ∩ A∪(Ju)| ≤ g(Ju) + |A∪(Ju)| and |X ∩ A∪(Jv)| ≤ g(Jv) + |A∪(Jv)|.

These can only hold if

|X ∩ A∪(Ju)| = g(Ju) + |A∪(Ju)| and |X ∩ A∪(Jv)| = g(Jv) + |A∪(Jv)|,

u ∈ A∪(Ju) and v ∈ A∪(Jv).

By definition and submodularity,

g(Ju) + |A∪(Ju)|+ g(Jv) + |A∪(Jv)| ≥ g(Ju ∩ Jv)+

+|A∪(Ju ∩ Jv)|+ g(Ju ∪ Jv) + |A∪(Ju ∪ Jv)|+ |(A∪(Ju) ∩ A∪(Jv))− A∪(Ju ∩ Jv)|.
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On the other hand,

g(Ju) + |A∪(Ju)|+ g(Jv) + |A∪(Jv)| = |X ∩ A∪(Ju)|+ |X ∩ A∪(Jv)| =

= |X ∩ A∪(Ju ∩ Jv)|+ |X ∩ (A∪(Ju ∪ Jv))|+ |X ∩ (A∪(Ju) ∩ A∪(Jv)− A∪(Ju ∩ Jv)).

Thus, we obtain

g(Ju ∩ Jv) + |A∪(Ju ∩ Jv)|+ g(Ju ∪ Jv) + |A∪(Ju ∪ Jv)|+ |A∪(Ju) ∩ A∪(Jv)− A∪(Ju ∩ Jv)|

≤ |X ∩ A∪(Ju ∩ Jv)|+ |X ∩ (A∪(Ju ∪ Jv))|+ |X ∩ (A∪(Ju) ∩ A∪(Jv)− A∪(Ju ∩ Jv))|

Since F is closed under intersection, we have Ju ∩ Jv ∈ F , implying

g(Ju ∩ Jv) + |A∪(Ju ∩ Jv)| ≥ |X ∩ A∪(Ju ∩ Jv)|.

For the last terms,

|A∪(Ju) ∩ A∪(Jv)− A∪(Ju ∩ Jv)| ≥ |X ∩ (A∪(Ju) ∩ A∪(Jv)− A∪(Ju ∩ Jv))|.

Now we distinguish two cases:

• If (Ju ∪ Jv) ∈ F , then

g(Ju ∪ Jv) + |A∪(Ju ∪ Jv)| ≥ |X ∩ A∪(Ju ∪ Jv)|,

implying that all inequalities are satisfied with equality. But then u and v

also violates the condition for Ju ∩ Jv, from which by the minimality Ju = Jv

follows.

• If (Ju ∪ Jv) /∈ F , then since Ju ∪ Jv ∈ F∪2 −F , we obtain

g(Ju ∪ Jv) + |A∪(Ju ∪ Jv)| ≥ r.

However,

|X ∩ A(Ju ∪ Jv)| ≤ |X| < |Z| ≤ r,

thus

g(Ju ∪ Jv) + |A∪(Ju ∪ Jv)| > |X ∩ A(Ju ∪ Jv)|,

which contradicts the previous inequality.

Therefore, all elements of Z−X violate the independence condition for the same

minimal set J0. This means

Z −X ⊆ A∪(J0) and |X ∩ A∪(J0)| = g(J0) + |A∪(J0)|,

so |X| = g(J0) + |A∪(J0)|+ |Z − A∪(J0)|.
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Definition 19. We call these matroids submodular F -cup matroids.

Remark 20. The rank function of a submodular F -cup matroid is r(Z) =

min{|Z|,minJ∈F{g(J)+ |Z−A∪(J)|+ |A∪(J)|}}. If g(J)+ |S−A∪(J)|+ |A∪(J)| =
g(J) + n ≥ r for all J ∈ F , then the rank of the matroid is r. We may assume this,

because choosing a smaller r only weakens the conditions in the definition of F -cup

matroids.

Definition 21. If f is modular, we call these matroids modular F -cup matroids.

Definition 22. If F =
(
n
≤t

)
, then we call these matroids submodular/modular t-cup

matroids accordingly.

Modular t-cup matroids were already defined by Balcan and Harvey [1] as it

gave a solution to their structural question of how much the rank function of a

matroid can vary. In fact, along partition matroids and paving matroids as a special

case of their construction, they noted the class of elementary split matroids in the

subsection E.2 Pairwise intersections way before they were introduced in [3].

Theorem 23. The dual of an F-cap matroid is an F-cup matroid with the same

F , and vice versa.

Proof. Let us take an F -cap matroid with a representation where the rank is r. We

know that for an independent set X ∈ I,

|X ∩ A∩(J)| ≤ f(J)

for all J ∈ F . So, for the dual matroid, if we take Y ∈ I∗, we have

|Y ∩ A∩(J)| ≤ n− |A∩(J)| − (r − f(J))

Let us define A∗
i = Ai for all i in the collection of subsets in the definition of the

F -cup matroid. Then A∗∪(J) = A∩(J). So we have

|Y ∩ A∗∪(J)| ≤ |A∗∪(J)|+ f(J)− (n− r∗).

Then if we take g(J) = f(J)− (n− r∗), we get the condition for an F -cup matroid.

We need to check the conditions for g.

Since f was F -submodular, and F is the same, g = f−(n−r∗) is also F -submodular.

f(∅) = r, so g(∅) = 0.

The rank of the original matroid was r, so f(J) + |S − A∩(J)| ≥ r for all J ∈ F .

This implies

g(J) + (n− r∗) + |A∗∪(J)| ≥ (n− r∗),
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therefore

g(J) + |A∗∪(J)| ≥ 0

for all J ∈ F .

We had f(J) ≥ |A∩(J)| for all j ∈ F∪2 −F , so

g(J) + (n− r∗) ≥ n− |A∗∪(J)|,

and

g(J) + |A∗∪(J)| ≥ r∗

follows for all J ∈ F∪2 − F . So the conditions for g are satisfied, the dual matroid

is indeed an F -cup matroid.

For the other direction, notice that all of these conditions were equivalent to the

original, except the one that followed from the rank being r.

So we only need to verify that backwards. We use the same notations since the dual

of the dual is the original matroid.

Take the representation for the dual matroid where the rank is r∗. So we have

g(J) + n ≥ r∗ for all J ∈ F , from which

f(J)− (n− r∗) + n ≥ r∗,

and the nonnegativity of f on F follows. On F∪2 − F it follows as well from the

other condition.

Remark 24. The above proof works for each subclass as well, which implies that

the dual of a modular F -cap matroid is a modular F -cup matroid, and the dual of

a t-cap matroid is a t-cup matroid.

Theorem 25. Every matroid is a submodular F-cap matroid.

Proof. Take an arbitrary matroid with a ground set S and identify it with S := [n].

Let us define Ai = S − i for all i ∈ S, therefore k = n. Take F =
(

[n]
≤n−1

)
. Define

f(J) = r(A∩(J)) = r(S − J) for all J ⊆ [n]. Then f is submodular (therefore

F -submodular), since

f(J1)+f(J2) = r(S−J1)+r(S−J2) ≥ r((S−J1)∩(S−J2))+r((S−J1)∪(S−J2))

= r(S − (J1 ∪ J2)) + r(S − J1 ∩ J2) = f(J1 ∪ J2) + f(J1 ∩ J2)

by the submodularity of the rank function.

f is nonnegative by definition and F∪2 − F = [n], so the condition for F∪2 − F is

satisfied because

f([n]) = r(S − [n]) = r(∅) = 0 = |∅| = |A∩([n])|
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f(∅) = r(S) = r is satisfied too.

The condition for the independent sets gives

|I ∩ A∩(J)| ≤ f(J),

that is

|I ∩ (S − J)| ≤ r(S − J)

for all J ⊊ S, or in other form

|I ∩H| ≤ r(H)

for all ∅ ≠ H ⊆ S, which clearly defines the original matroid.

Remark 26. Since each matroid is the dual of its dual matroid, combining the

previous theorems we get that every matroid is a submodular F -cup matroid.
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[11] L. Ferroni and B. Schröter. Enumerating the faces of split matroid polytopes.

arXiv preprint arXiv:2310.05487, 2023.
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[14] L. Ferroni and B. Schröter. Valuative invariants for large classes of matroids.

Journal of the London Mathematical Society, 110(3):e12984, 2024.

[15] H. Gabow. Decomposing symmetric exchanges in matroid bases. Mathematical

Programming, 10(1):271–276, 1976.
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